[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4794200B2 - 4-amino-5-cyanopyrimidine derivatives - Google Patents

4-amino-5-cyanopyrimidine derivatives Download PDF

Info

Publication number
JP4794200B2
JP4794200B2 JP2005125880A JP2005125880A JP4794200B2 JP 4794200 B2 JP4794200 B2 JP 4794200B2 JP 2005125880 A JP2005125880 A JP 2005125880A JP 2005125880 A JP2005125880 A JP 2005125880A JP 4794200 B2 JP4794200 B2 JP 4794200B2
Authority
JP
Japan
Prior art keywords
group
lower alkyl
amino
compound
saturated heterocyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005125880A
Other languages
Japanese (ja)
Other versions
JP2005336168A5 (en
JP2005336168A (en
Inventor
正也 加藤
範典 佐藤
岡田  稔
哲之 宇野
展明 伊藤
康広 竹治
久司 篠原
正博 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Pharmaceutical Co Ltd
Original Assignee
Otsuka Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co Ltd filed Critical Otsuka Pharmaceutical Co Ltd
Priority to JP2005125880A priority Critical patent/JP4794200B2/en
Publication of JP2005336168A publication Critical patent/JP2005336168A/en
Publication of JP2005336168A5 publication Critical patent/JP2005336168A5/ja
Application granted granted Critical
Publication of JP4794200B2 publication Critical patent/JP4794200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

本発明は、医薬品、殊にアデノシンA2a受容体作用薬として有用な4-アミノ-5-シアノピリミジン誘導体またはそれらの製薬学的に許容される塩およびこれらの化合物を有効成分として含有する医薬に関する。   The present invention relates to pharmaceuticals, particularly 4-amino-5-cyanopyrimidine derivatives useful as adenosine A2a receptor agonists or pharmaceutically acceptable salts thereof and pharmaceuticals containing these compounds as active ingredients.

アデノシンは、細胞表面に存在する受容体と結合することによって各種の生理作用を示す物質である。細胞表面に存在するアデノシン受容体は、G蛋白質共役型受容体のファミリーに属し、A1、A2a、A2bおよびA3に分類される。このうちアデノシンA1およびA3受容体は、Gi蛋白質と共役し、その活性化は細胞内c-AMPレベルを低下させる。また、アデノシンA2aおよびA2b受容体はGs蛋白質と共役し、その活性化は細胞内c-AMPレベルを上昇させる。これら4種のアデノシン受容体サブタイプはそれぞれクローニングされている。   Adenosine is a substance that exhibits various physiological actions by binding to receptors present on the cell surface. Adenosine receptors present on the cell surface belong to the family of G protein-coupled receptors and are classified as A1, A2a, A2b and A3. Among these, the adenosine A1 and A3 receptors are coupled to the Gi protein, and their activation reduces intracellular c-AMP levels. Adenosine A2a and A2b receptors are also coupled to Gs proteins and their activation increases intracellular c-AMP levels. Each of these four adenosine receptor subtypes has been cloned.

上記アデノシン受容体サブタイプのそれぞれに作用する作動薬および阻害薬については、既に種々の研究がなされている。これらの作動薬および阻害薬は、心血管系障害、虚血再還流障害、炎症、パーキンソン病、統合失調症などの治療薬としての可能性が既に報告されている。特に、アデノシンA2a受容体作動薬の有効成分化合物としては、数多くのアデノシン誘導体が報告されている(特許文献1-24参照)。   Various studies have already been conducted on agonists and inhibitors that act on each of the adenosine receptor subtypes. These agonists and inhibitors have already been reported as therapeutic agents for cardiovascular disorders, ischemia reperfusion disorders, inflammation, Parkinson's disease, schizophrenia and the like. In particular, a number of adenosine derivatives have been reported as active ingredient compounds of adenosine A2a receptor agonists (see Patent Document 1-24).

更に、上記アデノシン誘導体とは構造的に異なってアデニン骨格を持たない化合物もアデノシンA1またはA2受容体作動薬の有効成分化合物として報告されている。その具体例としては、例えばジシアノピリジン誘導体を挙げることができる(特許文献25-32参照)。しかしながら、アデノシンA2a受容体を活性化する作用を有するシアノピリミジン誘導体は知られていない。   Furthermore, compounds that are structurally different from the above adenosine derivatives and do not have an adenine skeleton have also been reported as active component compounds of adenosine A1 or A2 receptor agonists. Specific examples thereof include a dicyanopyridine derivative (see Patent Documents 25-32). However, a cyanopyrimidine derivative having an action of activating the adenosine A2a receptor is not known.

一方、緑内障は、霊長類を始めとして哺乳類全般が罹患する難治性眼疾患である。その症状としては、眼のかすみや痛みあるいは視力低下が観察され、視神経の障害で視野の欠損が生じ、場合によっては失明に至ることさえある。該緑内障は、眼内圧の上昇(眼圧亢進)を特徴とする高眼圧緑内障と眼圧亢進を伴わない正常眼圧緑内障に分類される。緑内障における眼圧亢進は、毛様体上皮から後眼房内に分泌される房水の分泌速度と、前房から主としてシュレム管を介して排出除去される房水の排出速度とのバランスが崩れた結果として起こる。このバランスの崩れは、主として房水の排出経路の目詰まりによる房水の流出抵抗の増加に起因すると考えられている。該緑内障は、超高齢化社会を迎えている先進諸国において、年々患者数が増加している重大な疾患であり、その治療剤の開発における社会的重要性は、今後、益々増大すると考えられる。   On the other hand, glaucoma is an intractable eye disease that affects all mammals including primates. Symptoms include blurred vision, pain, or loss of vision, loss of visual field due to optic nerve damage, and sometimes even blindness. The glaucoma is classified into high-tension glaucoma that is characterized by an increase in intraocular pressure (increased intraocular pressure) and normal-tension glaucoma that is not accompanied by increased intraocular pressure. Increased intraocular pressure in glaucoma results in an imbalance between the rate of aqueous humor secreted from the ciliary epithelium into the posterior chamber and the rate of aqueous humor drained and removed from the anterior chamber mainly via Schlemm's canal. As a result. This loss of balance is thought to be mainly due to an increase in the outflow resistance of the aqueous humor due to clogging of the discharge path of the aqueous humor. Glaucoma is a serious disease in which the number of patients is increasing year by year in advanced countries that are facing a super-aging society, and its social importance in the development of therapeutic agents is expected to increase further in the future.

現在、緑内障の治療においては、最大の危険因子である眼圧のコントロールが最も重要な課題であり、その治療薬としては、例えばカルテオロール、チモロールなどのβ遮断薬、例えばラタノプロスト、イソプロピルウノプロストンなどのプロスタグランジン誘導体、例えばドルゾラミドなどの炭酸脱水素酵素阻害薬などが用いられている。これらの薬物は房水の産生または排出を調節し眼圧を降下させる作用を奏し得る。   At present, in the treatment of glaucoma, control of intraocular pressure, which is the greatest risk factor, is the most important issue. Examples of such therapeutic agents include beta-blockers such as carteolol and timolol, such as latanoprost and isopropyl unoprostone. Prostaglandin derivatives such as carbonic acid dehydrogenase inhibitors such as dorzolamide are used. These drugs can act to regulate the production or excretion of aqueous humor and lower intraocular pressure.

アデノシンA2a受容体作動薬は、強い血圧降下作用を有し、前述したように、抗高血圧剤、心臓または脳の虚血性疾患の治療予防剤、抗動脈硬化症剤などとして有効であることが報告されている他にも、眼圧低下作用を持つことも報告されている(非特許文献1および2参照)。   Adenosine A2a receptor agonists have a strong antihypertensive effect, and as described above, are reported to be effective as antihypertensive agents, therapeutic or preventive agents for ischemic diseases of the heart or brain, and antiatherosclerotic agents. In addition, it has also been reported to have an intraocular pressure lowering effect (see Non-Patent Documents 1 and 2).

また、眼圧降下作用を有するアデノシン誘導体についても既に一部研究、開発がなされている(特許文献23および24参照)。   In addition, some research and development have already been conducted on adenosine derivatives having an intraocular pressure-lowering action (see Patent Documents 23 and 24).

しかるに、このようなアデノシン誘導体は、これを緑内障治療薬として使用する場合、中枢および心血管系に対する副作用が伴われるという重大な弊害が懸念される。
WO 01/027131 A1 WO 00/077018 A1 WO 00/078776 A1 WO 00/078777 A1 WO 00/078778 A1 WO 00/078779 A1 WO 00/072799 A1 WO 00/023457 A1 WO 99/67266 A1 WO 99/67265 A1 WO 99/67264 A1 WO 99/67263 A1 WO 99/41267 A1 WO 99/38877 A1 WO 98/28319 A1 US特許第5877180号明細書 WO 00/044763 A1 WO 93/22328 A1 特公平1-33477号公報 特許第2774169号明細書 US特許第4968697号明細書 特開昭63-201196号公報 特開2003-055395号公報 特開2002-173427号公報 WO 00/125210 A1 WO 02/070484 A1 WO 02/070485 A1 WO 02/070520 A1 WO 02/079195 A1 WO 02/079196 A1 WO 03/008384 A1 WO 03/053441 A1 J. Pharmcol. Exp. Ther. 320-326, 273 (1995) Eur. J. Pharmacol. 307-316, 486 (2004)。
However, when such an adenosine derivative is used as a therapeutic agent for glaucoma, there is a concern about a serious adverse effect that side effects on the central and cardiovascular systems are accompanied.
WO 01/027131 A1 WO 00/077018 A1 WO 00/078776 A1 WO 00/078777 A1 WO 00/078778 A1 WO 00/078779 A1 WO 00/072799 A1 WO 00/023457 A1 WO 99/67266 A1 WO 99/67265 A1 WO 99/67264 A1 WO 99/67263 A1 WO 99/41267 A1 WO 99/38877 A1 WO 98/28319 A1 US Patent No. 5877180 WO 00/044763 A1 WO 93/22328 A1 Japanese Patent Publication No. 1-333477 Japanese Patent No. 2774169 US Patent No. 4968697 JP 63-201196 Japanese Patent Laid-Open No. 2003-055395 JP 2002-173427 A WO 00/125210 A1 WO 02/070484 A1 WO 02/070485 A1 WO 02/070520 A1 WO 02/079195 A1 WO 02/079196 A1 WO 03/008384 A1 WO 03/053441 A1 J. Pharmcol. Exp. Ther. 320-326, 273 (1995) Eur. J. Pharmacol. 307-316, 486 (2004).

以上のようにアデニン骨格を有するアデノシン誘導体は、アデノシンA2a受容体作動薬として、特に眼圧低下作用を奏し得ることから緑内障などの治療薬として、その効果が期待できるものの、尚、その眼圧低下作用は不十分である。しかも、これらの化合物は、アデニン骨格を有することに基づいて、アデノシンA2a受容体作動薬本来の強い血圧降下作用などの中枢および心血管系に対する副作用を伴うという致命的な欠点を有している。従って、これら化合物に代わって、より安全に使用できるアデノシンA2a受容体作動薬、特に緑内障などの治療薬として有効な眼圧低下作用を奏し得る化合物の開発が、当業界で要望されている。   As described above, an adenosine derivative having an adenine skeleton can be expected to be effective as an adenosine A2a receptor agonist, particularly as a therapeutic agent for glaucoma, etc. The action is insufficient. Moreover, these compounds have a fatal defect that they have side effects on the central and cardiovascular systems such as the strong blood pressure lowering action inherent in adenosine A2a receptor agonists based on having an adenine skeleton. Therefore, in place of these compounds, there is a demand in the art for the development of an adenosine A2a receptor agonist that can be used more safely, particularly a compound that can exert an intraocular pressure lowering effect that is effective as a therapeutic agent for glaucoma and the like.

本発明の目的は、当業界で要望されている、より安全で且つ強力なアデノシンA2a受容体作動作用を有する化合物を提供することにある。   An object of the present invention is to provide a safer and more potent compound having adenosine A2a receptor agonistic action, which is required in the art.

本発明者らは上記目的を達成するために鋭意研究を重ねた結果、ある種の4-アミノ-5-シアノピリミジン誘導体の製造に成功すると共に、該化合物が優れたアデノシンA2a受容体作動作用を有するという事実を見出した。本発明はこの知見を基礎として更に研究を重ねた結果、完成されたものである。   As a result of intensive studies to achieve the above object, the present inventors have succeeded in producing a certain 4-amino-5-cyanopyrimidine derivative, and the compound has an excellent adenosine A2a receptor agonistic action. Found the fact that it has. The present invention has been completed as a result of further research based on this knowledge.

本発明は下記項1〜10に記載の化合物を提供する。   The present invention provides the compounds according to items 1 to 10 below.

項1. 一般式(1):   Item 1. General formula (1):

Figure 0004794200
Figure 0004794200

[式中、
R1は水素原子、低級アルキルカルボニル基、低級アルケニルカルボニル基、フェニルカルボニル基または低級アルコキシカルボニル基を示す。
R2は低級アルキレン基を示す。
R3は(1)水素原子、(2)低級アルキル基または下記基(3)〜基(12)のいずれかを示す。
[Where
R 1 represents a hydrogen atom, a lower alkylcarbonyl group, a lower alkenylcarbonyl group, a phenylcarbonyl group or a lower alkoxycarbonyl group.
R 2 represents a lower alkylene group.
R 3 represents (1) a hydrogen atom, (2) a lower alkyl group, or any one of the following groups (3) to (12).

Figure 0004794200
Figure 0004794200

上記基(3)〜基(12)において、R4は低級アルキレン基、R5は水素原子または低級アルキル基、R6は低級アルケニレン基、R7は低級アルキニレン基およびR8は低級アルキル基を示し、Z1〜Z3はそれぞれ下記(a1)-(a38)、(b1)-(b8)および(c1)-(c22)からなる群から選ばれるいずれかの基を示す。 In the groups (3) to (12), R 4 is a lower alkylene group, R 5 is a hydrogen atom or a lower alkyl group, R 6 is a lower alkenylene group, R 7 is a lower alkynylene group, and R 8 is a lower alkyl group. Z 1 to Z 3 each represent one of groups selected from the group consisting of the following (a1)-(a38), (b1)-(b8) and (c1)-(c22).

Z1:(a1)低級アルキル基、(a2)アリール低級アルキル基、(a3)アミノアリール低級アルキル基、(a4)アリール低級アルケニル基、(a5)ヘテロアリール低級アルキル基、(a6)ヘテロアリール低級アルケニル基、(a7)ヘテロアリールアリール低級アルキル基、(a8)ヒドロキシ低級アルキル基、(a9)アリールオキシ低級アルキル基、(a10)アミノ低級アルキル基、(a11)アミノカルボニル低級アルキル基、(a12)低級アルキルカルボニル基、(a13)低級アルコキシ低級アルキルカルボニル基、(a14)アミノ低級アルキルカルボニル基、(a15)アリールカルボニル基、(a16)アリール低級アルキルカルボニル基、(a17)アリール低級アルケニルカルボニル基、(a18)アリールオキシ低級アルキルカルボニル基、(a19)ヘテロアリールカルボニル基、(a20)ヘテロアリール低級アルキルカルボニル基、(a21)ヘテロアリール低級アルケニルカルボニル基、(a22)ヘテロアリールオキシ低級アルキルカルボニル基、(a23)ヘテロアリールスルファニル低級アルキルカルボニル基、(a24)ヘテロアリールアリールカルボニル基、(a25)アリールスルファニル低級アルキルカルボニル基、(a26)アリールカルボニル低級アルキルカルボニル基、(a27)アリールアミノ低級アルキルカルボニル基、(a28)低級アルコキシカルボニル基、(a29)低級アルキルスルホニル基、(a30)アリールスルホニル基、(a31)ヘテロアリールスルホニル基、(a32)水素原子、(a33)飽和複素環を有する低級アルキル基、(a34)飽和複素環を有するカルボニル低級アルキル基、(a35)飽和複素環を有するアリール低級アルキル基、(a36)飽和複素環を有するカルボニル基、(a37)飽和複素環を有する低級アルキルカルボニル基、(a38)飽和複素環を有するアリールカルボニル基。 Z 1 : (a1) lower alkyl group, (a2) aryl lower alkyl group, (a3) aminoaryl lower alkyl group, (a4) aryl lower alkenyl group, (a5) heteroaryl lower alkyl group, (a6) heteroaryl lower Alkenyl group, (a7) heteroarylaryl lower alkyl group, (a8) hydroxy lower alkyl group, (a9) aryloxy lower alkyl group, (a10) amino lower alkyl group, (a11) aminocarbonyl lower alkyl group, (a12) Lower alkylcarbonyl group, (a13) lower alkoxy lower alkylcarbonyl group, (a14) amino lower alkylcarbonyl group, (a15) arylcarbonyl group, (a16) aryl lower alkylcarbonyl group, (a17) aryl lower alkenylcarbonyl group, a18) aryloxy lower alkylcarbonyl group, (a19) heteroarylcarbonyl group, (a20) heteroaryl lower alkylcarbonyl group (A21) heteroaryl lower alkenylcarbonyl group, (a22) heteroaryloxy lower alkylcarbonyl group, (a23) heteroarylsulfanyl lower alkylcarbonyl group, (a24) heteroarylarylcarbonyl group, (a25) arylsulfanyl lower alkylcarbonyl group Group, (a26) arylcarbonyl lower alkylcarbonyl group, (a27) arylamino lower alkylcarbonyl group, (a28) lower alkoxycarbonyl group, (a29) lower alkylsulfonyl group, (a30) arylsulfonyl group, (a31) heteroaryl A sulfonyl group, (a32) a hydrogen atom, (a33) a lower alkyl group having a saturated heterocyclic ring, (a34) a carbonyl lower alkyl group having a saturated heterocyclic ring, (a35) an aryl lower alkyl group having a saturated heterocyclic ring, (a36) A carbonyl group having a saturated heterocyclic ring, (a37) a lower alkyl group having a saturated heterocyclic ring Alkylsulfonyl group, (a38) an arylcarbonyl group having a saturated heterocycle.

尚、上記(a3)、(a10)、(a11)および(a14)に記載の各基の一部を構成するアミノ基は、低級アルキル基、カルボニル基および低級アルキルカルボニル基からなる群から選ばれる置換基の1または2個で置換されていてもよく、上記(a2)、(a15)、(a16)、(a17)、(a18)、(a30)および (a35)に記載の各基の一部を構成するアリール基は、ハロゲン、水酸基、低級アルキル基、低級アルコキシ基、ハロゲノ低級アルコキシ基、アリール基、アリールオキシ基、メチレンジオキシ基、ジハロゲノメチレンジオキシ基、カルボキシル基、低級アルコキシカルボニル基、低級アルキルカルボニルオキシ基、ニトロ基、低級アルキルアミノ基、低級アルキルカルボニルアミノ基およびアミノスルホニル基からなる群から選ばれる置換基の1〜3個で置換されていてもよく、上記(a5)、(a19)〜(a24)および(a31)に記載の各基の一部を構成するヘテロアリール基は、ハロゲン、水酸基、低級アルキル基、ヒドロキシ低級アルキル基、ハロゲノ低級アルキル基、アリール基、ハロゲノアリール基、低級アルキルスルファニル基、アミノカルボニル基およびカルボキシル基からなる群から選ばれる置換基の1〜3個で置換されていてもよい。更に、上記(a33)〜(a38)に記載の各基の一部を構成する飽和複素環は、5-7員の含窒素飽和複素環基であって、該基には1乃至2個のベンゼン環が縮合してもよく、また該基は、これを構成する窒素原子上に1個の低級アルキル基または低級アルキルカルボニル基を有していてもよく、また該環を構成する炭素原子上に1または2個のオキソ基を有していてもよい。   The amino group constituting a part of each group described in the above (a3), (a10), (a11) and (a14) is selected from the group consisting of a lower alkyl group, a carbonyl group and a lower alkylcarbonyl group. One or two of the substituents may be substituted, and one of the groups described in the above (a2), (a15), (a16), (a17), (a18), (a30) and (a35) The aryl group constituting the part is halogen, hydroxyl group, lower alkyl group, lower alkoxy group, halogeno lower alkoxy group, aryl group, aryloxy group, methylenedioxy group, dihalogenomethylenedioxy group, carboxyl group, lower alkoxycarbonyl Group, a lower alkylcarbonyloxy group, a nitro group, a lower alkylamino group, a lower alkylcarbonylamino group, and an aminosulfonyl group, may be substituted with 1 to 3 substituents selected from the group (a5) , (A The heteroaryl group constituting a part of each group described in 19) to (a24) and (a31) is halogen, hydroxyl group, lower alkyl group, hydroxy lower alkyl group, halogeno lower alkyl group, aryl group, halogenoaryl group And may be substituted with 1 to 3 substituents selected from the group consisting of a lower alkylsulfanyl group, an aminocarbonyl group and a carboxyl group. Further, the saturated heterocyclic ring constituting a part of each group described in the above (a33) to (a38) is a 5- to 7-membered nitrogen-containing saturated heterocyclic group, and the group includes 1 to 2 The benzene ring may be condensed, and the group may have one lower alkyl group or lower alkylcarbonyl group on the nitrogen atom constituting the benzene ring, or on the carbon atom constituting the ring. May have 1 or 2 oxo groups.

Z2:(b1)水素原子、(b2)低級アルコキシカルボニル基、(b3)アミノ低級アルキルカルボニル基、(b4)低級アルケニルカルボニル基、(b5)飽和複素環を有する低級アルキルカルボニル基、(b6)飽和複素環を有するピペリジノ低級アルキルカルボニル基、(b7)飽和複素環を有するカルボニル基および(b8)低級アルキルスルホニル基。 Z 2 : (b1) hydrogen atom, (b2) lower alkoxycarbonyl group, (b3) amino lower alkylcarbonyl group, (b4) lower alkenylcarbonyl group, (b5) lower alkylcarbonyl group having a saturated heterocyclic ring, (b6) A piperidino lower alkylcarbonyl group having a saturated heterocyclic ring, (b7) a carbonyl group having a saturated heterocyclic ring, and (b8) a lower alkylsulfonyl group.

尚、上記(b3)に記載の各基の一部を構成するアミノ基は、1または2個の低級アルキル基で置換されていてもよい。更に、上記(b5)から(b7)に記載の各基の一部を構成する飽和複素環は、5-7員の含窒素飽和複素環基であって且つ該環を構成する窒素原子上に1個の低級アルキル基を有していてもよい。   The amino group constituting a part of each group described in the above (b3) may be substituted with 1 or 2 lower alkyl groups. Further, the saturated heterocyclic ring constituting a part of each group described in the above (b5) to (b7) is a 5- to 7-membered nitrogen-containing saturated heterocyclic group and on the nitrogen atom constituting the ring. It may have one lower alkyl group.

Z3:(c1)水酸基、(c2)低級アルコキシ基、(c3)アミノ基、(c4)アミノ低級アルキルアミノ基、 (c5)ピペラジノ基、(c6)アミノ低級アルキルピペラジノ基、(c7)アミノカルボニル低級アルキルピペラジノ基、(c8)1,4-ジアゼパン-1-イル基、(c9)アミノ低級アルキル-1,4-ジアゼパン-1-イル基、(c10)ピペリジノ基、(c11)アミノピペリジノ基、(c12)アミノ低級アルキルアミノピペリジノ基、(c13)アミノ低級アルキルピペリジノ基、(c14)ピロリジノ基、(c15)飽和複素環を有するアミノ基、(c16)飽和複素環を有する低級アルキルアミノ基、(c17)飽和複素環を有するピペラジノ基、(c18)飽和複素環を有する低級アルキルピペラジノ基、(c19)飽和複素環を有するカルボニル低級アルキルピペラジノ基、(c20)飽和複素環を有する低級アルキル-1,4-ジアゼパン-1-イル基、(c21)飽和複素環を有するピペリジノ基および(c22)飽和複素環を有する低級アルキルモルホリノ基。 Z 3 : (c1) hydroxyl group, (c2) lower alkoxy group, (c3) amino group, (c4) amino lower alkylamino group, (c5) piperazino group, (c6) amino lower alkyl piperazino group, (c7) Aminocarbonyl lower alkyl piperazino group, (c8) 1,4-diazepan-1-yl group, (c9) amino lower alkyl-1,4-diazepan-1-yl group, (c10) piperidino group, (c11) An aminopiperidino group, (c12) an amino lower alkylaminopiperidino group, (c13) an amino lower alkylpiperidino group, (c14) a pyrrolidino group, (c15) an amino group having a saturated heterocyclic ring, and (c16) a saturated heterocyclic ring. (C17) a piperazino group having a saturated heterocyclic ring, (c18) a lower alkyl piperazino group having a saturated heterocyclic ring, (c19) a carbonyl lower alkyl piperazino group having a saturated heterocyclic ring, (c20 ) A lower alkyl-1,4-diazepan-1-yl group having a saturated heterocyclic ring, (c21) a saturated heterocyclic ring A piperidino group having (c22) a lower alkylmorpholino group having a saturated heterocyclic ring.

尚、上記(c3)のアミノ基、並びに(c4)、(c6)、(c7)、(c9)、(c11)、(c12)、(c13)、(c15)および(c16)に記載の各基の一部を構成するアミノ基は、低級アルキル基、ヒドロキシ低級アルキル基、アリール基、ヘテロアリール基、アリール低級アルキル基、アルキコキシアリール低級アルキル基、ヘテロアリール低級アルキル基および低級アルコキシカルボニル基からなる群から選ばれる置換基の1または2個で置換されていてもよく、上記(c11)に記載の基の一部を構成するアミノ基は、1個のアリール低級アルキルカルボニル基で置換されていてもよい。また上記(c5)のピペラジノ基および(c8)の1,4-ジアゼパン-1-イル基は、その4位に低級アルキル基、ヒドロキシ低級アルキル基、低級アルコキシ低級アルキル基、アリール基、低級アルキルアリール基、ヒドロキシアリール基、シアノアリール基、ハロゲノアリール基、アリール低級アルキル基、低級アルコキシアリール低級アルキル基、ハロゲノアリールオキシ低級アルキル基、ヘテロアリール基、低級アルキルへテロアリール基、ハロゲノ低級アルキルへテロアリール基、シアノへテロアリール基、ヘテロアリール低級アルキル基、低級アルコキシカルボニル基および低級アルキルカルボニル基からなる群から選ばれる置換基のいずれか1個を有していてもよい。更に、上記(c15)〜(c22)に記載の各基の一部を構成する飽和複素環は、5-7員の含窒素飽和複素環基であって、該基には1乃至2個のベンゼン環が縮合してもよく、また該基は、これを構成する窒素原子上に低級アルキル基、アリール基、シアノアリール基、低級アルキルカルボニル基、ハロゲノ低級アルキルアリール基およびアリール低級アルキル基からなる群から選ばれる置換基のいずれか1個を有していてもよい。更に、上記(c5)のピペラジノ基、(c10)のピペリジノ基および(c15)〜(c22)に記載の各基の一部を構成する飽和複素環は、これらの環を構成する炭素原子上に水酸基、オキソ基、低級アルキル基、ヒドロキシ低級アルキル基、アリール基、アリール低級アルキル基、アミノカルボニル基および低級アルキルアミノ基からなる群から選ばれる置換基のいずれか1個を有していてもよい。]
で表される4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。
Incidentally, the amino group of the above (c3), and each of (c4), (c6), (c7), (c9), (c11), (c12), (c13), (c15) and (c16) The amino group constituting a part of the group is a lower alkyl group, a hydroxy lower alkyl group, an aryl group, a heteroaryl group, an aryl lower alkyl group, an alkyloxyaryl lower alkyl group, a heteroaryl lower alkyl group and a lower alkoxycarbonyl group. The amino group constituting a part of the group described in the above (c11) may be substituted with one aryl lower alkylcarbonyl group, which may be substituted with 1 or 2 substituents selected from the group consisting of It may be. In addition, the piperazino group of (c5) and the 1,4-diazepan-1-yl group of (c8) have a lower alkyl group, a hydroxy lower alkyl group, a lower alkoxy lower alkyl group, an aryl group, a lower alkyl aryl at the 4-position. Group, hydroxyaryl group, cyanoaryl group, halogenoaryl group, aryl lower alkyl group, lower alkoxyaryl lower alkyl group, halogenoaryloxy lower alkyl group, heteroaryl group, lower alkyl heteroaryl group, halogeno lower alkyl heteroaryl group, It may have any one of substituents selected from the group consisting of a cyanoheteroaryl group, a heteroaryl lower alkyl group, a lower alkoxycarbonyl group, and a lower alkylcarbonyl group. Furthermore, the saturated heterocyclic ring constituting a part of each group described in the above (c15) to (c22) is a 5- to 7-membered nitrogen-containing saturated heterocyclic group, and the group includes 1 to 2 The benzene ring may be condensed, and the group comprises a lower alkyl group, an aryl group, a cyanoaryl group, a lower alkylcarbonyl group, a halogeno lower alkylaryl group and an aryl lower alkyl group on the nitrogen atom constituting the benzene ring. It may have any one of substituents selected from the group. Furthermore, the piperazino group of (c5), the piperidino group of (c10) and the saturated heterocyclic ring constituting a part of each group described in (c15) to (c22) are on the carbon atoms constituting these rings. It may have any one of substituents selected from the group consisting of a hydroxyl group, an oxo group, a lower alkyl group, a hydroxy lower alkyl group, an aryl group, an aryl lower alkyl group, an aminocarbonyl group, and a lower alkylamino group. . ]
A 4-amino-5-cyanopyrimidine derivative represented by the formula or a pharmaceutically acceptable salt thereof.

項2. R2がメチレン基であり、R3が水素原子または低級アルキル基である項1に記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。 Item 2. The 4-amino-5-cyanopyrimidine derivative or a pharmaceutically acceptable salt thereof according to Item 1, wherein R 2 is a methylene group and R 3 is a hydrogen atom or a lower alkyl group.

項3. R1が低級アルキルカルボニル基であり、R2がメチレン基であり、且つR3が基(3)または基(6)である項1に記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。 Item 3. The 4-amino-5-cyanopyrimidine derivative according to Item 1, wherein R 1 is a lower alkylcarbonyl group, R 2 is a methylene group, and R 3 is a group (3) or a group (6). Or a pharmaceutically acceptable salt thereof.

項4. R4が低級アルキレン基であり、且つZ1が(a2)、(a14)、(a15)、(a28)、(a32)および(a37)から選ばれるいずれかの基である項3に記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。 Item 4. R 3 is a lower alkylene group, and Z 1 is any group selected from (a2), (a14), (a15), (a28), (a32) and (a37) Or a pharmaceutically acceptable salt thereof.

項5. R1が低級アルキルカルボニル基であり、R2がメチレン基であり、且つR3が基(4)、基(5)または基(7)(但し、Z1は低級アルコキシカルボニル基または水素原子を示す)である項1に記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。 Item 5. R 1 is a lower alkylcarbonyl group, R 2 is a methylene group, and R 3 is a group (4), a group (5) or a group (7) (wherein Z 1 is a lower alkoxycarbonyl group or Item 4. A 4-amino-5-cyanopyrimidine derivative or a pharmaceutically acceptable salt thereof according to Item 1, which represents a hydrogen atom.

項6. R1が低級アルキルカルボニル基であり、R2がメチレン基であり、且つR3が基(8)である項1に記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。 Item 6. The 4-amino-5-cyanopyrimidine derivative or the pharmaceutical formulation thereof according to Item 1, wherein R 1 is a lower alkylcarbonyl group, R 2 is a methylene group, and R 3 is group (8). Acceptable salt.

項7. R1が水素原子または低級アルキルカルボニル基であり、R2がメチレン基であり、且つR3が基(9)、基(10)または基(11)である項1に記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。 Item 7. The item 4 according to item 1 , wherein R 1 is a hydrogen atom or a lower alkylcarbonyl group, R 2 is a methylene group, and R 3 is a group (9), a group (10), or a group (11). -Amino-5-cyanopyrimidine derivative or a pharmaceutically acceptable salt thereof.

項8. R1が水素原子または低級アルキルカルボニル基であり、R2がメチレン基であり、且つR3が基(9)、基(10)または基(11)(但し、Z3は(c1)、(c2)、(c4)、(c5)、(c6)、(c7)、(c8)、(c10)、(c11)、(c15)、(c16)、(c18)、(c21)または(c22)を示す)である項1に記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。 Item 8. R 1 is a hydrogen atom or a lower alkylcarbonyl group, R 2 is a methylene group, and R 3 is a group (9), a group (10) or a group (11) (provided that Z 3 is (c1 ), (C2), (c4), (c5), (c6), (c7), (c8), (c10), (c11), (c15), (c16), (c18), (c21) or The 4-amino-5-cyanopyrimidine derivative or a pharmaceutically acceptable salt thereof according to Item 1, which is (showing (c22)).

項9. R1がアセチル基であり、R2がメチレン基であり、且つR3が基(9)(但し、Z3は(c4)、(c5)、(c6)、(c10)、(c11)、(c16)、(c18)、(c21)または(c22)を示す)である項1に記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。 Item 9. R 1 is an acetyl group, R 2 is a methylene group, and R 3 is a group (9) (where Z 3 is (c4), (c5), (c6), (c10), ( The 4-amino-5-cyanopyrimidine derivative or a pharmaceutically acceptable salt thereof according to Item 1, which is c11), (c16), (c18), (c21) or (c22).

項10. 下記1)〜19)から選択される項1-9のいずれかに記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。
1) N-{4-[6-アミノ-5-シアノ-2-(ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド、
2) N-{4-[6-アミノ-5-シアノ-2-(6-メチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド、
3) N-{4-[6-アミノ-5-シアノ-2-(6-{4-[2-(4-メチルピペラジン-1-イル)アセチル]ピペラジン-1-イルメチル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド、
4) N-[4-(6-アミノ-5-シアノ-2-{6-[3-(4-メチルピペラジン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド、
5) 3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジメチルアミノエチル)プロピオンアミド、
6) 3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジメチルアミノエチル)-N-メチルプロピオンアミド、
7) 3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジメチルアミノプロピル)-N-メチルプロピオンアミド、
8) 3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-メチルピペリジン-1-イルエチル)プロピオンアミド、
9) 3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジエチルアミノエチル)プロピオンアミド、
10) 3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-メチル-N-(1-メチルピペリジン-4-イル)プロピオンアミド、
11) N-(4-{6-アミノ-2-[6-(3-[1,4’]ビピペリジニル-1’-イル-3-オキソプロピル)ピリジン-2-イルメチルスルファニル]-5-シアノピリミジン-4-イル}フェニル)アセトアミド、
12) N-[4-(6-アミノ-5-シアノ-2-{6-[3-オキソ-3-(2-ピペリジン-1-イルメチルモルホリン-4-イル)プロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド、
13) N-{4-[6-アミノ-5-シアノ-2-(6-{3-[2-(4-エチルピペラジン-1-イルメチル)モルホリン-4-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド、
14) N-{4-[6-アミノ-5-シアノ-2-(6-{3-[4-(2-ジエチルアミノエチル)ピペラジン-1-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド、
15) N-{4-[6-アミノ-5-シアノ-2-(6-{3-[4-(2-ジイソプロピルアミノエチル)ピペラジン-1-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド、
16) N-{4-[6-アミノ-5-シアノ-2-(6-{3-オキソ-3-[4-(2-ピロリジン-1-イルエチル)ピペラジン-1-イル]プロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド、
17) N-{4-[6-アミノ-5-シアノ-2-(6-{3-[4-(2-モルホリン-4-イルエチル)ピペラジン-1-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド、
18) N-{4-[6-アミノ-5-シアノ-2-(6-{3-[4-(2-ジエチルアミノエチル)ピペラジン-1-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド、
19) N-[4-(6-アミノ-5-シアノ-2-{6-[3-(4-メチル-[1,4]ジアゼパン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド。
Item 10. The 4-amino-5-cyanopyrimidine derivative or a pharmaceutically acceptable salt thereof according to any one of Items 1-9 selected from 1) to 19) below:
1) N- {4- [6-amino-5-cyano-2- (pyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide,
2) N- {4- [6-Amino-5-cyano-2- (6-methylpyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide,
3) N- {4- [6-Amino-5-cyano-2- (6- {4- [2- (4-methylpiperazin-1-yl) acetyl] piperazin-1-ylmethyl} pyridin-2-yl Methylsulfanyl) pyrimidin-4-yl] phenyl} acetamide,
4) N- [4- (6-Amino-5-cyano-2- {6- [3- (4-methylpiperazin-1-yl) -3-oxopropyl] pyridin-2-ylmethylsulfanyl} pyrimidine- 4-yl) phenyl] acetamide,
5) 3- {6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-dimethylaminoethyl) propion Amide,
6) 3- {6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-dimethylaminoethyl)- N-methylpropionamide,
7) 3- {6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-dimethylaminopropyl)- N-methylpropionamide,
8) 3- {6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-methylpiperidine-1- Ylethyl) propionamide,
9) 3- {6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-diethylaminoethyl) propionamide ,
10) 3- {6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N-methyl-N- (1-methyl Piperidin-4-yl) propionamide,
11) N- (4- {6-amino-2- [6- (3- [1,4 '] bipiperidinyl-1'-yl-3-oxopropyl) pyridin-2-ylmethylsulfanyl] -5-cyano Pyrimidin-4-yl} phenyl) acetamide,
12) N- [4- (6-Amino-5-cyano-2- {6- [3-oxo-3- (2-piperidin-1-ylmethylmorpholin-4-yl) propyl] pyridin-2-yl Methylsulfanyl} pyrimidin-4-yl) phenyl] acetamide,
13) N- {4- [6-Amino-5-cyano-2- (6- {3- [2- (4-ethylpiperazin-1-ylmethyl) morpholin-4-yl] -3-oxopropyl} pyridine -2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide,
14) N- {4- [6-Amino-5-cyano-2- (6- {3- [4- (2-diethylaminoethyl) piperazin-1-yl] -3-oxopropyl} pyridin-2-yl Methylsulfanyl) pyrimidin-4-yl] phenyl} acetamide,
15) N- {4- [6-Amino-5-cyano-2- (6- {3- [4- (2-diisopropylaminoethyl) piperazin-1-yl] -3-oxopropyl} pyridine-2- Ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide,
16) N- {4- [6-Amino-5-cyano-2- (6- {3-oxo-3- [4- (2-pyrrolidin-1-ylethyl) piperazin-1-yl] propyl} pyridine- 2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide,
17) N- {4- [6-Amino-5-cyano-2- (6- {3- [4- (2-morpholin-4-ylethyl) piperazin-1-yl] -3-oxopropyl} pyridine- 2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide,
18) N- {4- [6-Amino-5-cyano-2- (6- {3- [4- (2-diethylaminoethyl) piperazin-1-yl] -3-oxopropyl} pyridin-2-yl Methylsulfanyl) pyrimidin-4-yl] phenyl} acetamide,
19) N- [4- (6-Amino-5-cyano-2- {6- [3- (4-methyl- [1,4] diazepan-1-yl) -3-oxopropyl] pyridine-2- Ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide.

本発明の4-アミノ-5-シアノピリミジン誘導体は、ピリミジン骨格を有し、該ピリミジン環の6位に特定置換基を有するフェニル環が置換し、また該ピリミジン環の2位にスルファニルアルキレン鎖を介してピリジン環が置換しているか或いは更に該ピリジン環上に特定の置換基を有するという構造上の特徴を有している。本発明化合物は、この特徴的構造に基づいて、アデノシンA2a受容体を活性化する作用、即ちアデノシンA2a受容体作動作用において優れるという薬理学的特徴を有している。従来、このような特有の構造的特徴を有する化合物は未知であり、そのような構造的特徴を有する化合物が何らかの薬理作用を奏し得ることも従来技術からは予測できない事項である。本発明化合物は、上記アデノシンA2a受容体作動作用を有することに基づいて、該アデノシンA2a受容体作動薬としてはもとより、眼圧降下薬、緑内障治療薬などとして有用である。   The 4-amino-5-cyanopyrimidine derivative of the present invention has a pyrimidine skeleton, a phenyl ring having a specific substituent is substituted at the 6-position of the pyrimidine ring, and a sulfanylalkylene chain at the 2-position of the pyrimidine ring. The pyridine ring is substituted, or further has a specific feature on the pyridine ring. Based on this characteristic structure, the compound of the present invention has a pharmacological feature that it excels in the action of activating the adenosine A2a receptor, that is, the action of adenosine A2a receptor. Conventionally, a compound having such a unique structural feature has not been known, and it is also a matter that cannot be predicted from the prior art that a compound having such a structural feature can exert some pharmacological action. The compound of the present invention is useful not only as an adenosine A2a receptor agonist, but also as an intraocular pressure-lowering drug, a glaucoma therapeutic drug, etc. based on the above-mentioned adenosine A2a receptor agonistic action.

本発明化合物
本明細書において炭素を含む各基につき用いられる「低級アルキル基」とは、炭素数1乃至6の、即ちC1-6の直鎖または分枝のアルキル基を意味する。
Compound of the Present Invention The term “lower alkyl group” used for each group containing carbon in the present specification means a linear or branched alkyl group having 1 to 6 carbon atoms, ie, C 1-6 .

「低級アルコキシ基」および「低級アルキレン基」なる語も、同様に、炭素数1乃至6の直鎖状または分枝鎖状のアルコキシ基およびアルキレン基を意味する。   The terms “lower alkoxy group” and “lower alkylene group” also mean straight or branched alkoxy groups and alkylene groups having 1 to 6 carbon atoms.

「低級アルケニル基」、「低級アルケニレン基」および「低級アルキニレン基」は、それぞれ炭素数2乃至6(C2-6)の直鎖状または分枝鎖状のアルケニル基、アルケニレン基およびアルキニレン基を意味する。 The “lower alkenyl group”, “lower alkenylene group” and “lower alkynylene group” are each a straight or branched alkenyl group, alkenylene group and alkynylene group having 2 to 6 carbon atoms (C 2-6 ). means.

「アリール基」とは、単環式または多環式の芳香族炭化水素からなる1価の基を意味する。具体例には、フェニル基およびナフチル基が該基に含まれる。   The “aryl group” means a monovalent group composed of a monocyclic or polycyclic aromatic hydrocarbon. Specific examples include a phenyl group and a naphthyl group.

「ヘテロアリール基」とは、窒素、酸素および硫黄からなる群より選択される同一または異なるヘテロ原子を1以上、特に1〜3個有する5乃至6員の単環式芳香族複素環または該基にアリール基が縮合した芳香族複素環基からなる1価の基を意味する。具体例には、フリル、チエニル、チアゾリル、イミダゾリル、ピラゾリル、ベンゾフリル、インドリル、ベンゾチアゾリル、ピリジル、ピラジル基などが挙げられる。   The “heteroaryl group” is a 5- to 6-membered monocyclic aromatic heterocycle having 1 or more, particularly 1 to 3 of the same or different heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, or the group Means a monovalent group consisting of an aromatic heterocyclic group condensed with an aryl group. Specific examples include furyl, thienyl, thiazolyl, imidazolyl, pyrazolyl, benzofuryl, indolyl, benzothiazolyl, pyridyl, pyrazyl group and the like.

「飽和複素環」とは、窒素、酸素および硫黄からなる群より選択される同一または異なるヘテロ原子を1以上、特に1〜3個有する5乃至7員の飽和複素環を意味する。該飽和複素環は、これを有する各基中に、具体的にはピロリジル、ピロリジノ、ピペリジル、ピペリジノ、ピペラジル、ピペラジノ、1,4-ジアゼパン-1-イル、テトラヒドロフリル、1,3-ジオキソラニル、テトラヒドロチエニル、モルホリル、モルホリノ、テトラヒドロイミダゾリル基などの1価の飽和複素環基として含まれる。即ち、例えば飽和複素環を有する低級アルキル基を例にとれば、該低級アルキル基は、上記飽和複素環基によって置換された低級アルキル基を意味する。該飽和複素環で置換された低級アルキル基における飽和複素環基の結合様式は、特に限定されず、該複素環基を構成するヘテロ原子としての窒素原子において低級アルキル基に結合するものであっても、或いは炭素原子において低級アルキル基に結合するものであってよい。また、上記5乃至7員の飽和複素環基は、更に1乃至2個のベンゼン環が縮合していてもよい。このような縮合環基の例としては、ジヒドロインドリル、ジヒドロイソインドリル、テトラヒドロキノリル、テトラヒドロキノリノ、ベンゾモルホリル、ベンゾモルホリノ基などを例示することができる。   “Saturated heterocycle” means a 5- to 7-membered saturated heterocycle having one or more, particularly 1 to 3, the same or different heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. The saturated heterocyclic ring is, in each group having this, specifically pyrrolidyl, pyrrolidino, piperidyl, piperidino, piperazyl, piperazino, 1,4-diazepan-1-yl, tetrahydrofuryl, 1,3-dioxolanyl, tetrahydro Included as monovalent saturated heterocyclic groups such as thienyl, morpholyl, morpholino and tetrahydroimidazolyl groups. That is, for example, taking a lower alkyl group having a saturated heterocyclic ring as an example, the lower alkyl group means a lower alkyl group substituted by the saturated heterocyclic group. The bonding mode of the saturated heterocyclic group in the lower alkyl group substituted with the saturated heterocyclic ring is not particularly limited, and is bonded to the lower alkyl group at a nitrogen atom as a hetero atom constituting the heterocyclic group. Alternatively, it may be bonded to a lower alkyl group at a carbon atom. The 5- to 7-membered saturated heterocyclic group may be further condensed with 1 to 2 benzene rings. Examples of such fused ring groups include dihydroindolyl, dihydroisoindolyl, tetrahydroquinolyl, tetrahydroquinolino, benzomorpholyl, benzomorpholino groups and the like.

以下、前記一般式(1)で表される本発明化合物を示す各基について、それぞれ具体的に述べる。これらの各基は、一般式(1)で表される化合物に限らず、本明細書に記載の他の一般式で表される各化合物を示す場合においても同様とする。   Hereinafter, each group representing the compound of the present invention represented by the general formula (1) will be specifically described. These groups are not limited to the compound represented by the general formula (1), and the same applies to the case where each compound represented by another general formula described in the present specification is shown.

R1で示される低級アルキルカルボニル基の具体例としては、アセチル、プロパノイル、ブタノイル、ブチルカルボニル、ペンチルカルボニル、ヘキシルカルボニル、イソプロピルカルボニル基などを挙げることができ、これらのうちではアセチル、プロパノイル基が好ましい。 Specific examples of the lower alkylcarbonyl group represented by R 1 include acetyl, propanoyl, butanoyl, butylcarbonyl, pentylcarbonyl, hexylcarbonyl, isopropylcarbonyl group, etc. Among them, acetyl and propanoyl groups are preferable. .

R1で示される低級アルケニルカルボニル基の具体例としては、アクリロイル、メタクリロイル、クロトノイル、イソクロトノイル基などを挙げることができ、これらのうちではアクリロイル基が好ましい。 Specific examples of the lower alkenylcarbonyl group represented by R 1 include acryloyl, methacryloyl, crotonoyl, and isocrotonoyl groups. Of these, acryloyl group is preferred.

R1で示される低級アルコキシカルボニル基の具体例としては、メトキシカルボニル、エトキシカルボニル、t-ブトキシカルボニル、n-ブトキシカルボニル基などを挙げることができ、これらのうちではメトキシカルボニル基が好ましい。 Specific examples of the lower alkoxycarbonyl group represented by R 1 include methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, n-butoxycarbonyl group and the like, and among these, methoxycarbonyl group is preferable.

R2で示される低級アルキレン基の具体例としては、メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン若しくはヘキサメチレンおよび1-メチルエチレンなどのこれらの構造異性体を挙げることができる。これらのうちではメチレン基が好ましい。 Specific examples of the lower alkylene group represented by R 2 include structural isomers such as methylene, ethylene, trimethylene, tetramethylene, pentamethylene or hexamethylene and 1-methylethylene. Of these, a methylene group is preferred.

R3で示される低級アルキル基の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル若しくはヘキシルおよびイソプロピルなどのこれらの構造異性体を挙げることができる。これらのうちではメチル基が好ましい。 Specific examples of the lower alkyl group represented by R 3 include structural isomers such as methyl, ethyl, propyl, butyl, pentyl or hexyl and isopropyl. Of these, a methyl group is preferred.

R4で示される低級アルキレン基の具体例としては、メチレン、エチレン、トリメチレン、テトラメチレン、ヘプタメチレン若しくはヘキサメチレンおよび1-メチルエチレンなどのこれらの構造異性体を挙げることができる。これらのうちで、R3が基(3)の場合、R4で示される低級アルキレン基としては、メチレン基またはエチレン基が好ましく、R3基が基(6)および基(8)の場合、R4で示される低級アルキレン基としては、メチレン基が好ましく、R3基が基(9)の場合、R4で示される低級アルキレン基としては、エチレン基またはテトラメチレン基が好ましい。 Specific examples of the lower alkylene group represented by R 4 include structural isomers such as methylene, ethylene, trimethylene, tetramethylene, heptamethylene, hexamethylene and 1-methylethylene. Of these, when R 3 is a group (3), the lower alkylene group represented by R 4 is preferably a methylene group or an ethylene group, and when the R 3 group is a group (6) or a group (8), The lower alkylene group represented by R 4 is preferably a methylene group. When the R 3 group is the group (9), the lower alkylene group represented by R 4 is preferably an ethylene group or a tetramethylene group.

R5で示される低級アルキル基の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル若しくはヘキシルおよびイソプロピルなどのこれらの構造異性体を挙げることができる。これらのうちではメチル基が好ましい。 Specific examples of the lower alkyl group represented by R 5 include these structural isomers such as methyl, ethyl, propyl, butyl, pentyl or hexyl and isopropyl. Of these, a methyl group is preferred.

R6で示される低級アルケニレン基の具体例としては、エテニレン、プロペニレン、ブテニレン、ペンテニレン、ヘキセニレン、ブタンジエニレンなどの直鎖低級アルケニレン基若しくは2-メチルプロペニレン基などのこれらの構造異性体を挙げることができる。これらのうちではエテニレン基が好ましい。 Specific examples of the lower alkenylene group represented by R 6 include linear lower alkenylene groups such as ethenylene, propenylene, butenylene, pentenylene, hexenylene, butanedienylene or structural isomers such as 2-methylpropenylene group. it can. Of these, ethenylene groups are preferred.

R7で示される低級アルキニレン基の具体例としては、エチニレン、プロピニレン、ブチニレン、ペンチニレン、ヘキシニレン、ブタンジイニレンなどの直鎖低級アルキニレン基若しくは3-メチルブチニレン基などのこれらの構造異性体を挙げることができる。これらのうちではブチニレン基が好ましい。 Specific examples of the lower alkynylene group represented by R 7 include linear alkynylene groups such as ethynylene, propynylene, butynylene, pentynylene, hexynylene, butanediinylene, and structural isomers such as 3-methylbutynylene group. Of these, a butynylene group is preferred.

R8で示される低級アルキル基の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル若しくはヘキシルおよびイソプロピルなどのこれらの構造異性体を挙げることができる。これらのうちではエチル基が好ましい。 Specific examples of the lower alkyl group represented by R 8 include these structural isomers such as methyl, ethyl, propyl, butyl, pentyl or hexyl and isopropyl. Of these, an ethyl group is preferred.

Z1で示される低級アルキル基(a1)の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシルなどの直鎖低級アルキル基およびイソプロピルなどのこれらの構造異性体を挙げることができる。これらのうちではC1-4のアルキル基が好ましい。 Specific examples of the lower alkyl group (a1) represented by Z 1 include linear lower alkyl groups such as methyl, ethyl, propyl, butyl, pentyl and hexyl, and structural isomers such as isopropyl. Of these, C 1-4 alkyl groups are preferred.

Z1で示されるアリール低級アルキル基(a2)は、アリール基で置換された低級アルキル基を意味する。具体的には、ベンジル、フェネチル、フェニルプロピル、ナフチルメチル基などが挙げられる。これらのうちではベンジル基若しくはフェネチル基が好ましい。 The aryl lower alkyl group (a2) represented by Z 1 means a lower alkyl group substituted with an aryl group. Specific examples include benzyl, phenethyl, phenylpropyl, naphthylmethyl groups, and the like. Of these, a benzyl group or a phenethyl group is preferred.

Z1で示されるアミノアリール低級アルキル基(a3)は、アリール基上にアミノ基を有するアリール低級アルキル基を意味する。具体的には、アミノベンジル、アミノフェネチル、アミノフェニルプロピル、アミノナフチルメチル基などが挙げられる。これらのうちではアミノベンジル基若しくはアミノフェネチル基が好ましい。 The aminoaryl lower alkyl group (a3) represented by Z 1 means an aryl lower alkyl group having an amino group on the aryl group. Specific examples include aminobenzyl, aminophenethyl, aminophenylpropyl, and aminonaphthylmethyl groups. Of these, an aminobenzyl group or an aminophenethyl group is preferable.

Z1で示されるアリール低級アルケニル基(a4)は、アリール基で置換された低級アルケニル基を意味する。具体的には、フェニルエテニル、フェニルプロペニル、フェニルブテニル基などが挙げられる。これらのうちではフェニルプロペニル基が好ましい。 The aryl lower alkenyl group (a4) represented by Z 1 means a lower alkenyl group substituted with an aryl group. Specific examples include phenylethenyl, phenylpropenyl, and phenylbutenyl groups. Of these, a phenylpropenyl group is preferred.

Z1で示されるヘテロアリール低級アルキル基(a5)は、ヘテロアリール基で置換された低級アルキル基を意味する。具体的には、フリルメチル、ピラゾリルエチル、イミダゾリルプロピル、ピリジルメチル基などが挙げられる。これらのうちではフリルメチル基若しくはピリジルメチル基が好ましい。 The heteroaryl lower alkyl group (a5) represented by Z 1 means a lower alkyl group substituted with a heteroaryl group. Specific examples include furylmethyl, pyrazolylethyl, imidazolylpropyl, and pyridylmethyl groups. Of these, a furylmethyl group or a pyridylmethyl group is preferable.

Z1で示されるヘテロアリール低級アルケニル基(a6)は、ヘテロアリール基で置換された低級アルケニル基を意味する。具体的には、ピリジルエテニル、ピリジルプロペニル、フリルプロペニル基などが挙げられる。これらのうちではピリジルプロペニル基若しくはフリルプロペニル基が好ましい。 The heteroaryl lower alkenyl group (a6) represented by Z 1 means a lower alkenyl group substituted with a heteroaryl group. Specific examples include pyridylethenyl, pyridylpropenyl, furylpropenyl group and the like. Of these, a pyridylpropenyl group or a furylpropenyl group is preferable.

Z1で示されるヘテロアリールアリール低級アルキル基(a7)は、アリール基上にヘテロアリール基が置換されたアリール低級アルキル基を意味する。具体的にはフリルフェニルメチル、チエニルフェニルエチル、ピリジルフェニルプロピル、トリアゾリルフェニルメチル、イミダゾリルフェニルメチル基などが挙げられる。これらのうちではトリアゾリルフェニルメチル基若しくはイミダゾリルフェニルメチル基が好ましい。 The heteroarylaryl lower alkyl group (a7) represented by Z 1 means an aryl lower alkyl group in which a heteroaryl group is substituted on the aryl group. Specific examples include furylphenylmethyl, thienylphenylethyl, pyridylphenylpropyl, triazolylphenylmethyl, imidazolylphenylmethyl groups, and the like. Of these, a triazolylphenylmethyl group or an imidazolylphenylmethyl group is preferable.

Z1で示されるヒドロキシ低級アルキル基(a8)としては、ヒドロキシメチル、1-ヒドロキシエチル、2-ヒドロキシエチル、1-ヒドロキシプロピル、2-ヒドロキシプロピル、3-ヒドロキシプロピル、4-ヒドロキシブチル基などを例示でき、これらのうちでは3-ヒドロキシプロピルおよび4-ヒドロキシブチル基が好ましい。 Examples of the hydroxy lower alkyl group (a8) represented by Z 1 include hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxypropyl, 2-hydroxypropyl, 3-hydroxypropyl, and 4-hydroxybutyl groups. Of these, 3-hydroxypropyl and 4-hydroxybutyl groups are preferred.

Z1で示されるアリールオキシ低級アルキル基(a9)としては、フェノキシメチル、1-フェノキシエチル、2-フェノキシエチル、1-フェノキシプロピル、2-フェノキシプロピル、3-フェノキシプロピル基などを例示でき、これらのうちでは3-フェノキシプロピル基が好ましい。 Examples of the aryloxy lower alkyl group (a9) represented by Z 1 include phenoxymethyl, 1-phenoxyethyl, 2-phenoxyethyl, 1-phenoxypropyl, 2-phenoxypropyl, and 3-phenoxypropyl groups. Of these, a 3-phenoxypropyl group is preferred.

Z1で示されるアミノ低級アルキル基(a10)としては、アミノメチル、1-アミノエチル、2-アミノエチル、1-アミノプロピル、2-アミノプロピル、3-アミノプロピル基などを例示でき、これらのうちでは2-アミノエチルおよび3-アミノプロピル基が好ましい。 Examples of the amino lower alkyl group (a10) represented by Z 1 include aminomethyl, 1-aminoethyl, 2-aminoethyl, 1-aminopropyl, 2-aminopropyl, and 3-aminopropyl groups. Of these, 2-aminoethyl and 3-aminopropyl groups are preferred.

Z1で示されるアミノカルボニル低級アルキル基(a11)としては、アミノカルボニルメチル、1-アミノカルボニルエチル、2-アミノカルボニルエチル、1-アミノカルボニルプロピル、2-アミノカルボニルプロピル、3-アミノカルボニルプロピル基などを例示でき、これらのうちではアミノカルボニルメチル基が好ましい。 The aminocarbonyl lower alkyl group (a11) represented by Z 1 includes aminocarbonylmethyl, 1-aminocarbonylethyl, 2-aminocarbonylethyl, 1-aminocarbonylpropyl, 2-aminocarbonylpropyl, 3-aminocarbonylpropyl group. Among them, an aminocarbonylmethyl group is preferable.

Z1で示される低級アルキルカルボニル基(a12)としては、アセチル、プロパノイル、プロピルカルボニル、ブチルカルボニル、ペンチルカルボニル、ヘキシルカルボニル、イソプロピルカルボニル基などを挙げることができ、これらのうちではアセチル、プロパノイル基が好ましい。 Examples of the lower alkylcarbonyl group (a12) represented by Z 1 include acetyl, propanoyl, propylcarbonyl, butylcarbonyl, pentylcarbonyl, hexylcarbonyl, isopropylcarbonyl group and the like. Among these, acetyl and propanoyl groups are exemplified. preferable.

Z1で示される低級アルコキシ低級アルキルカルボニル基(a13)としては、メトキシメチルカルボニル、メトキシエチルカルボニル、エトキシエチルカルボニル基などを例示でき、これらのうちではメトキシメチルカルボニル基が好ましい。 Examples of the lower alkoxy lower alkylcarbonyl group (a13) represented by Z 1 include methoxymethylcarbonyl, methoxyethylcarbonyl, ethoxyethylcarbonyl group and the like, and among these, methoxymethylcarbonyl group is preferable.

Z1およびZ2で示されるアミノ低級アルキルカルボニル基((a14)および(b3))としては、アミノメチルカルボニル、アミノエチルカルボニル、アミノプロピルカルボニル、アミノブチルカルボニル基などを例示でき、これらのうちではアミノメチルカルボニルおよびアミノエチルカルボニル基が好ましい。 Examples of amino lower alkylcarbonyl groups represented by Z 1 and Z 2 ((a14) and (b3)) include aminomethylcarbonyl, aminoethylcarbonyl, aminopropylcarbonyl, aminobutylcarbonyl groups, etc. Aminomethylcarbonyl and aminoethylcarbonyl groups are preferred.

Z1で示されるアリールカルボニル基(a15)としては、ベンゾイル、ナフチルカルボニル基などを例示でき、これらのうちではベンゾイル基が好ましい。 Examples of the arylcarbonyl group (a15) represented by Z 1 include benzoyl and naphthylcarbonyl groups, and among these, a benzoyl group is preferable.

Z1で示されるアリール低級アルキルカルボニル基(a16)としては、ベンジルカルボニル、ナフチルメチルカルボニル、フェネチルカルボニル、フェニルプロピルカルボニル、フェニルブチルカルボニル基などを例示でき、これらのうちではベンジルカルボニルおよびフェネチルカルボニル基が好ましい。 Examples of the aryl lower alkylcarbonyl group (a16) represented by Z 1 include benzylcarbonyl, naphthylmethylcarbonyl, phenethylcarbonyl, phenylpropylcarbonyl, phenylbutylcarbonyl group and the like. Among these, benzylcarbonyl and phenethylcarbonyl groups are exemplified. preferable.

Z1で示されるアリール低級アルケニルカルボニル基(a17)としては、フェニルエテニルカルボニル、フェニルプロペニルカルボニル、フェニルブテニルカルボニル基などを例示でき、これらのうちではフェニルエテニルカルボニル基が好ましい。 Examples of the aryl lower alkenylcarbonyl group (a17) represented by Z 1 include a phenylethenylcarbonyl group, a phenylpropenylcarbonyl group, a phenylbutenylcarbonyl group, and the like. Among these, a phenylethenylcarbonyl group is preferable.

Z1で示されるアリールオキシ低級アルキルカルボニル基(a18)としては、フェノキシメチルカルボニル、フェノキシエチルカルボニル、フェノキシプロピルカルボニル、フェノキシブチルカルボニル基などを例示でき、これらのうちではフェノキシメチルカルボニルおよびフェノキシエチルカルボニル基が好ましい。 Examples of the aryloxy lower alkylcarbonyl group (a18) represented by Z 1 include phenoxymethylcarbonyl, phenoxyethylcarbonyl, phenoxypropylcarbonyl, phenoxybutylcarbonyl group and the like, and among these, phenoxymethylcarbonyl and phenoxyethylcarbonyl groups Is preferred.

Z1で示されるヘテロアリールカルボニル基(a19)としては、フリルカルボニル、チエニルカルボニル、イミダゾリルカルボニル、チアゾリルカルボニル、ピリジルカルボニル、キノリルカルボニル基などを例示でき、これらのうちではピリジルカルボニル基、フリルカルボニル基およびチエニルカルボニル基が好ましい。 Examples of the heteroarylcarbonyl group (a19) represented by Z 1 include furylcarbonyl, thienylcarbonyl, imidazolylcarbonyl, thiazolylcarbonyl, pyridylcarbonyl, quinolylcarbonyl group and the like. Among these, pyridylcarbonyl group, furyl A carbonyl group and a thienylcarbonyl group are preferred.

Z1で示されるヘテロアリール低級アルキルカルボニル基(a20)としては、フリルメチルカルボニル、フリルエチルカルボニル、チエニルメチルカルボニル、ピリジルメチルカルボニル、ピリジルエチルカルボニル、ピリジルプロピルカルボニル基などを例示でき、これらのうちではチエニルメチルカルボニルおよびピリジルメチルカルボニル基が好ましい。 Examples of the heteroaryl lower alkylcarbonyl group (a20) represented by Z 1 include furylmethylcarbonyl, furylethylcarbonyl, thienylmethylcarbonyl, pyridylmethylcarbonyl, pyridylethylcarbonyl, pyridylpropylcarbonyl group, etc. Thienylmethylcarbonyl and pyridylmethylcarbonyl groups are preferred.

Z1で示されるヘテロアリール低級アルケニルカルボニル基(a21)としては、ピリジルアクリロイル、イミダゾイルアクリロイル基などを例示でき、これらのうちではピリジルアクリロイル基が好ましい。 Examples of the heteroaryl lower alkenylcarbonyl group (a21) represented by Z 1 include a pyridylacryloyl group and an imidazolylacryloyl group. Among these, a pyridylacryloyl group is preferable.

Z1で示されるヘテロアリールオキシ低級アルキルカルボニル基(a22)としては、ピリジルオキシメチルカルボニル、キノリルオキシエチルカルボニル、テトラヒドロキノリノニルオキシメチルカルボニル、テトラヒドロキノリノニルオキシプロピルカルボニル基などを例示でき、これらのうちではテトラヒドロキノリノニルオキシメチルカルボニルおよびテトラヒドロキノリノニルオキシプロピルカルボニル基が好ましい。 Examples of the heteroaryloxy lower alkylcarbonyl group represented by Z 1 (a22) include pyridyloxymethylcarbonyl, quinolyloxyethylcarbonyl, tetrahydroquinolinyloxymethylcarbonyl, tetrahydroquinolinyloxypropylcarbonyl groups and the like, Of these, tetrahydroquinolinyloxymethylcarbonyl and tetrahydroquinolinyloxypropylcarbonyl groups are preferred.

Z1で示されるヘテロアリールスルファニル低級アルキルカルボニル基(a23)としては、フリルスルファニルメチルカルボニル、ピリジルスルファニルエチルカルボニル、キノリルスルファニルプロピルカルボニル基などを例示でき、これらのうちではピリジルスルファニルメチルカルボニル基が好ましい。 Examples of the heteroarylsulfanyl lower alkylcarbonyl group (a23) represented by Z 1 include furylsulfanylmethylcarbonyl, pyridylsulfanylethylcarbonyl, quinolylsulfanylpropylcarbonyl group, etc. Among them, pyridylsulfanylmethylcarbonyl group is preferred. .

Z1で示されるヘテロアリールアリールカルボニル基(a24)としては、ピロリルフェニルカルボニル、ピラゾリルフェニルカルボニル、イミダゾリルフェニルカルボニル、トリアゾリルフェニルカルボニル、チエニルフェニルカルボニル、フリルフェニルカルボニル、ピリジルフェニルカルボニル基などを例示でき、これらのうちではピロリルフェニルカルボニル、ピラゾリルフェニルカルボニル、イミダゾリルフェニルカルボニル、トリアゾリルフェニルカルボニル基が好ましい。 Examples of the heteroarylarylcarbonyl group (a24) represented by Z 1 include pyrrolylphenylcarbonyl, pyrazolylphenylcarbonyl, imidazolylphenylcarbonyl, triazolylphenylcarbonyl, thienylphenylcarbonyl, furylphenylcarbonyl, pyridylphenylcarbonyl group, etc. Of these, pyrrolylphenylcarbonyl, pyrazolylphenylcarbonyl, imidazolylphenylcarbonyl, and triazolylphenylcarbonyl groups are preferred.

Z1で示されるアリールスルファニル低級アルキルカルボニル基(a25)としては、フェニルスルファニルメチルカルボニル、フェニルスルファニルエチルカルボニル、フェニルスルファニルプロピルカルボニル基などを例示でき、これらのうちではフェニルスルファニルメチルカルボニル基が好ましい。 Examples of the arylsulfanyl lower alkylcarbonyl group (a25) represented by Z 1 include phenylsulfanylmethylcarbonyl, phenylsulfanylethylcarbonyl, phenylsulfanylpropylcarbonyl group and the like, and among them, phenylsulfanylmethylcarbonyl group is preferable.

Z1で示されるアリールカルボニル低級アルキルカルボニル基(a26)としては、ベンゾイルメチルカルボニル、ベンゾイルエチルカルボニル、ベンゾイルプロピルカルボニル基などを例示でき、これらのうちではベンゾイルエチルカルボニル基が好ましい。 Examples of the arylcarbonyl lower alkylcarbonyl group (a26) represented by Z 1 include benzoylmethylcarbonyl, benzoylethylcarbonyl, benzoylpropylcarbonyl group and the like, and among these, benzoylethylcarbonyl group is preferable.

Z1で示されるアリールアミノ低級アルキルカルボニル基(a27)としては、フェニルアミノメチルカルボニル、フェニルアミノエチルカルボニル、フェニルアミノプロピルカルボニル基などを例示でき、これらのうちではフェニルアミノメチルカルボニル基が好ましい。 Examples of the arylamino lower alkylcarbonyl group (a27) represented by Z 1 include phenylaminomethylcarbonyl, phenylaminoethylcarbonyl, phenylaminopropylcarbonyl group and the like, and among these, phenylaminomethylcarbonyl group is preferable.

Z1およびZ2で示される低級アルコキシカルボニル基((a28)および(b2))としては、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペンチルオキシカルボニル、ヘキシルオキシカルボニル、イソプロポキシカルボニル基などを例示できる。これらのうちではメトキシカルボニルおよびt-ブトキシカルボニル基が好ましい。 Examples of the lower alkoxycarbonyl group represented by Z 1 and Z 2 ((a28) and (b2)) include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl, isopropoxycarbonyl group and the like. It can be illustrated. Of these, methoxycarbonyl and t-butoxycarbonyl groups are preferred.

Z1およびZ2で示される低級アルキルスルホニル基((a29)および(b8))としては、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル基などを例示できる。特に、Z1で示される低級アルキルスルホニル基(a29)は、メチルスルホニルおよびエチルスルホニル基であるのが好ましく、Z2で示される低級アルキルスルホニル基(b8)は、エチルスルホニルおよびプロピルスルホニル基であるのが好ましい。 Examples of lower alkylsulfonyl groups represented by Z 1 and Z 2 ((a29) and (b8)) include methylsulfonyl, ethylsulfonyl, propylsulfonyl, butylsulfonyl groups and the like. In particular, the lower alkylsulfonyl group (a29) represented by Z 1 is preferably a methylsulfonyl or ethylsulfonyl group, and the lower alkylsulfonyl group (b8) represented by Z 2 is an ethylsulfonyl or propylsulfonyl group. Is preferred.

Z1で示されるアリールスルホニル基(a30)としては、フェニルスルホニル、トルエンスルホニル、ナフタレンスルホニル基などを例示でき、これらのうちではフェニルスルホニル基が好ましい。 Examples of the arylsulfonyl group (a30) represented by Z 1 include phenylsulfonyl, toluenesulfonyl, naphthalenesulfonyl group and the like, and among these, phenylsulfonyl group is preferable.

Z1で示されるヘテロアリールスルホニル基(a31)としては、フリルスルホニル、チエニルスルホニル、ピリジルスルホニル、イミダゾリルスルホニル基などを例示でき、これらのうちではイミダゾリルスルホニル基が好ましい。 Examples of the heteroarylsulfonyl group (a31) represented by Z 1 include a furylsulfonyl group, a thienylsulfonyl group, a pyridylsulfonyl group, an imidazolylsulfonyl group, and the like. Among these, an imidazolylsulfonyl group is preferable.

Z1で示される飽和複素環を有する低級アルキル基(a33)は、飽和複素環基で置換された低級アルキル基を意味する。具体的には、ピロリジノエチル、ピペリジノエチル、ピペリジルエチル、モルホリノエチル、モルホリルメチル基などを例示でき、これらのうちではピペリジノエチルおよびモルホリノエチル基が好ましい。 The lower alkyl group (a33) having a saturated heterocyclic ring represented by Z 1 means a lower alkyl group substituted with a saturated heterocyclic group. Specific examples include pyrrolidinoethyl, piperidinoethyl, piperidylethyl, morpholinoethyl, morpholylmethyl groups and the like, and among these, piperidinoethyl and morpholinoethyl groups are preferred.

Z1で示される飽和複素環を有するカルボニル低級アルキル基(a34)は、飽和複素環基で置換されたカルボニル低級アルキル基を意味する。具体的には、ピロリジノカルボニルエチル、ピペリジノカルボニルエチル、ピペリジルカルボニルエチル、モルホリノカルボニルエチル、モルホリルカルボニルメチル基などを例示でき、これらのうちではピペリジノカルボニルメチル基が好ましい。 The carbonyl lower alkyl group (a34) having a saturated heterocyclic ring represented by Z 1 means a carbonyl lower alkyl group substituted with a saturated heterocyclic group. Specific examples include pyrrolidinocarbonylethyl, piperidinocarbonylethyl, piperidylcarbonylethyl, morpholinocarbonylethyl, morpholylcarbonylmethyl group and the like, and among these, piperidinocarbonylmethyl group is preferable.

Z1で示される飽和複素環を有するアリール低級アルキル基(a35)は、アリール環上に飽和複素環基を有するアリール低級アルキル基を意味する。具体的には、ピロリジノフェニルエチル、ピペリジノフェニルメチル、ピペリジルフェニルエチル、モルホリノフェニルエチル、モルホリルフェニルメチル、ピペラジノフェニルメチル基などを例示でき、これらのうちではピペラジノフェニルメチル基が好ましい。 The aryl lower alkyl group (a35) having a saturated heterocyclic ring represented by Z 1 means an aryl lower alkyl group having a saturated heterocyclic group on the aryl ring. Specific examples include pyrrolidinophenylethyl, piperidinophenylmethyl, piperidylphenylethyl, morpholinophenylethyl, morpholylphenylmethyl, piperazinophenylmethyl groups, etc. Among these, piperazinophenylmethyl Groups are preferred.

Z1およびZ2で示される飽和複素環を有するカルボニル基 ((a36)および(b7))は、具体的には、ピロリジノカルボニル、ピペリジノカルボニル、ピペリジルカルボニル、モルホリノカルボニル、モルホリルカルボニル、ピペラジノカルボニル、ピペラジルカルボニル、チアゾリルカルボニル、ピロリルカルボニル基などを例示でき、これらのうちではピペラジノカルボニル、チアゾリルカルボニルおよびピロリルカルボニル基が好ましい。 A carbonyl group having a saturated heterocyclic ring represented by Z 1 and Z 2 ((a36) and (b7)) is specifically pyrrolidinocarbonyl, piperidinocarbonyl, piperidylcarbonyl, morpholinocarbonyl, morpholylcarbonyl , Piperazinocarbonyl, piperazylcarbonyl, thiazolylcarbonyl, pyrrolylcarbonyl and the like, among which piperazinocarbonyl, thiazolylcarbonyl and pyrrolylcarbonyl are preferred.

Z1およびZ2で示される飽和複素環を有する低級アルキルカルボニル基((a37)および(b5))は、具体的には、ピロリジノエチルカルボニル、ピペリジノメチルカルボニル、ピペリジノエチルカルボニル、ピペリジルメチルカルボニル、モルホリノエチルカルボニル、モルホリルメチルカルボニル、ピペラジノメチルカルボニル、ピペラジルプロピルカルボニル、チアゾリルメチルカルボニル基などを例示でき、これらのうちではピペラジノメチルカルボニル、ピペリジノメチルカルボニルおよびピペリジノエチルカルボニル基が好ましい。 Specific examples of the lower alkylcarbonyl group having a saturated heterocyclic ring represented by Z 1 and Z 2 ((a37) and (b5)) include pyrrolidinoethylcarbonyl, piperidinomethylcarbonyl, piperidinoethylcarbonyl, Examples include piperidylmethylcarbonyl, morpholinoethylcarbonyl, morpholylmethylcarbonyl, piperazinomethylcarbonyl, piperazylpropylcarbonyl, thiazolylmethylcarbonyl, etc. Among these, piperazinomethylcarbonyl, piperidinomethyl Carbonyl and piperidinoethylcarbonyl groups are preferred.

Z1で示される飽和複素環を有するアリールカルボニル基(a38)として、具体的には、ピロリジノフェニルカルボニル、ピペリジノフェニルカルボニル、ピペリジルフェニルカルボニル、モルホリノフェニルカルボニル、モルホリルフェニルカルボニル、チオモルホリノフェニルカルボニル、ピペラジノフェニルカルボニル基などを例示でき、これらのうちではピロリジノフェニルカルボニル、モルホリルフェニルカルボニルおよびチオモルホリノフェニルカルボニル基が好ましい。 Specific examples of the arylcarbonyl group (a38) having a saturated heterocyclic ring represented by Z 1 include pyrrolidinophenylcarbonyl, piperidinophenylcarbonyl, piperidylphenylcarbonyl, morpholinophenylcarbonyl, morpholylphenylcarbonyl, thiomorpholino Examples thereof include phenylcarbonyl, piperazinophenylcarbonyl group, etc. Among them, pyrrolidinophenylcarbonyl, morpholylphenylcarbonyl and thiomorpholinophenylcarbonyl groups are preferable.

上記Z1で示される各基の一部を構成する基が有していてもよい置換基の具体例としては、次の各基を挙げることができる。 Specific examples of the substituent that the group constituting a part of each group represented by Z 1 may have include the following groups.

即ち、低級アルキル基の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、イソプロピル、イソブチル基などを挙げることができる。これらのうちではメチル、エチル、イソプロピル基が好ましい。   That is, specific examples of the lower alkyl group include methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, and isobutyl groups. Of these, methyl, ethyl and isopropyl groups are preferred.

低級アルキルカルボニル基の具体例としては、アセチル、プロパノイル、ブタノイル、ブチルカルボニル、ペンチルカルボニル基などを例示でき、これらのうちではアセチル基が好ましい。   Specific examples of the lower alkylcarbonyl group include acetyl, propanoyl, butanoyl, butylcarbonyl, pentylcarbonyl group and the like, and among these, acetyl group is preferable.

ハロゲンの具体例としては、フッ素、塩素、臭素、ヨウ素の各原子を例示でき、これらのうちではフッ素および塩素原子か好ましい。   Specific examples of halogen include fluorine, chlorine, bromine and iodine atoms, and among these, fluorine and chlorine atoms are preferred.

低級アルコキシ基の具体例としては、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシおよびイソプロポキシなどを挙げることができる。これらのうちではC1-4のアルコキシ基が好ましい。 Specific examples of the lower alkoxy group include methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy and isopropoxy. Of these, C 1-4 alkoxy groups are preferred.

ハロゲノ低級アルコキシ基の具体例としては、クロロメトキシ、ジクロロメトキシ、トリクロロメトキシ、トリフルオロメトキシ、2,2,2-トリフルオロエトキシ基などを例示でき、これらのうちではトリフルオロメトキシ基が好ましい。   Specific examples of the halogeno lower alkoxy group include chloromethoxy, dichloromethoxy, trichloromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy group, and the like, among which trifluoromethoxy group is preferable.

アリール基の具体例としてはフェニル、ナフチル基などを例示でき、これらのうちではフェニル基が好ましい。   Specific examples of the aryl group include phenyl and naphthyl groups, and among these, a phenyl group is preferable.

アリールオキシ基の具体例としてはフェノキシ、ナフトキシ基などを例示でき、これらのうちではフェノキシ基が好ましい。   Specific examples of the aryloxy group include a phenoxy group and a naphthoxy group. Among these, a phenoxy group is preferable.

ジハロゲノメチレンジオキシ基の具体例としては、ジフルオロメチレンジオキシ、ジクロロメチレンジオキシ基などを例示でき、ジフルオロメチレンジオキシ基が好ましい。   Specific examples of the dihalogenomethylenedioxy group include difluoromethylenedioxy and dichloromethylenedioxy groups, and a difluoromethylenedioxy group is preferred.

低級アルコキシカルボニル基の具体例としてはメトキシカルボニル、エトキシカルボニル、t-ブトキシカルボニル基などを例示でき、メトキシカルボニル基が好ましい。   Specific examples of the lower alkoxycarbonyl group include methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl group and the like, and methoxycarbonyl group is preferable.

低級アルキルカルボニルオキシ基の具体例としては、アセトキシ、プロピルカルボニルオキシ基などを例示でき、これらのうちではアセトキシ基が好ましい。   Specific examples of the lower alkylcarbonyloxy group include an acetoxy group and a propylcarbonyloxy group. Among these, an acetoxy group is preferable.

低級アルキルアミノ基の具体例としては、モノまたはジ(低級アルキル)アミノ基、例えばメチルアミノ、ジメチルアミノ、ジエチルアミノ、ジイソプロピルアミノ基などを例示でき、これらのうちではジメチルアミノ基が好ましい。   Specific examples of the lower alkylamino group include a mono- or di (lower alkyl) amino group such as methylamino, dimethylamino, diethylamino, diisopropylamino group, etc. Among them, dimethylamino group is preferable.

低級アルキルカルボニルアミノ基の具体例としてはアセチルアミノ、プロピオニルアミノ基などが例示でき、これらのうちではアセチルアミノ基が好ましい。   Specific examples of the lower alkylcarbonylamino group include acetylamino and propionylamino groups. Of these, acetylamino group is preferred.

ヒドロキシ低級アルキル基の具体例としては、ヒドロキシメチル、1-ヒドロキシエチル、2-ヒドロキシエチル、1-ヒドロキシプロピル、2-ヒドロキシプロピル、3-ヒドロキシプロピル、2-ヒドロキシ-2-メチルエチル基などのヒドロキシル基1個を有する低級アルキル基を例示でき、これらのうちではヒドロキシメチルまたは2-ヒドロキシエチル基が好ましい。   Specific examples of the hydroxy lower alkyl group include hydroxyl such as hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxypropyl, 2-hydroxypropyl, 3-hydroxypropyl, 2-hydroxy-2-methylethyl group, etc. A lower alkyl group having one group can be exemplified, and among these, a hydroxymethyl group or a 2-hydroxyethyl group is preferable.

ハロゲノ低級アルキル基の具体例としては、クロロエチル、ジクロロメチル、トリフルオロメチル、ペンタフルオロエチル基などのハロゲン原子1〜5個を有する低級アルキル基を例示でき、これらのうちではトリフルオロメチル基が好ましい。   Specific examples of the halogeno lower alkyl group include lower alkyl groups having 1 to 5 halogen atoms such as chloroethyl, dichloromethyl, trifluoromethyl, and pentafluoroethyl groups. Among these, trifluoromethyl groups are preferred. .

ハロゲノアリール基の具体例としては、クロロフェニル、ジクロロフェニル、フルオロフェニル、ジフルオロフェニル、ペンタフルオロフェニル、ブロモフェニル、ヨードフェニル、クロロナフチル基などが例示でき、これらのうちではクロロフェニル基が好ましい。   Specific examples of the halogenoaryl group include chlorophenyl, dichlorophenyl, fluorophenyl, difluorophenyl, pentafluorophenyl, bromophenyl, iodophenyl, chloronaphthyl group, etc. Among them, chlorophenyl group is preferable.

低級アルキルスルファニル基の具体例としては、メチルスルファニル、エチルスルファニル、プロピルスルファニル基などが例示でき、これらのうちではメチルスルファニル基が好ましい。   Specific examples of the lower alkylsulfanyl group include a methylsulfanyl, ethylsulfanyl, propylsulfanyl group, and the like. Among these, a methylsulfanyl group is preferable.

アミノアリール低級アルキル基(a3)、アミノ低級アルキル基(a10)、アミノカルボニル低級アルキル基(a11)およびアミノ低級アルキルカルボニル基(a14)の一部を構成するアミノ基が1または2個の低級アルキル基で置換されている基の具体例としては、ジメチルアミノフェニルエチル、ジメチルアミノエチル、ジエチルアミノエチル、ジイソプロピルアミノエチル、ジメチルアミノカルボニルメチル、ジエチルアミノメチルカルボニル、ジエチルアミノエチルカルボニル基などを例示できる。また同アミノ基が1個のカルボニル基で置換されている基の具体例としては、N-ホルミルアミノメチルカルボニル基を例示でき、同アミノ基が1個の低級アルキルカルボニル基で置換されている基の具体例としては、アセチルアミノメチルカルボニル基を例示できる。   Aminoaryl lower alkyl group (a3), amino lower alkyl group (a10), aminocarbonyl lower alkyl group (a11), and amino group constituting a part of amino lower alkylcarbonyl group (a14) are one or two lower alkyl groups Specific examples of the group substituted with a group include dimethylaminophenylethyl, dimethylaminoethyl, diethylaminoethyl, diisopropylaminoethyl, dimethylaminocarbonylmethyl, diethylaminomethylcarbonyl, and diethylaminoethylcarbonyl groups. Specific examples of the group in which the amino group is substituted with one carbonyl group include N-formylaminomethylcarbonyl group, and the amino group is substituted with one lower alkylcarbonyl group. As a specific example, an acetylaminomethylcarbonyl group can be exemplified.

アリール低級アルキル基(a2)、アリールカルボニル基(a15)、アリール低級アルキルカルボニル基(a16)、アリール低級アルケニルカルボニル基(a17)、アリールオキシ低級アルキルカルボニル基(a18)、アリールスルホニル基(a30)および飽和複素環を有するアリール低級アルキル基(a35)の各基の一部を構成するアリール基がハロゲン原子で置換されている基の具体例としては、クロロフェニルカルボニル、ジクロロ(アミノスルホニル)フェニルカルボニル、クロロフェニルメチルカルボニル、フルオロ(4-メチルピペラジノ)フェニルメチル基を例示できる。該アリール基が水酸基で置換されている基の具体例としては、ヒドロキシフェニルメチル基を例示できる。該アリール基が低級アルキル基で置換されている基の具体例としては、メチルフェニルカルボニル、メチルフェニルメチルカルボニル、メチルフェノキシメチルカルボニル、メチルフェニルスルホニル基を例示できる。該アリール基が低級アルコキシ基で置換されている基の具体例としては、メトキシフェニルメチル、トリメトキシフェニルメチル、ブトキシフェニルメチル、エトキシフェニルメチル、メトキシフェニルカルボニル、メトキシフェニルメチルカルボニル、メトキシフェノキシメチルカルボニル、メトキシフェニルスルホニル基を例示できる。該アリール基がハロゲノ低級アルコキシ基で置換されている基の具体例としては、トリフルオロメトキシフェニルメチルカルボニル基を例示できる。該アリール基がアリール基で置換されている基の具体例としては、ビフェニル基を例示できる。該アリール基がアリールオキシ基で置換されている基の具体例としては、フェノキシフェニルメチル、フェノキシフェニルカルボニル基を例示できる。該アリール基がメチレンジオキシ基で置換されている基の具体例としては、メチレンジオキシフェニルメチル、メチレンジオキシフェニルカルボニル基を例示できる。該アリール基がジハロゲノメチレンジオキシ基で置換されている基の具体例としては、ジフルオロメチレンジオキシフェニルメチル基を例示できる。該アリール基がカルボキシル基で置換されている基の具体例としては、ヒドロキシカルボニルフェニルメチル基を例示できる。該アリール基が低級アルコキシカルボニル基で置換されている基の具体例としては、メトキシカルボニルフェニルメチル、メトキシカルボニルフェニルカルボニル基を例示できる。該アリール基が低級アルキルカルボニルオキシ基で置換されている基の具体例としては、アセトキシフェニルメチル、アセトキシフェニルカルボニル基を例示できる。該アリール基がニトロ基で置換されている基の具体例としては、ニトロフェニルカルボニル基を例示できる。該アリール基が低級アルキルアミノ基で置換されている基の具体例としては、ジメチルアミノフェニルカルボニル、ジメチルアミノフェニルエテニルカルボニル基を例示できる。該アリール基が低級アルキルカルボニルアミノ基で置換されている基の具体例としては、アセチルアミノフェニルカルボニル基を例示できる。該アリール基がアミノスルホニル基で置換されている基の具体例としては、ジクロロ(アミノスルホニル)フェニルカルボニル基を例示できる。   Aryl lower alkyl group (a2), arylcarbonyl group (a15), aryl lower alkylcarbonyl group (a16), aryl lower alkenylcarbonyl group (a17), aryloxy lower alkylcarbonyl group (a18), arylsulfonyl group (a30) and Specific examples of the group in which the aryl group constituting a part of each group of the aryl lower alkyl group (a35) having a saturated heterocyclic ring is substituted with a halogen atom include chlorophenylcarbonyl, dichloro (aminosulfonyl) phenylcarbonyl, chlorophenyl Examples include methylcarbonyl and fluoro (4-methylpiperazino) phenylmethyl groups. Specific examples of the group in which the aryl group is substituted with a hydroxyl group include a hydroxyphenylmethyl group. Specific examples of the group in which the aryl group is substituted with a lower alkyl group include methylphenylcarbonyl, methylphenylmethylcarbonyl, methylphenoxymethylcarbonyl, and methylphenylsulfonyl groups. Specific examples of the group in which the aryl group is substituted with a lower alkoxy group include methoxyphenylmethyl, trimethoxyphenylmethyl, butoxyphenylmethyl, ethoxyphenylmethyl, methoxyphenylcarbonyl, methoxyphenylmethylcarbonyl, methoxyphenoxymethylcarbonyl, A methoxyphenylsulfonyl group can be illustrated. Specific examples of the group in which the aryl group is substituted with a halogeno lower alkoxy group include a trifluoromethoxyphenylmethylcarbonyl group. Specific examples of the group in which the aryl group is substituted with an aryl group include a biphenyl group. Specific examples of the group in which the aryl group is substituted with an aryloxy group include phenoxyphenylmethyl and phenoxyphenylcarbonyl groups. Specific examples of the group in which the aryl group is substituted with a methylenedioxy group include methylenedioxyphenylmethyl and methylenedioxyphenylcarbonyl groups. Specific examples of the group in which the aryl group is substituted with a dihalogenomethylenedioxy group include a difluoromethylenedioxyphenylmethyl group. Specific examples of the group in which the aryl group is substituted with a carboxyl group include a hydroxycarbonylphenylmethyl group. Specific examples of the group in which the aryl group is substituted with a lower alkoxycarbonyl group include methoxycarbonylphenylmethyl and methoxycarbonylphenylcarbonyl groups. Specific examples of the group in which the aryl group is substituted with a lower alkylcarbonyloxy group include acetoxyphenylmethyl and acetoxyphenylcarbonyl groups. Specific examples of the group in which the aryl group is substituted with a nitro group include a nitrophenylcarbonyl group. Specific examples of the group in which the aryl group is substituted with a lower alkylamino group include dimethylaminophenylcarbonyl and dimethylaminophenylethenylcarbonyl groups. Specific examples of the group in which the aryl group is substituted with a lower alkylcarbonylamino group include an acetylaminophenylcarbonyl group. Specific examples of the group in which the aryl group is substituted with an aminosulfonyl group include a dichloro (aminosulfonyl) phenylcarbonyl group.

ヘテロアリール低級アルキル基(a5)、ヘテロアリールカルボニル基(a19)、ヘテロアリール低級アルキルカルボニル基(a20)、ヘテロアリール低級アルケニルカルボニル基(a21)、ヘテロアリールオキシ低級アルケニルカルボニル基(a22)、ヘテロアリールスルファニル低級アルキルカルボニル基(a23)、ヘテロアリールアリールカルボニル基(a24)およびヘテロアリールスルホニル基(a31)に記載の各基の一部を構成するヘテロアリール基がハロゲンで置換されている基の具体例としては、クロロチエニルメチル、ジクロロイミダゾリルメチル、クロロ(ヒドロキシ)ピリジルカルボニル基を例示できる。該へテロアリール基が水酸基で置換されている基の具体例としては、ヒドロキシピリジルカルボニル、クロロ(ヒドロキシ)ピリジルカルボニル基を例示できる。該へテロアリール基が低級アルキル基で置換されている基の具体例としては、メチルチアゾリルメチル、n-ヘキシルテトラゾリルメチル、メチルイソオキサゾリルメチル、メチルイミダゾリルメチル基を例示できる。該へテロアリール基がヒドロキシ低級アルキル基で置換されている基の具体例としては、ヒドロキシメチルピリジルメチル基を例示できる。該へテロアリール基がハロゲノ低級アルキル基で置換されている基の具体例としては、トリフルオロメチルベンゾフラニルメチル基を例示できる。該へテロアリール基がアリール基で置換されている基の具体例としては、フェニルチアゾリルメチル、フェニルイミダゾリルメチル基を例示できる。該へテロアリール基がハロゲノアリール基で置換されている基の具体例としては、クロロフェニルピロリルメチル基を例示できる。該へテロアリール基が低級アルキルスルファニル基で置換されている基の具体例としては、メチルスルファニルピリジルカルボニル基を例示できる。該へテロアリール基がアミノカルボニル基で置換されている基の具体例としては、アミノカルボニルピラゾリルカルボニル基を例示できる。該へテロアリール基がカルボキシル基で置換されている基の具体例としては、ヒドロキシカルボニルフリルメチル、ヒドロキシカルボニルチエニルメチル基を例示できる。   Heteroaryl lower alkyl group (a5), heteroarylcarbonyl group (a19), heteroaryl lower alkylcarbonyl group (a20), heteroaryl lower alkenylcarbonyl group (a21), heteroaryloxy lower alkenylcarbonyl group (a22), heteroaryl Specific examples of the group in which the heteroaryl group constituting a part of each group described in the sulfanyl lower alkylcarbonyl group (a23), heteroarylarylcarbonyl group (a24) and heteroarylsulfonyl group (a31) is substituted with halogen Examples thereof include chlorothienylmethyl, dichloroimidazolylmethyl, and chloro (hydroxy) pyridylcarbonyl groups. Specific examples of the group in which the heteroaryl group is substituted with a hydroxyl group include hydroxypyridylcarbonyl and chloro (hydroxy) pyridylcarbonyl groups. Specific examples of the group in which the heteroaryl group is substituted with a lower alkyl group include a methylthiazolylmethyl, n-hexyltetrazolylmethyl, methylisoxazolylmethyl, and methylimidazolylmethyl group. Specific examples of the group in which the heteroaryl group is substituted with a hydroxy lower alkyl group include a hydroxymethylpyridylmethyl group. Specific examples of the group in which the heteroaryl group is substituted with a halogeno lower alkyl group include a trifluoromethylbenzofuranylmethyl group. Specific examples of the group in which the heteroaryl group is substituted with an aryl group include phenylthiazolylmethyl and phenylimidazolylmethyl groups. Specific examples of the group in which the heteroaryl group is substituted with a halogenoaryl group include a chlorophenylpyrrolylmethyl group. Specific examples of the group in which the heteroaryl group is substituted with a lower alkylsulfanyl group include a methylsulfanylpyridylcarbonyl group. Specific examples of the group in which the heteroaryl group is substituted with an aminocarbonyl group include an aminocarbonylpyrazolylcarbonyl group. Specific examples of the group in which the heteroaryl group is substituted with a carboxyl group include a hydroxycarbonylfurylmethyl group and a hydroxycarbonylthienylmethyl group.

(a33)〜(a38)に記載の各基の一部を構成する飽和複素環は、その構成窒素原子上または炭素原子上に、特定の置換基(窒素原子上置換基として低級アルキル基または低級アルコキシカルボニル基、および炭素原子上置換基としてオキソ基)を有することができる。これら各基の内で好ましい各基としては、次の各基を例示できる。   The saturated heterocyclic ring constituting a part of each group described in (a33) to (a38) has a specific substituent (lower alkyl group or lower substituent as a substituent on the nitrogen atom) on the constituent nitrogen atom or carbon atom. An alkoxycarbonyl group, and an oxo group as a substituent on the carbon atom). Among these groups, preferred groups are exemplified by the following groups.

即ち、飽和複素環を有する低級アルキル基(a33)の場合であって、更に該複素環を構成する窒素原子上に1個の低級アルキル基を有する基としては、   That is, in the case of the lower alkyl group (a33) having a saturated heterocyclic ring, and the group having one lower alkyl group on the nitrogen atom constituting the heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。尚、該基中、Meはメチル基を意味する(以下同じ)。 Etc. can be illustrated. In this group, Me means a methyl group (the same applies hereinafter).

飽和複素環を有するアリール低級アルキル基(a35)の場合であって、更に該複素環を構成する窒素原子上に1個の低級アルキル基を有する基としては、   In the case of the aryl lower alkyl group (a35) having a saturated heterocyclic ring, and the group having one lower alkyl group on the nitrogen atom constituting the heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

飽和複素環を有するカルボニル基(a36)の場合であって、更に該複素環を構成する窒素原子上に1個の低級アルキルカルボニル基を有する基としては、   In the case of the carbonyl group (a36) having a saturated heterocyclic ring, and the group having one lower alkylcarbonyl group on the nitrogen atom constituting the heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。尚、上記基においてAcはアセチル基を意味する(以下同じ)。 Etc. can be illustrated. In the above groups, Ac means an acetyl group (hereinafter the same).

飽和複素環を有するカルボニル基(a36)の場合であって、更に該複素環を構成する炭素原子上に1個のオキソ基を有する基としては、   In the case of the carbonyl group (a36) having a saturated heterocyclic ring, and a group having one oxo group on the carbon atom constituting the heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

飽和複素環を有する低級アルキルカルボニル基(a37)の場合であって、更に該複素環を構成する窒素原子上に1個の低級アルキル基を有する基としては、   In the case of the lower alkylcarbonyl group (a37) having a saturated heterocyclic ring, and the group having one lower alkyl group on the nitrogen atom constituting the heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

飽和複素環を有する低級アルキルカルボニル基(a37)の場合であって、更に該複素環を構成する炭素原子上に2個のオキソ基を有する基としては、   In the case of the lower alkylcarbonyl group (a37) having a saturated heterocyclic ring and further having two oxo groups on the carbon atom constituting the heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

飽和複素環を有するアリールカルボニル基(a38)の場合であって、該複素環を構成する炭素原子上に1個のオキソ基を有する基としては、   In the case of the arylcarbonyl group (a38) having a saturated heterocyclic ring, and the group having one oxo group on the carbon atom constituting the heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

Z2で示される(b1)〜(b8)に記載の各基のうち、(b2)、(b3)、(b5)、(b7)および(b8)については、前述した通りである。 Among the groups described in (b1) to (b8) represented by Z 2 , (b2), (b3), (b5), (b7) and (b8) are as described above.

Z2で示される低級アルケニルカルボニル基(b4)の具体例としては、アクリロイル、メタクリロイル、クロトノイル、イソクロトノイル基などを挙げることができ、これらのうちではアクリロイル基が好ましい。 Specific examples of the lower alkenylcarbonyl group (b4) represented by Z 2 include acryloyl, methacryloyl, crotonoyl, and isocrotonoyl groups. Among these, acryloyl group is preferable.

Z2で示される飽和複素環を有するピペリジノ低級アルキルカルボニル基(b6)の具体例としては、ピロリジノピペリジノメチルカルボニル、ピロリジルピペリジノエチルカルボニ
ル、ピペリジノピペリジノメチルカルボニル、ピペリジルピペリジノエチルカルボニル、モルホリノピペリジノエチルカルボニル、ピペラジノピペリジノプロピルカルボニル基などが例示できる。該基としては、好ましくは、
Specific examples of the piperidino lower alkylcarbonyl group (b6) having a saturated heterocyclic ring represented by Z 2 include pyrrolidinopiperidinomethylcarbonyl, pyrrolidylpiperidinoethylcarbonyl, piperidinopiperidinomethylcarbonyl, piperidyl Examples include piperidinoethylcarbonyl, morpholinopiperidinoethylcarbonyl, piperazinopiperidinopropylcarbonyl groups and the like. As the group, preferably,

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

Z2で示される(b3)に記載の基の一部を構成するアミノ基が有していてもよい置換基としての低級アルキル基の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル若しくはヘキシルおよびイソプロピルなどのこれらの構造異性体を挙げることができる。これらのうちではメチル、エチル、イソプロピル基が好ましい。また、(b5)〜(b7)の各基の一部を構成する飽和複素環基の窒素原子上に置換し得る低級アルキル基も上記と同様である。これらの低級アルキル基を有するアミノ基および窒素原子上に低級アルキル基を有する飽和複素環を有する各基としては、好ましくは、ジメチルアミノメチルカルボニル、4-メチルピペラジノカルボニル基を例示することができる。 Specific examples of the lower alkyl group as a substituent that the amino group constituting a part of the group described in (b3) represented by Z 2 may have include methyl, ethyl, propyl, butyl, pentyl, Mention may be made of these structural isomers such as hexyl and isopropyl. Of these, methyl, ethyl and isopropyl groups are preferred. The lower alkyl group that can be substituted on the nitrogen atom of the saturated heterocyclic group constituting a part of each group of (b5) to (b7) is the same as above. Examples of each group having an amino group having a lower alkyl group and a saturated heterocyclic ring having a lower alkyl group on the nitrogen atom preferably include dimethylaminomethylcarbonyl and 4-methylpiperazinocarbonyl groups. it can.

Z3で示される低級アルコキシ基(c2)としては、メトキシ、エトキシ、t-ブトキシ、n-ブトキシ基などを挙げることができ、これらのうちでは、メトキシ、エトキシおよびt-ブトキシ基が好ましい。 Examples of the lower alkoxy group (c2) represented by Z 3 include methoxy, ethoxy, t-butoxy, n-butoxy group and the like. Among these, methoxy, ethoxy and t-butoxy groups are preferable.

Z3で示されるアミノ低級アルキルアミノ基(c4)としては、アミノメチルアミノ、アミノエチルアミノ、アミノプロピルアミノ、アミノブチルアミノ基などを例示でき、これらのうちではアミノエチルアミノおよびアミノプロピルアミノ基が好ましい。 Examples of the amino lower alkylamino group (c4) represented by Z 3 include aminomethylamino, aminoethylamino, aminopropylamino, aminobutylamino group, etc., among which aminoethylamino and aminopropylamino groups are preferable.

Z3で示されるアミノ低級アルキルピペラジノ基(c6)としては、アミノメチルピペラジノ、アミノエチルピペラジノ、アミノプロピルピペラジノ、アミノブチルピペラジノ基などを例示でき、これらのうちではアミノエチルピペラジノおよびアミノプロピルピペラジノ基が好ましい。 Examples of the amino lower alkyl piperazino group (c6) represented by Z 3 include aminomethylpiperazino, aminoethylpiperazino, aminopropylpiperazino, aminobutylpiperazino group and the like. In these, aminoethylpiperazino and aminopropylpiperazino groups are preferred.

Z3で示されるアミノカルボニル低級アルキルピペラジノ基(c7)としては、アミノカルボニルメチルピペラジノ、アミノカルボニルエチルピペラジノ、アミノカルボニルプロピルピペラジノ、アミノカルボニルブチルピペラジノ基などを例示でき、これらのうちではアミノカルボニルメチルピペラジノ基が好ましい。 Examples of the aminocarbonyl lower alkyl piperazino group (c7) represented by Z 3 include aminocarbonylmethylpiperazino, aminocarbonylethylpiperazino, aminocarbonylpropylpiperazino, aminocarbonylbutylpiperazino group, etc. Of these, aminocarbonylmethylpiperazino group is preferred.

Z3で示されるアミノ低級アルキル-1,4-ジアゼパン-1-イル基(c9)としては、アミノメチル-1,4-ジアゼパン-1-イル、アミノエチル-1,4-ジアゼパン-1-イル、アミノプロピル-1,4-ジアゼパン-1-イル、アミノブチル-1,4-ジアゼパン-1-イル基などを例示でき、これらのうちではアミノプロピル-1,4-ジアゼパン-1-イル基が好ましい。 The amino lower alkyl-1,4-diazepan-1-yl group (c9) represented by Z 3 includes aminomethyl-1,4-diazepan-1-yl, aminoethyl-1,4-diazepan-1-yl , Aminopropyl-1,4-diazepan-1-yl, aminobutyl-1,4-diazepan-1-yl group, etc., among which aminopropyl-1,4-diazepan-1-yl group is preferable.

Z3で示されるアミノ低級アルキルアミノピペリジノ基(c12)としては、アミノメチルアミノピペリジノ、アミノエチルアミノピペリジノ、アミノプロピルアミノピペリジノ、アミノブチルアミノピペリジノ基などを例示でき、これらのうちではアミノエチルアミノピペリジノ基が好ましい。 Examples of amino lower alkylaminopiperidino group (c12) represented by Z 3 include aminomethylaminopiperidino, aminoethylaminopiperidino, aminopropylaminopiperidino, aminobutylaminopiperidino group, etc. Of these, the aminoethylaminopiperidino group is preferred.

Z3で示されるアミノ低級アルキルピペリジノ基(c13)としては、アミノメチルピペリジノ、アミノエチルピペリジノ、アミノプロピルピペリジノ、アミノブチルピペリジノ基などを例示でき、これらのうちではアミノエチルピペリジノ基が好ましい。 Examples of the amino lower alkyl piperidino group (c13) represented by Z 3 include aminomethyl piperidino, aminoethyl piperidino, aminopropyl piperidino, aminobutyl piperidino group, etc. In this case, an aminoethylpiperidino group is preferable.

Z3で示される飽和複素環を有するアミノ基(c15)としては、ピペリジノアミノ、ピペリジルアミノ、ピペラジノアミノ、ピペラジルアミノ、ピロリジルアミノ、モルホリルアミノ基などを例示でき、これらのうちではピペリジノアミノおよびピペラジノアミノ基が好ましい。 Examples of the amino group (c15) having a saturated heterocyclic ring represented by Z 3 include piperidinoamino, piperidylamino, piperazinoamino, piperazylamino, pyrrolidylamino, morpholylamino group and the like, and among these, piperidinoamino and piperazinoamino groups are preferable.

Z3で示される飽和複素環を有する低級アルキルアミノ基(c16)としては、ピペリジノエチルアミノ、ピペリジルメチルアミノ、ピロリジノエチルアミノ、モルホリノプロピルアミノ、ピペラジノプロピルアミノ基などを例示でき、これらのうちではピペリジノエチルアミノ基が好ましい。 Examples of the lower alkylamino group (c16) having a saturated heterocyclic ring represented by Z 3 include piperidinoethylamino, piperidylmethylamino, pyrrolidinoethylamino, morpholinopropylamino, piperazinopropylamino group, and the like. Of these, piperidinoethylamino group is preferred.

Z3で示される飽和複素環を有するピペラジノ基(c17)としては、ピペリジルピペラジノ、モルホリルピペラジノ基などを例示でき、これらのうちではピペリジルピペラジノ基が好ましい。 Examples of the piperazino group (c17) having a saturated heterocyclic ring represented by Z 3 include piperidyl piperazino and morpholyl piperazino groups. Among these, piperidyl piperazino groups are preferred.

Z3で示される飽和複素環を有する低級アルキルピペラジノ基(c18)は、低級アルキル基に飽和複素環基が置換した低級アルキルピペラジノ基を意味する。具体例としてはピロリジノエチルピペラジノ、モルホリノエチルピペラジノ、ピペリジノエチルピペラジノ、ピペリジルエチルピペラジノ、ピペリジルメチルピペラジノ、1,3-ジオキソラニルメチルピペラジノ、テトラヒドロフリルメチルピペラジノ基などを例示でき、これらのうちではピロリジノエチルピペラジノ、モルホリノエチルピペラジノ、ピペリジノエチルピペラジノ、ピペリジルメチルピペラジノ基が好ましい。 The lower alkyl piperazino group (c18) having a saturated heterocyclic ring represented by Z 3 means a lower alkyl piperazino group in which a saturated heterocyclic group is substituted on the lower alkyl group. Specific examples include pyrrolidinoethylpiperazino, morpholinoethylpiperazino, piperidinoethylpiperazino, piperidylethylpiperazino, piperidylmethylpiperazino, 1,3-dioxolanylmethylpiperazino, tetrahydro Examples include a furylmethyl piperazino group, and among these, pyrrolidinoethylpiperazino, morpholinoethylpiperazino, piperidinoethylpiperazino, and piperidylmethylpiperazino groups are preferred.

Z3で示される飽和複素環を有するカルボニル低級アルキルピペラジノ基(c19)の具体例としては、ピロリジノカルボニルメチルピペラジノ、ピペリジノカルボニルエチルピペラジノ基などが例示でき、ピロリジノカルボニルメチルピペラジノ基が好ましい。 Specific examples of the carbonyl lower alkylpiperazino group (c19) having a saturated heterocyclic ring represented by Z 3 include pyrrolidinocarbonylmethylpiperazino, piperidinocarbonylethylpiperazino group, etc., and pyrrolidino A carbonylmethyl piperazino group is preferred.

Z3で示される飽和複素環を有する低級アルキル-1,4-ジアゼパン-1-イル基(c20)の具体例としては、モルホリノプロピル-1,4-ジアゼパン-1-イル、ピペリジノエチル-1,4-ジアゼパン-1-イル基などが例示でき、これらのうちではモルホリノプロピル-1,4-ジアゼパン-1-イル基が好ましい。 Specific examples of the lower alkyl-1,4-diazepan-1-yl group (c20) having a saturated heterocyclic ring represented by Z 3 include morpholinopropyl-1,4-diazepan-1-yl, piperidinoethyl-1,4 -A diazepan-1-yl group can be exemplified, and among these, a morpholinopropyl-1,4-diazepan-1-yl group is preferable.

Z3で示される飽和複素環を有するピペリジノ基(c21)の具体例としては、ピペリジノピペリジノ、ピペラジノピペリジノ、モルホリノピペリジノ、モルホリルピペリジノ基などが例示でき、これらのうちではピペリジノピペリジノおよびピペラジノピペリジノ基が好ましい。 Specific examples of the piperidino group (c21) having a saturated heterocycle represented by Z 3 is piperidinopiperidino, piperazino piperidinocarbonyl, morpholino piperidinocarbonyl, etc. can be exemplified morpholinocarbonyl Lupi piperidino group Of these, piperidinopiperidino and piperazinopiperidino groups are preferred.

Z3で示される飽和複素環を有する低級アルキルモルホリノ基(c22)の具体例としては、ピペリジノメチルモルホリノ、ピペラジノメチルモルホリノ、1,4-ジアゼパン-1-イルメチルモルホリノ基などが例示でき、ピペリジノメチルモルホリノおよびピペラジノメチルモルホリノ基が好ましい。 Specific examples of the lower alkylmorpholino group (c22) having a saturated heterocyclic ring represented by Z 3 include piperidinomethylmorpholino, piperazinomethylmorpholino, 1,4-diazepan-1-ylmethylmorpholino group and the like. Piperidinomethylmorpholino and piperazinomethylmorpholino groups are preferred.

アミノ低級アルキルアミノ基(c4)、アミノ低級アルキルピペラジノ基(c6)、アミノカルボニル低級アルキルピペラジノ基(c7)、アミノ低級アルキル-1,4-ジアゼパン-1-イル基(c9)、アミノピペリジノ基(c11)、アミノ低級アルキルアミノピペリジノ基(c12)、アミノ低級アルキルピペリジノ基(c13)、 飽和複素環を有するアミノ基(c15)および飽和複素環を有する低級アルキルアミノ基(c16)の一部を構成するアミノ基、およびアミノ基(c3)が、低級アルキル基、ヒドロキシ低級アルキル基、アリール基、ヘテロアリール基、アリール低級アルキル基、アルコキシアリール低級アルキル基、ヘテロアリール低級アルキル基、低級アルキルカルボニル基および低級アルコキシカルボニル基からなる群から選ばれる置換基の1-2個で置換された基としては、好ましくは、以下の各基を例示できる。   Amino lower alkylamino group (c4), amino lower alkyl piperazino group (c6), aminocarbonyl lower alkyl piperazino group (c7), amino lower alkyl-1,4-diazepan-1-yl group (c9), Aminopiperidino group (c11), amino lower alkylaminopiperidino group (c12), amino lower alkylpiperidino group (c13), amino group having saturated heterocyclic ring (c15) and lower alkylamino group having saturated heterocyclic ring ( c16) an amino group constituting part of the amino group, and the amino group (c3) is a lower alkyl group, a hydroxy lower alkyl group, an aryl group, a heteroaryl group, an aryl lower alkyl group, an alkoxyaryl lower alkyl group, or a heteroaryl lower alkyl group. The group substituted with 1-2 substituents selected from the group consisting of a group, a lower alkylcarbonyl group and a lower alkoxycarbonyl group is preferably It can be exemplified each group.

Figure 0004794200
Figure 0004794200

尚、上記例示の各基において、Phはフェニル基を、Bocはt-ブトキシカルボニル基を、i-Prはイソプロピル基を、n-Prはn-プロピル基を、Etはエチル基を、それぞれ示す(以下同じ)。   In each of the groups exemplified above, Ph represents a phenyl group, Boc represents a t-butoxycarbonyl group, i-Pr represents an isopropyl group, n-Pr represents an n-propyl group, and Et represents an ethyl group. (same as below).

アミノピペリジノ基(c11)の一部を構成するアミノ基がアリール低級アルキルカルボニル基で置換された基としては、好ましくは   The group in which the amino group constituting a part of the aminopiperidino group (c11) is substituted with an aryl lower alkylcarbonyl group is preferably

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

ピペラジノ基(c5)および1,4-ジアゼパン-1-イル基(c8)が、その4位に低級アルキル基、ヒドロキシ低級アルキル基、低級アルコキシ低級アルキル基、アリール基、低級アルキルアリール基、ヒドロキシルアリール基、シアノアリール基、ハロゲノアリール基、アリール低級アルキル基、低級アルコキシアリール低級アルキル基、ハロゲノアリールオキシ低級アルキル基、ヘテロアリール基、低級アルキルへテロアリール基、ハロゲノ低級アルキルへテロアリール基、シアノヘテロアリール基、ヘテロアリール低級アルキル基、低級アルコキシカルボニル基および低級アルキルカルボニル基からなる群から選ばれる置換基のいずれか1個を有している基の具体例としては、好ましくは、下記各基を例示できる。   Piperazino group (c5) and 1,4-diazepan-1-yl group (c8) have a lower alkyl group, hydroxy lower alkyl group, lower alkoxy lower alkyl group, aryl group, lower alkyl aryl group, hydroxyl aryl at the 4-position Group, cyanoaryl group, halogenoaryl group, aryl lower alkyl group, lower alkoxyaryl lower alkyl group, halogenoaryloxy lower alkyl group, heteroaryl group, lower alkyl heteroaryl group, halogeno lower alkyl heteroaryl group, cyanoheteroaryl group Specific examples of the group having any one substituent selected from the group consisting of a heteroaryl lower alkyl group, a lower alkoxycarbonyl group and a lower alkylcarbonyl group preferably include the following groups. .

Figure 0004794200
Figure 0004794200

尚、上記例示の各基において、OMeはメトキシ基を、O-t-Buは、tert-ブトキシ基を、それぞれ示す(以下同じ)。   In the groups exemplified above, OMe represents a methoxy group, and O-t-Bu represents a tert-butoxy group (the same applies hereinafter).

(c15)〜(c22)に記載の各基の一部を構成する飽和複素環が、該環を構成する窒素原子上に低級アルキル基、アリール基、シアノアリール基、低級アルキルカルボニル基、ハロゲノ低級アルキルアリール基およびアリール低級アルキル基からなる群から選ばれる置換基のいずれか1個を有する具体例としては、好ましくは、下記各基を例示できる。   a saturated heterocyclic ring constituting a part of each group described in (c15) to (c22) is a lower alkyl group, an aryl group, a cyanoaryl group, a lower alkylcarbonyl group, a halogeno-lower group on a nitrogen atom constituting the ring; As specific examples having any one substituent selected from the group consisting of an alkylaryl group and an aryl lower alkyl group, the following groups are preferably exemplified.

Figure 0004794200
Figure 0004794200

ピペラジノ基(c5)、ピペリジノ基(c10)および(c15)〜(c22)に記載の各基の一部を構成する飽和複素環が、これらの環を構成する炭素原子上に水酸基、オキソ基、低級アルキル基、ヒドロキシ低級アルキル基、アリール基、アリール低級アルキル基、アミノカルボニル基および低級アルキルアミノ基からなる群から選ばれる置換基のいずれか1個を有する基としては、好ましくは、下記各基を例示できる。    A saturated heterocyclic ring constituting a part of each group described in the piperazino group (c5), piperidino group (c10) and (c15) to (c22) has a hydroxyl group, an oxo group on a carbon atom constituting these rings, As the group having any one substituent selected from the group consisting of a lower alkyl group, a hydroxy lower alkyl group, an aryl group, an aryl lower alkyl group, an aminocarbonyl group and a lower alkylamino group, preferably the following groups Can be illustrated.

Figure 0004794200
Figure 0004794200

(c15)〜(c22)の飽和複素環であって、該飽和複素環を構成する窒素原子上に低級アルキル基、アリール基、シアノアリール基、低級アルキルカルボニル基、ハロゲノ低級アルキルアリール基およびアリール低級アルキル基からなる群から選ばれる置換基を有する各基、および該飽和複素環を構成する炭素原子上に、水酸基、オキソ基、低級アルキル基、ヒドロキシ低級アルキル基、アリール基、アリール低級アルキル基、アミノカルボニル基および低級アルキルアミノ基からなる群から選ばれる置換基を有する各基の好ましいものとしては、次の各基を例示できる。   a saturated heterocycle of (c15) to (c22), wherein a lower alkyl group, an aryl group, a cyanoaryl group, a lower alkylcarbonyl group, a halogeno-lower alkylaryl group and an aryl-lower group are formed on the nitrogen atom constituting the saturated heterocycle; On each group having a substituent selected from the group consisting of alkyl groups, and carbon atoms constituting the saturated heterocyclic ring, a hydroxyl group, an oxo group, a lower alkyl group, a hydroxy lower alkyl group, an aryl group, an aryl lower alkyl group, Preferable examples of each group having a substituent selected from the group consisting of an aminocarbonyl group and a lower alkylamino group include the following groups.

即ち、飽和複素環を有するアミノ基(c15)であって、更に該複素環に置換基を有する基としては、   That is, as an amino group (c15) having a saturated heterocyclic ring and further having a substituent on the heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

飽和複素環を有する低級アルキルアミノ基(c16)であって、更に該複素環に置換基を有する基としては、   As the lower alkylamino group (c16) having a saturated heterocyclic ring and further having a substituent on the heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

飽和複素環を有するピペラジノ基(c17)であって、更に該複素環に置換基を有する基としては、   Piperazino group (c17) having a saturated heterocyclic ring, further having a substituent in the heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

飽和複素環を有する低級アルキルピペラジノ基(c18)であって、更に該複素環に置換基を有する基としては、   As the lower alkyl piperazino group (c18) having a saturated heterocyclic ring, and further having a substituent on the heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

飽和複素環を有するピペリジノ基(c21)であって、更に該複素環に置換基を有する基としては、   Piperidino group (c21) having a saturated heterocyclic ring, and further having a substituent on the heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

飽和複素環を有する低級アルキルモルホリノ基(c22)としては、   As the lower alkylmorpholino group (c22) having a saturated heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示でき、更に該飽和複素環を構成する窒素原子上に置換基を有する基としては、 As examples of the group having a substituent on the nitrogen atom constituting the saturated heterocyclic ring,

Figure 0004794200
Figure 0004794200

などを例示できる。 Etc. can be illustrated.

前記一般式(1)で表される本発明化合物のうちで第一の好ましい化合物群としては、R2がメチレン基であり、R3が水素原子または低級アルキル基である化合物を挙げることができる。 Among the compounds of the present invention represented by the general formula (1), the first preferred compound group includes compounds in which R 2 is a methylene group and R 3 is a hydrogen atom or a lower alkyl group. .

第二の好ましい化合物群としては、R1が低級アルキルカルボニル基であり、R2がメチレン基であり、且つR3が基(3)または基(6)である化合物群を挙げることができる。この化合物のうちで、より好ましい化合物としては、R4が低級アルキレン基であり且つZ1が(a2)、(a14)、(a15)、(a28)、(a32)および(a37)から選ばれるいずれかの基である化合物を挙げることができる。 A second preferred compound group includes a compound group in which R 1 is a lower alkylcarbonyl group, R 2 is a methylene group, and R 3 is a group (3) or a group (6). Among these compounds, a more preferred compound is that R 4 is a lower alkylene group and Z 1 is selected from (a2), (a14), (a15), (a28), (a32) and (a37) The compound which is any group can be mentioned.

第三の好ましい化合物群としては、R1が低級アルキルカルボニル基であり、R2がメチレン基であり、且つR3が基(4)、基(5)または基(7)(但し、Z1は低級アルコキシカルボニル基または水素原子を示す)である化合物群を挙げることができる。 As a third preferred group of compounds, R 1 is a lower alkylcarbonyl group, R 2 is a methylene group, and R 3 is a group (4), a group (5) or a group (7) (provided that Z 1 Represents a lower alkoxycarbonyl group or a hydrogen atom).

第四の好ましい化合物群としては、R1が低級アルキルカルボニル基であり、R2がメチレン基であり、且つR3が基(8)である化合物を挙げることができる。 A fourth preferred group of compounds includes compounds in which R 1 is a lower alkylcarbonyl group, R 2 is a methylene group, and R 3 is a group (8).

第五の好ましい化合物群としては、R1が水素原子または低級アルキルカルボニル基であり、R2がメチレン基であり、且つR3が基(9)、基(10)または基(11)である化合物群を挙げることができる。 As a fifth preferred compound group, R 1 is a hydrogen atom or a lower alkylcarbonyl group, R 2 is a methylene group, and R 3 is a group (9), a group (10) or a group (11). A group of compounds can be mentioned.

第六の好ましい化合物群としては、R1が水素原子または低級アルキルカルボニル基であり、R2がメチレン基であり、且つR3が基(9)、基(10)または基(11)(但し、Z3は(c1)、(c2)、(c4)、(c5)、(c6)、(c7)、(c8)、(c10)、(c11)、(c15)、(c16)、(c18)、(c21)または(c22)を示す)である化合物群を挙げることができる。 As a sixth preferred group of compounds, R 1 is a hydrogen atom or a lower alkylcarbonyl group, R 2 is a methylene group, and R 3 is a group (9), a group (10) or a group (11) (provided that , Z 3 is (c1), (c2), (c4), (c5), (c6), (c7), (c8), (c10), (c11), (c15), (c16), (c18 ), (C21) or (c22)).

第七の好ましい化合物群としては、R1がアセチル基であり、R2がメチレン基であり、且つR3が基(9)(但し、Z3は(c4)、(c5)、(c6)、(c10)、(c11)、(c16)、(c18)、(c21)または(c22)を示す)である化合物群を挙げることができる。 As a seventh preferred group of compounds, R 1 is an acetyl group, R 2 is a methylene group, and R 3 is a group (9) (wherein Z 3 is (c4), (c5), (c6) , (C10), (c11), (c16), (c18), (c21) or (c22)).

好ましい本発明化合物の具体例としては、下記1)〜19)に記載の化合物を挙げることができる。
1) N-{4-[6-アミノ-5-シアノ-2-(ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド
2) N-{4-[6-アミノ-5-シアノ-2-(6-メチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド
3) N-{4-[6-アミノ-5-シアノ-2-(6-{4-[2-(4-メチルピペラジン-1-イル)アセチル]ピペラジン-1-イルメチル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド
4) N-[4-(6-アミノ-5-シアノ-2-{6-[3-(4-メチルピペラジン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド
5) 3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジメチルアミノエチル)プロピオンアミド
6) 3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジメチルアミノエチル)-N-メチルプロピオンアミド
7) 3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジメチルアミノプロピル)-N-メチルプロピオンアミド
8) 3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-メチルピペリジン-1-イルエチル)プロピオンアミド
9) 3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジエチルアミノエチル)プロピオンアミド
10) 3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-メチル-N-(1-メチルピペリジン-4-イル)プロピオンアミド
11) N-(4-{6-アミノ-2-[6-(3-[1,4’]ビピペリジニル-1’-イル-3-オキソプロピル)ピリジン-2-イルメチルスルファニル]-5-シアノピリミジン-4-イル}フェニル)アセトアミド
12) N-[4-(6-アミノ-5-シアノ-2-{6-[3-オキソ-3-(2-ピペリジン-1-イルメチルモルホリン-4-イル)プロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド
13) N-{4-[6-アミノ-5-シアノ-2-(6-{3-[2-(4-エチルピペラジン-1-イルメチル)モルホリン-4-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド
14) N-{4-[6-アミノ-5-シアノ-2-(6-{3-[4-(2-ジエチルアミノエチル)ピペラジン-1-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド
15) N-{4-[6-アミノ-5-シアノ-2-(6-{3-[4-(2-ジイソプロピルアミノエチル)ピペラジン-1-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド
16) N-{4-[6-アミノ-5-シアノ-2-(6-{3-オキソ-3-[4-(2-ピロリジン-1-イルエチル)ピペラジン-1-イル]プロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド
17) N-{4-[6-アミノ-5-シアノ-2-(6-{3-[4-(2-モルホリン-4-イルエチル)ピペラジン-1-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド
18) N-{4-[6-アミノ-5-シアノ-2-(6-{3-[4-(2-ジエチルアミノエチル)ピペラジン-1-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド
19) N-[4-(6-アミノ-5-シアノ-2-{6-[3-(4-メチル-[1,4]ジアゼパン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド。
Specific examples of preferred compounds of the present invention include the compounds described in 1) to 19) below.
1) N- {4- [6-Amino-5-cyano-2- (pyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide
2) N- {4- [6-Amino-5-cyano-2- (6-methylpyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide
3) N- {4- [6-Amino-5-cyano-2- (6- {4- [2- (4-methylpiperazin-1-yl) acetyl] piperazin-1-ylmethyl} pyridin-2-yl Methylsulfanyl) pyrimidin-4-yl] phenyl} acetamide
4) N- [4- (6-Amino-5-cyano-2- {6- [3- (4-methylpiperazin-1-yl) -3-oxopropyl] pyridin-2-ylmethylsulfanyl} pyrimidine- 4-yl) phenyl] acetamide
5) 3- {6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-dimethylaminoethyl) propion Amide
6) 3- {6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-dimethylaminoethyl)- N-methylpropionamide
7) 3- {6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-dimethylaminopropyl)- N-methylpropionamide
8) 3- {6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-methylpiperidine-1- Ylethyl) propionamide
9) 3- {6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-diethylaminoethyl) propionamide
10) 3- {6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N-methyl-N- (1-methyl Piperidin-4-yl) propionamide
11) N- (4- {6-amino-2- [6- (3- [1,4 '] bipiperidinyl-1'-yl-3-oxopropyl) pyridin-2-ylmethylsulfanyl] -5-cyano Pyrimidin-4-yl} phenyl) acetamide
12) N- [4- (6-Amino-5-cyano-2- {6- [3-oxo-3- (2-piperidin-1-ylmethylmorpholin-4-yl) propyl] pyridin-2-yl Methylsulfanyl} pyrimidin-4-yl) phenyl] acetamide
13) N- {4- [6-Amino-5-cyano-2- (6- {3- [2- (4-ethylpiperazin-1-ylmethyl) morpholin-4-yl] -3-oxopropyl} pyridine -2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide
14) N- {4- [6-Amino-5-cyano-2- (6- {3- [4- (2-diethylaminoethyl) piperazin-1-yl] -3-oxopropyl} pyridin-2-yl Methylsulfanyl) pyrimidin-4-yl] phenyl} acetamide
15) N- {4- [6-Amino-5-cyano-2- (6- {3- [4- (2-diisopropylaminoethyl) piperazin-1-yl] -3-oxopropyl} pyridine-2- Ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide
16) N- {4- [6-Amino-5-cyano-2- (6- {3-oxo-3- [4- (2-pyrrolidin-1-ylethyl) piperazin-1-yl] propyl} pyridine- 2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide
17) N- {4- [6-Amino-5-cyano-2- (6- {3- [4- (2-morpholin-4-ylethyl) piperazin-1-yl] -3-oxopropyl} pyridine- 2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide
18) N- {4- [6-Amino-5-cyano-2- (6- {3- [4- (2-diethylaminoethyl) piperazin-1-yl] -3-oxopropyl} pyridin-2-yl Methylsulfanyl) pyrimidin-4-yl] phenyl} acetamide
19) N- [4- (6-Amino-5-cyano-2- {6- [3- (4-methyl- [1,4] diazepan-1-yl) -3-oxopropyl] pyridine-2- Ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide.

本発明化合物中には、置換基の種類により二重結合やアミド結合などに基づく幾何異性体や互変異性体が存在する場合があるが、本発明はこれらの異性体を分離したもの、あるいは混合物をすべて包含する。   In the compound of the present invention, there may be a geometric isomer or tautomer based on a double bond or an amide bond depending on the type of substituent, but the present invention is a product obtained by separating these isomers, or Includes all mixtures.

また、本発明化合物は不斉炭素原子を有する場合があり、この場合、不斉炭素原子に基づく光学異性体が存在し得る。本発明はこれら光学異性体の混合物や、その単離したものも包含する。   In addition, the compound of the present invention may have an asymmetric carbon atom. In this case, an optical isomer based on the asymmetric carbon atom may exist. The present invention includes a mixture of these optical isomers and an isolated product thereof.

また、本発明は、前記した本発明化合物を放射性同位元素でラベル化した化合物も包含する。   The present invention also includes a compound obtained by labeling the above-described compound of the present invention with a radioisotope.

また、本発明化合物は、薬理学的に許容されるプロドラッグも包含する。薬理学的に許容されるプロドラッグとは、加溶媒分解などによりまたは生理学的条件下で本発明化合物に変換できる基(保護基)を有する化合物を言う。プロドラッグを形成する基は、公知である(例えば、Prog.Med., 5, 2157-2161, 1985、「医薬品の開発」(廣川書店、1990年)第7巻分子設計163-196頁など参照)。これらの各基は、上記加溶媒分解などにより、-NH2、-OH、-COOHなどの官能基に変換することができる。具体的には、エチルエステルの形態を有する本発明化合物、例えば実施例43に記載の化合物は、生体中のエステラーゼにより、カルボン酸形態の本発明化合物、即ち実施例45の化合物に変換され得る。 The compounds of the present invention also include pharmacologically acceptable prodrugs. A pharmacologically acceptable prodrug refers to a compound having a group (protecting group) that can be converted to the compound of the present invention by solvolysis or under physiological conditions. Prodrug-forming groups are known (see, for example, Prog. Med., 5, 2157-2161, 1985, `` Drug Development '' (Yodogawa Shoten, 1990), Volume 7, Molecular Design pages 163-196, etc. ). Each of these groups can be converted into a functional group such as —NH 2 , —OH, and —COOH by the above solvolysis and the like. Specifically, the compound of the present invention having the ethyl ester form, for example, the compound described in Example 43, can be converted to the compound of the present invention in the carboxylic acid form, that is, the compound of Example 45, by esterase in vivo.

さらに、本発明化合物は、置換基の種類により、酸付加塩または塩基との塩を形成することができる。本発明は、このような塩類、特に製剤学的に許容される酸付加塩および塩基との塩をも包含する。酸付加塩の具体例としては、塩酸、臭化水素酸、ヨウ素水素酸、硫酸、硝酸、リン酸などの無機酸;ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、クエン酸、酒石酸、炭酸、ピクリン酸、メタンスルホン酸、エタンスルホン酸、グルタミン酸などの有機酸との酸付加塩を挙げることができる。また、塩基との塩を形成させる塩基の具体例としては、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウムなどの無機塩基;メチルアミン、エチルアミン、メグルミン、エタノールアミンなどの有機塩基;リジン、アルギニン、オルニチンなどの塩基性アミノ酸を挙げることができる。塩基との塩には更にアンモニウム塩も含まれる。これらの塩類は常法により製造することができる。   Furthermore, the compound of the present invention can form an acid addition salt or a salt with a base depending on the type of substituent. The present invention also includes such salts, particularly pharmaceutically acceptable acid addition salts and salts with bases. Specific examples of the acid addition salts include inorganic acids such as hydrochloric acid, hydrobromic acid, iohydric acid, sulfuric acid, nitric acid, phosphoric acid; formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, Mention may be made of acid addition salts with organic acids such as maleic acid, lactic acid, malic acid, citric acid, tartaric acid, carbonic acid, picric acid, methanesulfonic acid, ethanesulfonic acid, glutamic acid. Specific examples of bases that form salts with bases include inorganic bases such as sodium, potassium, magnesium, calcium, and aluminum; organic bases such as methylamine, ethylamine, meglumine, and ethanolamine; lysine, arginine, ornithine, and the like. The basic amino acid can be mentioned. Salts with bases also include ammonium salts. These salts can be produced by a conventional method.

さらに、本発明は、本発明化合物およびその製剤学的に許容される塩の水和物、溶媒和物および結晶多形の物質をも包含する。   Furthermore, the present invention also includes hydrates, solvates and crystalline polymorphs of the compounds of the present invention and pharmaceutically acceptable salts thereof.

本発明化合物の製造
以下、本発明化合物(その製剤学的に許容される塩を含む。以下、特筆しない限りこれらを「本発明化合物」)という)の製造法につき詳述する。
Production of the Compound of the Present Invention Hereinafter, the production method of the compound of the present invention (including pharmaceutically acceptable salts thereof, hereinafter referred to as “the compound of the present invention” unless otherwise specified) will be described in detail.

本発明化合物は、その基本骨格あるいは置換基の種類に応じて、既知の各種方法を原料化合物に適用して製造することができる。その際、目的化合物の有する官能基の種類によっては、原料化合物(若しくは中間体化合物)の有する当該官能基を適当な保護基(容易に当該官能基に変換可能な基)に置き換えておくことが製造技術上効果的な場合がある。このような官能基としては、-NH2、-OH、-COOHなどが挙げられる。それらの保護基としては、例えばグリーン(Greene)およびウッツ(Wuts)の文献("Protective Groups in Organic Synthesis" (第3版), 1999年, John Wiley & Sons Inc.)に記載の保護基を挙げることができる。保護基の置換反応は、該保護基の種類に応じて、上記文献に記載の反応条件などに従って適宜決定することができる。また、上記置換反応により導入した保護基を、所望の反応によって目的化合物を得た後に該化合物から脱離させる方法も、常法、例えば上記文献に記載の方法に従って実施することができる。 The compound of the present invention can be produced by applying various known methods to the raw material compound according to the basic skeleton or the kind of substituent. At that time, depending on the type of functional group possessed by the target compound, the functional group possessed by the raw material compound (or intermediate compound) may be replaced with an appropriate protecting group (a group that can be easily converted into the functional group). May be effective in manufacturing technology. Examples of such a functional group include —NH 2 , —OH, —COOH and the like. Examples of these protecting groups include protecting groups described in Greene and Wuts ("Protective Groups in Organic Synthesis" (3rd edition), 1999, John Wiley & Sons Inc.). be able to. The substitution reaction of the protecting group can be appropriately determined according to the reaction conditions described in the above-mentioned document, depending on the kind of the protecting group. In addition, a method in which the protecting group introduced by the above substitution reaction is eliminated from the target compound after obtaining the desired compound by a desired reaction can also be carried out according to a conventional method, for example, a method described in the above-mentioned literature.

本発明化合物は、下記反応工程式-1に示す方法により製造することができる。   The compound of the present invention can be produced by the method shown in the following reaction process formula-1.

Figure 0004794200
Figure 0004794200

[各式中、R1、R2、R3は前記に同じ、但しR1が水素原子の場合を除く。Xはハロゲン原子、アルキルスルホニルオキシ基またはアリールスルホニルオキシ基を示す。]
本発明化合物(1)は、アルデヒド体(化合物(2a))からジシアノエチレン体(化合物(2b))および2-メルカプトピリミジン体(化合物(2c))または2-メルカプトジヒドロピリミジン体(化合物(2d))を経て製造できる。
[In each formula, R 1 , R 2 and R 3 are the same as above, except that R 1 is a hydrogen atom. X represents a halogen atom, an alkylsulfonyloxy group or an arylsulfonyloxy group. ]
The compound (1) of the present invention is obtained from the aldehyde compound (compound (2a)) to the dicyanoethylene compound (compound (2b)) and the 2-mercaptopyrimidine compound (compound (2c)) or the 2-mercaptodihydropyrimidine compound (compound (2d)). ) Can be manufactured.

ここで出発原料として利用する化合物(2a)は、公知化合物である。   The compound (2a) used here as a starting material is a known compound.

また、化合物(2d)は、環内二重結合の位置の異なる異性体を含む。   In addition, compound (2d) includes isomers having different positions of endocyclic double bonds.

反応工程式-1に示す各反応は、それぞれ文献に記載の方法に準じて実施することができる。より詳しくは、次のようにして実施することができる。   Each reaction shown in Reaction Process Formula-1 can be carried out according to the methods described in the literature. More specifically, it can be carried out as follows.

まず、化合物(2a)とマロノニトリル(11)との反応は、例えば文献(W. S. Emerson, T. M. Patrick, J. Org. Chem., 790, 14, 1949参照)に記載の方法に従って実施することができる。即ち、化合物(2a)に対して等モル量から過剰モル量のマロノニトリル(11)を、無溶媒で或いは水、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン、アセトン、メチルエチルケトン(MEK)、メタノール、エタノール、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で、化合物(2a)と反応させることにより、化合物(2b)を得る。上記反応は、不活性溶媒中、特にエタノール中で実施されるのが好ましい。上記反応は、無触媒でも実施できるが、好ましくは、化合物(2a)に対して触媒量から等モル量の触媒を用いて実施される。該触媒としては、ピペリジンなどの有機塩基およびその塩、グリシンなどのアミノ酸、酢酸アンモニウムなどのアンモニウム塩などを挙げることができる。これらの内では特にピペリジンが好ましい。上記反応の温度条件としては、溶媒および触媒を利用するか否かに拘わらず、いずれの場合も、室温乃至加温条件を採用できる。特に、室温条件の採用が好ましい。   First, the reaction of compound (2a) and malononitrile (11) can be carried out according to the method described in the literature (see W. S. Emerson, T. M. Patrick, J. Org. Chem., 790, 14, 1949), for example. That is, an equimolar to excess molar amount of malononitrile (11) with respect to compound (2a) can be used without solvent or with water, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), diethyl ether, tetrahydrofuran (THF), dioxane. , Acetone, methyl ethyl ketone (MEK), methanol, ethanol, methylene chloride, dichloroethane, chloroform and the like in a solvent inert to the reaction to give compound (2b). The above reaction is preferably carried out in an inert solvent, particularly in ethanol. The above reaction can be carried out without a catalyst, but is preferably carried out using a catalytic amount to an equimolar amount of catalyst with respect to compound (2a). Examples of the catalyst include organic bases such as piperidine and salts thereof, amino acids such as glycine, ammonium salts such as ammonium acetate, and the like. Of these, piperidine is particularly preferable. Regardless of whether or not a solvent and a catalyst are used as the temperature conditions for the above reaction, room temperature to heating conditions can be adopted in any case. In particular, it is preferable to use room temperature conditions.

上記反応により得られる化合物(2b)は、次いでこれにチオウレア(12)を反応させることによって、化合物(2c)または化合物(2d)或いはこれらの混合物に変換できる。この反応は、例えば文献記載の方法に従って実施することができる(Daboun, H. A.; El-Reedy, A. M.; Z. Naturforsch., 1983, 38 (12), 1686)。より詳しくは、化合物(2b)に対して等モル量〜過剰モル量のチオウレア(12)を用いて、無溶媒で或いは水、DMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で実施できる。反応系内には、所望により、炭酸カリウム、水素化ナトリウム、酢酸ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、トリエチルアミンなどの塩基を添加存在させ得る。上記反応は、好ましくは、エタノール中、ナトリウムエトキシドの存在下に行われる。上記反応の反応温度条件は、室温から加温条件でよく、特に溶媒の加熱還流温度条件の採用が好ましい。   The compound (2b) obtained by the above reaction can be converted into the compound (2c), the compound (2d) or a mixture thereof by reacting with the thiourea (12). This reaction can be carried out, for example, according to literature methods (Daboun, H. A .; El-Reedy, A. M .; Z. Naturforsch., 1983, 38 (12), 1686). More specifically, using an equimolar to excess molar amount of thiourea (12) with respect to compound (2b), without solvent or with water, DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, methanol, The reaction can be carried out in a solvent inert to the reaction such as ethanol, acetonitrile, methylene chloride, dichloroethane, and chloroform. If desired, a base such as potassium carbonate, sodium hydride, sodium acetate, sodium methoxide, sodium ethoxide, triethylamine and the like can be added to the reaction system. The above reaction is preferably carried out in ethanol in the presence of sodium ethoxide. The reaction temperature conditions for the above reaction may be from room temperature to heating conditions, and it is particularly preferable to employ a solvent heating reflux temperature condition.

反応工程式-1に従う方法によれば、次いで、上記により得られる化合物(2c)または化合物(2d)或いはこれらの混合物に、化合物(13)(例えばハロゲン、アリールスルホニルオキシ基,アルキルスルホニルオキシ基などの脱離基を有する置換ピリジル低級アルキル化合物)を反応させることにより、本発明化合物(1)またはそのジヒドロ体(2e)或いはこれらの混合物を製造することができる。この反応は、化合物(2c)または化合物(2d)或いはこれらの混合物に対して等モル量〜過剰モル量の化合物(13)を利用して実施できる。該反応は、無溶媒で或いはDMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で行われる。反応系内には、必要に応じて、炭酸カリウム、炭酸水素ナトリウム、水素化ナトリウム、酢酸ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、トリエチルアミンなどの塩基を更に存在させ得る。上記においては、特に反応溶媒としてDMFを用い且つ塩基としての炭酸水素ナトリウムの存在下で反応を行うことが好ましい。反応は、一般には、室温〜加温下で行われ、特に室温下での反応が好ましい。   According to the method according to the reaction process formula-1, then the compound (2c) or the compound (2d) obtained by the above or a mixture thereof is added to the compound (13) (for example, halogen, arylsulfonyloxy group, alkylsulfonyloxy group, etc. The substituted pyridyl lower alkyl compound having a leaving group of the present invention can be reacted to produce the compound (1) of the present invention, its dihydro form (2e), or a mixture thereof. This reaction can be carried out using an equimolar amount to an excess molar amount of compound (13) with respect to compound (2c), compound (2d) or a mixture thereof. The reaction is carried out without solvent or in a solvent inert to the reaction such as DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform and the like. In the reaction system, a base such as potassium carbonate, sodium hydrogen carbonate, sodium hydride, sodium acetate, sodium methoxide, sodium ethoxide, triethylamine and the like may be further present as necessary. In the above, it is particularly preferable to carry out the reaction using DMF as a reaction solvent and in the presence of sodium hydrogen carbonate as a base. The reaction is generally carried out at room temperature to under heating, and a reaction at room temperature is particularly preferred.

尚、上記反応において利用される化合物(13)は、その有するR2基およびR3基の種類によって新規化合物を含んでいる。この新規化合物については後述する。 The compound (13) used in the above reaction contains a new compound depending on the type of R 2 group and R 3 group it has. This new compound will be described later.

上記反応により得られる本発明化合物のジヒドロ体(2e)は、更に該化合物を酸化反応させることによって、本発明化合物(1)に誘導できる。この反応は、該ジヒドロ体(2e)に対して触媒量〜過剰モル量の酸化剤、例えばDDQ (2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン)、NBS (N-ブロモスクシンイミド)などを用いて、無溶媒或いは水、DMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、酢酸エチル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で実施できる。かくして、本発明化合物(1)を収得できる。この反応は、特に溶媒としてエタノールを用い、NBSの存在下で行われるか或いは溶媒としてジオキサンを用いて、DDQの存在下で行われるのが好ましい。反応温度条件としては、室温〜加温条件を採用でき、特に溶媒の加熱還流温度条件の採用が好ましい。   The dihydro form (2e) of the compound of the present invention obtained by the above reaction can be derived into the compound (1) of the present invention by further oxidizing the compound. This reaction is carried out in a catalytic amount to an excess molar amount of an oxidant such as DDQ (2,3-dichloro-5,6-dicyano-p-benzoquinone), NBS (N-bromosuccinimide) with respect to the dihydro form (2e). In a solvent inert to water, DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, methanol, ethanol, acetonitrile, ethyl acetate, methylene chloride, dichloroethane, chloroform, etc. Can be implemented. Thus, the compound (1) of the present invention can be obtained. This reaction is preferably carried out in the presence of DDQ using ethanol as the solvent and in the presence of NBS or using dioxane as the solvent. As the reaction temperature conditions, room temperature to heating conditions can be adopted, and the use of a solvent heating reflux temperature condition is particularly preferred.

本発明化合物は、また、下記反応工程式-2に示す方法によっても製造することができる。   The compound of the present invention can also be produced by the method shown in the following reaction process formula-2.

Figure 0004794200
Figure 0004794200

[各式中、R1、R2、R3およびXは前記反応工程式-1に示すそれらに同じ。但しR1が水素原子の場合を除く。]
反応工程式-2に示す方法によれば、本発明化合物(1)は、チオウレア(12)と化合物(13)との反応によって製造される化合物(3a)と化合物(2b)との反応によって、化合物(2e)を経て製造することができる。即ち、本発明化合物(1)は、上記反応によって化合物(2e)(ジヒドロピリミジン体)を経て、該化合物(2e)との混合物として得られる。
[In each formula, R 1 , R 2 , R 3 and X are the same as those shown in the above reaction step formula-1. However, the case where R 1 is a hydrogen atom is excluded. ]
According to the method shown in Reaction Scheme-2, the compound (1) of the present invention is obtained by reacting the compound (3a) produced by reacting the thiourea (12) with the compound (13) and the compound (2b). It can be produced via compound (2e). That is, the compound (1) of the present invention is obtained as a mixture with the compound (2e) via the compound (2e) (dihydropyrimidine form) by the above reaction.

ここで原料として利用する化合物(13)は、前記反応工程式-1の項で述べたように公知化合物および新規化合物の両者を包含する。新規化合物については後述する。   The compound (13) used here as a raw material includes both known compounds and novel compounds as described in the section of the reaction process formula-1. The new compound will be described later.

また、化合物(2b)は、前記反応工程式-1に示す化合物(2a)と化合物(11)との反応により製造することができる。   Compound (2b) can be produced by reacting compound (2a) and compound (11) shown in the above reaction process formula-1.

化合物(2e)は、環内二重結合の位置の異なる異性体を含む。   Compound (2e) includes isomers having different positions of endocyclic double bonds.

反応工程式-2に示す方法においては、まず、チオウレア(12)に対して等モル量〜過剰モル量の化合物(13)を用いて、無溶媒で或いは水、DMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で、両者を反応させる。この反応は、例えば文献記載のS-アルキルイソチオウレアの合成法に従って実施することができる(Urquhart, G. G.; Gates, J. W. Jr; Connor, R.; Org. Synth., 1941, 21, 36)。反応系内には必要に応じて、炭酸カリウム、水素化ナトリウム、酢酸ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、トリエチルアミンなどの塩基若しくは塩酸、硫酸などの鉱酸または酢酸などの有機酸を添加存在させ得る。反応溶媒としては、特にエタノールの使用が好ましい。反応は、室温乃至加温下で行い得、特に約60℃前後の加温条件の採用が好ましい。かくして、化合物(3a)を遊離形態で若しくは塩の形態で得ることができる。   In the method shown in Reaction Scheme-2, first, equimolar to excess molar amount of compound (13) is used with respect to thiourea (12), without solvent, or in water, DMF, DMSO, diethyl ether, THF. , Dioxane, acetone, MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform and the like are reacted in a solvent inert to the reaction. This reaction can be performed, for example, according to the synthesis method of S-alkylisothiourea described in the literature (Urquhart, G. G .; Gates, J. W. Jr; Connor, R .; Org. Synth., 1941, 21, 36). If necessary, a base such as potassium carbonate, sodium hydride, sodium acetate, sodium methoxide, sodium ethoxide, triethylamine, or a mineral acid such as hydrochloric acid or sulfuric acid, or an organic acid such as acetic acid may be added to the reaction system. obtain. As the reaction solvent, it is particularly preferable to use ethanol. The reaction can be carried out at room temperature to under heating, and it is particularly preferable to employ a heating condition of about 60 ° C. Thus, compound (3a) can be obtained in free form or in salt form.

次いで、得られる化合物(3a)(遊離形態および塩形態のいずれでもよい)に、該化合物に対して等モル量〜過剰モル量の化合物(2b)を、無溶媒で或いはDMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で加え、所望により化合物(3a)に対して等モル量〜過剰モル量の炭酸カリウム、炭酸水素ナトリウム、水素化ナトリウム、酢酸ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、トリエチルアミン、ジイソプロピルエチルアミンなどの塩基を反応系内に添加存在させて、反応を行う。この反応は、文献記載の方法(El-Sharabsy, S. A.; Abdel Gawad, S. M.; Hussain, S. M.; J. Prakt. Chem., 1989, 331 (2), 207)に準じて実施することができる。この反応において、特に好ましい溶媒としてはエタノールを例示できる。また、反応系内には炭酸水素ナトリウムを添加存在させるのが好ましい。反応は、室温乃至加温下で行い得、特に溶媒の加熱還流温度条件下で反応を行うのが好ましい。かくして、本発明化合物(1)またはそのジヒドロ体(2e)或いはこれらの混合物を得る。   Then, the obtained compound (3a) (which may be in a free form or a salt form) is added with an equimolar amount to an excess molar amount of compound (2b) with respect to the compound without solvent or in DMF, DMSO, diethyl ether. , THF, dioxane, acetone, MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform, and the like in an inert solvent for the reaction, and if desired, an equimolar amount to an excess molar amount relative to the compound (3a) The reaction is carried out by adding a base such as potassium carbonate, sodium bicarbonate, sodium hydride, sodium acetate, sodium methoxide, sodium ethoxide, triethylamine, diisopropylethylamine to the reaction system. This reaction can be performed according to a method described in the literature (El-Sharabsy, S. A .; Abdel Gawad, S. M .; Hussain, S. M .; J. Prakt. Chem., 1989, 331 (2), 207). In this reaction, ethanol can be exemplified as a particularly preferable solvent. In addition, it is preferable to add sodium hydrogen carbonate to the reaction system. The reaction can be carried out at room temperature to under heating, and it is particularly preferred to carry out the reaction under the conditions of heating and refluxing the solvent. In this way, this invention compound (1) or its dihydro form (2e) or these mixtures are obtained.

上記で得られる本発明化合物のジヒドロ体(2e)は、前記反応工程式-1に示した方法に従う酸化反応によって本発明化合物(1)に変換し得る。   The dihydro form (2e) of the compound of the present invention obtained above can be converted to the compound (1) of the present invention by an oxidation reaction according to the method shown in the reaction step formula-1.

反応工程式-2に示す方法においては、チオウレア(12)から化合物(3a)を製造し、該化合物を単離後、この化合物に化合物(2b)を反応させるが、化合物(3a)を単離することなく、その生成反応系内に化合物(2b)を添加して同様の条件下で反応させることによっても、本発明化合物(1)またはそのジヒドロ体(2e)或いはこれらの混合物が得られる。   In the method shown in Reaction Scheme-2, compound (3a) is produced from thiourea (12), and after isolating the compound, compound (2b) is reacted with this compound, but compound (3a) is isolated. The compound (1) of the present invention, the dihydro form (2e) or a mixture thereof can also be obtained by adding the compound (2b) to the reaction system and reacting under the same conditions.

本発明化合物は、また、下記反応工程式-3に示す方法によっても製造することができる。   The compound of the present invention can also be produced by the method shown in the following reaction process formula-3.

Figure 0004794200
Figure 0004794200

[各式中、R1、R2、R3およびXは前記反応工程式-1に示すそれらに同じ。但しR1が水素原子の場合を除く。]
反応工程式-3に示す方法によれば、チオウレア(12)と化合物(13)との反応により得られる化合物(3a)を単離し若しくは単離することなく、該化合物に化合物(2a)およびマロノニトリル(11)を同時に反応させることによって、本発明化合物(1)またはそのジヒドロ体(2e)或いはこれらの混合物を得ることができる。
[In each formula, R 1 , R 2 , R 3 and X are the same as those shown in the above reaction step formula-1. However, the case where R 1 is a hydrogen atom is excluded. ]
According to the method shown in Reaction Scheme-3, compound (2a) and malononitrile can be added to compound without isolating or isolating compound (3a) obtained by reacting thiourea (12) with compound (13). By reacting (11) at the same time, the compound (1) of the present invention or a dihydro form (2e) thereof or a mixture thereof can be obtained.

化合物(3a)の製造反応は前記反応工程式-2に示したとおりである。該化合物(3a)と化合物(2a)およびマロノニトリル(11)との反応は、化合物(3a)(遊離形態および塩形態のいずれでもよい)に、該化合物に対して等モル量〜過剰モル量の化合物(2a)および等モル量〜過剰モル量のマロノニトリル(11)を、前記反応工程式-2の場合と同様の反応条件で反応させ本発明化合物(1)またはそのジヒドロ体(2e)或いはこれらの混合物を得ることができる。   The production reaction of compound (3a) is as shown in the above reaction process formula-2. The reaction of the compound (3a) with the compound (2a) and malononitrile (11) is carried out by reacting the compound (3a) (which may be in a free form or a salt form) with an equimolar amount to an excess molar amount with respect to the compound. Compound (2a) and an equimolar amount to an excess molar amount of malononitrile (11) are reacted under the same reaction conditions as in the case of the above reaction step formula-2 to give the present compound (1) or a dihydro form (2e) thereof or these Can be obtained.

上記で得られる本発明化合物のジヒドロ体(2e)は、前記反応工程式-1に示した方法に従う酸化反応によって本発明化合物(1)に変換し得る。   The dihydro form (2e) of the compound of the present invention obtained above can be converted to the compound (1) of the present invention by an oxidation reaction according to the method shown in the reaction step formula-1.

更に、本発明化合物は、後述するように、前記各種の方法に従って得られる化合物を原料として、公知の方法に従って製造することができる。   Furthermore, this invention compound can be manufactured according to a well-known method by using the compound obtained according to the said various method as a raw material so that it may mention later.

原料化合物の製造
前記反応工程式-1〜反応工程式-3において出発原料として利用する化合物(13)は、その有するR2基およびR3基の種類に応じて新規化合物を含んでいる。これらの化合物は、例えば下記反応工程式-4〜反応工程式-9に記載の各方法に従って製造することができる。
Production of raw material compound The compound (13) used as a starting material in the above-mentioned reaction process formula-1 to reaction process expression-3 contains a new compound depending on the type of the R 2 group and R 3 group possessed. These compounds can be produced, for example, according to each method described in the following reaction process formula-4 to reaction process formula-9.

Figure 0004794200
Figure 0004794200

[式中、X1およびX2は例えばハロゲン、アリールスルホニルオキシ基、アルキルスルホニルオキシ基などの脱離基を示す。また-NR9R10[Wherein, X 1 and X 2 each represent a leaving group such as halogen, arylsulfonyloxy group, alkylsulfonyloxy group, etc. -NR 9 R 10

Figure 0004794200
Figure 0004794200

(各基中、Z1、Z2およびR5は、前記一般式(1)に同じ)を示す。]
反応工程式-4によれば、R2がメチレン基であり、R3が基(3)、基(6)および基(8)である本発明化合物の出発物質(化合物(4b))を、公知の化合物(4a)と化合物(15)との反応により製造することができる。
(In each group, Z 1 , Z 2 and R 5 are the same as those in the general formula (1)). ]
According to Reaction Scheme-4, R 2 is a methylene group and R 3 is a group (3), a group (6) and a group (8). It can be produced by a reaction between a known compound (4a) and compound (15).

該反応において、化合物(15)は、化合物(4a)に対して通常等モル量〜過剰モル量で用いられる。反応は、無溶媒で或いはDMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で行い得る。場合により、反応系内には化合物(4a)に対して等モル量〜過剰モル量の炭酸カリウム、炭酸水素ナトリウム、水素化ナトリウム、酢酸ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、トリエチルアミン、ジイソプロピルエチルアミンなどの塩基を存在させ得る。かくして、化合物(4b)を得る。この反応は、特に溶媒としてエタノールを用いて、化合物(4a)に対して過剰モル量の化合物(15)を使用して、塩基の非存在下に実施されるのが好ましい。反応は室温乃至加温下で行い得、室温条件の採用が好ましい。   In the reaction, compound (15) is usually used in an equimolar amount to an excess molar amount relative to compound (4a). The reaction can be performed without solvent or in a solvent inert to the reaction such as DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform and the like. In some cases, the reaction system contains an equimolar to excess molar amount of potassium carbonate, sodium bicarbonate, sodium hydride, sodium acetate, sodium methoxide, sodium ethoxide, triethylamine, diisopropylethylamine, etc., relative to compound (4a). Can be present. Thus, compound (4b) is obtained. This reaction is preferably carried out in the absence of a base, using ethanol as a solvent and using an excess molar amount of compound (15) with respect to compound (4a). The reaction can be carried out at room temperature or under heating, and room temperature conditions are preferred.

Figure 0004794200
Figure 0004794200

[式中、R11[Where R 11 is

Figure 0004794200
Figure 0004794200

(各基においてR5およびZ1は一般式(1)に同じ)を示し、R12は低級アルキル基、アリール基またはハロゲノ低級アルキル基を示し、Xは前記反応工程式-1に同じである。]
反応工程式-5によれば、R2がメチレン基であり、R3が基(4)、基(5)または基(7)である本発明化合物の出発物質(化合物(5e))を製造できる。この方法に示す各反応は次のようにして実施できる。即ち、6-メチル-2-ピコリン酸(16) (または6-メチル-3-ピコリン酸, 6-メチル-4-ピコリン酸, 6-メチル-5-ピコリン酸)から常法に従って得られる化合物(5a)に、ジエチルエーテル、THF、ジオキサン、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で、m-クロロ過安息香酸(m-CPBA)、過酸化水素水などの酸化剤を化合物(5a)に対して等モル量〜過剰モル量反応させて、化合物(5b)を得る。反応温度としては氷冷温度乃至は溶媒の加熱還流温度を採用できる。特にこの反応は、過剰量のm-CPBAなどの酸化剤を用いて、クロロホルム中、室温下で実施されるのが望ましい。
(In each group, R 5 and Z 1 are the same as those in the general formula (1)), R 12 is a lower alkyl group, an aryl group or a halogeno lower alkyl group, and X is the same as in the above reaction process formula-1. . ]
According to Reaction Scheme-5, a starting material (compound (5e)) of the compound of the present invention in which R 2 is a methylene group and R 3 is a group (4), a group (5) or a group (7) is produced. it can. Each reaction shown in this method can be carried out as follows. That is, a compound obtained from 6-methyl-2-picolinic acid (16) (or 6-methyl-3-picolinic acid, 6-methyl-4-picolinic acid, 6-methyl-5-picolinic acid) according to a conventional method ( 5a), an oxidizing agent such as m-chloroperbenzoic acid (m-CPBA) or hydrogen peroxide in a solvent inert to the reaction such as diethyl ether, THF, dioxane, acetonitrile, methylene chloride, dichloroethane, and chloroform. Is reacted with an equimolar amount to an excess molar amount with respect to compound (5a) to obtain compound (5b). As the reaction temperature, an ice-cold temperature or a solvent reflux temperature can be employed. In particular, this reaction is preferably carried out in chloroform at room temperature using an excess of an oxidizing agent such as m-CPBA.

次に、得られる化合物(5b)に、該化合物に対して等モル量〜過剰モル量の無水酢酸などの有機酸無水物を、無溶媒で或いはDMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で加えて、室温乃至加熱下に反応させることにより、化合物(5c)を得る。   Next, to the compound (5b) obtained, an organic acid anhydride such as acetic anhydride in an equimolar amount to an excess molar amount with respect to the compound is added without solvent or in DMF, DMSO, diethyl ether, THF, dioxane, acetone. , MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform and the like in a solvent inert to the reaction, and the reaction is carried out at room temperature to heating to give compound (5c).

更に、得られる化合物(5c)を、水、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で、該化合物(5c)に対して等モル量〜過剰モル量の水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素ナトリウム、酢酸ナトリウム、ナトリウムメトキシド、ナトリウムエトキシドなどの塩基の存在下に、室温乃至加熱下に加水分解反応させることにより、化合物(5d)を得る。この反応は、特に、メタノール中、過剰量の水酸化カリウムと共に加熱還流する方法に従うのが望ましい。尚、この反応により得られる化合物(5d)は、化合物(5b)から直接一段階で得ることもできる。この反応は、化合物(5b)に、該化合物に対して等モル量〜過剰モル量のトリフルオロ酢酸無水物を、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中或いは無溶媒で反応させた後、水、メタノール、エタノールなどを加えて加水分解することにより実施できる。とくにこの反応は、過剰モル量のトリフルオロ酢酸無水物を無溶媒で反応させた後、メタノールを加えて攪拌する方法によるのが好ましい。   Further, the obtained compound (5c) is reacted with the compound (5c) in a solvent inert to the reaction such as water, diethyl ether, THF, dioxane, acetone, MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform and the like. ) In the presence of a base such as sodium hydroxide, potassium hydroxide, potassium carbonate, sodium bicarbonate, sodium acetate, sodium methoxide, sodium ethoxide, etc. The compound (5d) is obtained by hydrolysis reaction. This reaction is preferably followed by a method of heating to reflux with an excess amount of potassium hydroxide in methanol. The compound (5d) obtained by this reaction can also be obtained directly from the compound (5b) in one step. This reaction is carried out by adding equimolar to excess molar amount of trifluoroacetic anhydride to compound (5b), diethyl ether, THF, dioxane, acetone, MEK, acetonitrile, methylene chloride, dichloroethane, chloroform, etc. The reaction can be carried out by adding water, methanol, ethanol or the like after the reaction in a solvent inert to the reaction or without solvent. In particular, this reaction is preferably carried out by a method in which an excess molar amount of trifluoroacetic anhydride is reacted in the absence of a solvent and methanol is added and stirred.

最終的に、化合物(5d)から化合物(5e)を得る反応は、以下の3通りの方法により実施できる。   Finally, the reaction for obtaining the compound (5e) from the compound (5d) can be carried out by the following three methods.

方法1):化合物(5d)に、該化合物に対して等モル量〜過剰モル量の塩化チオニル、臭化チオニル、塩化オキサリルなどのハロゲン化剤を、無溶媒で或いはジエチルエーテル、THF、ジオキサン、アセトン、MEK、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で反応させる。   Method 1): An equimolar to excess molar amount of a halogenating agent such as thionyl chloride, thionyl bromide, or oxalyl chloride is added to compound (5d) without solvent or in diethyl ether, THF, dioxane, The reaction is carried out in a solvent inert to the reaction such as acetone, MEK, acetonitrile, methylene chloride, dichloroethane, and chloroform.

方法2):化合物(5d)に、該化合物に対して等モル量〜過剰モル量の塩化メタンスルホニルなどの塩化アルキルスルホニルを、無溶媒で或いはジエチルエーテル、THF、ジオキサン、アセトン、MEK、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中、化合物(5d)に対して等モル量〜過剰量の炭酸カリウム、炭酸水素ナトリウム、水素化ナトリウム、酢酸ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、トリエチルアミン、ジイソプロピルエチルアミンなどの塩基の存在下に、反応させる。   Method 2): Compound (5d) is mixed with an alkylsulfonyl chloride such as methanesulfonyl chloride in an equimolar amount to an excess molar amount with respect to the compound without solvent or in diethyl ether, THF, dioxane, acetone, MEK, acetonitrile, Equimolar to excess potassium carbonate, sodium bicarbonate, sodium hydride, sodium acetate, sodium methoxide, sodium ethoxy in an inert solvent for the reaction such as methylene chloride, dichloroethane, chloroform, etc. The reaction is carried out in the presence of a base such as tridoamine, triethylamine or diisopropylethylamine.

方法3):化合物(5d)に対して等モル量〜過剰モル量の四塩化炭素、クロロホルム、四臭化炭素などのハロゲン化アルキルを、化合物(5d)に対して等モル量〜過剰モル量のトリフェニルホスフィン、トリ(n-ブチル)ホスフィンなどのホスフィンリガンドの存在下に、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で反応させる。   Method 3): An equimolar amount to an excess molar amount of an alkyl halide such as carbon tetrachloride, chloroform, carbon tetrabromide, etc. with respect to the compound (5d), and an equimolar amount to an excess molar amount with respect to the compound (5d). In the presence of phosphine ligands such as triphenylphosphine and tri (n-butyl) phosphine in a solvent inert to reactions such as diethyl ether, THF, dioxane, acetone, MEK, acetonitrile, methylene chloride, dichloroethane, and chloroform. React.

Figure 0004794200
Figure 0004794200

[式中、R13は水素原子または保護基を示し、R14は低級アルキル基を示す。Xは前記反応工程式-1に同じ。R9およびR10は前記反応工程式-4に同じ。]
上記において、R13で示される保護基には、例えばアセチル基、メトキシメチル基、テトラヒドロピラニル基などのアルコール性水酸基の保護に通常用いられる保護基が含まれる。
[Wherein, R 13 represents a hydrogen atom or a protecting group, and R 14 represents a lower alkyl group. X is the same as the above reaction process formula-1. R 9 and R 10 are the same as in the above reaction process formula-4. ]
In the above, the protecting group represented by R 13 includes protecting groups usually used for protecting alcoholic hydroxyl groups such as an acetyl group, a methoxymethyl group, and a tetrahydropyranyl group.

反応工程式-6によれば、R4がエチレン基であり、R3が基(3)、基(6)および基(8)のいずれかである本発明化合物の出発原料である化合物(6e)を得ることができる。この方法における各反応は、次のようにして実施できる。即ち、まず、水酸基上に保護基を有するか若しくは有しない化合物(6a)と、該化合物に対して等モル量〜過剰量のトリアルキルシリルアセチレン(17)とを、トリエチルアミンなどの塩基中、触媒量のビス(トリフェニルホスフィン)塩化パラジウム(II)などの有機金属触媒およびよう化銅(I)などの活性化剤の存在下に、カップリング反応させる。この反応によって化合物(6b)が得られる。 According to reaction scheme-6, R 4 is an ethylene group, and R 3 is any one of groups (3), (6) and (8). ) Can be obtained. Each reaction in this method can be carried out as follows. That is, first, a compound (6a) having or not having a protecting group on the hydroxyl group, and an equimolar amount to an excess amount of trialkylsilylacetylene (17) with respect to the compound are reacted with a catalyst in a base such as triethylamine. The coupling reaction is carried out in the presence of an amount of an organometallic catalyst such as bis (triphenylphosphine) palladium chloride (II) and an activator such as copper (I) iodide. This reaction yields compound (6b).

次いで、化合物(6b)を、DMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で、該化合物(6b)に対して等モル量〜過剰モル量の炭酸カリウム、水酸化ナトリウムなどの塩基の存在下に脱シリル化反応させることで、化合物(6c)を得る。保護基R12の種類によっては、上記反応においては、該保護基の脱離反応が伴われないことがあるが、その場合、該保護基は常法に従って脱離反応させることができる。 Next, the compound (6b) is reacted with the compound (6b) in a solvent inert to the reaction such as DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform and the like. The compound (6c) is obtained by desilylation reaction in the presence of an equimolar to excess molar amount of a base such as potassium carbonate or sodium hydroxide. Depending on the type of the protecting group R 12 , the above reaction may not be accompanied by the elimination reaction of the protecting group. In this case, the protecting group can be eliminated according to a conventional method.

更に、得られる化合物(6c)に、該化合物に対して等モル量〜過剰モル量の化合物(15)を、無溶媒或いはDMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で加え、場合により等モル量〜過剰量の炭酸カリウム、炭酸水素ナトリウム、水素化ナトリウム、酢酸ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、トリエチルアミン、ジイソプロピルエチルアミンなどの塩基の存在下、氷冷下乃至溶媒の加熱還流温度で反応させることで、化合物(6d)を得る。過剰モル量の化合物(15)と共にエタノール中、加熱還流することが望ましい。   Further, to the obtained compound (6c), an equimolar amount to an excess molar amount of the compound (15) with respect to the compound is added with no solvent or DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, methanol, ethanol. , Acetonitrile, methylene chloride, dichloroethane, chloroform, etc., in an inert solvent, optionally equimolar to excess potassium carbonate, sodium bicarbonate, sodium hydride, sodium acetate, sodium methoxide, sodium ethoxy Compound (6d) is obtained by reacting in the presence of a base such as copper, triethylamine, diisopropylethylamine, etc. under ice-cooling or at the reflux temperature of the solvent. It is desirable to heat and reflux in ethanol together with an excess molar amount of compound (15).

最後に、化合物(6d)に対し前記反応工程式-5に示した化合物(5e)の合成反応と同様の反応を行わせることによって、所望の化合物(6e)が得られる。   Finally, the desired compound (6e) is obtained by allowing the compound (6d) to undergo the same reaction as the synthesis reaction of the compound (5e) shown in the above reaction step formula-5.

Figure 0004794200
Figure 0004794200

[式中、R15は低級アルコキシ基を示す。Xは前記反応工程式-1に同じ。]
反応工程式-7に示す方法によれば、R2がメチレン基であり、R3が基(9)であり、Z3が(c2)低級アルコキシ基である本発明化合物の出発原料(化合物(7d))、およびR2がメチレン基であり、R3が基(10)であり、Z3が(c2)低級アルコキシ基である本発明化合物の出発原料(化合物(7e))を合成することができる。
[Wherein R 15 represents a lower alkoxy group. X is the same as the above reaction process formula-1. ]
According to the method shown in Reaction Scheme 7, R 2 is a methylene group, R 3 is a group (9), and Z 3 is a (c2) lower alkoxy group. 7d)), and R 2 is a methylene group, R 3 is a group (10), and Z 3 is (c2) a lower alkoxy group.The starting material of the compound of the present invention (compound (7e)) is synthesized. Can do.

この方法は、より詳しくは、まず化合物(7a)に、該化合物に対して等モル量〜過剰量のアクリル酸低級アルキルエステル(19)を反応させることにより化合物(7b)を得る。この反応は、次の2種の方法に従い実施できる。   More specifically, in this method, compound (7b) is first obtained by reacting compound (7a) with an equimolar amount to an excess amount of acrylic acid lower alkyl ester (19). This reaction can be carried out according to the following two methods.

即ち、無溶媒或いはDMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中、場合によりアルゴン、窒素などの不活性ガス雰囲気下で、等モル量〜過剰量のトリエチルアミン、ジイソプロピルエチルアミンなどの塩基および触媒量〜等モル量の酢酸パラジウム(II)、塩化ビス(トリフェニルホスフィン)パラジウムなどの有機金属触媒および等モル量〜過剰量のトリフェニルホスフィン、トリ(o-トリル)ホスフィンなどのホスフィンリガンドの存在下に、室温または加熱下に化合物(7a)と化合物(19)とを反応させる(Heck反応) (方法1)。   That is, in a solvent-free or inert solvent such as DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform, and in some cases inert gases such as argon and nitrogen. Under an active gas atmosphere, an equimolar amount to an excess amount of a base such as triethylamine and diisopropylethylamine and a catalytic amount to an equimolar amount of an organometallic catalyst such as palladium (II) acetate, bis (triphenylphosphine) palladium chloride and an equimolar amount. The compound (7a) and the compound (19) are reacted at room temperature or with heating in the presence of a phosphine ligand such as triphenylphosphine or tri (o-tolyl) phosphine in an excess amount (Heck reaction) (Method 1) ).

無溶媒或いはDMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中、場合によりアルゴン、窒素などの不活性ガス雰囲気下、等モル量〜過剰量の炭酸カリウム、炭酸水素ナトリウム、水素化ナトリウム、酢酸ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、トリエチルアミン、ジイソプロピルエチルアミンなどの塩基および等モル量〜過剰量の塩化テトラ(n-ブチル)アンモニウム、塩化テトラメチルアンモニウムなどの相関移動触媒、触媒量〜等モル量の酢酸パラジウム(II) 、塩化ビス(トリフェニルホスフィン)パラジウムなどの有機金属触媒、場合により更にモレキュラーシーブス(Molecular Sieves)などの脱水剤の存在下に、室温または加熱下に化合物(7a)と化合物(19)とを反応させる (Heck反応、Jeffery条件) (方法2)。   Solvent-free or in inert solvents such as DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform, inert gases such as argon and nitrogen Under an atmosphere, an equimolar amount to an excess amount of potassium carbonate, sodium hydrogen carbonate, sodium hydride, sodium acetate, sodium methoxide, sodium ethoxide, triethylamine, diisopropylethylamine and other bases and an equimolar amount to an excess amount of tetrachloride ( n-butyl) ammonium, tetramethylammonium chloride and other phase transfer catalysts, catalytic amounts to equimolar amounts of palladium (II) acetate, organometallic catalysts such as bis (triphenylphosphine) palladium chloride, and optionally molecular sieves (Molecular Sieves) etc. In the presence of a dehydrating agent, reacting the compound at room temperature or heated (7a) with the compound (19) (Heck reaction, Jeffery condition) (Method 2).

これらの内では、方法2、特に、アルゴン雰囲気下、DMF中、等モル量の塩化テトラ(n-ブチル)アンモニウム、過剰量の炭酸水素ナトリウム、過剰量のモレキュラーシーブス(例えば「3A 1/16」、昭和化学ケミカルデータベース参照)および触媒量の酢酸パラジウム(II)の存在下に80℃程度で反応させる方法が望ましい。   Among these, method 2, particularly in argon atmosphere, in DMF, equimolar amounts of tetra (n-butyl) ammonium chloride, excess sodium bicarbonate, excess molecular sieves (e.g. `` 3A 1/16 '' And the reaction in the presence of a catalytic amount of palladium (II) acetate at about 80 ° C. is desirable.

次いで、得られる化合物(7b)に、DMF、DMSO、ジエチルエーテル、THF、ジオキサン、メタノール、エタノール、アセトニトリル、塩化メチレンなどの反応に不活性な溶媒中、室温または加熱下に、触媒量の二酸化白金、パラジウム−炭素などの接触還元触媒の存在下に、常圧または加圧下の水素ガスと反応させることによって、化合物(7c)を得る。この反応は、特に、メタノールまたはエタノール中、室温で、触媒量の二酸化白金の存在下に、常圧または加圧下(1-3 kgf/cm2)で水素雰囲気下激しく攪拌し反応させる方法によるのが望ましい。 Then, the resulting compound (7b) was converted to a catalytic amount of platinum dioxide in a solvent inert to the reaction such as DMF, DMSO, diethyl ether, THF, dioxane, methanol, ethanol, acetonitrile, methylene chloride at room temperature or under heating. The compound (7c) is obtained by reacting with hydrogen gas under normal pressure or pressure in the presence of a catalytic reduction catalyst such as palladium-carbon. This reaction is particularly based on a method of vigorously stirring and reacting in methanol or ethanol at room temperature in the presence of a catalytic amount of platinum dioxide at atmospheric pressure or under pressure (1-3 kgf / cm 2 ) in a hydrogen atmosphere. Is desirable.

かくして得られる化合物(7c)は、前記反応工程式-5に示した化合物(5d)から化合物(5e)を得る反応と同様にして、所望の化合物(7d)に変換できる。   The compound (7c) thus obtained can be converted to the desired compound (7d) in the same manner as in the reaction for obtaining the compound (5e) from the compound (5d) shown in the above reaction step formula-5.

また、上記化合物(7b)について、前記反応工程式-5に示した化合物(5d)から化合物(5e)を得る反応と同様の反応を行うことによって、化合物(7e)を得ることができる。   In addition, compound (7e) can be obtained by performing a reaction similar to the reaction for obtaining compound (5e) from compound (5d) shown in reaction step formula-5 for compound (7b).

尚、この反応工程式-7に示す方法において、適当な出発原料を利用すれば、R2が低級アルキレン基であり、R3が基(9)、基(10) および基(12)である本発明化合物の出発原料化合物を合成することができる。 In the method shown in Reaction Scheme-7, if an appropriate starting material is used, R 2 is a lower alkylene group, and R 3 is a group (9), a group (10) or a group (12). Starting material compounds of the compounds of the present invention can be synthesized.

Figure 0004794200
Figure 0004794200

[式中、R15は前記反応工程式-7に同じ。Phはフェニル基を示す。]
前記反応工程式-7に示した化合物(7b)は、また、上記反応工程式-8に示すように、公知の化合物(8a)を出発原料として用いて、Wittig反応(A.Maercher,OR,14,270(1965) B.E.Maryanoff et al.,CRV,89,863(1989))またはWittig-Horner反応(Wittig反応においてホスホニウム塩に換えて対応するホスホン酸エステルを用いる反応)に従っても製造することもできる。
[Wherein, R 15 is the same as the reaction process formula-7. Ph represents a phenyl group. ]
The compound (7b) shown in the above reaction process formula-7 is also represented by the Wittig reaction (A. Maercher, OR, using the known compound (8a) as a starting material, as shown in the above reaction process formula-8. 14,270 (1965) BEMaryanoff et al., CRV, 89, 863 (1989)) or Wittig-Horner reaction (reaction using a corresponding phosphonate instead of a phosphonium salt in the Wittig reaction).

Wittig反応の場合、化合物(8a)に対して等モル量〜過剰量の化合物(8b)を、無溶媒或いはDMF、ジエチルエーテル、THF、ジオキサン、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中、場合によりアルゴン、窒素などの不活性ガス雰囲気下に、氷冷下、室温または加熱下で、化合物(8a)に反応させることにより、所望の化合物(7b)を得る。特にDMF中、過剰量の化合物(8b)を反応させるのが望ましい。Wittig-Horner反応は、化合物(8b)に代えてその対応するホスホン酸エステルおよびナトリウムメトキシドなどの適当な塩基を用いて、同様にして実施することができる。   In the case of Wittig reaction, equimolar amount to excess amount of compound (8b) with respect to compound (8a), no solvent or DMF, diethyl ether, THF, dioxane, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform, etc. The desired compound (7b) is reacted with the compound (8a) in a solvent inert to the reaction of the compound, optionally under an inert gas atmosphere such as argon or nitrogen, under ice cooling, at room temperature or under heating. obtain. In particular, it is desirable to react an excess amount of compound (8b) in DMF. The Wittig-Horner reaction can be carried out in the same manner using an appropriate base such as the corresponding phosphonic acid ester and sodium methoxide instead of the compound (8b).

尚、この反応工程式-8に示す方法において、適当な出発原料を利用すれば、R2が低級アルキレン基であり、R3が基(9)、基(10) および基(12)である本発明化合物の出発原料の出発原料化合物を合成することができる。 In the method shown in Reaction Scheme-8, if an appropriate starting material is used, R 2 is a lower alkylene group, and R 3 is a group (9), a group (10) or a group (12). The starting material compound of the starting material of the compound of the present invention can be synthesized.

Figure 0004794200
Figure 0004794200

[式中、R16は水素原子、または [Wherein R 16 is a hydrogen atom, or

Figure 0004794200
Figure 0004794200

[式中、R17は低級アルキル基を示す。]
R2がメチレン基であり且つR3が(2)低級アルキル基である本発明化合物の出発原料化合物(化合物(9b))、R2がメチレン基であり且つR3が基(9)(但しZ3は低級アルコキシ(c2)である)の本発明化合物の出発原料化合物(化合物(9a))、およびR2がメチレン基であり且つR3が基(11)(但しZ3はその4位に低級アルキル基を有する(c5)-である)の本発明化合物の出発原料化合物(化合物(9c))は、反応工程式-9に示す方法に従って製造することができる。
[Wherein R 17 represents a lower alkyl group. ]
The starting material compounds of the present invention compounds in which R 2 is and R 3 is a methylene group is (2) a lower alkyl group (Compound (9b)), R 2 is a methylene group and R 3 is group (9) (where Z 3 is lower alkoxy (c2)) starting compound of the compound of the present invention (compound (9a)), and R 2 is a methylene group and R 3 is a group (11) (provided that Z 3 is the 4-position) The starting material compound of the present compound (compound (9c)) having a lower alkyl group in (c5)-) can be produced according to the method shown in Reaction scheme-9.

この方法においては、まず、化合物(7a)に、該化合物に対して等モル量〜過剰量のアルキン誘導体(20)をカップリング反応させることにより、化合物(9a)を得る。この反応は、DMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中、等モル量〜過剰量のトリエチルアミン、ジイソプロピルエチルアミン、t-ブチルアミンなどの塩基の存在下、触媒量のテトラキス(トリフェニルホスフィン)パラジウム (0)、塩化パラジウム (II)などの有機金属触媒およびよう化銅 (I)などの活性化剤の存在下、場合によりアルゴン、窒素などの不活性ガス雰囲気下、BHT (Butylhydroxytoluene)などの抗酸化剤の存在下に実施することができる。特に、アルゴン雰囲気下、DMF中で過剰量のt-ブチルアミン、触媒量のテトラキス(トリフェニルホスフィン)パラジウム (0)、よう化銅 (I)およびBHTの存在下、80℃で反応を行うことが望ましい。   In this method, first, compound (9a) is obtained by subjecting compound (7a) to a coupling reaction with an equimolar amount to an excess amount of alkyne derivative (20) with respect to the compound. This reaction is carried out in an equimolar to excess amount of triethylamine in a solvent inert to the reaction such as DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform, In the presence of a base such as diisopropylethylamine or t-butylamine, a catalytic amount of an organometallic catalyst such as tetrakis (triphenylphosphine) palladium (0) or palladium (II) chloride and an activator such as copper (I) iodide. It can be carried out in the presence of an inert gas atmosphere such as argon or nitrogen, in the presence of an antioxidant such as BHT (Butylhydroxytoluene). In particular, the reaction can be carried out at 80 ° C. in the presence of an excess amount of t-butylamine, a catalytic amount of tetrakis (triphenylphosphine) palladium (0), copper iodide (I) and BHT in an atmosphere of argon in DMF. desirable.

次いで、得られる化合物(9a)について、前記反応工程式-7に示した化合物(7b)を化合物(7c)に変換する反応と同様の反応を行うことによって、化合物(9b)を得る。   Next, the obtained compound (9a) is subjected to a reaction similar to the reaction for converting the compound (7b) shown in the above reaction step formula-7 into the compound (7c), thereby obtaining the compound (9b).

更に、該化合物(9b)について、前記反応工程式-5に示した化合物(5d)を化合物(5e)に導く反応と同様の反応を行うことによって、所望の化合物(9c)を得ることができる。   Furthermore, the desired compound (9c) can be obtained by performing a reaction similar to the reaction that leads the compound (5d) shown in the above reaction step formula-5 to the compound (5e). .

本発明化合物中のある種の化合物は、前述した各種の方法に従って得られる本発明化合物を原料として、その基本骨格あるいは置換基の種類に基づく特徴を利用して、公知の各種合成法に従って製造することもできる。以下、このような本発明化合物の製造方法を、下記反応工程式-10〜-12に従って説明する。   Certain compounds in the compound of the present invention are produced according to various known synthetic methods using the compound of the present invention obtained according to the above-described various methods as a raw material and utilizing characteristics based on the basic skeleton or the type of substituent. You can also Hereinafter, the production method of the compound of the present invention will be described according to the following reaction process formulas -10 to -12.

Figure 0004794200
Figure 0004794200

[式中、R2およびR3は前記一般式(1)に同じ。R1aは低級アルキルカルボニル基を示す。R1bは低級アルキルカルボニル基、低級アルケニルカルボニル基またはフェニルカルボニル基を示す。]
反応工程式-10に示すように、一般式(1)中、R1が水素原子である本発明化合物(化合物1B)は、R1がアセチル基などのアルキルカルボニル基である本発明化合物(1A)を、水、DMF、DMSO、ジエチルジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で、化合物(1A)に対して等モル量〜過剰モル量の炭酸カリウム、炭酸水素ナトリウム、酢酸ナトリウム、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムエトキシドなどの塩基若しくは塩酸、硫酸、酢酸、クエン酸などの酸を作用させることで加水分解して得ることができる。該加水分解反応は、室温乃至加温下で実施できる。特に、該加水分解反応は、エタノールおよび水の混合液中、塩酸水溶液を加えて80℃で加熱攪拌することにより行われるのが好ましい。
[Wherein R 2 and R 3 are the same as those in the general formula (1). R 1a represents a lower alkylcarbonyl group. R 1b represents a lower alkylcarbonyl group, a lower alkenylcarbonyl group or a phenylcarbonyl group. ]
As shown in Reaction Scheme-10, in the general formula (1), the compound of the present invention (compound 1B) in which R 1 is a hydrogen atom is a compound of the present invention (1A) in which R 1 is an alkylcarbonyl group such as an acetyl group. ) To compound (1A) in a solvent inert to the reaction such as water, DMF, DMSO, diethyl diethyl ether, THF, dioxane, acetone, MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform, etc. Equimolar to excess molar amounts of potassium carbonate, sodium bicarbonate, sodium acetate, sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and other bases or hydrochloric acid, sulfuric acid, acetic acid, citric acid and other acids. By acting, it can be obtained by hydrolysis. The hydrolysis reaction can be carried out at room temperature or under heating. In particular, the hydrolysis reaction is preferably performed by adding an aqueous hydrochloric acid solution in a mixed solution of ethanol and water and stirring with heating at 80 ° C.

R1が低級アルキルカルボニル基、低級アルケニルカルボニル基、フェニルカルボニル基である本発明化合物(1C)は、R1が水素原子である本発明化合物(1B)を、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で、該化合物(1B)に対して等モル量〜過剰モル量の炭酸カリウム、炭酸水素ナトリウム、酢酸ナトリウム、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ジイソプロピルエチルアミンなどの塩基の存在下、等モル量〜過剰モル量の酸クロリド、活性エステルなどのアシル化剤を氷冷下、室温乃至加温下で作用させることで合成できる。 The compound (1C) of the present invention in which R 1 is a lower alkylcarbonyl group, a lower alkenylcarbonyl group, or a phenylcarbonyl group, the compound (1B) of the present invention in which R 1 is a hydrogen atom, DMSO, diethyl ether, THF, dioxane, In a solvent inert to the reaction such as acetone, MEK, acetonitrile, methylene chloride, dichloroethane, chloroform, etc., an equimolar to excess molar amount of potassium carbonate, sodium bicarbonate, sodium acetate, water with respect to the compound (1B) In the presence of a base such as sodium oxide, potassium hydroxide, triethylamine or diisopropylethylamine, an equimolar amount to an excess molar amount of an acylating agent such as an acid chloride or an active ester is allowed to act under ice-cooling or at room temperature to warming. Can be synthesized.

特にこの反応は、アセトニトリル中、過剰量のトリエチルアミン存在下、過剰量の酸クロリドを室温で反応させることにより行われるのが好ましい。   In particular, this reaction is preferably carried out by reacting an excess amount of acid chloride at room temperature in acetonitrile in the presence of an excess amount of triethylamine.

Figure 0004794200
Figure 0004794200

[式中、R1、R2およびR4は前記一般式(1)に同じ。Z1aは(a12)低級アルキルカルボニル基または(a28)低級アルコキシカルボニル基を示す。またZ1bは水素原子を除く一般式(1)に記載のZ1基、即ち一般式(1)に記載の(a1)〜(a31)または(a33)〜(a38)のいずれかの基を示す。]
反応工程式-11に示すように、一般式(1)中、R3が基(6)であり且つZ1が(32)水素原子である本発明化合物(1E)は、一般式(1)中、R3が基(6)であり且つZ1が(a12)または(a28)に記載の各基、即ち脱離可能な基である本発明化合物(1D)から該脱離基可能な基を脱離反応させることにより合成できる。より詳しくは、本発明化合物(1D)に、水、DMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中または無溶媒で、該化合物(1D)に対して等モル量〜過剰モル量の炭酸カリウム、炭酸水素ナトリウム、酢酸ナトリウム、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムエトキシドなどの塩基若しくは塩酸、硫酸などの鉱酸または酢酸、トリフルオロ酢酸、クエン酸などの有機酸を作用させ、加水分解させることで得ることができる。該加水分解反応は、氷冷温度、室温および加温のいずれの温度条件下でも実施できる。特に好ましくは、Z1aがBOC基(t-butoxycarbonyl基) である本発明化合物に対し、無溶媒で過剰量のトリフルオロ酢酸を用いて、室温下に攪拌する方法を挙げることができる。
[Wherein R 1 , R 2 and R 4 are the same as those in the general formula (1). Z 1a represents (a12) a lower alkylcarbonyl group or (a28) a lower alkoxycarbonyl group. Z 1b represents a Z 1 group described in the general formula (1) excluding a hydrogen atom, that is, any one of the groups (a1) to (a31) or (a33) to (a38) described in the general formula (1). Show. ]
As shown in Reaction Process Formula-11, in the general formula (1), the present compound (1E) in which R 3 is a group (6) and Z 1 is a (32) hydrogen atom is represented by the general formula (1) Wherein R 3 is a group (6) and Z 1 is each group described in (a12) or (a28), that is, a group capable of leaving from the compound (1D) of the present invention which is a group capable of leaving. Can be synthesized by elimination reaction. More specifically, the compound (1D) of the present invention is mixed with water, DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform and the like in an inert solvent. Or, in the absence of a solvent, an equimolar to excess molar amount of a base such as potassium carbonate, sodium hydrogen carbonate, sodium acetate, sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, or the like with respect to the compound (1D) It can be obtained by acting and hydrolyzing a mineral acid such as hydrochloric acid and sulfuric acid or an organic acid such as acetic acid, trifluoroacetic acid and citric acid. The hydrolysis reaction can be carried out under any temperature condition of ice cooling temperature, room temperature and warming. Particularly preferred is a method in which Z 1a is a BOC group (t-butoxycarbonyl group) and the mixture is stirred at room temperature using a solvent-free excess amount of trifluoroacetic acid.

また、反応工程式-11に示すように、一般式(1)中、R3が基(6)であり且つZ1が(a1)〜(a31)または(a33)〜(a38)から選択される基である本発明化合物(1F)は、その有するZ1基の種類に応じて、一般式(1)中、R3が基(6)であり且つZ1が(32)水素原子である本発明化合物(1E)から、それぞれ以下のようにして合成できる。 In addition, as shown in reaction process formula-11, in general formula (1), R 3 is a group (6) and Z 1 is selected from (a1) to (a31) or (a33) to (a38). In the general formula (1), R 3 is a group (6) and Z 1 is a (32) hydrogen atom, depending on the type of Z 1 group that the present compound (1F) is a group of It can be synthesized from the compound (1E) of the present invention as follows.

即ち、DMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で、化合物(1E)に対して等モル量〜過剰モル量の炭酸カリウム、炭酸水素ナトリウム、酢酸ナトリウム、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ジイソプロピルエチルアミンなどの塩基の存在下に、化合物(1E)に等モル量〜過剰モル量のアルキルカルボニルクロリド、アリールカルボニルクロリド、活性エステルなどのアシル化剤を氷冷下、室温乃至加温下で作用させることでZ1が(a12)〜(a28)または(a36)〜(a38)に記載の置換カルボニル基である本発明化合物が合成できる。アセトニトリル中、過剰モル量の置換カルボニルクロリドを過剰モル量のトリエチルアミン存在下反応させるのが好ましい。 That is, equimolar to excess molar amount relative to compound (1E) in a solvent inert to the reaction such as DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, acetonitrile, methylene chloride, dichloroethane, chloroform, etc. In the presence of a base such as potassium carbonate, sodium bicarbonate, sodium acetate, sodium hydroxide, potassium hydroxide, triethylamine, diisopropylethylamine, the compound (1E) is equimolar to excess molar amount of alkylcarbonyl chloride, arylcarbonyl. Z 1 is the substituted carbonyl group described in (a12) to (a28) or (a36) to (a38) by allowing an acylating agent such as chloride or active ester to act on ice from room temperature to warming The compound of the present invention can be synthesized. It is preferable to react an excess molar amount of substituted carbonyl chloride in acetonitrile in the presence of an excess molar amount of triethylamine.

DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で、化合物(1E)に対して等モル量〜過剰モル量の各種置換基を有するカルボン酸を、化合物(1E)に対して等モル量〜過剰モル量のDCC, WSC, BOP, DEPCなどの縮合剤の存在下に、場合により等モル量〜過剰モル量のHOSu, HOBt, HOOBtなどの活性化剤の共存下に、化合物(1E)と反応させることにより、Z1が(a12)〜(a28)または(a36)〜(a38)に記載の置換カルボニル基である本発明化合物を得ることができる。該反応は、氷冷温度、室温および加温のいずれの温度条件下でも実施できる。特に、該反応はWSCおよびHOBtの存在下に、室温下で実施されるのが好ましい。 Various substituents in equimolar to excess molar amounts relative to compound (1E) in a solvent inert to the reaction such as DMSO, diethyl ether, THF, dioxane, acetone, MEK, acetonitrile, methylene chloride, dichloroethane, and chloroform In the presence of a condensing agent such as DCC, WSC, BOP, DEPC, etc., in an equimolar amount to an excess molar amount with respect to compound (1E), optionally in an equimolar amount to an excess molar amount of HOSu, HOBt. In the present invention, Z 1 is a substituted carbonyl group described in (a12) to (a28) or (a36) to (a38) by reacting with compound (1E) in the presence of an activator such as HOOBt. A compound can be obtained. The reaction can be carried out under any temperature condition of ice cooling temperature, room temperature and warming. In particular, the reaction is preferably carried out at room temperature in the presence of WSC and HOBt.

DMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で、化合物(1E)に対して等モル量〜過剰モル量の炭酸カリウム、炭酸水素ナトリウム、酢酸ナトリウム、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ジイソプロピルエチルアミンなどの塩基の存在下に、等モル量〜過剰モル量のアルキルスルホニルクロリド、アリールスルホニルクロリドなどのスルホニル化剤を化合物(1E)に作用させることで、Z1が(a29)〜(a31)に記載の各基である本発明化合物を合成できる。該反応は、氷冷温度、室温および加温のいずれの温度条件下でも実施できる。特に該反応は、DMF中、過剰モル量のジイソプロピルエチルアミンの存在下に、室温で実施されるのが好ましい。 In a solvent inert to the reaction such as DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, acetonitrile, methylene chloride, dichloroethane, chloroform, equimolar to excess molar amount of carbonic acid with respect to compound (1E). In the presence of a base such as potassium, sodium hydrogen carbonate, sodium acetate, sodium hydroxide, potassium hydroxide, triethylamine, diisopropylethylamine, an equimolar to excess molar amount of a sulfonylating agent such as alkylsulfonyl chloride, arylsulfonyl chloride, etc. The compound of the present invention in which Z 1 is each group described in (a29) to (a31) can be synthesized by acting on compound (1E). The reaction can be carried out under any temperature condition of ice cooling temperature, room temperature and warming. In particular, the reaction is preferably carried out in DMF in the presence of an excess molar amount of diisopropylethylamine at room temperature.

DMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で、化合物(1E)に対して等モル量〜過剰モル量の炭酸カリウム、炭酸水素ナトリウム、酢酸ナトリウム、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ジイソプロピルエチルアミンなどの塩基の存在下に、等モル量〜過剰モル量のアルキルクロリド等のアルキルハライド、アルキルメタンスルホネートなどのアルキル化剤(アルケニル化剤を含む)を化合物(1E)に作用させることで、Z1が(a1)〜(a11)または(a33)〜(a35)に記載の各基である本発明化合物を合成できる。該反応は、氷冷温度、室温および加温のいずれの温度条件下でも実施できる。特に好ましくは、DMF中、過剰量の炭酸カリウムの存在下に、過剰量のアルキル化剤、好ましくはアルキルハライドを、室温で反応させる。 In a solvent inert to the reaction such as DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, acetonitrile, methylene chloride, dichloroethane, chloroform, equimolar to excess molar amount of carbonic acid with respect to compound (1E). In the presence of a base such as potassium, sodium bicarbonate, sodium acetate, sodium hydroxide, potassium hydroxide, triethylamine or diisopropylethylamine, an equimolar to excess molar amount of an alkyl halide such as an alkyl chloride, an alkyl such as an alkylmethane sulfonate A compound of the present invention in which Z 1 is each group described in (a1) to (a11) or (a33) to (a35) is synthesized by allowing an agent (including an alkenylating agent) to act on compound (1E) it can. The reaction can be carried out under any temperature condition of ice cooling temperature, room temperature and warming. Particularly preferably, an excess of an alkylating agent, preferably an alkyl halide, is reacted at room temperature in DMF in the presence of an excess of potassium carbonate.

DMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルム、メタノール、エタノールなどの反応に不活性な溶媒中で、化合物(1E)に対して等モル量〜過剰モル量の対応する置換基を有するアルデヒドを、場合により触媒量〜化合物(1E)に対して過剰モル量の酢酸などの触媒の存在下に化合物(1E)と反応させ、生成するイミン体を単離するかまたは単離することなく、化合物(1E)に対して等モル量〜過剰モル量の水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、ジボランなどの還元剤を作用させることにより、Z1が(a1)〜(a11)または(a33)〜(a35)に記載の各基である本発明化合物を得ることができる(還元的アルキル化)。該反応は、氷冷温度、室温および加温のいずれの温度条件下でも実施できる。DMF中、過剰量のアルデヒドを5倍量の酢酸および過剰量のシアノ水素化ホウ素ナトリウム存在下に化合物(1E)と室温で反応させる方法によるのが好ましい。 Corresponding to equimolar to excess molar amount of compound (1E) in solvents inert to reactions such as DMF, DMSO, diethyl ether, THF, dioxane, acetonitrile, methylene chloride, dichloroethane, chloroform, methanol, ethanol, etc. An aldehyde having a substituent to be reacted with compound (1E), optionally in the presence of a catalyst amount, such as acetic acid in an excess molar amount relative to compound (1E), and the resulting imine form is isolated or Without isolation, an equimolar amount to an excess molar amount of a reducing agent such as sodium cyanoborohydride, sodium cyanoborohydride, diborane, or the like is allowed to act on compound (1E), so that Z 1 becomes (a1) to The compound of the present invention which is each group described in (a11) or (a33) to (a35) can be obtained (reductive alkylation). The reaction can be carried out under any temperature condition of ice cooling temperature, room temperature and warming. It is preferable to use a method in which an excess amount of aldehyde is reacted with compound (1E) at room temperature in the presence of 5 times the amount of acetic acid and an excess amount of sodium cyanoborohydride in DMF.

一般式(1)中、R3が基(7)であり且つZ1が(a32)水素原子である本発明化合物および一般式(1)中、R3が基(8)であり且つZ2が(b1)水素原子である本発明化合物も、一般式(1)中、R3が基(7)であり且つZ1が(a12)または(28)に記載のいずれかの基である本発明化合物および一般式(1)中、R3が基(8)であり且つZ2が(b2)に記載の基である本発明化合物を原料として、上記反応工程式-11に示す化合物(1D)から化合物(1E)を得る反応と同様の反応により合成することができる。 In the general formula (1), R 3 is a group (7) and Z 1 is a hydrogen atom (a32) .In the general formula (1), R 3 is a group (8) and Z 2 The compound of the present invention wherein is (b1) a hydrogen atom is a compound of the general formula (1) wherein R 3 is the group (7) and Z 1 is any one of the groups described in (a12) or (28). Inventive compound and general formula (1), wherein R 3 is a group (8) and Z 2 is a group described in (b2), the starting compound is a compound (1D ) From the reaction similar to the reaction for obtaining the compound (1E).

また、一般式(1)中、R3が基(7)であり且つZ1が(a32)水素原子である本発明化合物および一般式(1)中、R3が基(8)であり且つZ2が(b1)水素原子である本発明化合物を原料として、上記反応工程式-11に示す化合物(1E)から化合物(1F)を得る反応と同様の反応により、一般式(1)中、R3が基(7)であり且つZ1が(a1)〜(a31) または(a33)〜(a38)に記載のいずれかの基である本発明化合物および一般式(1)中、R3が基(8)であり且つZ2が(b2)〜(b8)に記載のいずれかの基である本発明化合物を製造することができる。 In the general formula (1), R 3 is a group (7) and Z 1 is (a32) a hydrogen atom in the compound of the present invention and the general formula (1), R 3 is a group (8) and Using the compound of the present invention in which Z 2 is a hydrogen atom (b1) as a raw material, a reaction similar to the reaction for obtaining the compound (1F) from the compound (1E) shown in the above reaction step formula-11, in the general formula (1), In the compound of the present invention and general formula (1), wherein R 3 is a group (7) and Z 1 is any group described in (a1) to (a31) or (a33) to (a38), R 3 It is possible to produce a compound of the present invention wherein is a group (8) and Z 2 is any group described in (b2) to (b8).

Figure 0004794200
Figure 0004794200

[式中、R1、R2およびR4は前記一般式(1)に同じ。Z3aは(c2)低級アルコキシ基を示す。Z3bは水酸基および低級アルコキシ基を除く一般式(1)に記載のZ3基、即ち一般式(1)に記載の(c3)〜(c22)のいずれかの基を示す。]
反応工程式-12に示すように、R3が基(9)でありZ3が(c1)水酸基である本発明化合物(1H)は、R3が基(9)でありZ3が低級アルコキシ基である本発明化合物(1G)から合成できる。この反応は、例えば本発明化合物(1G)に、水、DMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、メタノール、エタノール、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中または無溶媒で、該化合物に対して等モル量〜過剰モル量の炭酸カリウム、炭酸水素ナトリウム、酢酸ナトリウム、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムエトキシドなどの塩基若しくは塩酸、硫酸などの鉱酸または酢酸、トリフルオロ酢酸、クエン酸などの有機酸を作用させて加水分解することにより実施できる。該加水分解反応は、氷冷温度、室温または加温下で進行する。特に、Z3aがtert-ブトキシ基である本発明化合物に対して無溶媒で、過剰量のトリフルオロ酢酸を用いて、室温下で攪拌する方法の採用が好ましい。
[Wherein R 1 , R 2 and R 4 are the same as those in the general formula (1). Z 3a represents (c2) a lower alkoxy group. Z 3b represents a Z 3 group described in the general formula (1) excluding a hydroxyl group and a lower alkoxy group, that is, any group of (c3) to (c22) described in the general formula (1). ]
As shown in Reaction Scheme-12, the compound (1H) of the present invention in which R 3 is a group (9) and Z 3 is a (c1) hydroxyl group, R 3 is a group (9) and Z 3 is a lower alkoxy It can be synthesized from the compound of the present invention (1G). This reaction is carried out by reacting, for example, the compound of the present invention (1G) with water, DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, methanol, ethanol, acetonitrile, methylene chloride, dichloroethane, chloroform and the like. A base or hydrochloric acid such as potassium carbonate, sodium hydrogen carbonate, sodium acetate, sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, etc. It can be carried out by hydrolyzing with a mineral acid such as sulfuric acid or an organic acid such as acetic acid, trifluoroacetic acid or citric acid. The hydrolysis reaction proceeds at an ice-cold temperature, room temperature, or warming. In particular, it is preferable to employ a method in which Z 3a is a solvent-free compound of the present invention in which tert-butoxy group is used and is stirred at room temperature using an excess amount of trifluoroacetic acid.

また、反応工程式-12に示すように、一般式(1)中、R3が基(9)であり且つZ3が(c3)〜(c22)から選択される基である本発明化合物(1I)は、R3が基(9)であり且つZ3が(c1)水酸基である本発明化合物(1H)から合成できる。この方法はより詳しくは、DMF、DMSO、ジエチルエーテル、THF、ジオキサン、アセトン、MEK、アセトニトリル、塩化メチレン、ジクロロエタン、クロロホルムなどの反応に不活性な溶媒中で、本発明化合物(1H)に対して等モル量〜過剰モル量の所望のZ3を与える対応する各種置換基を有するアミンまたは脂肪族含窒素複素環化合物を、本発明化合物(1H)に対して等モル量〜過剰モル量のDCC, WSC, BOP, DEPCなどの縮合剤の存在下に、場合により等モル量〜過剰モル量のHOSu, HOBt, HOOBtなどの活性化剤の共存下に、本発明化合物(1H)と反応させることにより実施できる。かくして、Z3が(c3)〜(c22)から選択される基である本発明化合物(1I) を得ることができる。該反応は、氷冷温度、室温および加温下のいずれの温度条件下でも実施できる。特に好ましい方法としては、DMFまたはアセトニトリル中、BOPまたはWSCおよびHOBtの存在下に、室温で反応させる方法を挙げることができる。 In addition, as shown in Reaction Process Formula-12, in the general formula (1), R 3 is a group (9) and Z 3 is a group selected from (c3) to (c22) ( 1I) can be synthesized from the compound (1H) of the present invention in which R 3 is group (9) and Z 3 is (c1) hydroxyl group. More specifically, this method is carried out with respect to the compound (1H) of the present invention in a solvent inert to the reaction such as DMF, DMSO, diethyl ether, THF, dioxane, acetone, MEK, acetonitrile, methylene chloride, dichloroethane, and chloroform. The amine or aliphatic nitrogen-containing heterocyclic compound having the corresponding various substituents to give the desired Z 3 in an equimolar amount to an excess molar amount is converted into an equimolar amount to an excess molar amount of DCC with respect to the compound (1H) of the present invention. , WSC, BOP, DEPC, etc. in the presence of a condensing agent such as equimolar to excess molar amount of an activator such as HOSu, HOBt, HOOBt, etc. Can be implemented. Thus, the compound (1I) of the present invention in which Z 3 is a group selected from (c3) to (c22) can be obtained. The reaction can be carried out under any temperature conditions such as ice-cooling temperature, room temperature, and warming. As a particularly preferred method, there can be mentioned a method of reacting at room temperature in DMF or acetonitrile in the presence of BOP or WSC and HOBt.

一般式(1)中、R3が基(10)であり且つZ3が(c1)水素原子である本発明化合物および一般式(1)中、R3が基(11)であり且つZ3が(c1)水素原子である本発明化合物も、一般式(1)中、R3が基(12)であり且つZ3が(c2)低級アルコキシ基である本発明化合物および一般式(1)中、R3が基(11)であり且つZ3が(c2) 低級アルコキシ基である本発明化合物を原料として、上記反応工程式-11に示す化合物(1D)から化合物(1E)を得る反応と同様の反応により合成することができる。 In the general formula (1), R 3 is a group (10) and Z 3 is (c1) a hydrogen atom, and in the general formula (1), R 3 is a group (11) and Z 3 In the general formula (1), the compound of the present invention wherein R 3 is a group (12) and Z 3 is (c2) a lower alkoxy group and the general formula (1) Among them, using the compound of the present invention in which R 3 is the group (11) and Z 3 is (c2) a lower alkoxy group as a raw material, the reaction for obtaining the compound (1E) from the compound (1D) shown in the above reaction step formula-11 It can be synthesized by the same reaction.

また、一般式(1)中、R3が基(10)であり且つZ3が(c1)水素原子である本発明化合物および一般式(1)中、R3が基(11)であり且つZ3が(c1)水素原子である本発明化合物を原料として、上記反応工程式-11に示す化合物(1E)から化合物(1F)を得る反応と同様の反応により、一般式(1)中、R3が基(10)であり且つZ3が(c3)〜(c22)に記載のいずれかの基である本発明化合物および一般式(1)中、R3が基(11)であり且つZ3が(c3)〜(c22)に記載のいずれかの基である本発明化合物を製造することができる。 Further, in the general formula (1), R 3 is a group (10) and Z 3 is (c1) a hydrogen atom, and in the general formula (1), R 3 is a group (11) and Using the compound of the present invention in which Z 3 is (c1) a hydrogen atom as a raw material, a reaction similar to the reaction for obtaining the compound (1F) from the compound (1E) shown in the above reaction step formula-11, in the general formula (1), In the compound of the present invention and general formula (1) wherein R 3 is a group (10) and Z 3 is any group described in (c3) to (c22), R 3 is a group (11) and The compound of the present invention in which Z 3 is any group described in (c3) to (c22) can be produced.

前記各反応工程式に示す各工程における目的化合物および本発明化合物は、常法に従って、遊離のままで或いはその塩として、単離、精製することができる。この単離、精製手段としては、抽出、濃縮、蒸留、結晶化、濾過、再結晶、各種クロマトグラフィーなどの通常の化学操作を挙げることができる。   The target compound and the compound of the present invention in each step shown in the above reaction process formulas can be isolated and purified as they are or as a salt thereof according to a conventional method. Examples of the isolation and purification means include ordinary chemical operations such as extraction, concentration, distillation, crystallization, filtration, recrystallization, and various chromatography.

本発明化合物が、前述したように異性体混合物として存在する場合、各異性体は、異性体間の物理的性質の差を利用して常法により単離できる。より詳しくは、ラセミ化合物から立体化学的に純粋な異性体の分割は、通常のラセミ分割法(一般的な光学活性酸(酒石酸など)とのジアステレオマー塩を形成させた後、光学分割する方法など)に従って実施することができる。ジアステレオマーの混合物からの各異性体の分割は、例えば分別結晶化、クロマトグラフィーなどに従って実施することができる。また、光学的に活性な本発明化合物は、光学的に活性な原料化合物を用いることによっても製造することができる。   When the compound of the present invention exists as a mixture of isomers as described above, each isomer can be isolated by a conventional method utilizing the difference in physical properties between the isomers. More specifically, the resolution of a stereochemically pure isomer from a racemate is performed by optical resolution after forming a diastereomeric salt with a common racemic resolution method (a general optically active acid (such as tartaric acid)). Method). The resolution of each isomer from a mixture of diastereomers can be carried out according to, for example, fractional crystallization, chromatography or the like. The optically active compound of the present invention can also be produced by using an optically active raw material compound.

医薬組成物
本発明化合物およびその塩は、アデノシンA2a受容体を作動させる活性を有しており、アデノシンA2a受容体作動薬として、ヒトを含むほ乳類に対して、医薬品分野で有用である。従って、本発明はこのようなアデノシンA2a受容体作動薬などの医薬用途に適した医薬組成物をも提供する。以下、この医薬組成物を「本発明医薬組成物」ということがある。
Pharmaceutical Composition The compounds of the present invention and salts thereof have an activity to activate adenosine A2a receptor, and are useful as adenosine A2a receptor agonists for mammals including humans in the pharmaceutical field. Accordingly, the present invention also provides a pharmaceutical composition suitable for pharmaceutical use such as such an adenosine A2a receptor agonist. Hereinafter, this pharmaceutical composition may be referred to as “the pharmaceutical composition of the present invention”.

本発明医薬組成物は、本発明化合物およびその塩からなる群から選ばれる少なくとも1種の有効量を、製剤学的に許容される担体と共に含有する一般的な医薬製剤形態に調製されて実用される。本発明医薬組成物に利用される製剤学的に許容される担体としては、賦形剤などの固体でも希釈剤などの液体でもよい。これらの担体の具体例には、例えば乳糖、ステアリン酸マグネシウム、スターチ、タルク、ゼラチン、寒天、ペクチン、アラビアゴム、オリーブ油、ゴマ油、カカオバター、エチレングリコールなどが包含される。   The pharmaceutical composition of the present invention is prepared and put into practical use in a general pharmaceutical preparation form containing at least one effective amount selected from the group consisting of the compound of the present invention and a salt thereof together with a pharmaceutically acceptable carrier. The The pharmaceutically acceptable carrier used in the pharmaceutical composition of the present invention may be a solid such as an excipient or a liquid such as a diluent. Specific examples of these carriers include lactose, magnesium stearate, starch, talc, gelatin, agar, pectin, gum arabic, olive oil, sesame oil, cocoa butter, ethylene glycol and the like.

また、本発明医薬組成物は、その投与適用に応じた投与単位製剤形態に調製することができる。その具体例としては、錠剤、丸剤、カプセル剤、顆粒剤、散剤、液剤などの固形剤および液剤形態の経口投与形態、並びに、静注、筋注などの注射剤形態、点眼剤形態、眼軟膏剤形態、坐剤形態、経皮剤形態などの非経口投与形態を挙げることができる。特に、本発明医薬組成物は、そのアデノシンA2a受容体作動活性を利用して眼圧降下剤、緑内障治療剤などとして有利に利用できることを考慮すると、その医薬組成物形態としては点眼剤が好ましい。   In addition, the pharmaceutical composition of the present invention can be prepared in a dosage unit dosage form according to its administration application. Specific examples thereof include oral administration forms such as tablets, pills, capsules, granules, powders, liquids, and other solid and liquid forms, as well as injection forms such as intravenous injections and intramuscular injections, eye drops forms, and eyes. Examples include parenteral dosage forms such as ointment forms, suppository forms, and transdermal dosage forms. In particular, considering that the pharmaceutical composition of the present invention can be advantageously used as an intraocular pressure-lowering agent, a glaucoma therapeutic agent, etc. by utilizing its adenosine A2a receptor agonistic activity, an eye drop is preferable as the pharmaceutical composition form.

この点眼剤の調製は、例えば次のようにして実施することができる。即ち、本発明化合物(その塩を含む、以下同じ)に、必要に応じて塩化ナトリウム、グリセリンなどの等張化剤;エデト酸ナトリウムなどの安定化剤;塩化ベンザルコニウム、パラベン類などの防腐剤;リン酸水素ナトリウム、リン酸二水素ナトリウム、ホウ酸、四ホウ酸ナトリウム(ホウ砂)、塩酸、水酸化ナトリウムなどのpH調節剤などを適宜配合して、常法に従い点眼剤形態に調製する。   This eye drop can be prepared, for example, as follows. That is, the compound of the present invention (including salts thereof, the same shall apply hereinafter), as required, isotonic agents such as sodium chloride and glycerin; stabilizers such as sodium edetate; antiseptics such as benzalkonium chloride and parabens Agent: Sodium hydrogen phosphate, sodium dihydrogen phosphate, boric acid, sodium tetraborate (borax), pH adjusters such as hydrochloric acid, sodium hydroxide, etc. To do.

本発明医薬組成物のとり得る経口投与のための固形剤、例えば錠剤、散剤、顆粒剤などの調製は、本発明化合物と、少なくとも一つの不活性な担体、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸、アルミン酸マグネシウムとを混合し、混合物を常法に従って賦型することにより実施できる。該混合物には、更に適当な添加剤、例えばステアリン酸マグネシウムのような潤滑剤;繊維素グルコール酸カルシウムのような崩壊剤;ラクトースのような安定化剤;グルタミン酸、アスパラギン酸のような溶解補助剤などを配合することができる。また甘味剤、風味剤、芳香剤、防腐剤などを添加配合することもできる。錠剤および丸剤は、更に必要により、ショ糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレートなどの糖衣または胃溶性若しくは腸溶性物質のフィルムで被膜してもよい。   Preparation of solid preparations for oral administration that can be taken by the pharmaceutical composition of the present invention, such as tablets, powders, granules, etc., is carried out by preparing the compound of the present invention and at least one inert carrier such as lactose, mannitol, glucose, hydroxypropyl. It can be carried out by mixing cellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone, metasilicic acid, magnesium aluminate and shaping the mixture according to a conventional method. The mixture further includes suitable additives, such as lubricants such as magnesium stearate; disintegrants such as calcium calcium glycolate; stabilizers such as lactose; solubilizing agents such as glutamic acid and aspartic acid. Etc. can be blended. Sweetening agents, flavoring agents, fragrances, preservatives and the like can also be added and blended. Tablets and pills may be further coated with a sugar coating such as sucrose, gelatin, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate, or a film of a gastric or enteric substance, if necessary.

経口投与のための液剤、例えば乳濁剤、溶液剤、懸濁剤、シロップ剤、エリキシル剤などの調製は、本発明化合物を一般的に用いられる不活性な希釈剤、例えば精製水、エタノールなどに溶解乃至分散させることにより実施できる。この液剤には、更に湿潤剤、懸濁化剤などの補助剤、甘味剤、風味剤、芳香剤、防腐剤などを添加配合することもできる。   Preparation of liquids for oral administration, such as emulsions, solutions, suspensions, syrups, elixirs, etc., is an inert diluent generally used with the compounds of the present invention, such as purified water, ethanol, etc. It can be carried out by dissolving or dispersing in the solution. In addition to this liquid agent, auxiliary agents such as wetting agents and suspending agents, sweeteners, flavors, fragrances, preservatives and the like can also be added and blended.

非経口投与のための注射剤には、無菌の水性または非水性の溶液剤、懸濁剤、乳濁剤などが含まれる。水性の注射剤は、例えば注射用蒸留水および生理食塩水を希釈剤として利用して常法に従い調製することができる。非水性の注射剤は、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油;エタノールなどのアルコール類;ポリソルベート80などを希釈剤乃至担体として利用して常法に従い調製できる。これらの注射剤には、更に防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(例えばラクトース)、溶解補助剤(例えば、グルタミン酸、アスパラギン酸)のような補助剤を添加配合することができる。調製される注射剤は、常法に従って、例えばバクテリア保留フィルターを通す濾過、殺菌剤の配合またはガンマ線などの放射線照射によって無菌化される。また、注射剤は、無菌の固形剤を製造後、無菌水または無菌の注射用溶媒に溶解して実用される、用時溶解剤形態に調製することもできる。   Injections for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, emulsions and the like. An aqueous injection can be prepared according to a conventional method using, for example, distilled water for injection and physiological saline as diluents. Non-aqueous injections can be prepared according to conventional methods using, for example, propylene glycol, polyethylene glycol, vegetable oils such as olive oil; alcohols such as ethanol; polysorbate 80 and the like as diluents or carriers. These injections may further contain additives such as preservatives, wetting agents, emulsifiers, dispersants, stabilizers (for example, lactose), and solubilizing agents (for example, glutamic acid and aspartic acid). . The prepared injection is sterilized according to a conventional method, for example, filtration through a bacteria-retaining filter, blending of a bactericidal agent, or irradiation with radiation such as gamma rays. In addition, the injection can be prepared in a form of a dissolution solution at the time of use, which is practically used by dissolving a sterile solid preparation in sterile water or a sterile solvent for injection after production.

上記の如くして調製される各種形態の本発明医薬組成物の投与量は、該医薬組成物を適用する患者(投与対象者)の症状の程度、年齢、性別などを考慮して、個々の場合に応じて適宜決定される。一般に、点眼剤形態の本発明医薬組成物の投与量は、有効成分としての本発明化合物の濃度が0.0001〜10%(w/v%)である点眼剤を、1日1〜数回、点眼または目に塗布する程度の量とすることができる。この1回当たりの点眼量は、一般に成人に対して約0.001〜1mLとされる。   The dosage of the pharmaceutical composition of the present invention prepared in various forms as described above is determined in consideration of the degree of symptoms, age, sex, etc. of the patient (administration subject) to which the pharmaceutical composition is applied. It is determined appropriately depending on the case. In general, the dosage of the pharmaceutical composition of the present invention in the form of eye drops is such that an eye drop having a concentration of the compound of the present invention as an active ingredient of 0.0001 to 10% (w / v%) is applied once to several times a day Alternatively, the amount can be applied to the eye. The amount of eye drops per one time is generally about 0.001 to 1 mL for an adult.

本発明医薬組成物が経口剤または注射剤の場合、それらの投与量は、有効成分とする本発明化合物の量が1日成人1人当たり0.001〜1000mgとなる量とすることができる。この1日当たりの投与量は、これを1日に1回で投与してもよいが、通常1日に数回に分けて投与するのが好ましい。尚、上記投与量は、あくまでも目安であり、更に適宜増減することができる。前記したように、投与量は種々の条件に応じてその都度適宜決定することが望ましい。従って、条件によっては、上記投与量範囲より更に減少された投与量を採用する場合でも、十分な効果を奏し得る場合がある。   When the pharmaceutical composition of the present invention is an oral preparation or an injection, the dosage can be 0.001 to 1000 mg per adult per day for the amount of the compound of the present invention as an active ingredient. The daily dose may be administered once a day, but it is usually preferable to administer the dose divided into several times a day. The above dose is only a guide and can be increased or decreased as appropriate. As described above, it is desirable that the dosage is appropriately determined each time according to various conditions. Therefore, depending on conditions, even when a dose further reduced from the above dose range is employed, a sufficient effect may be obtained.

本発明化合物はアデノシンA2a受容体を活性化する作用(アデノシンA2a受容体作動活性)を有し、眼圧低下作用を介して、緑内障および高眼圧症の予防および/または治療に有用である。   The compound of the present invention has an action to activate the adenosine A2a receptor (adenosine A2a receptor agonistic activity), and is useful for the prevention and / or treatment of glaucoma and ocular hypertension through the action of reducing intraocular pressure.

以下、本発明を更に詳細に説明するため、本発明化合物の製造のための原料化合物の製造例を参考例として挙げ、次いで本発明化合物の製造例を実施例として挙げる。また本発明化合物につき行われた薬理試験例を挙げる。これらの例は、本発明を具体化するものであって、本発明の範囲を限定するものではない。   Hereinafter, in order to describe the present invention in more detail, production examples of raw material compounds for the production of the compound of the present invention are given as reference examples, and then production examples of the compound of the present invention are given as examples. Moreover, the example of the pharmacological test conducted about this invention compound is given. These examples embody the present invention and are not intended to limit the scope of the present invention.

以下に示す各例中、核磁気共鳴(NMR)スペクトルは下記条件で測定したものであり、その結果を示す略号は次の通りである。   In each example shown below, the nuclear magnetic resonance (NMR) spectrum was measured under the following conditions, and the abbreviations indicating the results are as follows.

装置:JNM-AL300 (JEOL社製)
内部標準物質:TMS
s : singlet, d : doublet, t : triplet, q : quartet, quint : quintet, sext : sextet
また、各例に用いる略号は次のことを示す。
Device: JNM-AL300 (manufactured by JEOL)
Internal standard: TMS
s: singlet, d: doublet, t: triplet, q: quartet, quint: quintet, sext: sextet
Moreover, the symbol used for each example shows the following.

IPE: イソプロピルエーテル
WSC:1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩
LiAlH4 :水素化リチウムアルミニウム
THF:テトラヒドロフラン
TBAF:テトラブチルアンモニウムフルオリド
TBAF/THF溶液:テトラブチルアンモニウムフルオリドとテトラヒドロフランとの混液
DMF:N,N-ジメチルホルムアミド
HOBt:1-ヒドロキシベンゾトリアゾール
m-CPBA:m-クロロ過安息香酸
EtOH:エタノール
NBS:N-ブロモスクシンイミド
DDQ:2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン
DMSO:ジメチルスルホキシド
BOPおよびBOP試薬:ヘキサフルオロりん酸ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウム
TFA:トリフルオロ酢酸。
IPE: Isopropyl ether
WSC: 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
LiAlH 4 : Lithium aluminum hydride
THF: tetrahydrofuran
TBAF: Tetrabutylammonium fluoride
TBAF / THF solution: A mixture of tetrabutylammonium fluoride and tetrahydrofuran
DMF: N, N-dimethylformamide
HOBt: 1-hydroxybenzotriazole
m-CPBA: m-chloroperbenzoic acid
EtOH: ethanol
NBS: N-bromosuccinimide
DDQ: 2,3-dichloro-5,6-dicyano-p-benzoquinone
DMSO: Dimethyl sulfoxide
BOP and BOP reagents: benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate
TFA: trifluoroacetic acid.

参考例1
(4-ホルミルフェニル)カルバミン酸メチルエステル560mgおよびマロノニトリル206mgをエタノール10mLに溶解し、得られた溶液にピペリジン1滴を加え、混合物を室温で3時間攪拌した。反応液にIPE10mLを加え、析出した結晶を濾取して、441mgの[4-(2,2-ジシアノビニル)フェニル]カルバミン酸メチルエステルを得た。
黄色粉末
1H-NMR (CDCl3) δ: 7.90 (2H, d, J = 8.7 Hz), 7.65 (1H, s), 7.56 (2H, d, J = 8.7 Hz), 6.92 (1H, br s), 3.83 (3H, s)。
Reference example 1
560 mg of (4-formylphenyl) carbamic acid methyl ester and 206 mg of malononitrile were dissolved in 10 mL of ethanol, 1 drop of piperidine was added to the resulting solution, and the mixture was stirred at room temperature for 3 hours. 10 mL of IPE was added to the reaction solution, and the precipitated crystals were collected by filtration to obtain 441 mg of [4- (2,2-dicyanovinyl) phenyl] carbamic acid methyl ester.
Yellow powder
1 H-NMR (CDCl 3 ) δ: 7.90 (2H, d, J = 8.7 Hz), 7.65 (1H, s), 7.56 (2H, d, J = 8.7 Hz), 6.92 (1H, br s), 3.83 (3H, s).

参考例2
無水エタノール20mLに金属ナトリウム250mgを少量ずつ加えて完全に溶解させた後、得られた液中にチオウレア760mgを加え、混合物を室温で1時間撹拌した。反応液にN-[-(2,2-ジシアノビニル)フェニル]アセトアミド2.11gを加え、3時間加熱還流した。その後、反応液から溶媒を減圧留去し、残留物を水30mLに溶解し、更にこの溶液に酢酸を少量ずつ加えて液性を酸性とし、次いで酢酸エチル30mLを加えて終夜撹拌した。析出した不溶物を濾取して、1.2gのN-[4-(6-アミノ-5-シアノ-2-メルカプト-2,3-ジヒドロピリミジン-4-イル)フェニル]アセトアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 9.98 (1H, s), 9.65 (1H, br s), 7.56 (2H, d, J= 8.7 Hz), 7.14 (2H, d, J= 8.7 Hz), 6.16 (2H, s), 4.92(1H, s), 2.08 (3H, s)。
Reference example 2
After adding 250 mg of metal sodium in 20 mL of absolute ethanol in small portions and completely dissolving, 760 mg of thiourea was added to the resulting solution, and the mixture was stirred at room temperature for 1 hour. To the reaction solution, 2.11 g of N-[-(2,2-dicyanovinyl) phenyl] acetamide was added and heated to reflux for 3 hours. Thereafter, the solvent was distilled off from the reaction solution under reduced pressure, and the residue was dissolved in 30 mL of water. Further, acetic acid was added to this solution little by little to make the solution acidic, and then 30 mL of ethyl acetate was added and stirred overnight. The precipitated insoluble matter was collected by filtration to obtain 1.2 g of N- [4- (6-amino-5-cyano-2-mercapto-2,3-dihydropyrimidin-4-yl) phenyl] acetamide.
White powder
1 H-NMR (DMSO-d 6 ) δ: 9.98 (1H, s), 9.65 (1H, br s), 7.56 (2H, d, J = 8.7 Hz), 7.14 (2H, d, J = 8.7 Hz) , 6.16 (2H, s), 4.92 (1H, s), 2.08 (3H, s).

参考例3
2,6-ビス(ブロモメチル)ピリジン265mgをエタノール2mLに懸濁させ、得られた懸濁液に氷冷下にモルホリン87mgを加え、混合液を室温で終夜攪拌した。反応混合物を減圧下に濃縮し、濃縮物をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール−トリエチルアミン=400:20:1(v/v、以下同じ))で精製して、90mgの4-(6-ブロモメチルピリジン-2-イルメチル)モルホリンを得た。
白色粉末
1H-NMR (CDCl3) δ: 10.0 (1H, s), 7.54-7.48 (2H, m), 7.42 (1H, s), 7.24 (1H, s), 4.08 (2H, t, J = 6.0 Hz), 3.56 (2H, t, J = 4.5 Hz), 2.49 (2H, t, J = 7.2 Hz), 2.42-2.34 (4H, m), 1.89 (2H, quint., J = 6.6 Hz)。
Reference example 3
265 mg of 2,6-bis (bromomethyl) pyridine was suspended in 2 mL of ethanol, 87 mg of morpholine was added to the obtained suspension under ice cooling, and the mixture was stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure, and the concentrate was purified by silica gel column chromatography (methylene chloride-ethanol-triethylamine = 400: 20: 1 (v / v, hereinafter the same)) to obtain 90 mg of 4- (6- Bromomethylpyridin-2-ylmethyl) morpholine was obtained.
White powder
1 H-NMR (CDCl 3 ) δ: 10.0 (1H, s), 7.54-7.48 (2H, m), 7.42 (1H, s), 7.24 (1H, s), 4.08 (2H, t, J = 6.0 Hz ), 3.56 (2H, t, J = 4.5 Hz), 2.49 (2H, t, J = 7.2 Hz), 2.42-2.34 (4H, m), 1.89 (2H, quint., J = 6.6 Hz).

参考例4
(1) 酢酸6-ブロモピリジン-2-イルメチルエステル2.3g、トリメチルシリルアセチレン1.18g、ビス(トリフェニルホスフィン)塩化パラジウム(II) 210mg、よう化銅(I)114mgおよびトリエチルアミン12mLをナス型フラスコに入れ、アルゴン雰囲気下に5時間加熱還流した。反応混合物を放冷後、減圧乾固し、水を加え、酢酸エチルで抽出した。有機層を減圧濃縮し、濃縮物にメタノール7mLおよび1N水酸化カリウム水溶液30mLを加えて1時間撹拌した。反応液を1N塩酸にて酸性にし、減圧濃縮した。濃縮液を炭酸カリウムにて塩基性にし、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。かくして得られた生成物を、シリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル=4:1)で精製して、212mgの(6-エチニルピリジン-2-イル)メタノールを得た。
白色粉末
1H-NMR (CDCl3) δ: 7.67 (1H, t, J = 7.8 Hz), 7.40 (1H, d, J = 7.8 Hz), 7.28 (1H, d, J = 7.8 Hz), 4.76 (2H, d, J = 5.1 Hz), 3.38 (1H, t, J = 5.1 Hz), 3.18 (1H, s)。
Reference example 4
(1) Acetic acid 6-bromopyridin-2-ylmethyl ester 2.3 g, trimethylsilylacetylene 1.18 g, bis (triphenylphosphine) palladium chloride (II) 210 mg, copper (I) iodide 114 mg and triethylamine 12 mL in an eggplant type flask And heated to reflux in an argon atmosphere for 5 hours. The reaction mixture was allowed to cool and then dried under reduced pressure, water was added, and the mixture was extracted with ethyl acetate. The organic layer was concentrated under reduced pressure, and 7 mL of methanol and 30 mL of 1N aqueous potassium hydroxide solution were added to the concentrate, followed by stirring for 1 hour. The reaction was acidified with 1N hydrochloric acid and concentrated under reduced pressure. The concentrate was basified with potassium carbonate and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The product thus obtained was purified by silica gel column chromatography (hexane-ethyl acetate = 4: 1) to obtain 212 mg of (6-ethynylpyridin-2-yl) methanol.
White powder
1 H-NMR (CDCl 3 ) δ: 7.67 (1H, t, J = 7.8 Hz), 7.40 (1H, d, J = 7.8 Hz), 7.28 (1H, d, J = 7.8 Hz), 4.76 (2H, d, J = 5.1 Hz), 3.38 (1H, t, J = 5.1 Hz), 3.18 (1H, s).

(2) (6-エチニルピリジン-2-イル)メタノール320mgおよびモルホリン1gをエタノール3mLに溶解し、アルゴン雰囲気下に24時間加熱還流した。反応液を放冷後、エタノールを減圧留去し、残渣に水酸化ナトリウム水溶液を加えて塩基性とし、クロロホルム抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム−メタノール−アンモニア水=200:10:1)で精製して、122mgの[6-(2-モルホリン-4-イルエチル)ピリジン-2-イル]メタノールを得た。
黄色油状物
1H-NMR (CDCl3) δ: 7.60 (1H, t, J = 7.8 Hz), 7.08 (1H, d, J = 7.8 Hz), 7.03 (1H, d, J = 7.8 Hz), 4.72 (2H, s), 3.73 (4H, t, J = 4.5 Hz), 3.00 (2H, dd, J = 10, 8.7 Hz), 2.77 (2H, dd, J = 10, 8.7 Hz), 2.53 (4H, t, J = 4.5 Hz)。
(2) 320 mg of (6-ethynylpyridin-2-yl) methanol and 1 g of morpholine were dissolved in 3 mL of ethanol and heated to reflux for 24 hours under an argon atmosphere. After allowing the reaction solution to cool, ethanol was distilled off under reduced pressure, and the residue was made basic by adding an aqueous sodium hydroxide solution and extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (chloroform-methanol-aqueous ammonia = 200: 10: 1) to obtain 122 mg of [6- (2-morpholin-4-ylethyl) pyridin-2-yl] methanol.
Yellow oil
1 H-NMR (CDCl 3 ) δ: 7.60 (1H, t, J = 7.8 Hz), 7.08 (1H, d, J = 7.8 Hz), 7.03 (1H, d, J = 7.8 Hz), 4.72 (2H, s), 3.73 (4H, t, J = 4.5 Hz), 3.00 (2H, dd, J = 10, 8.7 Hz), 2.77 (2H, dd, J = 10, 8.7 Hz), 2.53 (4H, t, J = 4.5 Hz).

(3) [6-(2-モルホリン-4-イルエチル)ピリジン-2-イル]メタノール122mgおよびジイソプロピルエチルアミン104mgをジクロロメタン2.5mLに溶解し、溶解液に氷冷下にメタンスルホン酸クロリド47μLを滴下し、室温で終夜撹拌した。反応混合物から溶媒を減圧留去後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム−メタノール−アンモニア水=300:10:1)で精製して、80mgの4-[2-(6-クロロメチルピリジン-2-イル)エチル]モルホリンを得た。
黄色油状物
1H-NMR (CDCl3) δ: 7.62 (1H, t, J = 7.8 Hz), 7.30 (1H, d, J = 7.8 Hz), 7.12 (1H, d, J = 7.8 Hz), 4.64 (2H, s), 3.72 (4H, t, J = 4.8 Hz), 2.98 (2H, dd, J = 10, 8.7 Hz), 2.74 (2H, dd, J = 10, 8.7 Hz), 2.53 (4H, t, J = 4.8 Hz)。
(3) 122 mg of [6- (2-morpholin-4-ylethyl) pyridin-2-yl] methanol and 104 mg of diisopropylethylamine were dissolved in 2.5 mL of dichloromethane, and 47 μL of methanesulfonic acid chloride was added dropwise to the solution under ice cooling. And stirred at room temperature overnight. After evaporating the solvent from the reaction mixture under reduced pressure, the residue was purified by silica gel column chromatography (chloroform-methanol-aqueous ammonia = 300: 10: 1) to obtain 80 mg of 4- [2- (6-chloromethylpyridine-2). -Yl) ethyl] morpholine was obtained.
Yellow oil
1 H-NMR (CDCl 3 ) δ: 7.62 (1H, t, J = 7.8 Hz), 7.30 (1H, d, J = 7.8 Hz), 7.12 (1H, d, J = 7.8 Hz), 4.64 (2H, s), 3.72 (4H, t, J = 4.8 Hz), 2.98 (2H, dd, J = 10, 8.7 Hz), 2.74 (2H, dd, J = 10, 8.7 Hz), 2.53 (4H, t, J = 4.8 Hz).

参考例5
(1) 6-(t-ブチルジメチルシラニルオキシメチル)ピリジン-2-カルボキシアルデヒド4.29gをDMF50mLに溶解し、溶解液に(カルボエトキシメチレン)トリフェニルホスホラン7.14gを加え、室温で1時間攪拌した。反応液を氷水にあけ、酢酸エチル抽出した。有機層を水洗し、無水硫酸マグネシウムで乾燥し、減圧乾固した。残渣にヘキサン−酢酸エチル (5:1)混液100mLを加え、不溶物を濾去し、濾液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル=10:1)で精製して、5.45gの3-[6-(t-ブチルジメチルシラニルオキシメチル)ピリジン-2-イル]アクリル酸エチルエステルを得た。
淡黄色油状物
1H-NMR (CDCl3) δ: 7.72 (1H, t, J = 7.5 Hz), 7.66 (1H, d, J = 15.6 Hz), 7.49 (1H, d, J = 7.5 Hz), 7.29 (1H, d, J = 7.5 Hz), 6.88 (1H, d, J = 15.6 Hz), 4.83 (2H, s), 4.27 (2H, q, J = 7.2 Hz), 1.33 (3H, t, J = 7.2 Hz), 0.97 (9H, s), 0.13 (6H, s)。
Reference Example 5
(1) 6.29 g of 6- (t-butyldimethylsilanyloxymethyl) pyridine-2-carboxaldehyde was dissolved in 50 mL of DMF, and 7.14 g of (carboethoxymethylene) triphenylphosphorane was added to the solution, and the mixture was stirred at room temperature for 1 hour. Stir. The reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with water, dried over anhydrous magnesium sulfate, and evaporated to dryness. To the residue was added 100 mL of a hexane-ethyl acetate (5: 1) mixture, the insoluble material was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane-ethyl acetate = 10: 1) to obtain 5.45 g of 3- [6- (t-butyldimethylsilanyloxymethyl) pyridin-2-yl] acrylic acid ethyl ester. Obtained.
Pale yellow oil
1 H-NMR (CDCl 3 ) δ: 7.72 (1H, t, J = 7.5 Hz), 7.66 (1H, d, J = 15.6 Hz), 7.49 (1H, d, J = 7.5 Hz), 7.29 (1H, d, J = 7.5 Hz), 6.88 (1H, d, J = 15.6 Hz), 4.83 (2H, s), 4.27 (2H, q, J = 7.2 Hz), 1.33 (3H, t, J = 7.2 Hz) , 0.97 (9H, s), 0.13 (6H, s).

(2) 3-[6-(t-ブチルジメチルシラニルオキシメチル)ピリジン-2-イル]アクリル酸エチルエステル5.45gをエタノール100mLに溶解し、溶解液に二酸化白金200mgを加え、常圧の水素下に、室温で5時間攪拌した。反応液の雰囲気を窒素で置換後、反応液から触媒を濾去し、溶媒を留去して、5.07gの3-[6-(t-ブチルジメチルシラニルオキシメチル)ピリジン-2-イル]プロピオン酸エチルエステルを得た。
淡黄色油状物
1H-NMR (CDCl3) δ: 7.60 (1H, t, J = 7.5 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.03 (1H, d, J = 7.5 Hz), 4.79 (2H, s), 4.12 (2H, q, J = 7.2 Hz), 3.07 (2H, t, J = 7.5 Hz), 2.75 (2H, t, J = 7.5 Hz), 1.23 (3H, t, J = 7.2 Hz), 0.96 (9H, s), 0.11 (6H, s)。
(2) 3- [6- (t-Butyldimethylsilanyloxymethyl) pyridin-2-yl] acrylic acid ethyl ester (5.45 g) was dissolved in ethanol (100 mL), and platinum dioxide (200 mg) was added to the solution. The mixture was stirred at room temperature for 5 hours. After replacing the atmosphere of the reaction solution with nitrogen, the catalyst was filtered off from the reaction solution, the solvent was distilled off, and 5.07 g of 3- [6- (t-butyldimethylsilanyloxymethyl) pyridin-2-yl] Propionic acid ethyl ester was obtained.
Pale yellow oil
1 H-NMR (CDCl 3 ) δ: 7.60 (1H, t, J = 7.5 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.03 (1H, d, J = 7.5 Hz), 4.79 (2H, s), 4.12 (2H, q, J = 7.2 Hz), 3.07 (2H, t, J = 7.5 Hz), 2.75 (2H, t, J = 7.5 Hz), 1.23 (3H, t, J = 7.2 Hz) , 0.96 (9H, s), 0.11 (6H, s).

(3) 3-[6-(t-ブチルジメチルシラニルオキシメチル)ピリジン-2-イル]プロピオン酸エチルエステル5.07gをエタノール100mLに溶解し、この液に1N水酸化ナトリウム水溶液23.5mLを加えて、室温で2時間攪拌した。反応混合物を約半量まで減圧濃縮し、濃縮物に氷水を加え、塩酸で弱酸性にした後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム−メタノール=10:1)で精製して、2.77gの3-[6-(t-ブチルジメチルシラニルオキシメチル)ピリジン-2-イル]プロピオン酸を得た。
無色粉末
1H-NMR (CDCl3) δ: 7.77 (1H, t, J = 7.5 Hz), 7.47 (1H, d, J = 7.5 Hz), 7.13 (1H, d, J = 7.5 Hz), 4.84 (2H, s), 3.15 (2H, t, J = 6.0 Hz), 2.82 (2H, t, J = 6.0 Hz), 0.96 (9H, s), 0.14 (6H, s)。
(3) Dissolve 5.07 g of 3- [6- (t-butyldimethylsilanyloxymethyl) pyridin-2-yl] propionic acid ethyl ester in 100 mL of ethanol and add 23.5 mL of 1N aqueous sodium hydroxide solution to this solution. And stirred at room temperature for 2 hours. The reaction mixture was concentrated to about half volume under reduced pressure, ice water was added to the concentrate, and the mixture was made weakly acidic with hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform-methanol = 10: 1) to obtain 2.77 g of 3- [6- (t-butyldimethylsilanyloxymethyl) pyridin-2-yl] propionic acid.
Colorless powder
1 H-NMR (CDCl 3 ) δ: 7.77 (1H, t, J = 7.5 Hz), 7.47 (1H, d, J = 7.5 Hz), 7.13 (1H, d, J = 7.5 Hz), 4.84 (2H, s), 3.15 (2H, t, J = 6.0 Hz), 2.82 (2H, t, J = 6.0 Hz), 0.96 (9H, s), 0.14 (6H, s).

(4) 3-[6-(t-ブチルジメチルシラニルオキシメチル)ピリジン-2-イル]プロピオン酸1.65gを塩化メチレン20mLに溶解し、溶解液にモルホリン584μL、WSC 1.6gおよびトリエチルアミン1.56mLを加え、室温で終夜攪拌した。反応混合物をクロロホルムで希釈し、希釈物を分液ロートに移して水洗した。有機層を無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム−メタノール=30:1)で精製して、1.91gの3-[6-(t-ブチルジメチルシラニルオキシメチル)ピリジン-2-イル]-1-モルホリン-4-イルプロパン-1-オンを得た。
黄色油状物
1H-NMR (CDCl3) δ: 7.60 (1H, t, J = 7.5 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.08 (1H, d, J = 7.5 Hz), 4.79 (2H, s), 3.62-3.43 (8H, m), 3.11 (2H, t, J = 7.5 Hz), 2.77 (2H, t, J = 7.5 Hz), 0.96(9H, s), 0.12(6H, s)。
(4) 1.65 g of 3- [6- (t-butyldimethylsilanyloxymethyl) pyridin-2-yl] propionic acid is dissolved in 20 mL of methylene chloride, and 584 μL of morpholine, 1.6 g of WSC and 1.56 mL of triethylamine are dissolved in the solution. In addition, the mixture was stirred overnight at room temperature. The reaction mixture was diluted with chloroform, and the diluted solution was transferred to a separatory funnel and washed with water. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform-methanol = 30: 1) to obtain 1.91 g of 3- [6- (t-butyldimethylsilanyloxymethyl) pyridin-2-yl] -1-morpholine-4 -Ylpropan-1-one was obtained.
Yellow oil
1 H-NMR (CDCl 3 ) δ: 7.60 (1H, t, J = 7.5 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.08 (1H, d, J = 7.5 Hz), 4.79 (2H, s), 3.62-3.43 (8H, m), 3.11 (2H, t, J = 7.5 Hz), 2.77 (2H, t, J = 7.5 Hz), 0.96 (9H, s), 0.12 (6H, s).

(5) LiAlH4 420mgのTHF20mL懸濁液に、氷冷下に3-[6-(t-ブチルジメチルシラニルオキシメチル)ピリジン-2-イル]-1-モルホリン-4-イルプロパン-1-オン1.9gのTHF30mL溶液を滴下した。反応混合物を室温で3時間撹拌後、水を加えて剰余のLiAlH4を失活させ、ハイフロスーパーセル(ナカライテスク社製)で濾過し、分液した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=40:1)で精製して、760mgの4-{3-[6-(t-ブチルジメチルシラニルオキシメチル)ピリジン-2-イル]プロピル}モルホリンを得た。 (5) LiAlH 4 420 mg in a THF 20 mL suspension under ice-cooling, 3- [6- (t-butyldimethylsilanyloxymethyl) pyridin-2-yl] -1-morpholin-4-ylpropane-1- 1.9 g of THF 30 mL solution was added dropwise. The reaction mixture was stirred at room temperature for 3 hours, water was added to deactivate excess LiAlH 4, and the mixture was filtered through Hyflo Supercell (manufactured by Nacalai Tesque) and separated. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (methylene chloride-ethanol = 40: 1) to obtain 760 mg of 4- {3- [6- (t-butyldimethylsilanyloxymethyl) pyridine- 2-yl] propyl} morpholine was obtained.

次いで、4-{3-[6-(t-ブチルジメチルシラニルオキシメチル)ピリジン-2-イル]プロピル}モルホリン760mgのTHF4mL溶液に、氷冷下に、1 mol/LのTBAF/THF溶液4.34mLを滴下した。室温で2時間撹拌後、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=40:1)で精製して、495mgの[6-(3-モルホリン-4-イルプロピル)ピリジン-2-イル]メタノールを得た。   Subsequently, 4- {3- [6- (t-butyldimethylsilanyloxymethyl) pyridin-2-yl] propyl} morpholine 760 mg in THF 4 mL solution was added to a 1 mol / L TBAF / THF solution 4.34 under ice cooling. mL was added dropwise. After stirring at room temperature for 2 hours, the solvent was distilled off, and the residue was purified by silica gel column chromatography (methylene chloride-ethanol = 40: 1) to obtain 495 mg of [6- (3-morpholin-4-ylpropyl) pyridine. -2-yl] methanol was obtained.

更に、得られた[6-(3-モルホリン-4-イルプロピル)ピリジン-2-イル]メタノール495mgと、ジイソプロピルエチルアミン104mgとを塩化メチレンに溶解して溶液20mLを調製し、この溶液中に、氷冷下に、メタンスルホン酸クロリド0.18mLを滴下し、室温で終夜撹拌した。溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=40:1)で精製して、290mgの4-[3-(6-クロロメチルピリジン-2-イル)プロピル]モルホリンを得た。
黄色粉末
1H-NMR (CDCl3) δ: 7.57 (1H, t, J = 7.8 Hz), 7.05(1H, d, J = 7.8 Hz), 7.02 (1H, d, J= 7.8 Hz), 4.65 (2H, s), 3.72 (4H, t, J = 4.8 Hz), 2.83 (2H, t, J = 7.8 Hz), 2.47-2.23 (6H, m), 1.96 (2H, quint., J= 7.8 Hz)。
Further, 495 mg of the obtained [6- (3-morpholin-4-ylpropyl) pyridin-2-yl] methanol and 104 mg of diisopropylethylamine were dissolved in methylene chloride to prepare a 20 mL solution. Under ice cooling, 0.18 mL of methanesulfonic acid chloride was added dropwise and stirred overnight at room temperature. After the solvent was distilled off, the residue was purified by silica gel column chromatography (methylene chloride-ethanol = 40: 1) to obtain 290 mg of 4- [3- (6-chloromethylpyridin-2-yl) propyl] morpholine. It was.
Yellow powder
1 H-NMR (CDCl 3 ) δ: 7.57 (1H, t, J = 7.8 Hz), 7.05 (1H, d, J = 7.8 Hz), 7.02 (1H, d, J = 7.8 Hz), 4.65 (2H, s), 3.72 (4H, t, J = 4.8 Hz), 2.83 (2H, t, J = 7.8 Hz), 2.47-2.23 (6H, m), 1.96 (2H, quint., J = 7.8 Hz).

参考例6
2,6-ビス(クロロメチル)ピリジン352mgをエタノール4mLに懸濁させ、この懸濁液に氷冷下にN-(t-ブトキシカルボニル)ピペラジン372mgを加え、室温で終夜攪拌した。反応混合物を減圧濃縮し、残留物に水を加え、クロロホルム抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=30:1)で精製して、250mgの4-(6-クロロメチルピリジン-2-イルメチル)ピペラジン-1-カルボン酸 t-ブチルエステルを得た。
無色油状物
1H-NMR (CDCl3) δ: 7.69 (1H, t, J = 7.8 Hz), 7.37 (1H, dd, J = 7.8, 2.1 Hz), 4.66 (2H, s), 3.67 (2H, s), 3.45 (4H, t, J = 5.1 Hz), 2.45 (4H, t, J = 5.1 Hz), 1.48 (9H, s)。
Reference Example 6
352 mg of 2,6-bis (chloromethyl) pyridine was suspended in 4 mL of ethanol, and 372 mg of N- (t-butoxycarbonyl) piperazine was added to the suspension under ice cooling, followed by stirring at room temperature overnight. The reaction mixture was concentrated under reduced pressure, water was added to the residue, and the mixture was extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (methylene chloride-ethanol = 30: 1) to obtain 250 mg of 4- (6-chloromethylpyridin-2-ylmethyl) piperazine-1-carboxylic acid t-butyl ester .
Colorless oil
1 H-NMR (CDCl 3 ) δ: 7.69 (1H, t, J = 7.8 Hz), 7.37 (1H, dd, J = 7.8, 2.1 Hz), 4.66 (2H, s), 3.67 (2H, s), 3.45 (4H, t, J = 5.1 Hz), 2.45 (4H, t, J = 5.1 Hz), 1.48 (9H, s).

参考例7
(1) 6-メチルピコリン酸1.37gおよびモルホリン870mgをDMF30mLに溶解し、溶解液中に氷冷下に攪拌しながらHOBt1.6gを加えた。混合物を同温で15分間攪拌後、更にWSC2.3gを加え、室温で終夜攪拌した。反応混合物を減圧濃縮し、残留物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−トリエチルアミン=900:30:1)で精製して、1.71 gの(6-メチルピリジン-2-イル)モルホリン-4-イルメタノンを得た。
無色油状物
1H-NMR (CDCl3) δ: 7.67 (1H, t, J = 7.8 Hz), 7.41 (1H, d, J = 7.8 Hz), 7.20 (1H, d, J = 7.8 Hz), 3.80 (4H, br s), 3.67-3.58 (4H, m), 2.57 (3H, s)。
Reference Example 7
(1) 1.37 g of 6-methylpicolinic acid and 870 mg of morpholine were dissolved in 30 mL of DMF, and 1.6 g of HOBt was added to the solution while stirring under ice cooling. The mixture was stirred at the same temperature for 15 minutes, then 2.3 g of WSC was added, and the mixture was stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure, water was added to the residue, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The obtained residue was purified by silica gel column chromatography (methylene chloride-methanol-triethylamine = 900: 30: 1) to obtain 1.71 g of (6-methylpyridin-2-yl) morpholin-4-ylmethanone. .
Colorless oil
1 H-NMR (CDCl 3 ) δ: 7.67 (1H, t, J = 7.8 Hz), 7.41 (1H, d, J = 7.8 Hz), 7.20 (1H, d, J = 7.8 Hz), 3.80 (4H, br s), 3.67-3.58 (4H, m), 2.57 (3H, s).

(2) (6-メチルピリジン-2-イル)モルホリン-4-イルメタノン1.38gをクロロホルム10mLに溶解し、この液にm-CPBA1.77gのクロロホルム23mL溶液を滴下し、混合物を室温で1日間攪拌した。反応混合物に10%亜硫酸ナトリウム水溶液15mLを加えて分液した。有機層を飽和重曹水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−トリエチルアミン=1000:25:1)で精製して、1.26 gの(6-メチル-1-オキシピリジン-2-イル)モルホリン-4-イルメタノンを得た。
白色粉末
1H-NMR (CDCl3) δ: 7.31-7.18 (3H, m), 3.94-3.64 (6H, m), 3.30-3.20 (1H, m), 3.18-3.12 (1H, m), 2.52 (3H, s)。
(2) Dissolve 1.38 g of (6-methylpyridin-2-yl) morpholin-4-ylmethanone in 10 mL of chloroform, add dropwise 23 mL of m-CPBA1.77 g of chloroform in this solution, and stir the mixture at room temperature for 1 day did. The reaction mixture was partitioned by adding 15 mL of a 10% aqueous sodium sulfite solution. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The obtained residue was purified by silica gel column chromatography (methylene chloride-methanol-triethylamine = 1000: 25: 1) to obtain 1.26 g of (6-methyl-1-oxypyridin-2-yl) morpholine-4- Illmethanone was obtained.
White powder
1 H-NMR (CDCl 3 ) δ: 7.31-7.18 (3H, m), 3.94-3.64 (6H, m), 3.30-3.20 (1H, m), 3.18-3.12 (1H, m), 2.52 (3H, s).

(3) (6-メチル-1-オキシピリジン-2-イル)モルホリン-4-イルメタノン1.26gに無水酢酸 0.53mLを加え、混合物を100℃で1時間攪拌した。反応混合物に飽和重曹水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−トリエチルアミン=1000:25:1)で精製して、1.13gの酢酸 6-(モルホリン-4-カルボニル)ピリジン-2-イルメチルエステルを得た。
黄色油状物
1H-NMR (CDCl3) δ: 7.82 (1H, t, J = 7.8 Hz), 7.61 (1H, d, J = 7.8 Hz), 7.42 (1H, d, J = 7.8 Hz), 5.22 (2H, s), 3.82 (4H, br s), 3.67-3.65 (4H, m), 2.17 (3H, s)。
(3) 0.53 mL of acetic anhydride was added to 1.26 g of (6-methyl-1-oxypyridin-2-yl) morpholin-4-ylmethanone, and the mixture was stirred at 100 ° C. for 1 hour. Saturated aqueous sodium hydrogen carbonate was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (methylene chloride-methanol-triethylamine = 1000: 25: 1) to obtain 1.13 g of acetic acid 6- (morpholin-4-carbonyl) pyridin-2-ylmethyl ester.
Yellow oil
1 H-NMR (CDCl 3 ) δ: 7.82 (1H, t, J = 7.8 Hz), 7.61 (1H, d, J = 7.8 Hz), 7.42 (1H, d, J = 7.8 Hz), 5.22 (2H, s), 3.82 (4H, br s), 3.67-3.65 (4H, m), 2.17 (3H, s).

(4) 酢酸 6-(モルホリン-4-カルボニル)ピリジン-2-イルメチルエステル1.13gに水酸化カリウム233mgおよびエタノール1.5mLを加え、4時間加熱還流した。反応混合物を減圧濃縮し、濃縮物に水を加えてクロロホルムで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(クロロホルム−メタノール−トリエチルアミン=500:25:1)で精製して、530mgの(6-ヒドロキシメチルピリジン-2-イル)モルホリン-4-イルメタノンを得た。
白色粉末
1H-NMR (CDCl3) δ: 7.81 (1H, t, J = 7.8 Hz), 7.57 (1H, d, J = 7.8 Hz), 7.33 (1H, d, J = 7.8 Hz), 4.79 (2H, s), 3.82 (4H, br s), 3.68 (2H, t, J = 4.8 Hz), 3.58 (2H, t, J = 4.8 Hz)。
(4) To 1.13 g of acetic acid 6- (morpholin-4-carbonyl) pyridin-2-ylmethyl ester were added 233 mg of potassium hydroxide and 1.5 mL of ethanol, and the mixture was heated to reflux for 4 hours. The reaction mixture was concentrated under reduced pressure, water was added to the concentrate, and the mixture was extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (chloroform-methanol-triethylamine = 500: 25: 1) to obtain 530 mg of (6-hydroxymethylpyridin-2-yl) morpholin-4-ylmethanone.
White powder
1 H-NMR (CDCl 3 ) δ: 7.81 (1H, t, J = 7.8 Hz), 7.57 (1H, d, J = 7.8 Hz), 7.33 (1H, d, J = 7.8 Hz), 4.79 (2H, s), 3.82 (4H, br s), 3.68 (2H, t, J = 4.8 Hz), 3.58 (2H, t, J = 4.8 Hz).

(5) (6-ヒドロキシメチルピリジン-2-イル)モルホリン-4-イルメタノン530mgおよびジイソプロピルエチルアミン614mgの塩化メチレン10 mL溶液に、氷冷下にメタンスルホン酸クロリド0.28 mLを滴下し、混合物を室温で終夜攪拌した。反応混合物を減圧下に濃縮し、残留物をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=50:1)で精製して、570mgの(6-クロロメチルピリジン-2-イル)モルホリン-4-イルメタノンを得た。
黄色油状物
1H-NMR (CDCl3) δ: 7.84 (1H, t, J = 7.8 Hz), 7.70 (1H, d, J = 7.8 Hz), 7.52 (1H, d, J = 7.8 Hz), 4.65 (2H, s), 3.82 (4H, br s), 3.69-3.65 (4H, m)。
(5) To a solution of (6-hydroxymethylpyridin-2-yl) morpholin-4-ylmethanone (530 mg) and diisopropylethylamine (614 mg) in methylene chloride (10 mL) was added dropwise methanesulfonic acid chloride (0.28 mL) under ice cooling, and the mixture was stirred at room temperature. Stir overnight. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (methylene chloride-ethanol = 50: 1) to obtain 570 mg of (6-chloromethylpyridin-2-yl) morpholin-4-ylmethanone. Obtained.
Yellow oil
1 H-NMR (CDCl 3 ) δ: 7.84 (1H, t, J = 7.8 Hz), 7.70 (1H, d, J = 7.8 Hz), 7.52 (1H, d, J = 7.8 Hz), 4.65 (2H, s), 3.82 (4H, br s), 3.69-3.65 (4H, m).

参考例8
(1) 6-メチルピリジン-2-カルボン酸 t-ブチルエステル3.03gをクロロホルム30mLに溶解し、得られた液にm-CPBA3.96gのクロロホルム45mL溶液を滴下し、混合物を室温で終夜攪拌した。反応液を分液ロートに移し、10%Na2SO3水溶液35mLを加えて分液した。有機層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=30:1)で精製して、3.28 gの6-メチル-1-オキシピリジン-2-カルボン酸 t-ブチルエステルを得た。
無色油状物
1H-NMR (CDCl3) δ: 7.29-7.13 (3H, m), 2.66 (3H, s), 1.63 (9H, s).
(2) 6-メチル-1-オキシピリジン-2-カルボン酸 t-ブチルエステル3.28gに無水酢酸1.5mLを加え、混合物を100℃で1時間攪拌した。反応混合物に飽和炭酸水素ナトリウム水溶液を加えて中和し、クロロホルム抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=30:1)で精製して、6-アセトキシメチルピリジン-2-カルボン酸 t-ブチルエステルを得た。
黄色油状物
1H-NMR (CDCl3) δ: 7.94 (1H, d, J = 7.5 Hz), 7.80 (1H, t, J = 7.5 Hz), 7.50 (1H, d, J= 7.5 Hz), 5.32 (2H, s), 2.17 (3H, s), 1.58 (9H, s)。
Reference Example 8
(1) 3.03 g of 6-methylpyridine-2-carboxylic acid t-butyl ester was dissolved in 30 mL of chloroform, and a solution of m-CPBA 3.96 g in 45 mL of chloroform was added dropwise to the resulting solution, and the mixture was stirred at room temperature overnight. . The reaction solution was transferred to a separating funnel, and 35 mL of a 10% Na 2 SO 3 aqueous solution was added to separate the solution. The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (methylene chloride-ethanol = 30: 1) to obtain 3.28 g of 6-methyl-1-oxypyridine-2-carboxylic acid t-butyl ester.
Colorless oil
1 H-NMR (CDCl 3 ) δ: 7.29-7.13 (3H, m), 2.66 (3H, s), 1.63 (9H, s).
(2) To 3.28 g of 6-methyl-1-oxypyridine-2-carboxylic acid t-butyl ester was added 1.5 mL of acetic anhydride, and the mixture was stirred at 100 ° C. for 1 hour. The reaction mixture was neutralized with a saturated aqueous sodium hydrogen carbonate solution and extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (methylene chloride-ethanol = 30: 1) to obtain 6-acetoxymethylpyridine-2-carboxylic acid t-butyl ester.
Yellow oil
1 H-NMR (CDCl 3 ) δ: 7.94 (1H, d, J = 7.5 Hz), 7.80 (1H, t, J = 7.5 Hz), 7.50 (1H, d, J = 7.5 Hz), 5.32 (2H, s), 2.17 (3H, s), 1.58 (9H, s).

(3) 6-アセトキシメチルピリジン-2-カルボン酸 t-ブチルエステル3.0gに炭酸カリウム330mg、メタノール20mLおよび水20mLを加え、混合物を室温で3時間撹拌した。メタノールを減圧留去後、クロロホルム抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム−エタノール=50:1)で精製して、6-ヒドロキシメチルピリジン-2-カルボン酸 t-ブチルエステルを得た。
黄色粉末
1H-NMR (CDCl3) δ: 7.95 (1H, d, J = 7.5 Hz), 7.80 (1H, t, J = 7.5 Hz), 7.43 (1H, d, J= 7.5 Hz), 4.83 (2H, d, J = 5.1 Hz), 3.68 (1H, t, J= 5.1 Hz), 1.59 (9H, s)。
(3) To 3.0 g of 6-acetoxymethylpyridine-2-carboxylic acid t-butyl ester were added 330 mg of potassium carbonate, 20 mL of methanol and 20 mL of water, and the mixture was stirred at room temperature for 3 hours. Methanol was distilled off under reduced pressure, followed by extraction with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (chloroform-ethanol = 50: 1) to obtain 6-hydroxymethylpyridine-2-carboxylic acid t-butyl ester.
Yellow powder
1 H-NMR (CDCl 3 ) δ: 7.95 (1H, d, J = 7.5 Hz), 7.80 (1H, t, J = 7.5 Hz), 7.43 (1H, d, J = 7.5 Hz), 4.83 (2H, d, J = 5.1 Hz), 3.68 (1H, t, J = 5.1 Hz), 1.59 (9H, s).

(4) 6-ヒドロキシメチルピリジン-2-カルボン酸 t-ブチルエステル1.34gおよびジイソプロピルエチルアミン1.24gを塩化メチレン30mLに溶解し、この液に氷冷下にメタンスルホニルクロリド0.54mLを滴下し、室温で終夜攪拌した。反応混合液から溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル=5:1)で精製して、6-クロロメチルピリジン-2-カルボン酸 t-ブチルエステルを得た。
黄色粉末
1H-NMR (CDCl3) δ: 7.96 (1H, d, J = 7.5 Hz), 7.83 (1H, t, J = 7.5 Hz), 7.67 (1H, d, J= 7.5 Hz), 4.80 (2H, s), 1.59 (9H, s)。
(4) Dissolve 1.34 g of 6-hydroxymethylpyridine-2-carboxylic acid t-butyl ester and 1.24 g of diisopropylethylamine in 30 mL of methylene chloride, add 0.54 mL of methanesulfonyl chloride dropwise to this solution under ice cooling, and Stir overnight. After the solvent was distilled off from the reaction mixture, the residue was purified by silica gel column chromatography (hexane-ethyl acetate = 5: 1) to obtain 6-chloromethylpyridine-2-carboxylic acid t-butyl ester.
Yellow powder
1 H-NMR (CDCl 3 ) δ: 7.96 (1H, d, J = 7.5 Hz), 7.83 (1H, t, J = 7.5 Hz), 7.67 (1H, d, J = 7.5 Hz), 4.80 (2H, s), 1.59 (9H, s).

参考例9
(1) 6-メチルピコリン酸2.15gおよびt-ブチル 1-ピペラジンカルボキシレート3.21gをDMF45mLに溶解し、溶解液に氷冷下にHOBt4.24gを加えて15分間攪拌後、更にWSC3.0gを加えて室温で終夜撹拌した。反応混合液から溶媒を減圧留去後、該液に水を加えて酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=30:1)で精製して、4.57gの4-(6-メチルピリジン-2-カルボニル)ピペラジン-1-カルボン酸 t-ブチルエステルを得た。
無色油状物
1H-NMR (CDCl3) δ: 7.67 (1H, t, J = 7.8 Hz), 7.35 (1H, d, J = 7.8 Hz), 7.21 (1H, d, J = 7.8 Hz), 3.77 (2H, t, J = 4.8 Hz), 3.55 (4H, t, J = 4.8 Hz), 3.46 (2H, t, J = 4.8 Hz), 2.57 (3H, s), 1.47 (9H, s)。
Reference Example 9
(1) Dissolve 6.15 g of 6-methylpicolinic acid and 3.21 g of t-butyl 1-piperazine carboxylate in 45 mL of DMF, add 4.24 g of HOBt to the solution under ice cooling, stir for 15 minutes, and then add 3.0 g of WSC. In addition, the mixture was stirred at room temperature overnight. The solvent was distilled off from the reaction mixture under reduced pressure, water was added to the solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (methylene chloride-ethanol = 30: 1) to obtain 4.57 g of 4- (6-methylpyridine-2-carbonyl) piperazine-1-carboxylic acid t-butyl ester.
Colorless oil
1 H-NMR (CDCl 3 ) δ: 7.67 (1H, t, J = 7.8 Hz), 7.35 (1H, d, J = 7.8 Hz), 7.21 (1H, d, J = 7.8 Hz), 3.77 (2H, t, J = 4.8 Hz), 3.55 (4H, t, J = 4.8 Hz), 3.46 (2H, t, J = 4.8 Hz), 2.57 (3H, s), 1.47 (9H, s).

(2) 4-(6-メチルピリジン-2-カルボニル)ピペラジン-1-カルボン酸 t-ブチルエステル 4.57gをクロロホルム30mLに溶解し、得られた液にm-CPBA3.9gのクロロホルム40mL溶液をゆっくり滴下した。その後、混合液を室温で1日撹拌後、反応混合物に10%亜硫酸ナトリウム水溶液35mLを加えて分液した。有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=40:1)で精製して、4.2gの4-(6-メチル-1-オキシピリジン-2-カルボニル)ピペラジン-1-カルボン酸 t-ブチルエステルを得た。
白色粉末
1H-NMR (CDCl3) δ: 7.31-7.17 (3H, m), 3.91 (1H, br s), 3.62-3.56 (4H, m), 3.45 (1H, br s), 3.26 (1H, br s), 3.13 (1H, br s), 2.51 (3H, s), 1.47 (9H, s)。
(2) 4- (6-Methylpyridine-2-carbonyl) piperazine-1-carboxylic acid t-butyl ester (4.57 g) was dissolved in chloroform (30 mL), and m-CPBA (3.9 g) in chloroform (40 mL) was slowly added to the resulting solution. It was dripped. Thereafter, the mixture was stirred at room temperature for 1 day, and 35 mL of a 10% aqueous sodium sulfite solution was added to the reaction mixture for liquid separation. The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (methylene chloride-ethanol = 40: 1) to give 4.2 g of 4- (6-methyl-1-oxypyridine-2-carbonyl) piperazine-1-carboxylic acid t-butyl ester Got.
White powder
1 H-NMR (CDCl 3 ) δ: 7.31-7.17 (3H, m), 3.91 (1H, br s), 3.62-3.56 (4H, m), 3.45 (1H, br s), 3.26 (1H, br s ), 3.13 (1H, br s), 2.51 (3H, s), 1.47 (9H, s).

(3) 4-(6-メチル-1-オキシピリジン-2-カルボニル)ピペラジン-1-カルボン酸 t-ブチルエステル4.2gに無水酢酸1.2mLを加え、混合物を100℃で1時間攪拌した。冷後、反応液に飽和炭酸水素ナトリウム水溶液を加えて中和し、クロロホルム抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=40:1)で精製して、3.7gの4-(6-アセトキシメチルピリジン-2-カルボニル)ピペラジン-1-カルボン酸 t-ブチルエステルを得た。
無色油状物
1H-NMR (CDCl3) δ: 7.82 (1H, t, J = 7.8 Hz), 7.60 (1H, d, J= 7.8 Hz), 7.40 (1H, d, J = 7.8 Hz), 5.22 (2H, s), 3.77 (2H, t, J = 4.8 Hz), 3.59-3.56 (4H, br), 3.69 (2H, t, J = 4.8 Hz), 2.17 (3H, s), 1.47 (9H, s)。
(3) To 4.2 g of 4- (6-methyl-1-oxypyridine-2-carbonyl) piperazine-1-carboxylic acid t-butyl ester was added 1.2 mL of acetic anhydride, and the mixture was stirred at 100 ° C. for 1 hour. After cooling, the reaction solution was neutralized with a saturated aqueous sodium hydrogen carbonate solution and extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (methylene chloride-ethanol = 40: 1) to obtain 3.7 g of 4- (6-acetoxymethylpyridine-2-carbonyl) piperazine-1-carboxylic acid t-butyl ester .
Colorless oil
1 H-NMR (CDCl 3 ) δ: 7.82 (1H, t, J = 7.8 Hz), 7.60 (1H, d, J = 7.8 Hz), 7.40 (1H, d, J = 7.8 Hz), 5.22 (2H, s), 3.77 (2H, t, J = 4.8 Hz), 3.59-3.56 (4H, br), 3.69 (2H, t, J = 4.8 Hz), 2.17 (3H, s), 1.47 (9H, s).

(4) 4-(6-アセトキシメチルピリジン-2-カルボニル)ピペラジン-1-カルボン酸 t-ブチルエステル3.7gのメタノール10mL溶液に水酸化カリウム840mgを加えて4時間加熱還流した。溶媒を留去後、溶液中に水を加え、クロロホルムで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=50:1)で精製して、1.26gの4-(6-ヒドロキシメチルピリジン-2-カルボニル)ピペラジン-1-カルボン酸 t-ブチルエステルを得た。
無色油状物
1H-NMR (CDCl3) δ: 7.81 (1H, t, J = 7.8 Hz), 7.55 (1H, d, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 4.79 (2H, s), 3.79 (2H, t, J = 4.8 Hz), 3.58-3.45 (6H, br), 1.47 (9H, s)。
(4) 840 mg of potassium hydroxide was added to 10 mL of a methanol solution of 3.7 g of 4- (6-acetoxymethylpyridine-2-carbonyl) piperazine-1-carboxylic acid t-butyl ester, and the mixture was heated to reflux for 4 hours. After distilling off the solvent, water was added to the solution and extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (methylene chloride-ethanol = 50: 1) to obtain 1.26 g of 4- (6-hydroxymethylpyridine-2-carbonyl) piperazine-1-carboxylic acid t-butyl ester .
Colorless oil
1 H-NMR (CDCl 3 ) δ: 7.81 (1H, t, J = 7.8 Hz), 7.55 (1H, d, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 4.79 (2H, s), 3.79 (2H, t, J = 4.8 Hz), 3.58-3.45 (6H, br), 1.47 (9H, s).

(5) 4-(6-ヒドロキシメチルピリジン-2-カルボニル)ピペラジン-1-カルボン酸 t-ブチルエステル1.26gおよびジイソプロピルエチルアミン1.0gを塩化メチレン20mLに溶解し、溶解液に氷冷下にメタンスルホン酸クロリド0.1mLを滴下し、混合物を室温で終夜攪拌した。反応混合物から溶媒を減圧留去後、残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=40:1)で精製して、1.07gの4-(6-クロロメチルピリジン-2-カルボニル)ピペラジン-1-カルボン酸 t-ブチルエステルを得た。
無色油状物
1H-NMR (CDCl3) δ: 7.84 (1H, t, J = 7.8 Hz), 7.60 (1H, d, J = 7.8 Hz), 7.54 (1H, d, J = 7.8 Hz), 4.66 (2H, s), 3.76 (2H, br), 3.57-3.48 (6H, br), 1.47 (9H, s)。
(5) 1.26 g of 4- (6-hydroxymethylpyridine-2-carbonyl) piperazine-1-carboxylic acid t-butyl ester and 1.0 g of diisopropylethylamine are dissolved in 20 mL of methylene chloride, and methanesulfone is added to the solution under ice cooling. 0.1 mL of acid chloride was added dropwise and the mixture was stirred at room temperature overnight. After removing the solvent from the reaction mixture under reduced pressure, the residue was purified by silica gel column chromatography (methylene chloride-ethanol = 40: 1) to give 1.07 g of 4- (6-chloromethylpyridine-2-carbonyl) piperazine-1 -Carboxylic acid t-butyl ester was obtained.
Colorless oil
1 H-NMR (CDCl 3 ) δ: 7.84 (1H, t, J = 7.8 Hz), 7.60 (1H, d, J = 7.8 Hz), 7.54 (1H, d, J = 7.8 Hz), 4.66 (2H, s), 3.76 (2H, br), 3.57-3.48 (6H, br), 1.47 (9H, s).

参考例10
(1) 6-ヒドロキシメチルピリジン-2-カルボアルデヒド15.3gを乾燥DMF250mLに溶解し、溶解液中に(t-ブトキシカルボニルメチレン)トリフェニルホスホラン50gを加え、室温で30分間攪拌した。反応混合物を氷水に投じ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残留物にヘキサン−酢酸エチル(2:1)の混液300mLを加え、不溶物を濾去した。濾液を減圧濃縮し、残留物をシリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル=2:1)で精製して、16.86 gの3-(6-ヒドロキシメチルピリジン-2-イル)トランス-アクリル酸 t-ブチルエステルおよび5.69 gの3-(6-ヒドロキシメチルピリジン-2-イル)シス-アクリル酸 t-ブチルエステルを得た。
trans体 : 無色油状物
1H-NMR (CDCl3) δ: 7.70 (1H, t, J = 7.5 Hz), 7.58 (1H, d, J = 15.6 Hz), 7.31 (1H, d, J = 7.5 Hz), 7.18 (1H, d, J = 7.5 Hz), 6.88 (1H, d, J = 15.6 Hz), 4.77 (2H, d, J = 4.8 Hz), 3.88 (1H, t, J = 4.8 Hz), 1.54 (9H, s)。
cis体 : 無色油状物
1H-NMR (CDCl3) δ: 7.67 (1H, t, J = 7.8 Hz), 7.51 (1H, d, J = 7.8 Hz), 7.14 (1H, d, J = 7.8 Hz), 6.86 (1H, d, J = 12.6 Hz), 6.07 (1H, d, J = 12.6 Hz), 4.74 (2H, d, J = 4.8 Hz), 3.77 (1H, t, J = 4.8 Hz), 1.46 (9H, s)。
Reference Example 10
(1) 15.3 g of 6-hydroxymethylpyridine-2-carbaldehyde was dissolved in 250 mL of dry DMF, and 50 g of (t-butoxycarbonylmethylene) triphenylphosphorane was added to the solution, followed by stirring at room temperature for 30 minutes. The reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. To the residue was added 300 mL of a hexane-ethyl acetate (2: 1) mixture, and the insoluble material was removed by filtration. The filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate = 2: 1) to give 16.86 g of 3- (6-hydroxymethylpyridin-2-yl) trans-acrylic acid t- The butyl ester and 5.69 g of 3- (6-hydroxymethylpyridin-2-yl) cis-acrylic acid t-butyl ester were obtained.
trans form: colorless oil
1 H-NMR (CDCl 3 ) δ: 7.70 (1H, t, J = 7.5 Hz), 7.58 (1H, d, J = 15.6 Hz), 7.31 (1H, d, J = 7.5 Hz), 7.18 (1H, d, J = 7.5 Hz), 6.88 (1H, d, J = 15.6 Hz), 4.77 (2H, d, J = 4.8 Hz), 3.88 (1H, t, J = 4.8 Hz), 1.54 (9H, s) .
cis body: colorless oil
1 H-NMR (CDCl 3 ) δ: 7.67 (1H, t, J = 7.8 Hz), 7.51 (1H, d, J = 7.8 Hz), 7.14 (1H, d, J = 7.8 Hz), 6.86 (1H, d, J = 12.6 Hz), 6.07 (1H, d, J = 12.6 Hz), 4.74 (2H, d, J = 4.8 Hz), 3.77 (1H, t, J = 4.8 Hz), 1.46 (9H, s) .

(2) 3-(6-ヒドロキシメチルピリジン-2-イル)トランス-アクリル酸 t-ブチルエステル(トランス体)16.86gをエタノール200mLに溶解し、溶解液に二酸化白金0.5gを加え、常圧の水素雰囲気下に室温で5時間攪拌した。その後、触媒を濾去し、新たに二酸化白金0.5gを加え、常圧の水素雰囲気下に室温で6時間攪拌した。反応混合物から触媒を濾去し、溶媒を減圧留去して、16.13gの3-(6-ヒドロキシメチルピリジン-2-イル)プロピオン酸 t-ブチルエステルを得た。
淡黄色油状物
1H-NMR (CDCl3) δ: 7.58 (1H, t, J = 7.5 Hz), 7.08 (1H, d, J = 7.5 Hz), 7.03 (1H, d, J = 7.5 Hz), 4.70 (2H, s), 3.10 (2H, t, J = 7.5 Hz), 2.72 (2H, t, J = 7.5 Hz), 1.42 (9H, s)。
(2) Dissolve 16.86 g of 3- (6-hydroxymethylpyridin-2-yl) trans-acrylic acid t-butyl ester (trans form) in 200 mL of ethanol, add 0.5 g of platinum dioxide to the solution, The mixture was stirred at room temperature for 5 hours under a hydrogen atmosphere. Thereafter, the catalyst was removed by filtration, 0.5 g of platinum dioxide was newly added, and the mixture was stirred at room temperature for 6 hours in a hydrogen atmosphere at normal pressure. The catalyst was removed from the reaction mixture by filtration, and the solvent was distilled off under reduced pressure to obtain 16.13 g of 3- (6-hydroxymethylpyridin-2-yl) propionic acid t-butyl ester.
Pale yellow oil
1 H-NMR (CDCl 3 ) δ: 7.58 (1H, t, J = 7.5 Hz), 7.08 (1H, d, J = 7.5 Hz), 7.03 (1H, d, J = 7.5 Hz), 4.70 (2H, s), 3.10 (2H, t, J = 7.5 Hz), 2.72 (2H, t, J = 7.5 Hz), 1.42 (9H, s).

(3) 3-(6-ヒドロキシメチルピリジン-2-イル)プロピオン酸 t-ブチルエステル16.13gを乾燥塩化メチレン200mLに溶解し、溶解液中に四臭化炭素33.8gを加え、更に氷冷下に攪拌しながらトリフェニルホスフィン21.5gを少量ずつ加え、同温度で30分間攪拌した。反応混合物を分液ロートに移し、飽和炭酸水素ナトリウム水溶液次いで飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残留物にヘキサン−酢酸エチル(2:1)混液200 mLを加え、析出した不溶物を濾去し、濾液を減圧濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル=5:1)で精製して、14.12gの3-(6-ブロモメチルピリジン-2-イル)プロピオン酸 t-ブチルエステルを得た。
淡黄色油状物
1H-NMR (CDCl3) δ: 7.58 (1H, t, J = 7.5 Hz), 7.26 (1H, d, J = 7.5 Hz), 7.09 (1H, d, J = 7.5 Hz), 4.51 (2H, s), 3.06 (2H, t, J = 7.5 Hz), 2.70 (2H, t, J = 7.5 Hz), 1.42 (9H, s)。
(3) Dissolve 16.13 g of 3- (6-hydroxymethylpyridin-2-yl) propionic acid t-butyl ester in 200 mL of dry methylene chloride, add 33.8 g of carbon tetrabromide to the solution, and further under ice cooling. While stirring, 21.5 g of triphenylphosphine was added little by little and stirred at the same temperature for 30 minutes. The reaction mixture was transferred to a separatory funnel, washed with a saturated aqueous sodium hydrogen carbonate solution and then with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. To the residue was added 200 mL of a hexane-ethyl acetate (2: 1) mixture, the precipitated insoluble material was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane-ethyl acetate = 5: 1) to obtain 14.12 g of 3- (6-bromomethylpyridin-2-yl) propionic acid t-butyl ester.
Pale yellow oil
1 H-NMR (CDCl 3 ) δ: 7.58 (1H, t, J = 7.5 Hz), 7.26 (1H, d, J = 7.5 Hz), 7.09 (1H, d, J = 7.5 Hz), 4.51 (2H, s), 3.06 (2H, t, J = 7.5 Hz), 2.70 (2H, t, J = 7.5 Hz), 1.42 (9H, s).

参考例11
(1) 2-ブロモピリジン-6-メタノール2gを乾燥DMF10mLに溶解し、溶解液中にアクリル酸エチル1.73mL、塩化テトラ(n-ブチル)アンモニウム2.95g、炭酸水素ナトリウム1.78gおよびモレキュラーシーブス(Molecular Sieves 3A (1/16))2gを加え、アルゴン雰囲気下に、更に酢酸パラジウム(II)119mgを加え、混合物を80℃で5時間攪拌した。冷後、不溶物を濾去し、水を加えて酢酸エチルで抽出した。有機層を飽和食塩水で乾燥後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル=2:1)で精製して、1.39gの3-(6-ヒドロキシメチルピリジン-2-イル)トランス-アクリル酸 エチルエステルを得た。
淡黄色油状物
1H-NMR (CDCl3) δ: 7.71 (1H, t, J = 7.5 Hz), 7.66 (1H, d, J = 15.6 Hz), 7.32 (1H, d, J = 7.5 Hz), 7.20 (1H, d, J = 7.5 Hz), 6.96 (1H, d, J = 15.6 Hz), 4.78 (2H, d, J = 4.8 Hz), 4.29 (2H, q, J = 7.2 Hz), 3.85 (1H, t, J = 4.8 Hz), 1.35 (3H, t, J = 7.2 Hz)。
Reference Example 11
(1) 2 g of 2-bromopyridine-6-methanol was dissolved in 10 mL of dry DMF, and 1.73 mL of ethyl acrylate, 2.95 g of tetra (n-butyl) ammonium chloride, 1.78 g of sodium bicarbonate and molecular sieves (Molecular 2 g of Sieves 3A (1/16)) was added, and 119 mg of palladium (II) acetate was further added under an argon atmosphere, and the mixture was stirred at 80 ° C. for 5 hours. After cooling, the insoluble material was removed by filtration, water was added, and the mixture was extracted with ethyl acetate. The organic layer was dried over saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane-ethyl acetate = 2: 1) to obtain 1.39 g of 3- (6-hydroxymethylpyridin-2-yl) trans-acrylic acid ethyl ester.
Pale yellow oil
1 H-NMR (CDCl 3 ) δ: 7.71 (1H, t, J = 7.5 Hz), 7.66 (1H, d, J = 15.6 Hz), 7.32 (1H, d, J = 7.5 Hz), 7.20 (1H, d, J = 7.5 Hz), 6.96 (1H, d, J = 15.6 Hz), 4.78 (2H, d, J = 4.8 Hz), 4.29 (2H, q, J = 7.2 Hz), 3.85 (1H, t, J = 4.8 Hz), 1.35 (3H, t, J = 7.2 Hz).

(2) 参考例10-(2)に記載の方法と同様の方法によって、3-(6-ヒドロキシメチルピリジン-2-イル)トランス-アクリル酸 エチルエステルを還元して、3-(6-ヒドロキシメチルピリジン-2-イル)プロピオン酸 エチルエステルを得た。
淡黄色油状物。
1H-NMR (CDCl3) δ: 7.58 (1H, t, J = 7.5 Hz), 7.08 (1H, d, J = 7.5 Hz), 7.02 (1H, d, J = 7.5 Hz), 4.71 (2H, d, J = 4.5 Hz), 4.14 (2H, q, J = 7.2 Hz), 4.01 (1H, t, J = 4.5 Hz), 3.15 (2H, t, J = 7.5 Hz), 2.80 (2H, t, J = 7.5 Hz), 1.24 (3H, t, J = 7.2 Hz)。
(2) 3- (6-hydroxymethylpyridin-2-yl) trans-acrylic acid ethyl ester was reduced by the same method as described in Reference Example 10- (2) to give 3- (6-hydroxy Methylpyridin-2-yl) propionic acid ethyl ester was obtained.
Pale yellow oil.
1 H-NMR (CDCl 3 ) δ: 7.58 (1H, t, J = 7.5 Hz), 7.08 (1H, d, J = 7.5 Hz), 7.02 (1H, d, J = 7.5 Hz), 4.71 (2H, d, J = 4.5 Hz), 4.14 (2H, q, J = 7.2 Hz), 4.01 (1H, t, J = 4.5 Hz), 3.15 (2H, t, J = 7.5 Hz), 2.80 (2H, t, J = 7.5 Hz), 1.24 (3H, t, J = 7.2 Hz).

参考例12
(1) アクリル酸エチルに代えてアクリル酸メチルを用いて、参考例11-(1)に記載の方法と同様にして、3-(6-ヒドロキシメチルピリジン-2-イル)トランス-アクリル酸 メチルエステルを得た。
淡黄色粉末
1H-NMR (CDCl3) δ: 7.72 (1H, t, J = 7.5 Hz), 7.68 (1H, d, J = 15.6 Hz), 7.32 (1H, d, J = 7.5 Hz), 7.21 (1H, d, J = 7.5 Hz), 6.97 (1H, d, J = 15.6 Hz), 4.78 (2H, d, J = 4.2 Hz), 3.85 (1H, t, J = 4.2 Hz), 3.83 (3H, s)。
Reference Example 12
(1) 3- (6-hydroxymethylpyridin-2-yl) trans-methyl acrylate in the same manner as described in Reference Example 11- (1) using methyl acrylate instead of ethyl acrylate An ester was obtained.
Pale yellow powder
1 H-NMR (CDCl 3 ) δ: 7.72 (1H, t, J = 7.5 Hz), 7.68 (1H, d, J = 15.6 Hz), 7.32 (1H, d, J = 7.5 Hz), 7.21 (1H, d, J = 7.5 Hz), 6.97 (1H, d, J = 15.6 Hz), 4.78 (2H, d, J = 4.2 Hz), 3.85 (1H, t, J = 4.2 Hz), 3.83 (3H, s) .

(2) 参考例10-(2)に記載の方法と同様の方法によって、3-(6-ヒドロキシメチルピリジン-2-イル)トランス-アクリル酸 メチルエステルを還元して、3-(6-ヒドロキシメチルピリジン-2-イル)プロピオン酸 メチルエステルを得た。
淡褐色油状物。
1H-NMR (CDCl3) δ: 7.58 (1H, t, J = 7.5 Hz), 7.09 (1H, d, J = 7.5 Hz), 7.03 (1H, d, J = 7.5 Hz), 4.71 (2H, s), 4.01 (1H, br s), 3.69 (3H, s), 3.15 (2H, t, J = 7.2 Hz), 2.81 (2H, t, J = 7.2 Hz)。
(2) 3- (6-hydroxymethylpyridin-2-yl) trans-acrylic acid methyl ester was reduced by the same method as described in Reference Example 10- (2) to give 3- (6-hydroxy Methylpyridin-2-yl) propionic acid methyl ester was obtained.
Light brown oil.
1 H-NMR (CDCl 3 ) δ: 7.58 (1H, t, J = 7.5 Hz), 7.09 (1H, d, J = 7.5 Hz), 7.03 (1H, d, J = 7.5 Hz), 4.71 (2H, s), 4.01 (1H, br s), 3.69 (3H, s), 3.15 (2H, t, J = 7.2 Hz), 2.81 (2H, t, J = 7.2 Hz).

また、本化合物は、以下の方法によっても合成した。   This compound was also synthesized by the following method.

即ち、3-(6-ヒドロキシメチルピリジン-2-イル)トランス-アクリル酸 メチルエステル50.02gをIPA 502mLに溶解し、アルゴン置換後、この溶液に5%パラジウム-炭素(50%含水) 2.51gを加え、1〜4気圧の水素雰囲気下に、50℃で2.5時間攪拌した。冷後、触媒を濾去し、溶媒を減圧留去して、目的化合物である3-(6-ヒドロキシメチルピリジン-2-イル)プロピオン酸 メチルエステルを淡褐色黄色粉末として得た。この化合物は、1H-NMR (CDCl3)分析によりより同定された。 That is, 50.02 g of 3- (6-hydroxymethylpyridin-2-yl) trans-acrylic acid methyl ester was dissolved in 502 mL of IPA, and after argon substitution, 2.51 g of 5% palladium-carbon (containing 50% water) was added to this solution. In addition, the mixture was stirred at 50 ° C. for 2.5 hours under a hydrogen atmosphere of 1 to 4 atm. After cooling, the catalyst was removed by filtration, and the solvent was distilled off under reduced pressure to obtain the target compound 3- (6-hydroxymethylpyridin-2-yl) propionic acid methyl ester as a light brown yellow powder. This compound was further identified by 1 H-NMR (CDCl 3 ) analysis.

参考例13
(1) 6-ヒドロキシメチルピリジン-2-カルボアルデヒド2.95gおよび2−ホスホノプロピオン酸トリエチル5.12gを乾燥DMF20mLに溶解し、溶解液中にナトリウムメトキシド1.30gのメタノール10mL溶液を滴下し、室温で20分間攪拌した。反応混合物を氷水に投じ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル=1:1)で精製して、2.42 gの(E)-3-(6-ヒドロキシメチルピリジン-2-イル)-2-メチルアクリル酸 エチルエステルを得た。
無色油状物
1H-NMR (CDCl3) δ: 7.71 (1H, t, J = 7.8 Hz), 7.63 (1H, q, J = 1.5 Hz), 7.29 (1H, d, J = 7.8 Hz), 7.14(1H, d, J = 7.8 Hz), 4.79 (2H, d, J = 4.8 Hz), 4.29 (2H, q, J = 7.2 Hz), 3.84 (1H, t, J = 4.8 Hz), 2.35 (3H, d, J = 1.5 Hz), 1.36 (3H, t, J = 7.2 Hz)。
Reference Example 13
(1) 2.95 g of 6-hydroxymethylpyridine-2-carbaldehyde and 5.12 g of triethyl 2-phosphonopropionate are dissolved in 20 mL of dry DMF, and a solution of sodium methoxide 1.30 g in 10 mL of methanol is added dropwise to the solution. For 20 minutes. The reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane-ethyl acetate = 1: 1) to give 2.42 g of (E) -3- (6-hydroxymethylpyridin-2-yl) -2-methylacrylic acid ethyl ester Got.
Colorless oil
1 H-NMR (CDCl 3 ) δ: 7.71 (1H, t, J = 7.8 Hz), 7.63 (1H, q, J = 1.5 Hz), 7.29 (1H, d, J = 7.8 Hz), 7.14 (1H, d, J = 7.8 Hz), 4.79 (2H, d, J = 4.8 Hz), 4.29 (2H, q, J = 7.2 Hz), 3.84 (1H, t, J = 4.8 Hz), 2.35 (3H, d, J = 1.5 Hz), 1.36 (3H, t, J = 7.2 Hz).

(2) 参考例10-(2)に記載の方法と同様の方法に従って、(E)-3-(6-ヒドロキシメチルピリジン-2-イル)-2-メチルアクリル酸 エチルエステルを還元して、3-(6-ヒドロキシメチルピリジン-2-イル)-2-メチルプロピオン酸 エチルエステルを得た。
無色油状物
1H-NMR (CDCl3) δ: 7.57 (1H, t, J = 7.5 Hz), 7.04 (1H, d, J = 7.5 Hz), 7.02 (1H, d, J = 7.5 Hz), 4.70 (2H, br s), 4.11 (2H, q, J = 7.2 Hz), 3.22 (1H, dd, J = 14.1, 7.8 Hz), 3.05 (1H, sextet, J = 6.3 Hz), 2.88 (1H, dd, J = 14.1, 6.3 Hz), 1.27-1.16 (6H, m)。
(2) (E) -3- (6-Hydroxymethylpyridin-2-yl) -2-methylacrylic acid ethyl ester was reduced according to the same method as described in Reference Example 10- (2), 3- (6-Hydroxymethylpyridin-2-yl) -2-methylpropionic acid ethyl ester was obtained.
Colorless oil
1 H-NMR (CDCl 3 ) δ: 7.57 (1H, t, J = 7.5 Hz), 7.04 (1H, d, J = 7.5 Hz), 7.02 (1H, d, J = 7.5 Hz), 4.70 (2H, br s), 4.11 (2H, q, J = 7.2 Hz), 3.22 (1H, dd, J = 14.1, 7.8 Hz), 3.05 (1H, sextet, J = 6.3 Hz), 2.88 (1H, dd, J = 14.1, 6.3 Hz), 1.27-1.16 (6H, m).

参考例14
参考例10-(1)に記載の3-(6-ヒドロキシメチルピリジン-2-イル)トランス-アクリル酸 t-ブチルエステル(トランス体)2gと四臭化炭素4.23gとを塩化メチレンに溶解させて調製した溶液20mLに氷冷下に、トリフェニルホスフィン2.68gを少量ずつ加え、同温で15分間攪拌した。反応液を分液ロートに移し、クロロホルムで希釈して飽和重曹水および飽和食塩水で洗い、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル=10:1)で精製して、2.23gの3-(6-ブロモメチルピリジン-2-イル)トランス-アクリル酸 t-ブチルエステルを得た。
淡黄色粉末
1H-NMR (CDCl3) δ: 7.70 (1H, t, J = 7.8 Hz), 7.56 (1H, d, J = 15.6 Hz), 7.41 (1H, d, J = 7.8 Hz), 7.32 (1H, d, J = 7.8 Hz), 6.87 (1H, d, J = 15.6 Hz), 4.54 (2H, s), 1.53 (9H, s)。
Reference Example 14
2 g of 3- (6-hydroxymethylpyridin-2-yl) trans-acrylic acid t-butyl ester (trans form) described in Reference Example 10- (1) and 4.23 g of carbon tetrabromide were dissolved in methylene chloride. 2.68 g of triphenylphosphine was added little by little to 20 mL of the solution prepared under ice cooling, and the mixture was stirred at the same temperature for 15 minutes. The reaction mixture was transferred to a separatory funnel, diluted with chloroform, washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane-ethyl acetate = 10: 1) to obtain 2.23 g of 3- (6-bromomethylpyridin-2-yl) trans-acrylic acid t-butyl ester.
Pale yellow powder
1 H-NMR (CDCl 3 ) δ: 7.70 (1H, t, J = 7.8 Hz), 7.56 (1H, d, J = 15.6 Hz), 7.41 (1H, d, J = 7.8 Hz), 7.32 (1H, d, J = 7.8 Hz), 6.87 (1H, d, J = 15.6 Hz), 4.54 (2H, s), 1.53 (9H, s).

参考例15
(1) 4-ペンチノイン酸1.03gおよびN-メチルピペラジン1.0 gをDMF30 mLに溶解し、溶解液に氷冷下に攪拌しながらHOBt1.6gを加えた。同温度で15分間撹拌後、更にWSC2.3gを加え、室温で終夜撹拌した。反応混合物からDMFを減圧留去後、残渣に水を加え酢酸エチル抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−トリエチルアミン=600:20:1)で精製して、510mgの1-(4-メチルピペラジン-1-イル)ペンタ-4-イン-1-オンを得た。
無色油状物
1H-NMR (CDCl3) δ: 3.64 (2H, t, J = 5.1 Hz), 3.48 (2H, t, J = 5.1 Hz), 2.59-2.52 (4H, m), 2.41-2.35 (4H, m), 2.30 (3H, s), 1.97 (1H, s)。
Reference Example 15
(1) 1.03 g of 4-pentinoic acid and 1.0 g of N-methylpiperazine were dissolved in 30 mL of DMF, and 1.6 g of HOBt was added to the solution while stirring under ice cooling. After stirring for 15 minutes at the same temperature, 2.3 g of WSC was further added and stirred overnight at room temperature. After DMF was distilled off from the reaction mixture under reduced pressure, water was added to the residue, followed by extraction with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (methylene chloride-methanol-triethylamine = 600: 20: 1) to give 510 mg of 1- (4-methylpiperazin-1-yl) pent-4-yn-1-one. It was.
Colorless oil
1 H-NMR (CDCl 3 ) δ: 3.64 (2H, t, J = 5.1 Hz), 3.48 (2H, t, J = 5.1 Hz), 2.59-2.52 (4H, m), 2.41-2.35 (4H, m ), 2.30 (3H, s), 1.97 (1H, s).

(2) 50mLの丸底フラスコに、2-ブロモピリジン-6-メタノール484mg、1-(4-メチルピペラジン-1-イル)ペンタ-4-イン-1-オン510mg、BHT 20mg、よう化銅(I)162mg、テトラキス(トリフェニルホスフィン)パラジウム(0)118 mg、t-ブチルアミン375mgおよびDMF 7.5mLを加え、混合物をアルゴン雰囲気下に80℃で6時間撹拌した。DMFを減圧留去後、飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−トリエチルアミン=600:20:1)で精製して、540mgの5-(6-ヒドロキシメチルピリジン-2-イル)-1-(4-メチルピペラジン-1-イル)ペンタ-4-イン-1-オンを得た。
黄色油状物
1H-NMR (CDCl3) δ: 7.62 (1H, t, J = 7.8 Hz), 7.27 (1H, d, J = 7.8 Hz), 7.18 (1H, d, J = 7.8 Hz), 4.73 (2H, s), 3.67 (2H, t, J = 6.6 Hz), 3.53(2H, t, J = 6.6 Hz), 2.84-2.78 (2H, m), 2.72-2.67 (2H, m), 2.43-2.38 (4H, m), 2.30 (3H, s)。
(2) In a 50 mL round-bottom flask, 2-bromopyridin-6-methanol 484 mg, 1- (4-methylpiperazin-1-yl) pent-4-in-1-one 510 mg, BHT 20 mg, copper iodide ( I) 162 mg, tetrakis (triphenylphosphine) palladium (0) 118 mg, t-butylamine 375 mg and DMF 7.5 mL were added and the mixture was stirred at 80 ° C. for 6 hours under argon atmosphere. DMF was distilled off under reduced pressure, saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (methylene chloride-methanol-triethylamine = 600: 20: 1) to give 540 mg of 5- (6-hydroxymethylpyridin-2-yl) -1- (4-methylpiperazine-1 -Yl) pent-4-yn-1-one was obtained.
Yellow oil
1 H-NMR (CDCl 3 ) δ: 7.62 (1H, t, J = 7.8 Hz), 7.27 (1H, d, J = 7.8 Hz), 7.18 (1H, d, J = 7.8 Hz), 4.73 (2H, s), 3.67 (2H, t, J = 6.6 Hz), 3.53 (2H, t, J = 6.6 Hz), 2.84-2.78 (2H, m), 2.72-2.67 (2H, m), 2.43-2.38 (4H m), 2.30 (3H, s).

参考例16
(1) 200mLの丸底フラスコに、2-ブロモピリジン-6-メタノール3.49g、4-ペンチノイン酸 t-ブチルエステル3.0g、BHT 190mg、よう化銅(I)1.17g、テトラキス(トリフェニルホスフィン)パラジウム(0)877mg、t-ブチルアミン2.72gおよびDMF56 mLを加え、アルゴン雰囲気下に混合物を80℃で6時間撹拌した。反応混合物からDMFを減圧留去後、飽和炭酸水素ナトリウム水溶液を加えて酢酸エチルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン−酢酸エチル=2:1)で精製して、2.76 gの5-(6-ヒドロキシメチルピリジン-2-イル)ペンタ-4-イン酸 t-ブチルエステルを得た。
黄色油状物
1H-NMR (CDCl3) δ: 7.61 (1H, t, J = 7.8 Hz), 7.28 (1H, d, J = 7.8 Hz), 7.17 (1H, d, J = 7.8 Hz), 4.72 (2H, d, J = 5.1 Hz), 3.32 (1H, t, J = 5.1 Hz), 2.75 (2H, t, J = 7.2 Hz), 2.57 (2H, t, J = 7.2 Hz), 1.45 (12H, s)。
Reference Example 16
(1) In a 200 mL round bottom flask, 3.49 g of 2-bromopyridine-6-methanol, 3.0 g of 4-pentinoic acid t-butyl ester, 190 mg of BHT, 1.17 g of copper (I) iodide, tetrakis (triphenylphosphine) 877 mg of palladium (0), 2.72 g of t-butylamine and 56 mL of DMF were added, and the mixture was stirred at 80 ° C. for 6 hours under an argon atmosphere. After distilling off DMF from the reaction mixture under reduced pressure, a saturated aqueous sodium hydrogen carbonate solution was added and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and then the solvent was distilled off. The residue was purified by silica gel column chromatography (n-hexane-ethyl acetate = 2: 1) to obtain 2.76 g of 5- (6-hydroxymethylpyridin-2-yl) pent-4-ynoic acid t-butyl ester. Obtained.
Yellow oil
1 H-NMR (CDCl 3 ) δ: 7.61 (1H, t, J = 7.8 Hz), 7.28 (1H, d, J = 7.8 Hz), 7.17 (1H, d, J = 7.8 Hz), 4.72 (2H, d, J = 5.1 Hz), 3.32 (1H, t, J = 5.1 Hz), 2.75 (2H, t, J = 7.2 Hz), 2.57 (2H, t, J = 7.2 Hz), 1.45 (12H, s) .

(2) 200mLの丸底フラスコに、5-(6-ヒドロキシメチルピリジン-2-イル)ペンタ-4-イン酸 t-ブチルエステル2.76g、二酸化白金50mgおよびEtOH25mLを加え、水素雰囲気下に、混合物を室温で8時間撹拌した。不溶物を濾去後、濾液を濃縮して、2.78 gの5-(6-ヒドロキシメチルピリジン-2-イル)ペンタン酸 t-ブチルエステルを得た。
黄色油状物
1H-NMR (CDCl3) δ: 7.57 (1H, t, J = 7.8 Hz), 7.02 (2H, t, J = 7.8 Hz), 4.71 (2H, s), 2.80 (2H, t, J = 7.2 Hz), 2.56 (2H, t, J = 7.2 Hz), 1.82-1.60 (4H, m), 1.42 (12H, s)。
(2) To a 200 mL round bottom flask, add 2.76 g of 5- (6-hydroxymethylpyridin-2-yl) pent-4-ynoic acid t-butyl ester, 50 mg of platinum dioxide and 25 mL of EtOH. Was stirred at room temperature for 8 hours. The insoluble material was removed by filtration, and the filtrate was concentrated to obtain 2.78 g of 5- (6-hydroxymethylpyridin-2-yl) pentanoic acid t-butyl ester.
Yellow oil
1 H-NMR (CDCl 3 ) δ: 7.57 (1H, t, J = 7.8 Hz), 7.02 (2H, t, J = 7.8 Hz), 4.71 (2H, s), 2.80 (2H, t, J = 7.2 Hz), 2.56 (2H, t, J = 7.2 Hz), 1.82-1.60 (4H, m), 1.42 (12H, s).

(3) 200mLの丸底フラスコに、ジクロロメタン50mLを入れ、5-(6-ヒドロキシメチルピリジン-2-イル)ペンタン酸 t-ブチルエステル2.78gおよびジイソプロピルエチルアミン2.0gを加え、混合物を氷冷下に10分間撹拌した。反応混合物にメタンスルホン酸クロリド0.89mLを滴下し、混合物を室温下に3時間撹拌した。反応混合物に水を加えて分液し、有機層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去した。残渣にシリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル=3:1)で精製して、2.28gの5-(6-メタンスルホニルオキシメチルピリジン-2-イル)ペンタン酸 t-ブチルエステルを得た。
黄色油状物
1H-NMR (CDCl3) δ: 7.65 (1H, t, J = 7.8 Hz), 7.30 (1H, d, J = 7.8 Hz), 7.13 (1H, d, J = 7.8 Hz), 5.29 (2H, s), 3.08 (3H, s), 2.80 (2H, t, J = 7.2 Hz), 2.25 (2H, t, J = 7.2 Hz), 1.75-1.50 (4H, m), 1.44 (12H, s)。
(3) In a 200 mL round bottom flask, add 50 mL of dichloromethane, add 2.78 g of 5- (6-hydroxymethylpyridin-2-yl) pentanoic acid t-butyl ester and 2.0 g of diisopropylethylamine, and cool the mixture under ice cooling. Stir for 10 minutes. To the reaction mixture, 0.89 mL of methanesulfonic acid chloride was added dropwise, and the mixture was stirred at room temperature for 3 hours. Water was added to the reaction mixture for liquid separation, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off. The residue was purified by silica gel column chromatography (hexane-ethyl acetate = 3: 1) to obtain 2.28 g of 5- (6-methanesulfonyloxymethylpyridin-2-yl) pentanoic acid t-butyl ester.
Yellow oil
1 H-NMR (CDCl 3 ) δ: 7.65 (1H, t, J = 7.8 Hz), 7.30 (1H, d, J = 7.8 Hz), 7.13 (1H, d, J = 7.8 Hz), 5.29 (2H, s), 3.08 (3H, s), 2.80 (2H, t, J = 7.2 Hz), 2.25 (2H, t, J = 7.2 Hz), 1.75-1.50 (4H, m), 1.44 (12H, s).

参考例17
(1) アクリル酸エチルに代えてエチルビニルケトンを用いて、参考例11に記載の方法と同様にして、(E)-1-(6-ヒドロキシメチルピリジン-2-イル)ペンタ-1-エン-3-オンを得た。
無色油状物
1H-NMR (CDCl3) δ: 7.72 (1H, t, J = 7.5 Hz), 7.55 (1H, d, J = 15.6 Hz), 7.36 (1H, d, J = 7.5 Hz), 7.23 (1H, d, J = 15.6 Hz), 7.22 (1H, d, J = 7.5 Hz), 4.79 (2H, d, J = 4.5 Hz), 3.84 (1H, br t, J = 4.5 Hz), 2.74 (2H, q, J = 7.2 Hz), 1.18 (3H, t, J = 7.2 Hz)。
Reference Example 17
(1) (E) -1- (6-hydroxymethylpyridin-2-yl) pent-1-ene was prepared in the same manner as described in Reference Example 11 using ethyl vinyl ketone instead of ethyl acrylate. -3-one was obtained.
Colorless oil
1 H-NMR (CDCl 3 ) δ: 7.72 (1H, t, J = 7.5 Hz), 7.55 (1H, d, J = 15.6 Hz), 7.36 (1H, d, J = 7.5 Hz), 7.23 (1H, d, J = 15.6 Hz), 7.22 (1H, d, J = 7.5 Hz), 4.79 (2H, d, J = 4.5 Hz), 3.84 (1H, br t, J = 4.5 Hz), 2.74 (2H, q , J = 7.2 Hz), 1.18 (3H, t, J = 7.2 Hz).

(2) 参考例10-(2)に記載の方法と同様の方法に従って、(E)-1-(6-ヒドロキシメチルピリジン-2-イル)ペンタ-1-エン-3-オンを還元して、1-(6-ヒドロキシメチルピリジン-2-イル) ペンタン-3-オンを得た。
淡褐色油状物。
1H-NMR (CDCl3) δ: 7.57 (1H, t, J = 7.8 Hz), 7.09 (1H, d, J = 7.8 Hz), 7.02 (1H, d, J = 7.8 Hz), 4.70 (2H, s), 3.94 (1H, br s), 3.09 (2H, t, J = 6.9 Hz), 2.92 (2H, t, J = 6.9 Hz), 2.47 (2H, q, J = 7.2 Hz), 1.06 (3H, t, J = 7.2 Hz)。
(2) Reduction of (E) -1- (6-hydroxymethylpyridin-2-yl) pent-1-en-3-one according to the same method as described in Reference Example 10- (2) 1- (6-hydroxymethylpyridin-2-yl) pentan-3-one was obtained.
Light brown oil.
1 H-NMR (CDCl 3 ) δ: 7.57 (1H, t, J = 7.8 Hz), 7.09 (1H, d, J = 7.8 Hz), 7.02 (1H, d, J = 7.8 Hz), 4.70 (2H, s), 3.94 (1H, br s), 3.09 (2H, t, J = 6.9 Hz), 2.92 (2H, t, J = 6.9 Hz), 2.47 (2H, q, J = 7.2 Hz), 1.06 (3H , t, J = 7.2 Hz).

上記参考例1〜17-(2)で得られた各化合物の構造を下記表1〜表5にまとめて示す。尚、表中の略号は下記各基を示す。以下の明細書中の各表においても、用いた略号は同じ意味である。
MeOおよびOMe: メトキシ基、
Me: メチル基
Et: エチル基
AcOおよびOAc: アセチルオキシ基、
TBDMS: tert-ブチルジメチルシリル基、
OEtおよびEtO: エトキシ基、
OtBuおよびtBuO: tert-ブチルオキシ基、
Ac: アセチル基、
tBuおよびt-Bu: tert-ブチル基
n-Pr: n-プロピル基、
iPrおよびi-Pr: イソプロピル基、
Ph: フェニル基
n-Bu: n-ブチル基
i-Bu: 2-メチルプロピル基
The structures of the compounds obtained in Reference Examples 1 to 17- (2) are summarized in Tables 1 to 5 below. In addition, the symbol in a table | surface shows each following group. In each table in the following specification, the abbreviations used have the same meaning.
MeO and OMe: methoxy group,
Me: methyl group
Et: ethyl group
AcO and OAc: acetyloxy group,
TBDMS: tert-butyldimethylsilyl group,
OEt and EtO: ethoxy group,
OtBu and tBuO: tert-butyloxy group,
Ac: acetyl group,
tBu and t-Bu: tert-butyl group
n-Pr: n-propyl group,
iPr and i-Pr: isopropyl group,
Ph: Phenyl group
n-Bu: n-butyl group
i-Bu: 2-methylpropyl group

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

参考例2で得た化合物285mg、2-(クロロメチル)ピリジン塩酸塩172mg、炭酸水素ナトリウム184mgおよびヨウ化ナトリウム157mgをDMF3mL中に加え、混合物を室温で終夜攪拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、残留物をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=40:1)で精製して、31mgのN-{4-[6-アミノ-5-シアノ-2-(ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 8.51 (1H, d, J = 4.8 Hz), 7.83 (2H, d, J = 8.4Hz), 7.75-7.70 (3H, m), 7.54 (1H, d, J = 7.8Hz), 7.26 (1H, dd, J = 6.6, 4.8Hz), 4.50 (2H, s), 2.08 (3H, s)。
285 mg of the compound obtained in Reference Example 2, 172 mg of 2- (chloromethyl) pyridine hydrochloride, 184 mg of sodium bicarbonate and 157 mg of sodium iodide were added to 3 mL of DMF, and the mixture was stirred at room temperature overnight. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (methylene chloride-ethanol = 40: 1) to give 31 mg of N- {4- [6-Amino-5-cyano-2- (pyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 8.51 (1H, d, J = 4.8 Hz), 7.83 (2H, d, J = 8.4 Hz), 7.75-7.70 (3H, m ), 7.54 (1H, d, J = 7.8Hz), 7.26 (1H, dd, J = 6.6, 4.8Hz), 4.50 (2H, s), 2.08 (3H, s).

6-メチル-2-ピリジンメタノール5gを塩化メチレン50mLに溶解し、溶解液中にジイソプロピルエチルアミン10.6 mLを加え、氷冷撹拌下に更にメタンスルホニルクロリド3.5mLを滴下した。氷冷撹拌を1時間続けた後、反応液に水を加えて有機層を水で2回、飽和食塩水で1回洗浄した。有機層を硫酸マグネシウムで乾燥後、溶媒を留去して6.98gの褐色油状物を得た。   5 g of 6-methyl-2-pyridinemethanol was dissolved in 50 mL of methylene chloride, 10.6 mL of diisopropylethylamine was added to the solution, and 3.5 mL of methanesulfonyl chloride was further added dropwise with stirring with ice cooling. After stirring with ice cooling for 1 hour, water was added to the reaction solution, and the organic layer was washed twice with water and once with saturated brine. The organic layer was dried over magnesium sulfate, and the solvent was distilled off to obtain 6.98 g of a brown oil.

このうち4.56gをエタノール50mLに溶解し、この液中にチオウレア1.72gを加えて1時間加熱還流した。次に、反応液にエタノール20mLを加えて冷却し、更にN-[4-(2,2-ジシアノビニル)フェニル]アセトアミド4.79gおよび炭酸水素ナトリウム3gを加えて、1.5時間加熱還流した。反応液を放冷後、該液にNBS 2.02gを加えて30分間加熱還流した。反応液を放冷後、更にジイソプロピルエーテルを加え、析出した無機物を濾去し、母液を濃縮して再度エタノールに溶解させた。この溶液に飽和重曹水を加えて析出晶を濾取し、得られた結晶を水とエタノールで洗浄後、減圧乾燥して、3.2gのN-{4-[6-アミノ-5-シアノ-2-(6-メチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.60 (1H, t, J= 7.5 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 4.44 (2H, s), 2.45 (3H, s), 2.09(3H, s)。
Of this, 4.56 g was dissolved in 50 mL of ethanol, 1.72 g of thiourea was added to this solution, and the mixture was heated to reflux for 1 hour. Next, 20 mL of ethanol was added to the reaction solution to cool, and 4.79 g of N- [4- (2,2-dicyanovinyl) phenyl] acetamide and 3 g of sodium hydrogen carbonate were added, and the mixture was heated to reflux for 1.5 hours. After allowing the reaction solution to cool, 2.02 g of NBS was added to the solution and heated to reflux for 30 minutes. The reaction solution was allowed to cool, further diisopropyl ether was added, the precipitated inorganic matter was filtered off, the mother liquor was concentrated and dissolved again in ethanol. Saturated aqueous sodium bicarbonate solution was added to this solution, and the precipitated crystals were collected by filtration. The obtained crystals were washed with water and ethanol, dried under reduced pressure, and 3.2 g of N- {4- [6-amino-5-cyano- 2- (6-Methylpyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.60 (1H, t, J = 7.5 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 4.44 (2H, s), 2.45 (3H, s), 2.09 (3H, s).

6-メチル-2-ピリジンメタノールに代えて5-メチル-2-ピリジンメタノールを用いて、実施例2に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(5-メチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.23 (1H, s), 8.34 (1H, s), 7.60-8.20 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.54 (1H, d, J = 7.8 Hz), 7.43 (1H, d, J = 7.8 Hz), 4.46 (2H, s), 2.26 (3H, s), 2.09 (3H, s)。
N- {4- [6-amino-5-cyano-2] was prepared in the same manner as described in Example 2, using 5-methyl-2-pyridinemethanol instead of 6-methyl-2-pyridinemethanol. -(5-Methylpyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.23 (1H, s), 8.34 (1H, s), 7.60-8.20 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.72 ( 2H, d, J = 8.7 Hz), 7.54 (1H, d, J = 7.8 Hz), 7.43 (1H, d, J = 7.8 Hz), 4.46 (2H, s), 2.26 (3H, s), 2.09 ( 3H, s).

6-メチル-2-ピリジンメタノールに代えて4-メチル-2-ピリジンメタノールを用いて、実施例2に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(4-メチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミドを得た。
淡黄色粉末
1H-NMR (DMSO-d6) δ: 10.24 (1H, s), 8.62 (1H, s), 7.65-8.25 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.73 (2H, d, J = 8.7 Hz), 7.36 (1H, s), 7.00 (1H, d, J = 7.8 Hz), 4.56 (2H, s), 2.26 (3H, s), 2.09 (3H, s)。
N- {4- [6-amino-5-cyano-2] was used in the same manner as described in Example 2 except that 4-methyl-2-pyridinemethanol was used instead of 6-methyl-2-pyridinemethanol. -(4-Methylpyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide was obtained.
Pale yellow powder
1 H-NMR (DMSO-d 6 ) δ: 10.24 (1H, s), 8.62 (1H, s), 7.65-8.25 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.73 ( 2H, d, J = 8.7 Hz), 7.36 (1H, s), 7.00 (1H, d, J = 7.8 Hz), 4.56 (2H, s), 2.26 (3H, s), 2.09 (3H, s).

6-メチル-2-ピリジンメタノールに代えて3-メチル-2-ピリジンメタノールを用いて、実施例2に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(3-メチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.24 (1H, s), 8.34 (1H, d, J = 4.8 Hz), 7.70-8.25 (2H, br s), 7.87 (2H, d, J = 8.7 Hz), 7.73 (2H, d, J = 8.7 Hz), 7.60 (1H, d, J = 7.5 Hz), 7.19-7.24 (1H, m), 4.61 (2H, s), 2.36 (3H, s), 2.09 (3H, s)。
N- {4- [6-amino-5-cyano-2] was used in the same manner as described in Example 2, using 3-methyl-2-pyridinemethanol instead of 6-methyl-2-pyridinemethanol. -(3-Methylpyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.24 (1H, s), 8.34 (1H, d, J = 4.8 Hz), 7.70-8.25 (2H, br s), 7.87 (2H, d, J = 8.7 Hz), 7.73 (2H, d, J = 8.7 Hz), 7.60 (1H, d, J = 7.5 Hz), 7.19-7.24 (1H, m), 4.61 (2H, s), 2.36 (3H, s), 2.09 (3H, s).

6-メチル-2-ピリジンメタノールに代えて1-(6-メチルピリジン-2-イル)エタノールを用いて、実施例2に記載の方法と同様にして、N-(4-{6-アミノ-5-シアノ-2-[1-(6-メチルピリジン-2-イル)エチルスルファニル]ピリミジン-4-イル}フェニル)アセトアミドを得た。
白色粉末
1H-NMR (CDCl3) δ: 10.25 (1H, brs), 7.83 (2H, d, J = 7 Hz), 7.73 (2H, d, J = 6 Hz), 7.62 (1H, t, J = 6 Hz), 7.32 (1H, d, J = 6 Hz), 7.13 (1H, d, J = 6 Hz), 5.10 (1H, q, J = 6 Hz), 2.47 (3H, s), 2.09 (3H, s),1.69 (3H, d, J = 6 Hz)。
In the same manner as described in Example 2, using 1- (6-methylpyridin-2-yl) ethanol instead of 6-methyl-2-pyridinemethanol, N- (4- {6-amino- 5-Cyano-2- [1- (6-methylpyridin-2-yl) ethylsulfanyl] pyrimidin-4-yl} phenyl) acetamide was obtained.
White powder
1 H-NMR (CDCl 3 ) δ: 10.25 (1H, brs), 7.83 (2H, d, J = 7 Hz), 7.73 (2H, d, J = 6 Hz), 7.62 (1H, t, J = 6 Hz), 7.32 (1H, d, J = 6 Hz), 7.13 (1H, d, J = 6 Hz), 5.10 (1H, q, J = 6 Hz), 2.47 (3H, s), 2.09 (3H, s), 1.69 (3H, d, J = 6 Hz).

6-メチル-2-ピリジンメタノールに代えて1-(6-メチルピリジン-2-イル)ペンタン-1-オールを用いて、実施例2に記載の方法と同様にして、N-(4-{6-アミノ-5-シアノ-2-[1-(6-メチルピリジン-2-イル) ペンチルスルファニル]ピリミジン-4-イル}フェニル)アセトアミドを得た。
白色粉末
1H-NMR (CDCl3)δ: 8.40 (1H, brs), 7.94 (2H, d, J = 6 Hz), 7.63 (2H, d, J = 6 Hz), 7.52 (1H, t, J = 6 Hz), 7.22 (1H, d, J = 6 Hz), 7.00 (1H, d, J = 6 Hz), 5.79 (1H, brs), 5.03 (1H, t, J = 6 Hz), 2.55 (3H, s), 2.21 (3H, s), 2.00-2.15 (2H, m), 1.20-1.45 (4H, m), 0.86 (3H, t, J = 6 Hz)。
In the same manner as described in Example 2, using 1- (6-methylpyridin-2-yl) pentan-1-ol instead of 6-methyl-2-pyridinemethanol, N- (4- { 6-Amino-5-cyano-2- [1- (6-methylpyridin-2-yl) pentylsulfanyl] pyrimidin-4-yl} phenyl) acetamide was obtained.
White powder
1 H-NMR (CDCl 3 ) δ: 8.40 (1H, brs), 7.94 (2H, d, J = 6 Hz), 7.63 (2H, d, J = 6 Hz), 7.52 (1H, t, J = 6 Hz), 7.22 (1H, d, J = 6 Hz), 7.00 (1H, d, J = 6 Hz), 5.79 (1H, brs), 5.03 (1H, t, J = 6 Hz), 2.55 (3H, s), 2.21 (3H, s), 2.00-2.15 (2H, m), 1.20-1.45 (4H, m), 0.86 (3H, t, J = 6 Hz).

実施例2で得た化合物5.5gをエタノール50mLおよび水50mLの混合溶媒に懸濁させ、この懸濁液に5N塩酸50mLを加え、得られた液を80℃で5時間加熱撹拌した。反応混合物を冷後、エタノールを減圧留去し、氷冷下に5N水酸化ナトリウム水溶液を加えて中和した。析出した結晶を濾取し、エタノールで再結晶して、2.3 gの4-アミノ-6-(4-アミノフェニル)-2-(6-メチルピリジン-2-イルメチルスルファニル)ピリミジン-5-カルボニトリルを得た。
淡黄色粉末
1H-NMR (DMSO-d6) δ: 7.48-7.98 (2H, br s), 7.74 (2H, d, J = 8.7 Hz), 7.60 (1H, t, J = 7.8 Hz), 7.32 (1H, d, J = 7.8 Hz), 7.12 (1H, d, J = 7.8 Hz), 6.61 (2H, d, J = 8.7 Hz), 5.90 (2H, s), 4.44 (2H, s), 2.45 (3H, s)。
5.5 g of the compound obtained in Example 2 was suspended in a mixed solvent of 50 mL of ethanol and 50 mL of water, 50 mL of 5N hydrochloric acid was added to this suspension, and the resulting solution was heated and stirred at 80 ° C. for 5 hours. After cooling the reaction mixture, ethanol was distilled off under reduced pressure and neutralized by adding 5N aqueous sodium hydroxide solution under ice cooling. The precipitated crystals were collected by filtration, recrystallized with ethanol, and 2.3 g of 4-amino-6- (4-aminophenyl) -2- (6-methylpyridin-2-ylmethylsulfanyl) pyrimidine-5-carbohydrate. Nitrile was obtained.
Pale yellow powder
1 H-NMR (DMSO-d 6 ) δ: 7.48-7.98 (2H, br s), 7.74 (2H, d, J = 8.7 Hz), 7.60 (1H, t, J = 7.8 Hz), 7.32 (1H, d, J = 7.8 Hz), 7.12 (1H, d, J = 7.8 Hz), 6.61 (2H, d, J = 8.7 Hz), 5.90 (2H, s), 4.44 (2H, s), 2.45 (3H, s).

実施例8で得た化合物170mgおよびトリエチルアミン0.2mLをアセトニトリル10mLに溶解し、溶液にプロピオニルクロリド0.12gを滴下して、室温で終夜撹拌した。析出した結晶を濾取し、ジエチルエーテルで洗浄後、減圧乾燥して、85mgのN-{4-[6-アミノ-5-シアノ-2-(6-メチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}プロピオンアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.16 (1H, s), 7.84 (2H, d, J = 8.7 Hz), 7.74 (2H, d, J = 8.7Hz), 7.61 (1H, t, J = 7.8 Hz), 7.33 (1H, d, J = 7.8 Hz), 7.12 (1H, d, J = 7.8 Hz), 4.45 (2H, s), 2.45 (3H, s), 2.37 (2H, q, J = 8.7Hz), 1.10 (3H, t, J = 7.5 Hz)。
170 mg of the compound obtained in Example 8 and 0.2 mL of triethylamine were dissolved in 10 mL of acetonitrile, and 0.12 g of propionyl chloride was added dropwise to the solution, followed by stirring at room temperature overnight. The precipitated crystals were collected by filtration, washed with diethyl ether and dried under reduced pressure to give 85 mg of N- {4- [6-amino-5-cyano-2- (6-methylpyridin-2-ylmethylsulfanyl) pyrimidine -4-yl] phenyl} propionamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.16 (1H, s), 7.84 (2H, d, J = 8.7 Hz), 7.74 (2H, d, J = 8.7 Hz), 7.61 (1H, t, J = 7.8 Hz), 7.33 (1H, d, J = 7.8 Hz), 7.12 (1H, d, J = 7.8 Hz), 4.45 (2H, s), 2.45 (3H, s), 2.37 (2H, q, J = 8.7Hz), 1.10 (3H, t, J = 7.5 Hz).

プロピオニルクロリドに代えて塩化アクリロイルを用いて、実施例9に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(6-メチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アクリルアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.43 (1H, s), 7.79-7.89 (4H, m), 7.61 (1H, t, J = 7.8 Hz), 7.33 (1H, d, J = 7.8 Hz), 7.12 (1H, d, J = 7.8 Hz), 6.42-6.52 (1H, m), 6.31 (1H, dd, J = 16.8, 2.1 Hz), 5.81 (1H, dd, J = 9.9, 2.1 Hz), 4.45 (2H, s), 2.45 (3H, s)。
N- {4- [6-amino-5-cyano-2- (6-methylpyridin-2-ylmethylsulfanyl) was prepared in the same manner as described in Example 9 using acryloyl chloride in place of propionyl chloride. ) Pyrimidin-4-yl] phenyl} acrylamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.43 (1H, s), 7.79-7.89 (4H, m), 7.61 (1H, t, J = 7.8 Hz), 7.33 (1H, d, J = 7.8 Hz ), 7.12 (1H, d, J = 7.8 Hz), 6.42-6.52 (1H, m), 6.31 (1H, dd, J = 16.8, 2.1 Hz), 5.81 (1H, dd, J = 9.9, 2.1 Hz) , 4.45 (2H, s), 2.45 (3H, s).

プロピオニルクロリドに代えて塩化ブチリルを用い、実施例9に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(6-メチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}ブチルアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.17 (1H, s), 7.65-8.20 (2H, br s), 7.83 (2H, d, J = 8.7 Hz), 7.74 (2H, d, J = 8.7 Hz), 7.61 (1H, t, J = 7.8 Hz), 7.33 (1H, d, J = 7.8 Hz), 7.12 (1H, d, J = 7.8 Hz), 4.45 (2H, s), 2.45 (3H, s), 2.33 (2H, t, J = 7.5Hz), 1.63 (3H, sext, J = 7.5Hz), 0.93 (3H, t, J = 7.5Hz)。
N- {4- [6-amino-5-cyano-2- (6-methylpyridin-2-ylmethylsulfanyl)] was used in the same manner as described in Example 9 using butyryl chloride instead of propionyl chloride. Pyrimidin-4-yl] phenyl} butyramide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.17 (1H, s), 7.65-8.20 (2H, br s), 7.83 (2H, d, J = 8.7 Hz), 7.74 (2H, d, J = 8.7 Hz), 7.61 (1H, t, J = 7.8 Hz), 7.33 (1H, d, J = 7.8 Hz), 7.12 (1H, d, J = 7.8 Hz), 4.45 (2H, s), 2.45 (3H, s), 2.33 (2H, t, J = 7.5Hz), 1.63 (3H, sext, J = 7.5Hz), 0.93 (3H, t, J = 7.5Hz).

プロピオニルクロリドに代えて塩化ベンゾイルを用い、実施例9に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(6-メチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}ベンズアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.53 (1H, s), 7.80-8.01 (6H, m), 7.51-7.70 (4H, m), 7.35 (1H, d, J = 7.5 Hz), 7.13 (1H, d, J = 7.5Hz), 4.47 (2H, s), 2.46 (3H, s)。
N- {4- [6-amino-5-cyano-2- (6-methylpyridin-2-ylmethylsulfanyl)] was used in the same manner as described in Example 9 using benzoyl chloride instead of propionyl chloride. Pyrimidin-4-yl] phenyl} benzamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.53 (1H, s), 7.80-8.01 (6H, m), 7.51-7.70 (4H, m), 7.35 (1H, d, J = 7.5 Hz), 7.13 (1H, d, J = 7.5Hz), 4.47 (2H, s), 2.46 (3H, s).

6-メチル-2-ピリジンメタノール、チオウレアおよび参考例1で得た化合物を用いて、実施例2に記載の方法と同様の方法を繰り返して、{4-[6-アミノ-5-シアノ-2-(6-メチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}カルバミン酸メチルエステルを得た。
黄色粉末
1H-NMR (DMSO-d6) δ: 10.01 (1H ,s), 7.83 (2H, d, J = 8.7 Hz), 7.61 (1H, t, J = 7.5 Hz), 7.60 (2H, d, J = 8.7 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 4.45 (2H, s), 3.70 (3H, s), 2.45 (3H, s)。
Using 6-methyl-2-pyridinemethanol, thiourea and the compound obtained in Reference Example 1, the same method as described in Example 2 was repeated to obtain {4- [6-amino-5-cyano-2 -(6-Methylpyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} carbamic acid methyl ester was obtained.
Yellow powder
1 H-NMR (DMSO-d 6 ) δ: 10.01 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.61 (1H, t, J = 7.5 Hz), 7.60 (2H, d, J = 8.7 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 4.45 (2H, s), 3.70 (3H, s), 2.45 (3H, s).

上記実施例1〜13で得られた化合物について、その構造を下記表6〜表7に示す。   The structures of the compounds obtained in Examples 1 to 13 are shown in Tables 6 to 7 below.

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

参考例2で得た化合物10g、参考例3で得た化合物9.8g、炭酸水素ナトリウム3.52gおよびヨウ化ナトリウム5.40gをDMF 100mL中に加え、混合物を室温で終夜攪拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール−トリエチルアミン=800:40:1)で精製して、1.67gのN-{4-[6-アミノ-5-シアノ-2-(6-モルホリン-4-イルメチルピリジン-2-イルメチルスルファニル)-2,3-ジヒドロピリミジン-4-イル]フェニル}アセトアミドを得た。   10 g of the compound obtained in Reference Example 2, 9.8 g of the compound obtained in Reference Example 3, 3.52 g of sodium bicarbonate and 5.40 g of sodium iodide were added to 100 mL of DMF, and the mixture was stirred at room temperature overnight. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (methylene chloride-ethanol-triethylamine = 800: 40: 1) to obtain 1.67. g N- {4- [6-Amino-5-cyano-2- (6-morpholin-4-ylmethylpyridin-2-ylmethylsulfanyl) -2,3-dihydropyrimidin-4-yl] phenyl} acetamide Got.

本化合物600mgを1,4-ジオキサン12mLに溶解し、溶解液中にDDQ 290mgを加えて2時間加熱還流した。得られる反応液から溶媒を留去後、残留物に水を加え、更に1N塩酸を加えて液性を酸性にした。この反応液を酢酸エチルで洗浄後、水層に1N水酸化ナトリウム水溶液を加えて液性を塩基性にし、該液を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残留物をエタノールから再結晶して、290mgのN-{4-[6-アミノ-5-シアノ-2-(6-モルホリン-4-イルメチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミドを得た。   This compound (600 mg) was dissolved in 1,4-dioxane (12 mL), DDQ (290 mg) was added to the solution, and the mixture was heated to reflux for 2 hours. After the solvent was distilled off from the resulting reaction solution, water was added to the residue, and 1N hydrochloric acid was added to make the solution acidic. After the reaction solution was washed with ethyl acetate, 1N aqueous sodium hydroxide solution was added to the aqueous layer to make the solution basic, and the solution was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was recrystallized from ethanol to give 290 mg of N- {4- [6-amino-5-cyano-2- (6-morpholin-4-ylmethylpyridin-2-ylmethylsulfanyl) pyrimidin-4-yl ] Phenyl} acetamide was obtained.

その全量をエタノールに溶解し、得られる溶液に1mol/L塩酸エタノール溶液0.61mLを加え、減圧下に乾固して塩酸塩形態の上記化合物を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.82 (2H, d, J = 8.7 Hz), 7.72-7.67 (3H, m), 7.40 (1H, d, J = 7.8 Hz), 7.31 (1H, d, J = 7.8 Hz), 4.47 (2H, s), 3.57 (4H, br t), 2.39 (4H , br t), 2.08 (3H, s)。
The total amount thereof was dissolved in ethanol, and 0.61 mL of 1 mol / L hydrochloric acid ethanol solution was added to the resulting solution, followed by drying under reduced pressure to obtain the above-mentioned compound in hydrochloride form.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.82 (2H, d, J = 8.7 Hz), 7.72-7.67 (3H, m), 7.40 (1H, d, J = 7.8 Hz ), 7.31 (1H, d, J = 7.8 Hz), 4.47 (2H, s), 3.57 (4H, br t), 2.39 (4H, br t), 2.08 (3H, s).

参考例2で得た化合物287mgのDMF3mL溶液に、参考例4で得た化合物260mg、炭酸水素ナトリウム100mgおよびヨウ化ナトリウム150mgを加えて室温で終夜撹拌した。反応混合物に水を加えた後、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣にアセトニトリル1mLおよびNBS 7.3mgを加え、30分間加熱還流した。放冷後、反応混合物に水を加えて酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣をエタノールで再結晶して、35mgのN-(4-{6-アミノ-5-シアノ-2-[6-(2-モルホリン-4-イルエチル)ピリジン-2-イルメチルスルファニル]ピリミジン-4-イル}フェニル)アセトアミドを得た。   To a solution of 287 mg of the compound obtained in Reference Example 2 in 3 mL of DMF, 260 mg of the compound obtained in Reference Example 4, 100 mg of sodium bicarbonate and 150 mg of sodium iodide were added and stirred overnight at room temperature. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. Acetonitrile 1mL and NBS 7.3mg were added to the residue, and it heated and refluxed for 30 minutes. After allowing to cool, water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was recrystallized from ethanol to give 35 mg of N- (4- {6-amino-5-cyano-2- [6- (2-morpholin-4-ylethyl) pyridin-2-ylmethylsulfanyl] pyrimidine-4 -Il} phenyl) acetamide was obtained.

その全量をエタノールに溶解し、得られる液に1mol/L塩酸エタノール溶液0.14mLを加え、減圧下に乾固して塩酸塩形態の目的化合物40 mgを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, d, J= 8.7 Hz),, 7.71 (2H, d, J = 8.7 Hz), 7.66 (1H, t, J = 7.2 Hz), 7.33 (1H, d, J= 7.2 Hz), 7.15 (1H, d, J= 7.2 Hz), 4.46 (2H, s), 3.55-3.52 (4H, m), 2.86 (2H, t, J= 7.2 Hz), 2.60 (2H, t, J= 7.2 Hz), 2.39 (4H, br t), 2.03 (3H, s)。
The total amount was dissolved in ethanol, and 0.14 mL of a 1 mol / L hydrochloric acid ethanol solution was added to the resulting solution, followed by drying under reduced pressure to obtain 40 mg of the target compound in hydrochloride form.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.71 (2H, d, J = 8.7 Hz), 7.66 (1H, t, J = 7.2 Hz), 7.33 (1H, d, J = 7.2 Hz), 7.15 (1H, d, J = 7.2 Hz), 4.46 (2H, s), 3.55-3.52 (4H, m), 2.86 (2H, t, J = 7.2 Hz), 2.60 (2H, t, J = 7.2 Hz), 2.39 (4H, br t), 2.03 (3H, s).

チオウレア86mgおよび参考例5で得た化合物290mgをエタノール50mLに懸濁し、得られた懸濁液を60℃で1 時間攪拌した。放冷後、この液中にN-[4-(2,2-ジシアノビニル)フェニル]アセトアミド240mgおよび炭酸水素ナトリウム287mgを加え、5時間加熱還流した。放冷後、更にNBS 200mgを加えて1時間加熱還流した。反応液に水を加え、クロロホルム抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム−メタノール−アンモニア水=300:10:1)で精製して、85mgのN-(4-{6-アミノ-5-シアノ-2-[6-(3-モルホリン-4-イルプロピル)ピリジン-2-イルメチルスルファニル]ピリミジン-4-イル}フェニル)アセトアミドを得た。   86 mg of thiourea and 290 mg of the compound obtained in Reference Example 5 were suspended in 50 mL of ethanol, and the resulting suspension was stirred at 60 ° C. for 1 hour. After allowing to cool, 240 mg of N- [4- (2,2-dicyanovinyl) phenyl] acetamide and 287 mg of sodium bicarbonate were added to this solution, and the mixture was heated to reflux for 5 hours. After allowing to cool, NBS 200 mg was further added and heated to reflux for 1 hour. Water was added to the reaction solution and extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (chloroform-methanol-aqueous ammonia = 300: 10: 1) to give 85 mg of N- (4- {6-amino-5-cyano-2- [6- (3-morpholine). -4-ylpropyl) pyridin-2-ylmethylsulfanyl] pyrimidin-4-yl} phenyl) acetamide was obtained.

その全量をエタノールに溶解し、この液中に1mol/L塩酸エタノール溶液0.38mLを加えた後、溶媒を留去して、110 mgの塩酸塩形態の目的化合物を得た。
黄色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, d, J= 8.7 Hz), 7.71 (2H, d, J = 8.7 Hz), 7.61 (1H, t, J= 7.5 Hz), 7.32 (1H, d, J= 7.5 Hz), 7.12 (1H, d, J= 7.5 Hz), 4.40 (2H, s), 3.64-3.50 (4H, m), 2.70 (2H, t, J= 7.5 Hz), 2.40-2.24 (6H, m), 2.08 (3H, s), 2.49-2.45 (2H, m) 。
The total amount was dissolved in ethanol, 0.38 mL of 1 mol / L hydrochloric acid ethanol solution was added to this solution, and then the solvent was distilled off to obtain 110 mg of the target compound in the form of hydrochloride.
Yellow powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.71 (2H, d, J = 8.7 Hz), 7.61 (1H, t, J = 7.5 Hz), 7.32 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 4.40 (2H, s), 3.64-3.50 (4H, m), 2.70 (2H, t , J = 7.5 Hz), 2.40-2.24 (6H, m), 2.08 (3H, s), 2.49-2.45 (2H, m).

参考例6で得た化合物15gおよびチオウレア3.8gをエタノール200mLに懸濁させ、懸濁液を60℃で1時間撹拌した。反応混合物にN-[4-(2,2-ジシアノビニル)フェニル]アセトアミド 9.72gを加えて終夜加熱還流した。溶媒を減圧留去後、残留物に水を加え、クロロホルム抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧乾固した。残留物をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−アンモニア水=300:10:1)で精製して、10.3gの4-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]-ピリジン-2-イルメチル}ピペラジン-1-カルボン酸 t-ブチルエステルを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.72-7.70 (3H, m), 7.40 (1H, d, J = 7.5 Hz), 7.32 (1H, d, J = 7.5 Hz), 4.47 (2H, s), 3.57 (2H, s), 2.50-2.35 (8H , m), 2.20 (3H, s), 1.38 (9H, s)。
15 g of the compound obtained in Reference Example 6 and 3.8 g of thiourea were suspended in 200 mL of ethanol, and the suspension was stirred at 60 ° C. for 1 hour. 9.72 g of N- [4- (2,2-dicyanovinyl) phenyl] acetamide was added to the reaction mixture, and the mixture was heated to reflux overnight. The solvent was distilled off under reduced pressure, water was added to the residue, and the mixture was extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and then dried under reduced pressure. The residue was purified by silica gel column chromatography (methylene chloride-methanol-aqueous ammonia = 300: 10: 1), and 10.3 g of 4- {6- [4- (4-acetylaminophenyl) -6-amino- 5-Cyanopyrimidin-2-ylsulfanylmethyl] -pyridin-2-ylmethyl} piperazine-1-carboxylic acid t-butyl ester was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.72-7.70 (3H, m), 7.40 (1H, d, J = 7.5 Hz ), 7.32 (1H, d, J = 7.5 Hz), 4.47 (2H, s), 3.57 (2H, s), 2.50-2.35 (8H, m), 2.20 (3H, s), 1.38 (9H, s) .

実施例17で得た化合物123mgをナス型フラスコに入れ、この中に氷冷下にトリフルオロ酢酸0.35mLを加えた。混合物を室温で1時間撹拌後、トリフルオロ酢酸を減圧留去した。残留物に0.1mol/L塩酸エタノール溶液6mLを加えて溶媒を蒸発させて乾固した。残留固体をエタノールから再結晶して、80mgのN-{4-[6-アミノ-5-シアノ-2-(6-ピペラジン-1-イルメチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド塩酸塩を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.3 (1H, s), 9.42 (1H, br s), 7.89-7.81 (3H, m), 7.73 (2H, d, J= 8.7Hz), 7.63 (1H, d, J = 7.5Hz), 7.52 (1H, d, J= 7.5 Hz), 4.55 (2H, s), 3.37-3.25 (10H, m), 2.03 (3H, s)。
123 mg of the compound obtained in Example 17 was placed in an eggplant type flask, and 0.35 mL of trifluoroacetic acid was added thereto under ice cooling. After the mixture was stirred at room temperature for 1 hour, trifluoroacetic acid was distilled off under reduced pressure. To the residue was added 6 mL of 0.1 mol / L hydrochloric acid ethanol solution, and the solvent was evaporated to dryness. The residual solid was recrystallized from ethanol to give 80 mg of N- {4- [6-amino-5-cyano-2- (6-piperazin-1-ylmethylpyridin-2-ylmethylsulfanyl) pyrimidin-4-yl ] Phenyl} acetamide hydrochloride was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.3 (1H, s), 9.42 (1H, br s), 7.89-7.81 (3H, m), 7.73 (2H, d, J = 8.7Hz), 7.63 ( 1H, d, J = 7.5Hz), 7.52 (1H, d, J = 7.5Hz), 4.55 (2H, s), 3.37-3.25 (10H, m), 2.03 (3H, s).

実施例18で得た化合物292mg、安息香酸61mgおよびトリエチルアミン0.2mLをDMF3mLに溶解し、溶解液中に氷冷攪拌下にHOBt80mgを加えた。混合物を同温で15分間攪拌後、ここにWSC 115mgを加えて室温で終夜攪拌した。反応液を減圧下に乾固し、得られた残渣に氷水を加え、酢酸エチルで抽出した、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧乾固した。残留物をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−トリエチルアミン=300:10:1)で精製して、261mgのN-(4-{6-アミノ-2-[6-(4-ベンゾイルピペラジン-1-イルメチル)ピリジン-2-イルメチルスルファニル]-5-シアノピリミジン-4-イル}フェニル)アセトアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.72-7.70 (3H, m), 7.44-7.32 (7H, m), 4.48 (2H, s), 3.60 (2H, s), 2.08(3H, s)。
292 mg of the compound obtained in Example 18, 61 mg of benzoic acid and 0.2 mL of triethylamine were dissolved in 3 mL of DMF, and 80 mg of HOBt was added to the solution under ice-cooling and stirring. The mixture was stirred at the same temperature for 15 minutes, 115 mg of WSC was added thereto, and the mixture was stirred overnight at room temperature. The reaction mixture was dried under reduced pressure, ice water was added to the resulting residue, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and dried under reduced pressure. The residue was purified by silica gel column chromatography (methylene chloride-methanol-triethylamine = 300: 10: 1) to give 261 mg of N- (4- {6-amino-2- [6- (4-benzoylpiperazine-1 -Ilmethyl) pyridin-2-ylmethylsulfanyl] -5-cyanopyrimidin-4-yl} phenyl) acetamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.72-7.70 (3H, m), 7.44-7.32 (7H, m), 4.48 (2H, s), 3.60 (2H, s), 2.08 (3H, s).

実施例18で得た化合物146mg、ベンズアルデヒド28mgおよびトリエチルアミン75mgをDMF1mLおよびメタノール2mLの混液に溶解し、得られた液を室温で終夜攪拌した。反応混合物に氷冷下、シアノ水素化ホウ素ナトリウム30mgを加え、同温で1時間攪拌した。反応液を減圧乾固し、このものに氷水を加えて酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧乾固した。残留物をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−トリエチルアミン=600:20:1)で精製して、60 mgのN-(4-{6-アミノ-2-[6-(4-ベンジルピペラジン-1-イルメチル)ピリジン-2-イルメチルスルファニル]-5-シアノピリミジン-4-イル}フェニル)アセトアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 7.98 (2H, d, J = 8.7 Hz), 7.64 (2H, d, J= 8.7 Hz), 7.58 (1H, t, J = 7.5Hz), 7.53-7.50 (2H, m), 7.42-7.29 (5H, m), 4.54 (2H, s), 3.75 (2H, s), 2.61-2.48 (10H , m), 2.20 (3H, s)。
146 mg of the compound obtained in Example 18, 28 mg of benzaldehyde and 75 mg of triethylamine were dissolved in a mixture of 1 mL of DMF and 2 mL of methanol, and the resulting solution was stirred at room temperature overnight. Under ice-cooling, 30 mg of sodium cyanoborohydride was added to the reaction mixture, and the mixture was stirred at the same temperature for 1 hour. The reaction mixture was evaporated to dryness, ice water was added to this, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and then dried under reduced pressure. The residue was purified by silica gel column chromatography (methylene chloride-methanol-triethylamine = 600: 20: 1) to give 60 mg of N- (4- {6-amino-2- [6- (4-benzylpiperazine- 1-ylmethyl) pyridin-2-ylmethylsulfanyl] -5-cyanopyrimidin-4-yl} phenyl) acetamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 7.98 (2H, d, J = 8.7 Hz), 7.64 (2H, d, J = 8.7 Hz), 7.58 (1H, t, J = 7.5 Hz), 7.53- 7.50 (2H, m), 7.42-7.29 (5H, m), 4.54 (2H, s), 3.75 (2H, s), 2.61-2.48 (10H, m), 2.20 (3H, s).

安息香酸に代えて(4-メチルピペラジン-1-イル)酢酸を用い、実施例19に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(6-{4-[2-(4-メチルピペラジン-1-イル)アセチル]ピペラジン-1-イルメチル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド塩酸塩を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.73-7.70 (3H, m), 7.40 (1H, d, J = 7.5 Hz), 7.32 (1H, d, J = 7.5 Hz), 4.48 (2H, s), 3.59 (2H, s), 3.43 (2H , br t ), 3.36-3.33 (4H, m), 3.08 (2H, s), 2.49-2.27 (10H, m), 2.12 (3H, s), 2.08 (3H, s)。
Using (4-methylpiperazin-1-yl) acetic acid instead of benzoic acid in the same manner as described in Example 19, N- {4- [6-amino-5-cyano-2- (6- {4- [2- (4-Methylpiperazin-1-yl) acetyl] piperazin-1-ylmethyl} pyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide hydrochloride was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.73-7.70 (3H, m), 7.40 (1H, d, J = 7.5 Hz ), 7.32 (1H, d, J = 7.5 Hz), 4.48 (2H, s), 3.59 (2H, s), 3.43 (2H, br t), 3.36-3.33 (4H, m), 3.08 (2H, s ), 2.49-2.27 (10H, m), 2.12 (3H, s), 2.08 (3H, s).

安息香酸に代えてp-メトキシ安息香酸を用いて、実施例19に記載の方法と同様にして、N-[4-(6-アミノ-5-シアノ-2-{6-[4-(4-メトキシベンゾイル)ピペラジン-1-イルメチル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド塩酸塩を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.97 (1H, d, J= 8.4 Hz),, 7.83 (2H, d, J = 8.7 Hz), 7.73-7.68 (3H, m), 7.53 (1H, t, J= 7.2 Hz), 7.43-7.32 (3H, m), 6.96 (1H, d, J= 8.7 Hz), 4.47 (2H, s), 3.78 (3H, s), 3.62 (3H, s), 3.48-3.32 (2H, m), 2.49-2.45 (4H, m), 2.08 (3H, s)。
N- [4- (6-Amino-5-cyano-2- {6- [4- (4) was used in the same manner as in Example 19 except that p-methoxybenzoic acid was used instead of benzoic acid. -Methoxybenzoyl) piperazin-1-ylmethyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide hydrochloride was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.97 (1H, d, J = 8.4 Hz), 7.83 (2H, d, J = 8.7 Hz), 7.73-7.68 (3H, m), 7.53 (1H, t, J = 7.2 Hz), 7.43-7.32 (3H, m), 6.96 (1H, d, J = 8.7 Hz), 4.47 (2H, s), 3.78 (3H, s), 3.62 (3H, s), 3.48-3.32 (2H, m), 2.49-2.45 (4H, m), 2.08 (3H, s).

安息香酸に代えてN,N-ジメチルグリシンを用いて、実施例19に記載の方法と同様にして、N-[4-(6-アミノ-5-シアノ-2-{6-[4-(2-ジメチルアミノアセチル)ピペラジン-1-イルメチル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド塩酸塩を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, d, J = 9.0 Hz), 7.72-7.68 (3H, m), 7.42 (1H, d, J = 7.5 Hz), 7.33 (1H, d, J = 7.5 Hz), 4.48 (2H, s), 3.59 (2H, s), 3.49-3.41 (4H, m), 3.15 (2H , br s), 2.48-2.42 (4H, m), 2.21 (6H, s), 2.08 (3H, s)。
N- [4- (6-Amino-5-cyano-2- {6- [4- () was used in the same manner as in Example 19 except that N, N-dimethylglycine was used instead of benzoic acid. 2-Dimethylaminoacetyl) piperazin-1-ylmethyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide hydrochloride was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 9.0 Hz), 7.72-7.68 (3H, m), 7.42 (1H, d, J = 7.5 Hz ), 7.33 (1H, d, J = 7.5 Hz), 4.48 (2H, s), 3.59 (2H, s), 3.49-3.41 (4H, m), 3.15 (2H, br s), 2.48-2.42 (4H m), 2.21 (6H, s), 2.08 (3H, s).

安息香酸に代えて1-ピペリジンプロピオン酸を用いて、実施例19に記載の方法と同様にして、N-[4-(6-アミノ-5-シアノ-2-{6-[4-(3-ピペリジン-1-イルプロピオニル)ピペラジン-1-イルメチル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド塩酸塩を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, d, J= 8.7 Hz),, 7.74-7.68 (3H, m), 7.43 (1H, t, J = 7.5 Hz), 7.33 (1H, d, J= 7.5 Hz), 4.47 (2H, s), 3.60 (2H, s), 3.44-3.34 (4H, m), 2.51-2.50 (4H, m), 2.43-2.37 (4H, m), 2.09 (3H, s), 1.58 (4H, br s), 1.43 (2H, br t)。
N- [4- (6-Amino-5-cyano-2- {6- [4- (3) was used in the same manner as in Example 19 except that 1-piperidinepropionic acid was used in place of benzoic acid. -Piperidin-1-ylpropionyl) piperazin-1-ylmethyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide hydrochloride was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.74-7.68 (3H, m), 7.43 (1H, t, J = 7.5 Hz), 7.33 (1H, d, J = 7.5 Hz), 4.47 (2H, s), 3.60 (2H, s), 3.44-3.34 (4H, m), 2.51-2.50 (4H, m), 2.43-2.37 (4H, m), 2.09 (3H, s), 1.58 (4H, br s), 1.43 (2H, br t).

安息香酸に代えてピペリジン-1-イル酢酸を用いて、実施例19に記載の方法と同様にして、N-[4-(6-アミノ-5-シアノ-2-{6-[4-(2-ピペリジン-1-イルアセチル)ピペラジン-1-イルメチル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド塩酸塩を得た。
白色粉末
1H-NMR (CD3OD) δ: 7.90-7.81 (3H, m), 7.73 (2H, d, J = 8.7 Hz), 7.69 (2H, d, J = 7.8 Hz), 7.43 (1H, t, J = 7.8 Hz), 4.64 (2H, s), 4.55 (2H, s), 4.42 (2H, s), 3.92 (1H, br s), 3.77-3.72 (3H, m), 3.58-3.51 (2H, m), 3.44-3.31 (2H, m), 3.29-3.14 (2H, m), 2.16 (3H, s), 2.10-2.06 (2H, m), 1.36-1.31 (2H, m)。
N- [4- (6-Amino-5-cyano-2- {6- [4- ( 2-Piperidin-1-ylacetyl) piperazin-1-ylmethyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide hydrochloride was obtained.
White powder
1 H-NMR (CD 3 OD) δ: 7.90-7.81 (3H, m), 7.73 (2H, d, J = 8.7 Hz), 7.69 (2H, d, J = 7.8 Hz), 7.43 (1H, t, J = 7.8 Hz), 4.64 (2H, s), 4.55 (2H, s), 4.42 (2H, s), 3.92 (1H, br s), 3.77-3.72 (3H, m), 3.58-3.51 (2H, m), 3.44-3.31 (2H, m), 3.29-3.14 (2H, m), 2.16 (3H, s), 2.10-2.06 (2H, m), 1.36-1.31 (2H, m).

実施例14〜25で得られた化合物の構造を下記表8〜表9に示す。   The structures of the compounds obtained in Examples 14 to 25 are shown in Tables 8 to 9 below.

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

参考例7で得た化合物571mgおよびチオウレア180mgをエタノール20mLに溶解し、この液を1時間加熱還流した。冷後、反応混合物にN-[4-(2,2-ジシアノビニル)フェニル]アセトアミド500mgおよび炭酸水素ナトリウム600mgを加えて4時間加熱還流した。冷後、反応混合物にNBS 356 mgを加えて1時間加熱還流した。冷後、更に飽和炭酸水素ナトリウム水溶液5mLおよび水10mLを加え、析出した不溶物を濾取、水洗し、減圧乾燥して、N-(4-{6-アミノ-5-シアノ-2-[6-(モルホリン-4-カルボニル)ピリジン-2-イルメチルスルファニル]ピリミジン-4-イル}フェニル)アセトアミド塩酸塩380mgを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.86 (1H, t, J= 7.8 Hz), 7.79 (2H, d, J = 9.0 Hz), 7.70 (2H, d, J = 9.0 Hz), 7.62 (1H, d, J= 7.8 Hz), 7.47 (1H, d, J= 7.8 Hz), 4.53 (2H, s), 3.63 (4H, br t), 3.49-3.44 (2H, m), 2.08 (3H, s)。
571 mg of the compound obtained in Reference Example 7 and 180 mg of thiourea were dissolved in 20 mL of ethanol, and this solution was heated to reflux for 1 hour. After cooling, 500 mg of N- [4- (2,2-dicyanovinyl) phenyl] acetamide and 600 mg of sodium bicarbonate were added to the reaction mixture, and the mixture was heated to reflux for 4 hours. After cooling, 356 mg of NBS was added to the reaction mixture and heated to reflux for 1 hour. After cooling, 5 mL of saturated aqueous sodium hydrogen carbonate solution and 10 mL of water were further added, and the precipitated insoluble matter was collected by filtration, washed with water, and dried under reduced pressure, and N- (4- {6-amino-5-cyano-2- [6 380 mg of-(morpholin-4-carbonyl) pyridin-2-ylmethylsulfanyl] pyrimidin-4-yl} phenyl) acetamide hydrochloride was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.86 (1H, t, J = 7.8 Hz), 7.79 (2H, d, J = 9.0 Hz), 7.70 (2H, d, J = 9.0 Hz), 7.62 (1H, d, J = 7.8 Hz), 7.47 (1H, d, J = 7.8 Hz), 4.53 (2H, s), 3.63 (4H, br t), 3.49-3.44 (2H, m), 2.08 (3H, s).

参考例7で得た化合物に代えて参考例8で得た化合物を用いて、実施例26に記載の方法と同様にして、6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-カルボン酸 t-ブチルエステルを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 7.82-7.72 (7H, m), 4.55 (2H, s), 2.08 (3H, S), 1.54 (9H, s)。
Using the compound obtained in Reference Example 8 instead of the compound obtained in Reference Example 7, in the same manner as in Example 26, 6- [4- (4-acetylaminophenyl) -6-amino- 5-Cyanopyrimidin-2-ylsulfanylmethyl] pyridine-2-carboxylic acid t-butyl ester was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 7.82-7.72 (7H, m), 4.55 (2H, s), 2.08 (3H, S), 1.54 (9H, s).

参考例7で得た化合物に代えて参考例9で得た化合物を用いて、実施例26に記載の方法と同様にして、4-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-カルボニル}ピペラジン-1-カルボン酸 t-ブチルエステルを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.89 (1H, t, J = 7.8 Hz), 7.83 (2H, d, J = 8.7 Hz), 7.75 (2H, d, J = 8.7 Hz), 7.63 (1H, d, J = 7.8 Hz), 7.47 (1H, d, J = 7.8 Hz), 4.53 (2H, s), 3.60-3.56 (2H, br), 3.45-3.31 (6H, br), 2.09 (3H, s), 1.40 (12H, s)。
Using the compound obtained in Reference Example 9 in place of the compound obtained in Reference Example 7, and using the same method as described in Example 26, 4- {6- [4- (4-acetylaminophenyl) -6 -Amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridine-2-carbonyl} piperazine-1-carboxylic acid t-butyl ester was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.89 (1H, t, J = 7.8 Hz), 7.83 (2H, d, J = 8.7 Hz), 7.75 (2H, d, J = 8.7 Hz), 7.63 (1H, d, J = 7.8 Hz), 7.47 (1H, d, J = 7.8 Hz), 4.53 (2H, s), 3.60-3.56 (2H, br), 3.45-3.31 (6H , br), 2.09 (3H, s), 1.40 (12H, s).

実施例28で得た化合物600 mgに氷冷下にTFA2mLを加え、混合物を室温で1時間攪拌した。剰余のTFAを減圧留去し、残渣に0.1mol/L塩酸エタノール溶液20mLを加えて攪拌し、析出した結晶を濾取して、80mgのN-(4-{6-アミノ-5-シアノ-2-[6-(ピペラジン-1-カルボニル)ピリジン-2-イルメチルスルファニル]ピリミジン-4-イル}フェニル)アセトアミド塩酸塩を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 9.16 (2H, br), 7.90 (1H, t, J= 7.8 Hz), 7.80 (2H, d, J= 8.7 Hz), 7.72 (2H, d, J= 8.7 Hz), 7.69 (1H, d, J= 7.8 Hz), 7.55 (1H, d, J= 7.8 Hz), 4.54 (2H, s), 3.86 (2H, br), 3.70 (2H, br), 3.20-3.10 (4H, br), 2.09 (3H, s)。
To 600 mg of the compound obtained in Example 28, 2 mL of TFA was added under ice cooling, and the mixture was stirred at room temperature for 1 hour. Excess TFA was distilled off under reduced pressure, and 20 mL of 0.1 mol / L hydrochloric acid ethanol solution was added to the residue and stirred. The precipitated crystals were collected by filtration, and 80 mg of N- (4- {6-amino-5-cyano- 2- [6- (Piperazin-1-carbonyl) pyridin-2-ylmethylsulfanyl] pyrimidin-4-yl} phenyl) acetamide hydrochloride was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 9.16 (2H, br), 7.90 (1H, t, J = 7.8 Hz), 7.80 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.69 (1H, d, J = 7.8 Hz), 7.55 (1H, d, J = 7.8 Hz), 4.54 (2H, s), 3.86 (2H, br), 3.70 (2H, br), 3.20-3.10 (4H, br), 2.09 (3H, s).

上記実施例26〜29で得られた化合物について、その構造を下記表10に示す。   The structures of the compounds obtained in Examples 26 to 29 are shown in Table 10 below.

Figure 0004794200
Figure 0004794200

(6-ヒドロキシメチルピリジン-2-イルメチル)カルバミン酸 t-ブチルエステル1gおよびジイソプロピルエチルアミン1.1mLをジクロロメタン20mLに溶解し、得られる液中に室温でメタンスルホニルクロリド0.33mLを滴下し、混合液を同温で1 時間撹拌した。反応液に水を加え、有機層を水で2回、飽和食塩水で1回洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、得られた油状物を、チオウレア0.32gとともにエタノール25mLに溶解し、得られた液を1時間加熱還流した。反応混合物にNBS0.4gを加えて5分間加熱還流し、放冷後、溶媒を留去した。残渣をクロロホルムに溶解し、水で2回および飽和食塩水で1回洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−アンモニア水=90:10:1)で精製した。得られた粗結晶を酢酸エチル‐ヘキサンから再結晶して、0.97 gの{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イルメチル}カルバミン酸 t-ブチルエステルを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.25 (1H, s), 8.25-7.49 (2H, br s), 7.98 (1H, t, J = 7.5 Hz), 7.83 (2H, d, J = 8.7 Hz), 7.73 (2H, d, J = 8.7 Hz), 7.64 (1H, d, J = 7.5 Hz), 7.53 (1H, br s), 7.33 (1H, d, J = 7.5 Hz), 4.54 (2H, s), 4.29 (2H, d, J = 5.7 Hz), 2.09 (3H, s), 1.40 (9H, s)。
Dissolve 1 g of (6-hydroxymethylpyridin-2-ylmethyl) carbamic acid t-butyl ester and 1.1 mL of diisopropylethylamine in 20 mL of dichloromethane, add 0.33 mL of methanesulfonyl chloride dropwise at room temperature, and mix the mixture. Stir at warm for 1 hour. Water was added to the reaction mixture, and the organic layer was washed twice with water and once with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting oil was dissolved in 25 mL of ethanol together with 0.32 g of thiourea, and the resulting solution was heated to reflux for 1 hour. NBS 0.4g was added to the reaction mixture, and it heated and refluxed for 5 minutes, and stood to cool, Then, the solvent was distilled off. The residue was dissolved in chloroform, washed twice with water and once with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (methylene chloride-methanol-aqueous ammonia = 90: 10: 1). The obtained crude crystals were recrystallized from ethyl acetate-hexane to give 0.97 g of {6- [4- (4-acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridine- 2-ylmethyl} carbamic acid t-butyl ester was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.25 (1H, s), 8.25-7.49 (2H, br s), 7.98 (1H, t, J = 7.5 Hz), 7.83 (2H, d, J = 8.7 Hz), 7.73 (2H, d, J = 8.7 Hz), 7.64 (1H, d, J = 7.5 Hz), 7.53 (1H, br s), 7.33 (1H, d, J = 7.5 Hz), 4.54 (2H , s), 4.29 (2H, d, J = 5.7 Hz), 2.09 (3H, s), 1.40 (9H, s).

実施例30で得た化合物0.2gにトリフルオロ酢酸1mLを加え、混合物を30分間室温で撹拌後、混合物からトリフルオロ酢酸を留去した。残留物にトリエチルアミン2mLを加えて撹拌後、更にWSC 0.19 g、HOBt 0.14gおよびN,N-ジメチルグリシン41mgを加え、得られる混合物を室温で終夜撹拌した。反応液に水を加えて析出晶を濾取し、エタノールにて洗浄後乾燥して、76mgのN-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イルメチル}-2-ジメチルアミノアセトアミドを得た。   1 mL of trifluoroacetic acid was added to 0.2 g of the compound obtained in Example 30, and the mixture was stirred at room temperature for 30 minutes, and then trifluoroacetic acid was distilled off from the mixture. To the residue, 2 mL of triethylamine was added and stirred, and then 0.19 g of WSC, 0.14 g of HOBt and 41 mg of N, N-dimethylglycine were added, and the resulting mixture was stirred at room temperature overnight. Water was added to the reaction solution, and the precipitated crystals were collected by filtration, washed with ethanol and dried, and 76 mg of N- {6- [4- (4-acetylaminophenyl) -6-amino-5-cyanopyrimidine- 2-ylsulfanylmethyl] pyridin-2-ylmethyl} -2-dimethylaminoacetamide was obtained.

本品全量をエタノール2mLに溶解し、得られた液に1 mol/L塩酸エタノール溶液1mLを加えた後、エタノールを減圧留去して、塩酸塩形態の目的化合物を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.24 (1H, s), 8.36 (1H, t, J = 6.0 Hz), 8.25-7.65 (2H, br s), 7.85 (2H, d, J = 8.7 Hz), 7.72-7.66 (3H, m), 7.41 (1H, d, J = 7.5 Hz), 7.14 (1H, d, J = 7.5 Hz), 4.48 (2H, s), 4.38 (2H, d, J = 6.0 Hz), 2.94 (2H, s), 2.24 (6H, s), 2.09 (3H, s)。
The total amount of this product was dissolved in 2 mL of ethanol, and 1 mL of a 1 mol / L hydrochloric acid ethanol solution was added to the resulting solution, and then ethanol was distilled off under reduced pressure to obtain the target compound in the form of hydrochloride.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.24 (1H, s), 8.36 (1H, t, J = 6.0 Hz), 8.25-7.65 (2H, br s), 7.85 (2H, d, J = 8.7 Hz), 7.72-7.66 (3H, m), 7.41 (1H, d, J = 7.5 Hz), 7.14 (1H, d, J = 7.5 Hz), 4.48 (2H, s), 4.38 (2H, d, J = 6.0 Hz), 2.94 (2H, s), 2.24 (6H, s), 2.09 (3H, s).

実施例30で得た化合物0.3gにトリフルオロ酢酸2mLを加え、混合物を室温で1時間撹拌した。その後反応混合物からトリフルオロ酢酸を減圧留去し、残渣をアセトニトリル2mLに溶解し、得られる液中に28%アンモニア水4mLを加えて、析出した結晶を濾取して、0.2gのN-{4-[6-アミノ-2-(6-アミノメチルピリジン-2-イルメチルスルファニル)-5-シアノピリミジン-4-イル]フェニル}アセトアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.25 (1H, s), 8.25-7.65 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.75-7.65 (3H, m), 7.29-7.40 (2H, m), 4.47 (2H, s), 3.78 (2H, s), 2.09 (3H, s)。
To 0.3 g of the compound obtained in Example 30, 2 mL of trifluoroacetic acid was added, and the mixture was stirred at room temperature for 1 hour. Thereafter, trifluoroacetic acid was distilled off under reduced pressure from the reaction mixture, the residue was dissolved in 2 mL of acetonitrile, 4 mL of 28% aqueous ammonia was added to the resulting solution, and the precipitated crystals were collected by filtration, and 0.2 g of N- { 4- [6-Amino-2- (6-aminomethylpyridin-2-ylmethylsulfanyl) -5-cyanopyrimidin-4-yl] phenyl} acetamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.25 (1H, s), 8.25-7.65 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.75-7.65 (3H, m), 7.29-7.40 (2H, m), 4.47 (2H, s), 3.78 (2H, s), 2.09 (3H, s).

実施例32で得た化合物0.2gおよびトリエチルアミン0.5mLをDMF2 mLに溶解し、溶解液中に4-ピロリジン-1-イル酪酸塩酸塩0.1g、HOBt 0.07gおよびWSC 0.1gを加え、混合物を室温にて終夜撹拌した。反応液に水を加えて析出晶を濾取し、得られた粗結晶をエタノールから再結晶して、43 mgのN-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イルメチル}-4-ピロリジン-1-イルブチルアミドを得た。   0.2 g of the compound obtained in Example 32 and 0.5 mL of triethylamine were dissolved in 2 mL of DMF, 0.1 g of 4-pyrrolidin-1-ylbutyric acid hydrochloride, 0.07 g of HOBt and 0.1 g of WSC were added to the solution, and the mixture was stirred at room temperature. At rt overnight. Water was added to the reaction solution, the precipitated crystals were collected by filtration, and the resulting crude crystals were recrystallized from ethanol to obtain 43 mg of N- {6- [4- (4-acetylaminophenyl) -6-amino- 5-Cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-ylmethyl} -4-pyrrolidin-1-ylbutyramide was obtained.

本品全量をエタノール2mLに溶解し、得られた液に1 mol/L塩酸エタノール溶液1mLを加えた後、エタノールを減圧留去して、目的化合物の塩酸塩を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.24 (1H, s), 8.40 (1H, t, J = 6.0 Hz), 8.25-7.65 (2H, br s), 7.85 (1H, d, J = 8.7 Hz), 7.74-7.66 (3H, m), 7.41 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 4.47 (2H, s), 4.31 (2H, d, J = 6.0 Hz), 2.32-2.38 (6H, m), 2.20 (2H, t, J = 7.2 Hz), 2.09 (3H, s), 1.75-1.57 (6H, m)。
The total amount of this product was dissolved in 2 mL of ethanol, and 1 mL of a 1 mol / L hydrochloric acid ethanol solution was added to the resulting solution, and then ethanol was distilled off under reduced pressure to obtain the hydrochloride of the target compound.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.24 (1H, s), 8.40 (1H, t, J = 6.0 Hz), 8.25-7.65 (2H, br s), 7.85 (1H, d, J = 8.7 Hz), 7.74-7.66 (3H, m), 7.41 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 4.47 (2H, s), 4.31 (2H, d, J = 6.0 Hz), 2.32-2.38 (6H, m), 2.20 (2H, t, J = 7.2 Hz), 2.09 (3H, s), 1.75-1.57 (6H, m).

(6-ヒドロキシメチルピリジン-2-イルメチル)-メチルカルバミン酸t-ブチルエステル0.76gおよびジイソプロピルエチルアミン0.78mlを塩化メチレン10mlに溶解し、得られる液に室温でメタンスルホニルクロリド0.23mlを加え1時間攪拌した。反応液に水を加え、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られた油状物をエタノール20mlに溶解し、この液にチオウレア0.23gを加え1時間加熱還流した。反応混合物を放冷後、溶媒を減圧留去し、残渣をジエチルエーテルで洗浄して、淡褐色の油状物0.9gを得た。   (6-Hydroxymethylpyridin-2-ylmethyl) -methylcarbamic acid t-butyl ester (0.76 g) and diisopropylethylamine (0.78 ml) were dissolved in methylene chloride (10 ml). . Water was added to the reaction mixture, and the organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained oil was dissolved in 20 ml of ethanol, 0.23 g of thiourea was added to this solution, and the mixture was heated to reflux for 1 hour. The reaction mixture was allowed to cool, the solvent was evaporated under reduced pressure, and the residue was washed with diethyl ether to obtain 0.9 g of a light brown oil.

本品全量およびN-[4-(2,2-ジシアノビニル)フェニル]アセトアミド0.63gをエタノール20mLに溶解し、得られた液を2時間加熱還流した。反応混合物にNBS 0.32gを加えて更に5分間加熱還流し、放冷後、溶媒を減圧留去した。残渣をクロロホルムに溶解し、得られた液を水で2回および飽和食塩水で1回それぞれ洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、得られた油状物をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−アンモニア水=90:10:1)で精製した。得られた粗結晶を酢酸エチル−ヘキサンより再結晶して、0.51 gの{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イルメチル}メチルカルバミン酸 t-ブチルエステルを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.24 (1H, s), 7.84 (2H, d, J = 8.4 Hz), 7.75-7.69 (3H, m), 7.43 (1H, d, J = 7.5 Hz), 7.05 (1H, d, J = 7.5 Hz), 4.48 (3H, s), 4.43 (2H, s), 2.85 (3H, s) 2.09 (3H, s), 1.51-1.25 (9H, m)。
The total amount of this product and 0.63 g of N- [4- (2,2-dicyanovinyl) phenyl] acetamide were dissolved in 20 mL of ethanol, and the resulting solution was heated to reflux for 2 hours. NBS 0.32 g was added to the reaction mixture, and the mixture was further heated under reflux for 5 minutes. After standing to cool, the solvent was distilled off under reduced pressure. The residue was dissolved in chloroform, and the resulting liquid was washed twice with water and once with saturated brine, and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting oil was purified by silica gel column chromatography (methylene chloride-methanol-aqueous ammonia = 90: 10: 1). The obtained crude crystals were recrystallized from ethyl acetate-hexane to give 0.51 g of {6- [4- (4-acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridine- 2-ylmethyl} methylcarbamic acid t-butyl ester was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.24 (1H, s), 7.84 (2H, d, J = 8.4 Hz), 7.75-7.69 (3H, m), 7.43 (1H, d, J = 7.5 Hz ), 7.05 (1H, d, J = 7.5 Hz), 4.48 (3H, s), 4.43 (2H, s), 2.85 (3H, s) 2.09 (3H, s), 1.51-1.25 (9H, m).

実施例30で得た化合物に代えて実施例34で得た化合物を原料として用いて、実施例32に記載の方法に従って、N-{4-[6-アミノ-5-シアノ-2-(6-メチルアミノメチルピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.24 (1H, s), 7.65-8.25 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.72-7.66 (3H, m), 7.41 (1H, d, J = 7.8 Hz), 7.30 (1H, d, J = 7.8 Hz), 4.48 (2H, s), 3.74 (2H, s), 2.31 (3H, s), 2.09 (3H, s)。
Using the compound obtained in Example 34 instead of the compound obtained in Example 30 as a raw material, N- {4- [6-amino-5-cyano-2- (6 -Methylaminomethylpyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.24 (1H, s), 7.65-8.25 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.72-7.66 (3H, m), 7.41 (1H, d, J = 7.8 Hz), 7.30 (1H, d, J = 7.8 Hz), 4.48 (2H, s), 3.74 (2H, s), 2.31 (3H, s), 2.09 (3H, s ).

実施例32で得た化合物に代えて実施例35で得た化合物を用いて、実施例33に記載の方法に従って、N-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イルメチル}-N-メチル-4-ピロリジン-1-イルブチルアミド塩酸塩を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.23 (1H, s), 8.22-7.66 (2H, br s), 7.86-7.65 (5H, m), 7.47-7.39 (1H, m), 7.13-7.01 (1H, m), 4.71-4.42 (4H, m), 3.05-2.78 (3H, m), 2.45-2.20 (8H, m), 2.09 (3H, s), 1.75-1.55 (6H, m)。
Using the compound obtained in Example 35 instead of the compound obtained in Example 32 and according to the method described in Example 33, N- {6- [4- (4-acetylaminophenyl) -6-amino- 5-Cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-ylmethyl} -N-methyl-4-pyrrolidin-1-ylbutyramide hydrochloride was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.23 (1H, s), 8.22-7.66 (2H, br s), 7.86-7.65 (5H, m), 7.47-7.39 (1H, m), 7.13-7.01 (1H, m), 4.71-4.42 (4H, m), 3.05-2.78 (3H, m), 2.45-2.20 (8H, m), 2.09 (3H, s), 1.75-1.55 (6H, m).

実施例32で得た化合物0.5gおよびトリエチルアミン0.3mLをDMSO 5mLに溶解し、得られた液に、氷冷下に、3-ブロモプロピオニルクロリド0.17gを加えて、30分間撹拌した。反応混合物をクロロホルムで希釈し、水で2回および飽和食塩水で1回洗浄し、有機層を無水硫酸マグネシウムで乾燥した。溶媒を留去して得られた粗結晶をジエチルエーテルで洗浄して、0.12gのN-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イルメチル}アクリルアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.29 (1H, s), 8.73-8.65 (1H, m), 8.25-7.65 (2H, br s), 7.84 (2H, d, J = 9 Hz), 7.81-7.70 (3H, m), 7.50-7.45 (1H, m), 7.23-7.11 (1H, m), 6.20-5.79 (3H, m), 4.51-4.32 (4H, m), 2.10 (3H, s)。
0.5 g of the compound obtained in Example 32 and 0.3 mL of triethylamine were dissolved in 5 mL of DMSO, and 0.17 g of 3-bromopropionyl chloride was added to the obtained liquid under ice cooling, followed by stirring for 30 minutes. The reaction mixture was diluted with chloroform, washed twice with water and once with saturated brine, and the organic layer was dried over anhydrous magnesium sulfate. The crude crystals obtained by distilling off the solvent were washed with diethyl ether, and 0.12 g of N- {6- [4- (4-acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-yl Sulfanylmethyl] pyridin-2-ylmethyl} acrylamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.29 (1H, s), 8.73-8.65 (1H, m), 8.25-7.65 (2H, br s), 7.84 (2H, d, J = 9 Hz), 7.81-7.70 (3H, m), 7.50-7.45 (1H, m), 7.23-7.11 (1H, m), 6.20-5.79 (3H, m), 4.51-4.32 (4H, m), 2.10 (3H, s ).

実施例37で得た化合物0.11gおよび4-ピペリジノピペリジン0.1gをDMSO 2mLに溶解し、得られた液を終夜室温にて撹拌した。反応液にクロロホルムと水を加え、有機層を水で2回、次いで飽和食塩水で1回洗浄し、有機層を硫酸マグネシウムで乾燥した。溶媒を留去後、得られた残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−28%アンモニア水=90:10:1)で精製して、50mgのN-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-}イルメチル}-3-[1,4']ビピペリジニル-1'-イルプロピオンアミドを得た。このものを実施例31に記載の方法に従って塩酸塩とした。得られた塩酸塩の物性を次に示す。
淡黄色油状物
1H-NMR(DMSO-d6)δ: 10.2 (1H, s), 7.83 (2H, d, J= 8.7 Hz),, 7.71 (2H, d, J = 8.7 Hz), 7.66 (1H, t, J = 7.2 Hz), 7.33 (1H, d, J= 7.2 Hz), 7.15 (1H, d, J= 7.2 Hz), 4.46 (2H, s), 3.55-3.52 (4H, m), 2.86 (2H, t, J= 7.2 Hz), 2.60 (2H, t, J= 7.2 Hz), 2.39 (4H, br t), 2.03 (3H, s)。
0.11 g of the compound obtained in Example 37 and 0.1 g of 4-piperidinopiperidine were dissolved in 2 mL of DMSO, and the resulting solution was stirred overnight at room temperature. Chloroform and water were added to the reaction solution, the organic layer was washed twice with water and then once with saturated brine, and the organic layer was dried over magnesium sulfate. After the solvent was distilled off, the obtained residue was purified by silica gel column chromatography (methylene chloride-methanol-28% aqueous ammonia = 90: 10: 1) to give 50 mg of N- {6- [4- (4- Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-} ylmethyl} -3- [1,4 ′] bipiperidinyl-1′-ylpropionamide was obtained. This was converted to the hydrochloride salt according to the method described in Example 31. The physical properties of the obtained hydrochloride are shown below.
Pale yellow oil
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.71 (2H, d, J = 8.7 Hz), 7.66 (1H, t, J = 7.2 Hz), 7.33 (1H, d, J = 7.2 Hz), 7.15 (1H, d, J = 7.2 Hz), 4.46 (2H, s), 3.55-3.52 (4H, m), 2.86 (2H, t, J = 7.2 Hz), 2.60 (2H, t, J = 7.2 Hz), 2.39 (4H, br t), 2.03 (3H, s).

実施例30で得た化合物0.2gにトリフルオロ酢酸1mLを加え、混合物を室温で30分間撹拌後、反応混合物を減圧乾固した。残渣をアセトニトリル5mLに溶解し、得られた液にトリエチルアミン2mLを加えて室温で撹拌し、次に、4-メチル-1-ピペラジンカルボニルクロリド塩酸塩63mgを加えて室温で終夜撹拌した。反応液に水を加えて析出晶を濾取し、エタノールで洗浄後、乾燥して、35mgの4-メチルピペラジン-1-カルボキシル酸 {6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イルメチル}アミドを得た。このものを実施例31に記載の方法に従って塩酸塩とした。得られた塩酸塩の物性は次の通りである。
白色粉末
1H-NMR(DMSO-d6)δ: 10.24 (1H, s), 8.25-7.65 (2H, br s), 7.86 (2H, d, J = 8.7 Hz), 7.74-7.65 (3H, m), 7.38 (1H, d, J = 7.5 Hz), 7.17-7.10 (2H, m), 4.47 (2H, s), 4.31 (2H, d, J = 6.0 Hz), 3.35-3.30 (4H, m), 2.31-2.24 (4H, m), 2.37(3H, s), 2.10 (3H, s)。
1 mL of trifluoroacetic acid was added to 0.2 g of the compound obtained in Example 30, and the mixture was stirred at room temperature for 30 minutes, and then the reaction mixture was dried under reduced pressure. The residue was dissolved in 5 mL of acetonitrile, and 2 mL of triethylamine was added to the resulting solution and stirred at room temperature. Next, 63 mg of 4-methyl-1-piperazinecarbonyl chloride hydrochloride was added and stirred overnight at room temperature. Water was added to the reaction solution, and the precipitated crystals were collected by filtration, washed with ethanol, dried, and 35 mg of 4-methylpiperazine-1-carboxylic acid {6- [4- (4-acetylaminophenyl) -6- Amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-ylmethyl} amide was obtained. This was converted to the hydrochloride salt according to the method described in Example 31. The physical properties of the obtained hydrochloride are as follows.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.24 (1H, s), 8.25-7.65 (2H, br s), 7.86 (2H, d, J = 8.7 Hz), 7.74-7.65 (3H, m), 7.38 (1H, d, J = 7.5 Hz), 7.17-7.10 (2H, m), 4.47 (2H, s), 4.31 (2H, d, J = 6.0 Hz), 3.35-3.30 (4H, m), 2.31 -2.24 (4H, m), 2.37 (3H, s), 2.10 (3H, s).

実施例32で得た化合物0.1gのDMSO 5mL懸濁液にジイソプロピルエチルアミン0.25mLを加え、混合物に攪拌下に更に1-プロパンスルホニルクロリド0.04mLを滴下した。滴下30分後、反応混合物に水を加えて析出した結晶を濾取し、減圧乾燥して、80mgのN-[4-(6-アミノ-5-シアノ-2-{6-[(プロパン-1-スルホニルアミノ)メチル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.23 (1H, s), 7.65-8.20 (5H, m), 7.46 (1H, d, J = 7.8 Hz), 7.33 (1H, d, J = 7.8 Hz), 4.48 (2H, s), 4.22 (2H, d, J = 6.3 Hz), 2.94-3.01 (2H, m), 2.09 (3H, s), 1.55-1.70 (2H, m), 0.89 (3H, t, J = 7.5 Hz)。
To a suspension of 0.1 g of the compound obtained in Example 32 in 5 mL of DMSO was added 0.25 mL of diisopropylethylamine, and 0.04 mL of 1-propanesulfonyl chloride was further added dropwise to the mixture with stirring. 30 minutes after the dropwise addition, water was added to the reaction mixture, and the precipitated crystals were collected by filtration, dried under reduced pressure, and 80 mg of N- [4- (6-amino-5-cyano-2- {6-[(propane- 1-sulfonylamino) methyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.23 (1H, s), 7.65-8.20 (5H, m), 7.46 (1H, d, J = 7.8 Hz), 7.33 (1H, d, J = 7.8 Hz ), 4.48 (2H, s), 4.22 (2H, d, J = 6.3 Hz), 2.94-3.01 (2H, m), 2.09 (3H, s), 1.55-1.70 (2H, m), 0.89 (3H, t, J = 7.5 Hz).

実施例35で得た化合物0.1gのアセトニトリル5mL懸濁液にジイソプロピルエチルアミン0.25mLを加え、混合物に攪拌下に更に1-プロパンスルホニルクロリド0.04mLを滴下した。滴下1時間後、反応混合物に水を加えて析出した結晶を濾取し、減圧乾燥して、80mgのN-{4-[6-アミノ-5-シアノ-2-(6-{[メチル(プロパン-1-スルホニル)アミノ]メチル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.23 (1H, s), 7.65-8.20 (5H, m), 7.49 (1H, d, J = 7.8 Hz), 7.27 (1H, d, J = 7.8 Hz), 4.50 (2H, s), 4.40 (2H, s), 2.77-3.32 (2H, m), 2.79 (3H, s), 2.09 (3H, s), 1.61-1.76 (3H, m), 0.96 (3H, t, J = 7.2 Hz)。
0.25 mL of diisopropylethylamine was added to a suspension of 0.1 g of the compound obtained in Example 35 in 5 mL of acetonitrile, and further 0.04 mL of 1-propanesulfonyl chloride was added dropwise to the mixture with stirring. One hour after the dropwise addition, water was added to the reaction mixture, and the precipitated crystals were collected by filtration, dried under reduced pressure, and 80 mg of N- {4- [6-amino-5-cyano-2- (6-{[methyl ( Propane-1-sulfonyl) amino] methyl} pyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.23 (1H, s), 7.65-8.20 (5H, m), 7.49 (1H, d, J = 7.8 Hz), 7.27 (1H, d, J = 7.8 Hz ), 4.50 (2H, s), 4.40 (2H, s), 2.77-3.32 (2H, m), 2.79 (3H, s), 2.09 (3H, s), 1.61-1.76 (3H, m), 0.96 ( 3H, t, J = 7.2 Hz).

実施例30〜41で得られた化合物の構造を下記表11〜表12に示す。   The structures of the compounds obtained in Examples 30 to 41 are shown in Tables 11 to 12 below.

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

チオウレア5.33gを60℃でエタノール70mLに溶解し、得られた液中に参考例10で得た化合物19.21gのエタノール50mL溶液を加え、混合物を同温で2時間攪拌した。冷後、反応混合物に炭酸水素ナトリウム14.7gを加え、混合物を室温で10分間攪拌した。更に、混合物中にN-[4-(2,2-ジシアノビニル)フェニル]アセトアミド14.8gおよびエタノール50mLを加えて終夜加熱還流した。反応混合物を氷水に投じ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧乾固した。残留物をエタノール200mLに溶解し、加熱還流しながらNBS 2gずつを1時間毎に合計4回加えた。冷後、反応混合物を飽和炭酸水素ナトリウム水溶液中に投じ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧乾固した。残留物をシリカゲルカラムクロマトグラフィー(クロロホルム−メタノール=10:1)で精製し、アセトン-IPEから再結晶して、16.19gの3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}プロピオン酸 t-ブチルエステルを得た。
淡黄色粉末
1H-NMR (DMSO-d6) δ: 7.83 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.63 (1H, t, J = 7.5 Hz), 7.35 (1H, d, J = 7.5 Hz), 7.14 (1H, d, J = 7.5 Hz), 4.45 (2H, s), 2.94 (2H, t, J = 7.5Hz), 2.61 (2H, t, J = 7.5 Hz), 2.09 (3H, s), 1.34 (9H, s)。
Thiorurea (5.33 g) was dissolved in ethanol (70 mL) at 60 ° C., and the resulting solution was added with 19.21 g of the compound obtained in Reference Example 10 in 50 mL of ethanol, and the mixture was stirred at the same temperature for 2 hours. After cooling, 14.7 g of sodium bicarbonate was added to the reaction mixture, and the mixture was stirred at room temperature for 10 minutes. Furthermore, 14.8 g of N- [4- (2,2-dicyanovinyl) phenyl] acetamide and 50 mL of ethanol were added to the mixture, and the mixture was heated to reflux overnight. The reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and evaporated to dryness. The residue was dissolved in 200 mL of ethanol, and 2 g of NBS was added a total of 4 times every hour while heating under reflux. After cooling, the reaction mixture was poured into a saturated aqueous sodium hydrogen carbonate solution and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and evaporated to dryness. The residue was purified by silica gel column chromatography (chloroform-methanol = 10: 1), recrystallized from acetone-IPE, and 16.19 g of 3- {6- [4- (4-acetylaminophenyl) -6- Amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} propionic acid t-butyl ester was obtained.
Pale yellow powder
1 H-NMR (DMSO-d 6 ) δ: 7.83 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.63 (1H, t, J = 7.5 Hz), 7.35 ( 1H, d, J = 7.5 Hz), 7.14 (1H, d, J = 7.5 Hz), 4.45 (2H, s), 2.94 (2H, t, J = 7.5 Hz), 2.61 (2H, t, J = 7.5 Hz), 2.09 (3H, s), 1.34 (9H, s).

参考例11で得た化合物3gをジクロロメタン50mLに溶解し、得られた液中にジイソプロピルエチルアミン4mLを加え、更に氷冷下にメタンスルホニルクロリド1.3mLを滴下し、混合物を1時間撹拌した。反応混合物に水を加え、有機層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られた褐色油状物をエタノール50mLに溶解し、溶解液にチオウレア1.0gを加えて1時間加熱還流した。反応液を放冷後、これにN-[4-(2,2-ジシアノビニル)フェニル]アセトアミド2.5g、ジイソプロピルエチルアミン5mLおよびDBU 1滴を加え、室温で終夜撹拌した。反応混合物から溶媒を減圧留去後、残渣を酢酸エチル50mLに溶解し、得られる液に氷冷撹拌下にNBS1.8gを加えて、30分間撹拌した。反応混合物に水を加え、有機層を水および飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られた白色油状物に2-プロパノールを加えて結晶化させ、さらに2-プロパノールから再結晶して、2.3gの3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}プロピオン酸 エチルエステルを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.23 (1H, s), 7.26-8.20 (2H, br s) 7.83 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.63 (1H, t, J = 7.8 Hz), 7.35 (1H, d, J = 7.8 Hz) 7.15 (1H, d, J = 7.8 Hz) 4.45 (2H, s), 4.03 (2H, q, J = 7.2 Hz), 2.98 (2H, t, J = 7.2 Hz), 2.70 (2H, t, J = 7.2 Hz), 2.09 (3H, s), 1.14 (3H, t, J = 7.2 Hz)。
3 g of the compound obtained in Reference Example 11 was dissolved in 50 mL of dichloromethane, 4 mL of diisopropylethylamine was added to the obtained liquid, 1.3 mL of methanesulfonyl chloride was further added dropwise under ice cooling, and the mixture was stirred for 1 hour. Water was added to the reaction mixture, and the organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained brown oil was dissolved in 50 mL of ethanol, 1.0 g of thiourea was added to the solution, and the mixture was heated to reflux for 1 hour. After allowing the reaction solution to cool, 2.5 g of N- [4- (2,2-dicyanovinyl) phenyl] acetamide, 5 mL of diisopropylethylamine and 1 drop of DBU were added, and the mixture was stirred at room temperature overnight. After distilling off the solvent from the reaction mixture under reduced pressure, the residue was dissolved in 50 mL of ethyl acetate, and 1.8 g of NBS was added to the resulting solution under ice-cooling and stirring, followed by stirring for 30 minutes. Water was added to the reaction mixture, and the organic layer was washed with water and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained white oil was crystallized by adding 2-propanol and recrystallized from 2-propanol to give 2.3 g of 3- {6- [4- (4-acetylaminophenyl) -6-amino- 5-Cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} propionic acid ethyl ester was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.23 (1H, s), 7.26-8.20 (2H, br s) 7.83 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz ), 7.63 (1H, t, J = 7.8 Hz), 7.35 (1H, d, J = 7.8 Hz) 7.15 (1H, d, J = 7.8 Hz) 4.45 (2H, s), 4.03 (2H, q, J = 7.2 Hz), 2.98 (2H, t, J = 7.2 Hz), 2.70 (2H, t, J = 7.2 Hz), 2.09 (3H, s), 1.14 (3H, t, J = 7.2 Hz).

参考例11で得た化合物に代えて参考例12で得た化合物を用いて、実施例43に記載の方法に従って、3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}プロピオン酸 メチルエステルを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.23 (1H, s), 8.20-7.60 (2H, br s), 7.83 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.63 (1H, t, J = 7.8 Hz), 7.35 (1H, d, J = 7.8 Hz), 7.15 (1H, d, J = 7.8 Hz), 4.45 (2H, s), 3.57 (3H, s), 2.96 (2H, t, J = 7.2 Hz), 2.74 (2H, t, J = 7.2 Hz), 2.09 (3H, s)。
Using the compound obtained in Reference Example 12 instead of the compound obtained in Reference Example 11, according to the method described in Example 43, 3- {6- [4- (4-acetylaminophenyl) -6-amino- 5-Cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} propionic acid methyl ester was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.23 (1H, s), 8.20-7.60 (2H, br s), 7.83 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.63 (1H, t, J = 7.8 Hz), 7.35 (1H, d, J = 7.8 Hz), 7.15 (1H, d, J = 7.8 Hz), 4.45 (2H, s), 3.57 (3H, s), 2.96 (2H, t, J = 7.2 Hz), 2.74 (2H, t, J = 7.2 Hz), 2.09 (3H, s).

実施例42で得た化合物8.21gを氷冷し、このものにTFA30mLを加え、混合物を室温で1.5時間攪拌した。減圧下にTFAを留去後、反応液にクロロホルム100mLを加えて再び減圧下に蒸留し、得られる残渣をアセトンに溶解し、このものに1N塩酸18mLを加えて減圧乾固した。残留物をアセトン中に分散させ、濾過操作により、6.82gの3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}プロピオン酸塩酸塩を得た。
淡黄色粉末
1H-NMR (CD3OD) δ: 8.38 (1H, t, J = 7.8 Hz), 8.05 (1H, d, J = 7.8 Hz), 7.82 (2H, d, J = 9.0 Hz), 7.81 (1H, d, J = 7.8 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.69 (2H, s), 3.15 (2H, t, J = 6.9 Hz), 2.84 (2H, t, J = 6.9 Hz), 2.16 (3H, s)。
8.21 g of the compound obtained in Example 42 was ice-cooled, 30 mL of TFA was added thereto, and the mixture was stirred at room temperature for 1.5 hours. After distilling off TFA under reduced pressure, 100 mL of chloroform was added to the reaction solution and distilled again under reduced pressure. The resulting residue was dissolved in acetone, and 18 mL of 1N hydrochloric acid was added thereto and dried under reduced pressure. The residue was dispersed in acetone and filtered to give 6.82 g of 3- {6- [4- (4-acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridine-2. -Il} propionate hydrochloride was obtained.
Pale yellow powder
1 H-NMR (CD 3 OD) δ: 8.38 (1H, t, J = 7.8 Hz), 8.05 (1H, d, J = 7.8 Hz), 7.82 (2H, d, J = 9.0 Hz), 7.81 (1H , d, J = 7.8 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.69 (2H, s), 3.15 (2H, t, J = 6.9 Hz), 2.84 (2H, t, J = 6.9 Hz ), 2.16 (3H, s).

実施例45で得た化合物100mgを塩化メチレン2mL中に懸濁し、得られた懸濁液中にN-メチルピペラジン34μL、WSC 79mgおよびジイソプロピルエチルアミン72μLを加え、室温で終夜攪拌した。反応混合物に飽和食塩水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、減圧濃縮した。残留物をシリカゲルカラムクロマトグラフィー(クロロホルム−メタノール−28%アンモニア水=100:10:1)で精製して、95mgのN-[4-(6-アミノ-5-シアノ-2-{6-[3-(4-メチルピペラジン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミドを得た。   100 mg of the compound obtained in Example 45 was suspended in 2 mL of methylene chloride, 34 μL of N-methylpiperazine, 79 mg of WSC and 72 μL of diisopropylethylamine were added to the resulting suspension, and the mixture was stirred overnight at room temperature. Saturated brine was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform-methanol-28% aqueous ammonia = 100: 10: 1), and 95 mg of N- [4- (6-amino-5-cyano-2- {6- [ 3- (4-Methylpiperazin-1-yl) -3-oxopropyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide was obtained.

本化合物69mgをメタノールに溶解し、得られる液に1N塩酸0.29mLを加えて減圧乾固した。残留物をメタノール-IPEから再結晶して、上記化合物の塩酸塩67mgを得た。この塩酸塩の物性を次に示す。
淡黄色粉末
1H-NMR (CD3OD) δ: 8.39 (1H, t, J = 7.8 Hz), 8.04 (1H, d, J = 7.8 Hz), 7.83 (1H, d, J = 7.8 Hz), 7.82 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 4.72 (2H, s), 3.65-3.40 (4H, m), 3.26-2.99 (8H, m), 2.91 (3H, s), 2.16 (3H, s)。
69 mg of this compound was dissolved in methanol, 0.29 mL of 1N hydrochloric acid was added to the resulting solution, and the mixture was dried under reduced pressure. The residue was recrystallized from methanol-IPE to obtain 67 mg of hydrochloride of the above compound. The physical properties of this hydrochloride are shown below.
Pale yellow powder
1 H-NMR (CD 3 OD) δ: 8.39 (1H, t, J = 7.8 Hz), 8.04 (1H, d, J = 7.8 Hz), 7.83 (1H, d, J = 7.8 Hz), 7.82 (2H , d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 4.72 (2H, s), 3.65-3.40 (4H, m), 3.26-2.99 (8H, m), 2.91 (3H, s), 2.16 (3H, s).

参考例10で得た化合物に代えて参考例14で得た化合物を用いて、実施例42に記載の方法と同様にして、3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}アクリル酸 t-ブチルエステルを得た。
淡褐色粉末
1H-NMR (DMSO-d6) δ: 10.22 (1H, s), 7.82 (2H, d, J = 8.7 Hz), 7.79 (1H, t, J = 7.5 Hz), 7.70 (2H, d, J = 8.7 Hz), 7.60 (1H, d, J = 7.5 Hz), 7.55 (1H, d, J = 7.5 Hz), 7.53 (1H, d, J = 15.9 Hz), 6.78 (1H, d, J = 15.9 Hz), 4.53 (2H, s), 2.08 (3H, s), 1.48 (9H, s)。
Using the compound obtained in Reference Example 14 instead of the compound obtained in Reference Example 10, in the same manner as in Example 42, 3- {6- [4- (4-acetylaminophenyl) -6 -Amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} acrylic acid t-butyl ester was obtained.
Light brown powder
1 H-NMR (DMSO-d 6 ) δ: 10.22 (1H, s), 7.82 (2H, d, J = 8.7 Hz), 7.79 (1H, t, J = 7.5 Hz), 7.70 (2H, d, J = 8.7 Hz), 7.60 (1H, d, J = 7.5 Hz), 7.55 (1H, d, J = 7.5 Hz), 7.53 (1H, d, J = 15.9 Hz), 6.78 (1H, d, J = 15.9 Hz), 4.53 (2H, s), 2.08 (3H, s), 1.48 (9H, s).

ナス型フラスコに、実施例47で得た化合物251mgを入れ、氷冷後、更にTFA0.5mLを加えて混合物を室温で1時間攪拌した。反応混合物からTFAを減圧留去後、油状残渣にアセト二トリル5mLを加え、氷冷下に撹拌しながら更にトリエチルアミン5mLを滴下した。このものに更に、N-メチルピペラジン50mgおよびBOP試薬455mgを加えて室温で終夜撹拌した。反応混合物を減圧濃縮し、シリカゲルカラムクロマトグラフィー(クロロホルム−メタノール−アンモニア水=200:10:1)で精製して、40 mgのN-[4-(6-アミノ-5-シアノ-2-{6-[3-(4-メチルピペラジン-1-イル)-3-オキソプロペニル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミドを得た。   In an eggplant-shaped flask, 251 mg of the compound obtained in Example 47 was placed, and after ice cooling, 0.5 mL of TFA was further added, and the mixture was stirred at room temperature for 1 hour. TFA was distilled off from the reaction mixture under reduced pressure, 5 mL of acetonitrile was added to the oily residue, and 5 mL of triethylamine was further added dropwise with stirring under ice cooling. To this was further added 50 mg of N-methylpiperazine and 455 mg of BOP reagent, and the mixture was stirred overnight at room temperature. The reaction mixture was concentrated under reduced pressure and purified by silica gel column chromatography (chloroform-methanol-aqueous ammonia = 200: 10: 1) to give 40 mg of N- [4- (6-amino-5-cyano-2- { 6- [3- (4-Methylpiperazin-1-yl) -3-oxopropenyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide was obtained.

本品全量をエタノールに溶解し、得られた液に1 mol/L塩酸エタノール溶液0.15mLを加え、溶媒を留去して、塩酸塩形態の上記化合物48mgを得た。この塩酸塩の物性を次に示す。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.82 (2H, d, J= 9.0 Hz), 7.76 (1H, d, J = 7.8 Hz), 7.70 (2H, d, J= 9.0 Hz), 7.61 (1H, d, J= 7.8 Hz), 7.51 (1H, d, J= 7.8 Hz), 7.46 (2H, s), 4.53 (2H, s), 3.57 (4H, br t), 2.31 (4H, br t), 2.19 (3H, s), 2.08 (3H, s) 。
The total amount of this product was dissolved in ethanol, 0.15 mL of 1 mol / L hydrochloric acid ethanol solution was added to the obtained liquid, and the solvent was distilled off to obtain 48 mg of the above compound in the form of hydrochloride. The physical properties of this hydrochloride are shown below.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.82 (2H, d, J = 9.0 Hz), 7.76 (1H, d, J = 7.8 Hz), 7.70 (2H, d, J = 9.0 Hz), 7.61 (1H, d, J = 7.8 Hz), 7.51 (1H, d, J = 7.8 Hz), 7.46 (2H, s), 4.53 (2H, s), 3.57 (4H, br t) , 2.31 (4H, br t), 2.19 (3H, s), 2.08 (3H, s).

参考例11で得た化合物に代えて参考例13で得られた化合物を用い、実施例43に記載の方法と同様にして、3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-2-メチルプロピオン酸 エチルエステルを得た。
淡黄色粉末
1H-NMR (CDCl3) δ: 7.99 (2H, d, J = 9.0 Hz), 7.64 (2H, d, J = 9.0 Hz), 7.50 (1H, t, J = 7.5 Hz), 7.28 (1H, d, J = 7.5 Hz), 6.99 (1H, d, J = 7.5 Hz), 5.82 (2H, br s), 4.52 (1H, d, J = 14.4 Hz), 4.44 (1H, d, J = 14.4 Hz), 4.13 (2H, q, J = 7.2 Hz), 3.17 (1H, dd, J = 13.8, 7.8 Hz), 3.08-3.00 (1H, m), 2.87 (1H, dd, J = 13.8, 6.0 Hz), 2.21 (3H, s), 1.26-1.12 (6H, m)。
Using the compound obtained in Reference Example 13 instead of the compound obtained in Reference Example 11, in the same manner as in Example 43, 3- {6- [4- (4-acetylaminophenyl) -6 -Amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -2-methylpropionic acid ethyl ester was obtained.
Pale yellow powder
1 H-NMR (CDCl 3 ) δ: 7.99 (2H, d, J = 9.0 Hz), 7.64 (2H, d, J = 9.0 Hz), 7.50 (1H, t, J = 7.5 Hz), 7.28 (1H, d, J = 7.5 Hz), 6.99 (1H, d, J = 7.5 Hz), 5.82 (2H, br s), 4.52 (1H, d, J = 14.4 Hz), 4.44 (1H, d, J = 14.4 Hz ), 4.13 (2H, q, J = 7.2 Hz), 3.17 (1H, dd, J = 13.8, 7.8 Hz), 3.08-3.00 (1H, m), 2.87 (1H, dd, J = 13.8, 6.0 Hz) , 2.21 (3H, s), 1.26-1.12 (6H, m).

実施例49で得た化合物1.13gをエタノール30mLに溶解し、得られる液に1N水酸化ナトリウム水溶液7.5mLを加え、室温で終夜攪拌した。反応混合物から溶媒を減圧留去し、残留物に2%クエン酸水溶液を加えて中和、分散し、不溶物を濾取後、シリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール=10:1)で精製して、597mgの3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-2-メチルプロピオン酸を得た。
無色粉末
1H-NMR (DMSO-d6) δ: 10.23 (1H, s), 7.83 (2H, d, J = 9.0 Hz), 7.71 (2H, d, J = 9.0 Hz), 7.63 (1H, t, J = 7.5 Hz), 7.36 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 4.47 (2H, s), 3.05 (1H, dd, J = 13.8, 6.9 Hz), 2.86 (1H, sext, J = 6.9 Hz), 2.71 (1H, dd, J = 13.8, 7.2 Hz), 2.09 (3H, s), 1.04 (3H, d, J = 6.9 Hz)。
1.13 g of the compound obtained in Example 49 was dissolved in 30 mL of ethanol, 7.5 mL of 1N aqueous sodium hydroxide solution was added to the resulting solution, and the mixture was stirred at room temperature overnight. The solvent was removed from the reaction mixture under reduced pressure, and 2% citric acid aqueous solution was added to the residue to neutralize and disperse. The insoluble material was collected by filtration and purified by silica gel column chromatography (methylene chloride-methanol = 10: 1). To obtain 597 mg of 3- {6- [4- (4-acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -2-methylpropionic acid. It was.
Colorless powder
1 H-NMR (DMSO-d 6 ) δ: 10.23 (1H, s), 7.83 (2H, d, J = 9.0 Hz), 7.71 (2H, d, J = 9.0 Hz), 7.63 (1H, t, J = 7.5 Hz), 7.36 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 4.47 (2H, s), 3.05 (1H, dd, J = 13.8, 6.9 Hz), 2.86 (1H, sext, J = 6.9 Hz), 2.71 (1H, dd, J = 13.8, 7.2 Hz), 2.09 (3H, s), 1.04 (3H, d, J = 6.9 Hz).

実施例45で得た化合物に代えて実施例50で得た化合物を用いて、実施例46に記載の方法と同様にして、N-[4-(6-アミノ-5-シアノ-2-{6-[2-メチル-3-(4-メチルピペラジン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミドを得た。
淡黄色粉末
1H-NMR (DMSO-d6) δ: 10.24 (1H, s), 7.84 (2H, d, J = 9.0 Hz), 7.72 (2H, d, J = 9.0 Hz), 7.60 (1H, t, J = 7.5 Hz), 7.35 (1H, d, J = 7.5 Hz), 7.04 (1H, d, J = 7.5 Hz), 4.49 (1H, d, J = 13.8 Hz), 4.42 (1H, d, J = 13.8 Hz), 3.35-3.25 (5H, m), 2.97 (1H, dd, J = 17.1, 8.4 Hz), 2.69 (1H, dd, J = 17.1, 6.0 Hz), 2.54-1.91 (4H, m), 2.09 (6H, s), 1.04 (3H, d, J = 6.0 Hz)。
Using the compound obtained in Example 50 instead of the compound obtained in Example 45 and in the same manner as in Example 46, N- [4- (6-amino-5-cyano-2- { 6- [2-Methyl-3- (4-methylpiperazin-1-yl) -3-oxopropyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide was obtained.
Pale yellow powder
1 H-NMR (DMSO-d 6 ) δ: 10.24 (1H, s), 7.84 (2H, d, J = 9.0 Hz), 7.72 (2H, d, J = 9.0 Hz), 7.60 (1H, t, J = 7.5 Hz), 7.35 (1H, d, J = 7.5 Hz), 7.04 (1H, d, J = 7.5 Hz), 4.49 (1H, d, J = 13.8 Hz), 4.42 (1H, d, J = 13.8 Hz), 3.35-3.25 (5H, m), 2.97 (1H, dd, J = 17.1, 8.4 Hz), 2.69 (1H, dd, J = 17.1, 6.0 Hz), 2.54-1.91 (4H, m), 2.09 (6H, s), 1.04 (3H, d, J = 6.0 Hz).

ジクロロメタン9mLに参考例15で得た化合物540mgおよびジイソプロピルエチルアミン244mgを加え、混合物を氷冷下に10分間撹拌後、該混合物中にメタンスルホン酸クロリド0.16mLを滴下して室温で1時間撹拌した。得られたメシレート溶液を、チオウレア142mgのエタノール2mL溶液中に60℃で滴下し、混合液を同温度で1時間攪拌した。反応混合物から溶媒を留去後、残渣にエタノール9mL、N-[4-(2,2-ジシアノビニル)フェニル]アセトアミド396mgおよび炭酸水素ナトリウム473mgを加えて2時間加熱還流した。反応液を放冷後、このものにNBS 270mgを加えて30分間加熱還流した。反応混合物から溶媒を減圧留去後、残渣に飽和炭酸水素ナトリウム水溶液を加え、クロロホルム抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残留物をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−トリエチルアミン=600:20:1)で精製し、精製物をエタノールから再結晶して、190mgのN-[4-(6-アミノ-5-シアノ-2-{6-[5-(4-メチルピペラジン-1-イル)-5-オキソペンタ-1-イニル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミドを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.73-7.67 (3H, m), 7.49 (1H, d, J = 7.5 Hz), 7.30 (1H, d, J = 7.5 Hz), 4.45 (2H, s), 3.38-3.32 (4H, m), 2.62 (4H, s), 2.29-2.21 (4H, m), 2.14 (3H, s), 2.09 (3H, s)。
540 mg of the compound obtained in Reference Example 15 and 244 mg of diisopropylethylamine were added to 9 mL of dichloromethane, and the mixture was stirred for 10 minutes under ice-cooling. Then, 0.16 mL of methanesulfonic acid chloride was added dropwise to the mixture and stirred at room temperature for 1 hour. The obtained mesylate solution was added dropwise at 60 ° C. to 2 mL of ethanol in 142 mg of thiourea, and the mixture was stirred at the same temperature for 1 hour. After the solvent was distilled off from the reaction mixture, 9 mL of ethanol, 396 mg of N- [4- (2,2-dicyanovinyl) phenyl] acetamide and 473 mg of sodium hydrogen carbonate were added to the residue, and the mixture was heated to reflux for 2 hours. After allowing the reaction liquid to cool, 270 mg of NBS was added thereto, and the mixture was heated to reflux for 30 minutes. After evaporating the solvent from the reaction mixture under reduced pressure, a saturated aqueous sodium hydrogen carbonate solution was added to the residue, followed by extraction with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (methylene chloride-methanol-triethylamine = 600: 20: 1), and the purified product was recrystallized from ethanol to give 190 mg of N- [4- (6-amino-5-cyano -2- {6- [5- (4-Methylpiperazin-1-yl) -5-oxopent-1-ynyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.73-7.67 (3H, m), 7.49 (1H, d, J = 7.5 Hz ), 7.30 (1H, d, J = 7.5 Hz), 4.45 (2H, s), 3.38-3.32 (4H, m), 2.62 (4H, s), 2.29-2.21 (4H, m), 2.14 (3H, s), 2.09 (3H, s).

エタノール7mLに参考例16で得た化合物2.28gおよびチオウレア545mgを加え、混合物を60℃で1.5時間撹拌した。放冷後、混合物中にN-[4-(2,2-ジシアノビニル)フェニル]アセトアミド1.40gおよびトリエチルアミン1.46gを加えて60℃で4時間撹拌した。得られた反応液を氷冷し、このものにNBS8 27mgを加えて同温度で30分間撹拌した。反応混合物から溶媒を減圧留去し、残渣に水を加えて酢酸エチル抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−エタノール=30:1)で精製して、1.86gの5-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}ペンタン酸 t-ブチルエステルを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.4 Hz), 7.70 (2H, d, J = 8.4 Hz), 7.62 (1H, t, J = 7.5 Hz), 7.34 (1H, d, J = 7.5 Hz), 7.10 (1H, d, J = 7.5 Hz), 4.45 (2H, s), 2.69 (2H, t, J = 7.5 Hz), 2.19 (2H, t, J = 7.5 Hz), 2.08 (3H, s), 1.66-1.47 (4H, m), 1.37 (9H, s)。
To 28 mL of ethanol were added 2.28 g of the compound obtained in Reference Example 16 and 545 mg of thiourea, and the mixture was stirred at 60 ° C. for 1.5 hours. After allowing to cool, 1.40 g of N- [4- (2,2-dicyanovinyl) phenyl] acetamide and 1.46 g of triethylamine were added to the mixture, and the mixture was stirred at 60 ° C. for 4 hours. The resulting reaction solution was ice-cooled, 27 mg of NBS8 was added thereto, and the mixture was stirred at the same temperature for 30 minutes. The solvent was distilled off from the reaction mixture under reduced pressure, water was added to the residue, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (methylene chloride-ethanol = 30: 1) to obtain 1.86 g of 5- {6- [4- (4-acetylaminophenyl) -6-amino-5-cyanopyrimidine-2 -Iylsulfanylmethyl] pyridin-2-yl} pentanoic acid t-butyl ester was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.4 Hz), 7.70 (2H, d, J = 8.4 Hz), 7.62 (1H, t, J = 7.5 Hz), 7.34 (1H, d, J = 7.5 Hz), 7.10 (1H, d, J = 7.5 Hz), 4.45 (2H, s), 2.69 (2H, t, J = 7.5 Hz), 2.19 ( 2H, t, J = 7.5 Hz), 2.08 (3H, s), 1.66-1.47 (4H, m), 1.37 (9H, s).

実施例53で得た化合物1.06gを氷冷し、このものにTFA 2mLを滴下し、混合物を室温で1.5時間攪拌した。剰余のTFAを減圧留去し、残渣をDMF 20mLに溶解し、溶解液に氷冷下にトリエチルアミン3mLを加えて中和し、更にHOBt 1.8gを加えて15分間攪拌した。反応混合物にN-メチルピペラジン200mgおよびWSC 764mgを加え、混合物を室温で終夜攪拌した。得られた反応混合物を減圧乾固し、飽和炭酸水素ナトリウム水溶液を加えてクロロホルム抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−トリエチルアミン=300:10:1)で精製して、1.0 gのN-[4-(6-アミノ-5-シアノ-2-{6-[5-(4-メチルピペラジン-1-イル)-5-オキソペンチル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミドを得た。
白色粉末
1H-NMR (CDCl3) δ: 8.34 (1H, s), 7.90 (2H, d, J = 8.4 Hz), 7.67 (2H, d, J = 8.4 Hz), 7.52 (1H, t, J = 7.5 Hz), 7.31 (1H, d, J = 7.5 Hz), 7.01 (1H, d, J = 7.5 Hz), 5.71 (2H, s), 4.50 (2H, s), 3.62 (2H, t, J = 5.1 Hz), 3.50 (2H, t, J = 5.1 Hz), 2.82 (2H, t, J = 7.5 Hz), 2.44-2.34 (6H, m), 2.30 (3H, s), 2.20 (3H, s), 1.86-1.73 (4H, m)。
1.06 g of the compound obtained in Example 53 was ice-cooled, 2 mL of TFA was added dropwise thereto, and the mixture was stirred at room temperature for 1.5 hours. Excess TFA was distilled off under reduced pressure, the residue was dissolved in 20 mL of DMF, and the solution was neutralized by adding 3 mL of triethylamine under ice cooling, and further 1.8 g of HOBt was added and stirred for 15 minutes. To the reaction mixture was added 200 mg N-methylpiperazine and 764 mg WSC and the mixture was stirred at room temperature overnight. The obtained reaction mixture was dried under reduced pressure, saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (methylene chloride-methanol-triethylamine = 300: 10: 1) to give 1.0 g of N- [4- (6-amino-5-cyano-2- {6- [5- (4-Methylpiperazin-1-yl) -5-oxopentyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide was obtained.
White powder
1 H-NMR (CDCl 3 ) δ: 8.34 (1H, s), 7.90 (2H, d, J = 8.4 Hz), 7.67 (2H, d, J = 8.4 Hz), 7.52 (1H, t, J = 7.5 Hz), 7.31 (1H, d, J = 7.5 Hz), 7.01 (1H, d, J = 7.5 Hz), 5.71 (2H, s), 4.50 (2H, s), 3.62 (2H, t, J = 5.1 Hz), 3.50 (2H, t, J = 5.1 Hz), 2.82 (2H, t, J = 7.5 Hz), 2.44-2.34 (6H, m), 2.30 (3H, s), 2.20 (3H, s), 1.86-1.73 (4H, m).

N-メチルピペラジンに代えて1-(2-ジエチルアミノエチル)ピペラジンを用いて、実施例54に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(6-{5-[4-(2-ジエチルアミノエチル)ピペラジン-1-イル]-5-オキソペンチル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド塩酸塩を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, t, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.64 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 7.12 (1H, d, J = 7.8 Hz), 4.46 (2H, s), 2.70 (2H, t, J = 7.5 Hz), 2.31-2.26 (8H, m), 2.09 (3H, s), 1.65-1.63 (2H, m), 1.52-1.49(2H, m), 0.97-0.90 (6H, m)。
N- {4- [6-amino-5-cyano-2- (6) was prepared in the same manner as described in Example 54, using 1- (2-diethylaminoethyl) piperazine instead of N-methylpiperazine. -{5- [4- (2-Diethylaminoethyl) piperazin-1-yl] -5-oxopentyl} pyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide hydrochloride was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, t, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.64 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 7.12 (1H, d, J = 7.8 Hz), 4.46 (2H, s), 2.70 (2H, t, J = 7.5 Hz), 2.31- 2.26 (8H, m), 2.09 (3H, s), 1.65-1.63 (2H, m), 1.52-1.49 (2H, m), 0.97-0.90 (6H, m).

実施例46で得た化合物1gをエタノール10mLおよび水10mLの混合溶媒に懸濁させ、懸濁液に5N塩酸10mLを加えて60℃で4時間加熱撹拌した。反応混合物からエタノールを減圧留去後、得られた混合物中に氷冷下に5N水酸化ナトリウム水溶液を加えて中和した。析出した結晶を濾取し、ジエチルエーテルで洗浄後、減圧乾燥して、0.85gの4-アミノ-6-(4-アミノフェニル)-2-{6-[3-(4-メチルピペラジン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-5-カルボニトリルを得た。
白色粉末
1H-NMR(DMSO-d6)δ: 7.73 (2H, d, J = 8.7 Hz), 7.80-7.55 (2H, br s), 7.61 (1H, t, J = 7.8 Hz), 7.33 (1H, d, J = 7.8 Hz), 7.14 (1H, d, J = 7.8 Hz), 6.61 (2H, d, J = 8.7 Hz), 5.90 (2H, s), 4.45 (2H, s), 3.40-3.34 (4H, m), 2.94 (2H, t, J = 7.2 Hz), 2.70 (2H, t, J = 7.2 Hz), 2.25-2.19 (4H, m), 2.12 (3H, s)。
1 g of the compound obtained in Example 46 was suspended in a mixed solvent of 10 mL of ethanol and 10 mL of water, 10 mL of 5N hydrochloric acid was added to the suspension, and the mixture was heated and stirred at 60 ° C. for 4 hours. Ethanol was distilled off from the reaction mixture under reduced pressure, and the resulting mixture was neutralized by adding 5N aqueous sodium hydroxide solution under ice cooling. The precipitated crystals were collected by filtration, washed with diethyl ether and dried under reduced pressure to obtain 0.85 g of 4-amino-6- (4-aminophenyl) -2- {6- [3- (4-methylpiperazine-1 -Iyl) -3-oxopropyl] pyridin-2-ylmethylsulfanyl} pyrimidine-5-carbonitrile was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 7.73 (2H, d, J = 8.7 Hz), 7.80-7.55 (2H, br s), 7.61 (1H, t, J = 7.8 Hz), 7.33 (1H, d, J = 7.8 Hz), 7.14 (1H, d, J = 7.8 Hz), 6.61 (2H, d, J = 8.7 Hz), 5.90 (2H, s), 4.45 (2H, s), 3.40-3.34 ( 4H, m), 2.94 (2H, t, J = 7.2 Hz), 2.70 (2H, t, J = 7.2 Hz), 2.25-2.19 (4H, m), 2.12 (3H, s).

実施例56で得た化合物150mgおよびトリエチルアミン0.5mLをアセトニトリル10mLに溶解し、混合物にプロピオニルクロリド0.1gを滴下して室温で30分間撹拌した。溶媒を留去後、残渣をクロロホルムに溶解し、溶解液に水を加え、得られる有機層を水で2回、次いで飽和食塩水で1回それぞれ洗浄し、硫酸マグネシウムで乾燥した。溶媒を減圧留去後、得られた油状物をシリカゲルカラムクロマトグラフィー(塩化メチレン−メタノール−アンモニア水=90:10:1)で精製して、50mgのN-[4-(6-アミノ-5-シアノ-2-{6-[3-(4-メチルピペラジン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]プロピオンアミドを得た。
淡黄色粉末
1H-NMR(DMSO-d6)δ: 10.16 (1H, s), 8.20-7.64 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.74 (2H, d, J = 8.7 Hz), 7.62 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz) 7.14 (1H, d, J = 7.8 Hz), 4.46 (2H, s), 3.42-3.35 (4H, m), 2.94 (2H, t, J = 7.2 Hz), 2.70 (2H, t, J = 7.2 Hz), 2.37 (2H, q, J = 7.5 Hz), 2.20-2.16 (4H, m), 2.12 (3H, s), 1.10 (3H, t, J = 7.5 Hz)。
150 mg of the compound obtained in Example 56 and 0.5 mL of triethylamine were dissolved in 10 mL of acetonitrile, and 0.1 g of propionyl chloride was added dropwise to the mixture, followed by stirring at room temperature for 30 minutes. After the solvent was distilled off, the residue was dissolved in chloroform, water was added to the solution, and the resulting organic layer was washed twice with water and then once with saturated brine, and dried over magnesium sulfate. After evaporating the solvent under reduced pressure, the obtained oil was purified by silica gel column chromatography (methylene chloride-methanol-aqueous ammonia = 90: 10: 1) to give 50 mg of N- [4- (6-amino-5 -Cyano-2- {6- [3- (4-methylpiperazin-1-yl) -3-oxopropyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] propionamide was obtained.
Pale yellow powder
1 H-NMR (DMSO-d 6 ) δ: 10.16 (1H, s), 8.20-7.64 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.74 (2H, d, J = 8.7 Hz), 7.62 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz) 7.14 (1H, d, J = 7.8 Hz), 4.46 (2H, s), 3.42-3.35 (4H , m), 2.94 (2H, t, J = 7.2 Hz), 2.70 (2H, t, J = 7.2 Hz), 2.37 (2H, q, J = 7.5 Hz), 2.20-2.16 (4H, m), 2.12 (3H, s), 1.10 (3H, t, J = 7.5 Hz).

実施例57においてプロピオニルクロリドに代えてブチリルクロリドを用いて同様にして、N-[4-(6-アミノ-5-シアノ-2-{6-[3-(4-メチルピペラジン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]ブチルアミドを得た。
白色粉末
1H-NMR(DMSO-d6)δ: 10.24 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.73 (2H, d, J = 8.7 Hz), 7.62 (1H, t, J = 7.2 Hz), 7.34 (1H, d, J = 7.2 Hz), 7.14 (1H, d, J = 7.2 Hz), 4.46 (2H, s), 3.40-3.35 (4H, m), 2.94 (2H, t, J = 7.5 Hz), 2.70 (2H, t, J = 7.5 Hz), 2.20-2.16 (4H, m), 2.12 (3H, s), 1.63 (2H, sext, J = 7.5 Hz), 0.93 (3H, t, J = 7.5 Hz)。
In Example 57, N- [4- (6-amino-5-cyano-2- {6- [3- (4-methylpiperazin-1-yl) was similarly obtained using butyryl chloride instead of propionyl chloride. ) -3-Oxopropyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] butyramide.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.24 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.73 (2H, d, J = 8.7 Hz), 7.62 (1H, t, J = 7.2 Hz), 7.34 (1H, d, J = 7.2 Hz), 7.14 (1H, d, J = 7.2 Hz), 4.46 (2H, s), 3.40-3.35 (4H, m), 2.94 (2H, t , J = 7.5 Hz), 2.70 (2H, t, J = 7.5 Hz), 2.20-2.16 (4H, m), 2.12 (3H, s), 1.63 (2H, sext, J = 7.5 Hz), 0.93 (3H , t, J = 7.5 Hz).

N-メチルピペラジンに代えてN-(tert-ブトキシカルボニル)エチレンジアミンを用いて、実施例46に記載の方法と同様にして、[2-(3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}プロピオニルアミノ)エチル]カルバミン酸 t-ブチルエステルを得た。
無色粉末
1H-NMR (DMSO-d6) δ: 10.24 (1H, s), 7.88 (1H, br t, J = 7.5 Hz), 7.83 (2H, d, J = 8.4 Hz), 7.72 (2H, d, J = 8.4 Hz), 7.62 (1H, t, J = 7.5 Hz), 7.35 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 6.77 (1H, br t, J = 7.5 Hz), 4.46 (2H, s), 3.05 (2H, q, J = 7.5 Hz), 2.98-2.90 (4H, m), 2.46 (2H, t, J = 7.5 Hz), 2.09 (3H, s)。
[2- (3- {6- [4- (4-acetylaminophenyl) was prepared in the same manner as described in Example 46, using N- (tert-butoxycarbonyl) ethylenediamine instead of N-methylpiperazine. ) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} propionylamino) ethyl] carbamic acid t-butyl ester was obtained.
Colorless powder
1 H-NMR (DMSO-d 6 ) δ: 10.24 (1H, s), 7.88 (1H, br t, J = 7.5 Hz), 7.83 (2H, d, J = 8.4 Hz), 7.72 (2H, d, J = 8.4 Hz), 7.62 (1H, t, J = 7.5 Hz), 7.35 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 6.77 (1H, br t, J = 7.5 Hz), 4.46 (2H, s), 3.05 (2H, q, J = 7.5 Hz), 2.98-2.90 (4H, m), 2.46 (2H, t, J = 7.5 Hz), 2.09 (3H, s ).

実施例59で得た化合物100mgに氷冷下にTFA1mLを加え、混合物を30分間攪拌した。反応液を減圧乾固して得られた固体をエタノール10mLに溶解し、溶解液に1N塩酸0.37mLを加えて減圧乾固した。得られた固体をメタノール-IPEから再結晶して、90mgの3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-アミノエチル)プロピオンアミド塩酸塩を得た。
淡黄色粉末
1H-NMR (DMSO-d6) δ: 10.23 (1H, s), 8.12 (1H, br t, J = 7.5 Hz), 7.85 (2H, br s), 7.82 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.57 (1H, br d, J = 7.5 Hz), 7.34 (1H, br d, J = 7.5 Hz), 4.56 (2H, s), 3.29 (2H, q, J = 6.0 Hz), 3.07 (2H, t, J = 7.5 Hz), 2.85 (2H, q, J = 6.0 Hz), 2.59 (2H, t, J = 7.5 Hz), 2.09 (3H, s)。
To 100 mg of the compound obtained in Example 59, 1 mL of TFA was added under ice cooling, and the mixture was stirred for 30 minutes. The solid obtained by drying the reaction solution under reduced pressure was dissolved in 10 mL of ethanol, and 0.37 mL of 1N hydrochloric acid was added to the solution, followed by drying under reduced pressure. The obtained solid was recrystallized from methanol-IPE to give 90 mg of 3- {6- [4- (4-acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridine-2. -Il} -N- (2-aminoethyl) propionamide hydrochloride was obtained.
Pale yellow powder
1 H-NMR (DMSO-d 6 ) δ: 10.23 (1H, s), 8.12 (1H, br t, J = 7.5 Hz), 7.85 (2H, br s), 7.82 (2H, d, J = 8.7 Hz ), 7.72 (2H, d, J = 8.7 Hz), 7.57 (1H, br d, J = 7.5 Hz), 7.34 (1H, br d, J = 7.5 Hz), 4.56 (2H, s), 3.29 (2H , q, J = 6.0 Hz), 3.07 (2H, t, J = 7.5 Hz), 2.85 (2H, q, J = 6.0 Hz), 2.59 (2H, t, J = 7.5 Hz), 2.09 (3H, s ).

実施例45で得た化合物200mgをDMF3mLに溶解し、得られた液にN,N-ジメチルエチレンジアミン54mg、BOP 365mgおよびトリエチルアミン172μLを加え、混合物を室温で終夜攪拌した。反応混合物から溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム−メタノール−アンモニア水=50:10:1)で精製した。   200 mg of the compound obtained in Example 45 was dissolved in 3 mL of DMF, 54 mg of N, N-dimethylethylenediamine, 365 mg of BOP and 172 μL of triethylamine were added to the resulting solution, and the mixture was stirred at room temperature overnight. The solvent was distilled off from the reaction mixture under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform-methanol-aqueous ammonia = 50: 10: 1).

上記で得られた遊離形態の化合物187mgをメタノールに溶解し、溶液中に1N塩酸0.721mLを加えて減圧乾固し、得られた固体をメタノール-アセトン-IPEから再結晶して、186mgの3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジメチルアミノエチル)プロピオンアミド塩酸塩を得た。この塩酸塩の物性を次に示す。
淡黄色粉末
1H-NMR (CD3OD) δ: 8.38 (1H, t, J = 7.8 Hz), 8.05 (1H, d, J = 7.8 Hz), 7.83 (2H, d, J = 9.0 Hz), 7.82 (1H, d, J = 7.8 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.73 (2H, s), 3.53 (2H, t, J = 6.0 Hz), 3.27-3.22 (4H, m), 2.90 (6H, s), 2.82 (2H, t, J = 6.0 Hz), 2.16 (3H, s)。
187 mg of the free form compound obtained above was dissolved in methanol, 0.721 mL of 1N hydrochloric acid was added to the solution and dried under reduced pressure, and the resulting solid was recrystallized from methanol-acetone-IPE to give 186 mg of 3 -{6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-dimethylaminoethyl) propionamide hydrochloride Got. The physical properties of this hydrochloride are shown below.
Pale yellow powder
1 H-NMR (CD 3 OD) δ: 8.38 (1H, t, J = 7.8 Hz), 8.05 (1H, d, J = 7.8 Hz), 7.83 (2H, d, J = 9.0 Hz), 7.82 (1H , d, J = 7.8 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.73 (2H, s), 3.53 (2H, t, J = 6.0 Hz), 3.27-3.22 (4H, m), 2.90 (6H, s), 2.82 (2H, t, J = 6.0 Hz), 2.16 (3H, s).

N,N-ジメチルエチレンジアミンに代えてN,N,N’-トリメチルエチレンジアミンを用いて、実施例61に記載の方法と同様にして、3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジメチルアミノエチル)-N-メチルプロピオンアミド塩酸塩を得た。
淡黄色粉末
1H-NMR (CD3OD) δ: 8.37 (1H, t, J = 8.1 Hz), 8.03 (1H, d, J = 8.1 Hz), 7.84 (1H, d, J = 8.1 Hz), 7.83 (2H, d, J = 9.0 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.73 (2H, s), 3.72 (2H, t, J = 5.4 Hz), 3.32-3.21 (4H, m), 3.07 (3H, s), 3.02 (2H, t, J = 5.4 Hz), 2.92 (6H, s), 2.16 (3H, s)。
3- {6- [4- (4-acetylaminophenyl)-in the same manner as in Example 61, using N, N, N′-trimethylethylenediamine instead of N, N-dimethylethylenediamine. 6-Amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-dimethylaminoethyl) -N-methylpropionamide hydrochloride was obtained.
Pale yellow powder
1 H-NMR (CD 3 OD) δ: 8.37 (1H, t, J = 8.1 Hz), 8.03 (1H, d, J = 8.1 Hz), 7.84 (1H, d, J = 8.1 Hz), 7.83 (2H , d, J = 9.0 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.73 (2H, s), 3.72 (2H, t, J = 5.4 Hz), 3.32-3.21 (4H, m), 3.07 (3H, s), 3.02 (2H, t, J = 5.4 Hz), 2.92 (6H, s), 2.16 (3H, s).

実施例61に記載の方法において、N,N-ジメチルエチレンジアミンに代えて3-ジメチルアミノプロピルアミン39μLを用いて、同様にして、3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジメチルアミノプロピル)プロピオンアミド塩酸塩を得た。
淡黄色粉末
1H-NMR (CD3OD) δ: 8.38 (1H, t, J = 7.8 Hz), 8.05 (1H, d, J = 7.8 Hz), 7.83 (2H, d, J = 9.0 Hz), 7.80 (1H, d, J = 7.8 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.73 (2H, s), 3.23 (2H, t, J = 6.9 Hz), 3.10 (2H, t, J = 6.9 Hz), 2.87 (2H, t, J = 6.9 Hz), 2.85 (6H, s), 2.79 (2H, t, J = 6.9 Hz), 2.16 (3H, s), 1.89 (2H, quint, J = 6.9 Hz)。
In the same manner as in Example 61, except that 39 μL of 3-dimethylaminopropylamine was used instead of N, N-dimethylethylenediamine, 3- {6- [4- (4-acetylaminophenyl) -6 -Amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-dimethylaminopropyl) propionamide hydrochloride was obtained.
Pale yellow powder
1 H-NMR (CD 3 OD) δ: 8.38 (1H, t, J = 7.8 Hz), 8.05 (1H, d, J = 7.8 Hz), 7.83 (2H, d, J = 9.0 Hz), 7.80 (1H , d, J = 7.8 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.73 (2H, s), 3.23 (2H, t, J = 6.9 Hz), 3.10 (2H, t, J = 6.9 Hz ), 2.87 (2H, t, J = 6.9 Hz), 2.85 (6H, s), 2.79 (2H, t, J = 6.9 Hz), 2.16 (3H, s), 1.89 (2H, quint, J = 6.9 Hz) ).

N,N-ジメチルエチレンジアミンに代えてN,N,N’-トリメチル-1,3-プロパンジアミンを用いて、実施例61に記載の方法に従って、3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジメチルアミノプロピル)-N-メチルプロピオンアミド塩酸塩を得た。
淡黄色粉末
1H-NMR (CD3OD) δ: 8.36 (1H, t, J = 7.8 Hz), 8.01 (1H, d, J = 7.8 Hz), 7.84 (2H, d, J = 9.0 Hz), 7.82 (1H, d, J = 7.8 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.72 (2H, s), 3.40 (2H, t, J = 6.9 Hz), 3.22 (2H, t, J = 6.9 Hz), 3.06 (3H, s), 3.06-2.98 (4H, m), 2.82 (6H, s), 2.16 (3H, s)。
3- {6- [4- (4-acetylamino) according to the method described in Example 61 using N, N, N′-trimethyl-1,3-propanediamine instead of N, N-dimethylethylenediamine. Phenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-dimethylaminopropyl) -N-methylpropionamide hydrochloride was obtained.
Pale yellow powder
1 H-NMR (CD 3 OD) δ: 8.36 (1H, t, J = 7.8 Hz), 8.01 (1H, d, J = 7.8 Hz), 7.84 (2H, d, J = 9.0 Hz), 7.82 (1H , d, J = 7.8 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.72 (2H, s), 3.40 (2H, t, J = 6.9 Hz), 3.22 (2H, t, J = 6.9 Hz) ), 3.06 (3H, s), 3.06-2.98 (4H, m), 2.82 (6H, s), 2.16 (3H, s).

N-メチルピペラジンに代えて1-(2-アミノエチル)ピペリジンを用いて、実施例46に記載の方法と同様にして、3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-メチルピペリジン-1-イルエチル)プロピオンアミド塩酸塩を得た。
1H-NMR (DMSO-d6) δ: 10.24 (1H, s), 8.25-7.61 (3H, m), 7.83 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.62 (1H, t, J = 7.8 Hz), 7.35 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 4.46 (2H, s) 3.17-3.12 (2H, m), 2.98-2.89 (2H, m), 2.49-2.45 (2H, m), 2.40-2.22 (6H, m), 2.09 (3H, s), 1.30-2.01 (6H, m)。
In the same manner as described in Example 46, using 1- (2-aminoethyl) piperidine instead of N-methylpiperazine, 3- {6- [4- (4-acetylaminophenyl) -6- Amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-methylpiperidin-1-ylethyl) propionamide hydrochloride was obtained.
1 H-NMR (DMSO-d 6 ) δ: 10.24 (1H, s), 8.25-7.61 (3H, m), 7.83 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz ), 7.62 (1H, t, J = 7.8 Hz), 7.35 (1H, d, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 4.46 (2H, s) 3.17-3.12 (2H, m), 2.98-2.89 (2H, m), 2.49-2.45 (2H, m), 2.40-2.22 (6H, m), 2.09 (3H, s), 1.30-2.01 (6H, m).

N,N-ジメチルエチレンジアミンに代えてN,N-ジエチルエチレンジアミンを用いて、実施例61に記載の方法と同様にして、3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(2-ジエチルアミノエチル)プロピオンアミド塩酸塩を得た。
淡黄色粉末
1H-NMR (CD3OD) δ: 8.39 (1H, t, J = 8.1 Hz), 8.06 (1H, d, J = 8.1 Hz), 7.83 (2H, d, J = 9.0 Hz), 7.81 (1H, d, J = 8.1 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.73 (2H, s), 3.51 (2H, t, J = 6.3 Hz), 3.30-3.19 (8H, m), 2.82 (2H, t, J = 6.3 Hz), 2.17 (3H, s), 1.29 (6H, t, J = 9.0 Hz)。
3- {6- [4- (4-acetylaminophenyl) -6-amino in the same manner as described in Example 61 using N, N-diethylethylenediamine instead of N, N-dimethylethylenediamine. -5-Cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (2-diethylaminoethyl) propionamide hydrochloride was obtained.
Pale yellow powder
1 H-NMR (CD 3 OD) δ: 8.39 (1H, t, J = 8.1 Hz), 8.06 (1H, d, J = 8.1 Hz), 7.83 (2H, d, J = 9.0 Hz), 7.81 (1H , d, J = 8.1 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.73 (2H, s), 3.51 (2H, t, J = 6.3 Hz), 3.30-3.19 (8H, m), 2.82 (2H, t, J = 6.3 Hz), 2.17 (3H, s), 1.29 (6H, t, J = 9.0 Hz).

N,N-ジメチルエチレンジアミンに代えて1-メチル-4-(メチルアミノ)ピペリジンを用いて、実施例61に記載の方法と同様にして、3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-メチル-N-(1-メチルピペリジン-4-イル)プロピオンアミド塩酸塩を得た。
黄色粉末
1H-NMR (CD3OD) δ: 8.39 (1H, t, J = 7.8 Hz), 8.03 (1H, d, J = 7.8 Hz), 7.86 (2H, d, J = 9.0 Hz), 7.83 (1H, d, J = 7.8 Hz), 7.73 (2H, d, J = 9.0 Hz), 4.80 (2H, s), 3.64-3.47 (2H, m), 3.24 (2H, t, J = 6.3 Hz), 3.17-3.12 (1H, m), 2.99 (2H, t, J = 6.3 Hz), 2.98-2.89 (2H, m), 2.91 (3H, s), 2.79 (3H, s), 2.16 (3H, s), 2.10-1.76 (4H, m)。
3- {6- [4- (4-acetylaminophenyl) was prepared in the same manner as described in Example 61 using 1-methyl-4- (methylamino) piperidine instead of N, N-dimethylethylenediamine. ) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N-methyl-N- (1-methylpiperidin-4-yl) propionamide hydrochloride was obtained.
Yellow powder
1 H-NMR (CD 3 OD) δ: 8.39 (1H, t, J = 7.8 Hz), 8.03 (1H, d, J = 7.8 Hz), 7.86 (2H, d, J = 9.0 Hz), 7.83 (1H , d, J = 7.8 Hz), 7.73 (2H, d, J = 9.0 Hz), 4.80 (2H, s), 3.64-3.47 (2H, m), 3.24 (2H, t, J = 6.3 Hz), 3.17 -3.12 (1H, m), 2.99 (2H, t, J = 6.3 Hz), 2.98-2.89 (2H, m), 2.91 (3H, s), 2.79 (3H, s), 2.16 (3H, s), 2.10-1.76 (4H, m).

N,N-ジメチルエチレンジアミンに代えて4-(ジエチルアミノ)ピペリジンを用いて、実施例61に記載の方法と同様にして、N-[4-(6-アミノ-5-シアノ-2-{6-[3-(4-ジエチルアミノピペリジン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド塩酸塩を得た。
無色粉末
1H-NMR (CD3OD) δ: 8.39 (1H, t, J = 7.2 Hz), 8.03 (1H, d, J = 7.2 Hz), 7.84 (2H, d, J = 8.7 Hz), 7.83 (1H, d, J = 7.2 Hz), 7.72 (2H, d, J = 8.7 Hz), 4.73 (2H, s), 4.58 (1H, br d, J = 12.6 Hz), 4.06 (1H, br d, J = 12.6 Hz), 3.64-3.53 (1H, m), 3.33-2.62 (8H, m), 2.16 (3H, s), 2.16-1.56 (4H, m), 1.35 (6H, t, J = 7.2 Hz)。
Using 4- (diethylamino) piperidine instead of N, N-dimethylethylenediamine in the same manner as described in Example 61, N- [4- (6-amino-5-cyano-2- {6- [3- (4-Diethylaminopiperidin-1-yl) -3-oxopropyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide hydrochloride was obtained.
Colorless powder
1 H-NMR (CD 3 OD) δ: 8.39 (1H, t, J = 7.2 Hz), 8.03 (1H, d, J = 7.2 Hz), 7.84 (2H, d, J = 8.7 Hz), 7.83 (1H , d, J = 7.2 Hz), 7.72 (2H, d, J = 8.7 Hz), 4.73 (2H, s), 4.58 (1H, br d, J = 12.6 Hz), 4.06 (1H, br d, J = 12.6 Hz), 3.64-3.53 (1H, m), 3.33-2.62 (8H, m), 2.16 (3H, s), 2.16-1.56 (4H, m), 1.35 (6H, t, J = 7.2 Hz).

N-メチルピペラジンに代えて4-ピペリジノピペリジンを用いて、実施例46に記載の方法と同様にして、N-(4-{6-アミノ-2-[6-(3-[1,4’]ビピペリジニル-1’-イル-3-オキソプロピル)ピリジン-2-イルメチルスルファニル]-5-シアノピリミジン-4-イル}フェニル)アセトアミド塩酸塩を得た。
淡黄色粉末
1H-NMR (DMSO-d6) δ: 10.45 (1H, s), 8.27 (1H, t, J = 7.5 Hz), 7.93 (1H, t, J = 7.5 Hz), 7.81 (2H, d, J = 9.0 Hz), 7.76 (2H, d, J = 9.0 Hz), 7.74 (1H, d, J = 7.5 Hz), 4.76 (2H ,s), 4.46 (1H, br d, J = 13.2 Hz), 4.00 (1H, br d, J = 13.2 Hz), 3.35-3.17 (6H, m), 3.05-2.84 (4H, m), 2.56-2.48 (1H, m), 2.15-2.07 (2H ,m), 2.10 (3H, s), 1.97-1.35 (8H, m)。
Using 4-piperidinopiperidine instead of N-methylpiperazine in the same manner as described in Example 46, N- (4- {6-amino-2- [6- (3- [1, 4 ′] bipiperidinyl-1′-yl-3-oxopropyl) pyridin-2-ylmethylsulfanyl] -5-cyanopyrimidin-4-yl} phenyl) acetamide hydrochloride was obtained.
Pale yellow powder
1 H-NMR (DMSO-d 6 ) δ: 10.45 (1H, s), 8.27 (1H, t, J = 7.5 Hz), 7.93 (1H, t, J = 7.5 Hz), 7.81 (2H, d, J = 9.0 Hz), 7.76 (2H, d, J = 9.0 Hz), 7.74 (1H, d, J = 7.5 Hz), 4.76 (2H, s), 4.46 (1H, br d, J = 13.2 Hz), 4.00 (1H, br d, J = 13.2 Hz), 3.35-3.17 (6H, m), 3.05-2.84 (4H, m), 2.56-2.48 (1H, m), 2.15-2.07 (2H, m), 2.10 ( 3H, s), 1.97-1.35 (8H, m).

N-メチルピペラジンに代えて2-ピぺリジンメタノールを用いて、実施例46に記載の方法と同様にして、N-[4-(6-アミノ-5-シアノ-2-{6-[3-(2-ヒドロキシメチルピペリジン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド塩酸塩を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.24 (1H, s), 8.25-7.50 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz) 7.62 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 7.15 (1H, d, J = 7.8 Hz), 4.47 (2H, s), 3.85-4.70 (5H, m), 3.70-3.35 (1H, m), 3.01-2.62 (4H, m), 2.09 (3H, s), 1.80-1.05 (6H, m)。
N- [4- (6-Amino-5-cyano-2- {6- [3] was prepared in the same manner as described in Example 46 using 2-piperidinemethanol instead of N-methylpiperazine. -(2-Hydroxymethylpiperidin-1-yl) -3-oxopropyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide hydrochloride was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.24 (1H, s), 8.25-7.50 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz) 7.62 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 7.15 (1H, d, J = 7.8 Hz), 4.47 (2H, s), 3.85-4.70 (5H m), 3.70-3.35 (1H, m), 3.01-2.62 (4H, m), 2.09 (3H, s), 1.80-1.05 (6H, m).

N-メチルピペラジンに代えて2-ピペリジン-1-イルメチルモルホリンを用いて、実施例46に記載の方法と同様にして、N-[4-(6-アミノ-5-シアノ-2-{6-[3-オキソ-3-(2-ピペリジン-1-イルメチルモルホリン-4-イル)プロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド塩酸塩を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.4Hz), 7.71 (2H, d, J = 8.4 Hz), 7.62 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 7.15 (1H, d, J = 7.8 Hz), 4.45 (2H, s), 4.25-3.75 (3H, m), 2.94 (4H, m), 2.80-2.73 (2H, m), 2.48-2.20 (8H, m), 2.08 (3H, s), 1.42-1.32 (6H, m)。
N- [4- (6-Amino-5-cyano-2- {6] was prepared in the same manner as described in Example 46 using 2-piperidin-1-ylmethylmorpholine instead of N-methylpiperazine. -[3-Oxo-3- (2-piperidin-1-ylmethylmorpholin-4-yl) propyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide hydrochloride was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.4 Hz), 7.71 (2H, d, J = 8.4 Hz), 7.62 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 7.15 (1H, d, J = 7.8 Hz), 4.45 (2H, s), 4.25-3.75 (3H, m), 2.94 (4H, m ), 2.80-2.73 (2H, m), 2.48-2.20 (8H, m), 2.08 (3H, s), 1.42-1.32 (6H, m).

N-メチルピペラジンに代えて2-(4-エチルピペラジン-1-イルメチル)モルホリンを用いて、実施例46に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(6-{3-[2-(4-エチルピペラジン-1-イルメチル)モルホリン-4-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド塩酸塩を得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.4Hz), 7.71 (2H, d, J = 8.4 Hz), 7.62 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 7.16 (1H, d, J = 7.8 Hz), 4.46 (2H, s), 4.25-3.75 (3H, m), 2.94-2.73 (4H, m), 2.48-2.20 (13H, m), 2.08 (3H, s), 0.93 (3H, br t)。
Using 2- (4-ethylpiperazin-1-ylmethyl) morpholine instead of N-methylpiperazine in the same manner as described in Example 46, N- {4- [6-amino-5-cyano- 2- (6- {3- [2- (4-Ethylpiperazin-1-ylmethyl) morpholin-4-yl] -3-oxopropyl} pyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide The hydrochloride salt was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.2 (1H, s), 7.83 (2H, d, J = 8.4 Hz), 7.71 (2H, d, J = 8.4 Hz), 7.62 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 7.16 (1H, d, J = 7.8 Hz), 4.46 (2H, s), 4.25-3.75 (3H, m), 2.94-2.73 (4H , m), 2.48-2.20 (13H, m), 2.08 (3H, s), 0.93 (3H, br t).

N,N-ジメチルエチレンジアミンに代えて1-tert-ブトキシカルボニルピペラジンを用いて、実施例61に記載の方法と同様にして、4-(3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}プロピオニル)ピペラジン-1-カルボン酸 t-ブチルエステルを得た。
白色粉末
1H-NMR (DMSO-d6) δ: 10.23 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.71 (2H, d, J = 8.7 Hz), 7.62 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 7.16 (1H, d, J = 7.8 Hz), 4.46 (2H, s), 3.41-3.38 (4H, m), 3.30-3.25 (4H, m), 2.95 (2H, t, J = 7.5 Hz), 2.73 (2H, t, J = 7.5 Hz), 2.09 (3H, s), 1.39 (9H, s)。
4- (3- {6- [4- (4-acetylaminophenyl) 4- (3- {6- [4- (4-acetylaminophenyl)] in the same manner as described in Example 61 using 1-tert-butoxycarbonylpiperazine instead of N, N-dimethylethylenediamine. -6-Amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} propionyl) piperazine-1-carboxylic acid t-butyl ester was obtained.
White powder
1 H-NMR (DMSO-d 6 ) δ: 10.23 (1H, s), 7.83 (2H, d, J = 8.7 Hz), 7.71 (2H, d, J = 8.7 Hz), 7.62 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 7.16 (1H, d, J = 7.8 Hz), 4.46 (2H, s), 3.41-3.38 (4H, m), 3.30-3.25 (4H m), 2.95 (2H, t, J = 7.5 Hz), 2.73 (2H, t, J = 7.5 Hz), 2.09 (3H, s), 1.39 (9H, s).

実施例73で得た化合物を用いて、実施例60に記載の方法と同様にして、N-(4-{6-アミノ-5-シアノ-2-[6-(3-オキソ-3-ピペラジン-1-イルプロピル)ピリジン-2-イルメチルスルファニル]ピリミジン-4-イル}フェニル)アセトアミド塩酸塩を得た。
淡黄色粉末
1H-NMR (CD3OD) δ: 8.34 (1H, t, J = 7.8 Hz), 8.00 (1H, d, J = 7.8 Hz), 7.83 (2H, d, J = 8.7 Hz), 7.79 (1H, d, J = 7.8 Hz), 7.71 (2H, d, J = 8.7 Hz), 4.70 (2H, s), 3.77-3.74 (4H, m), 3.29-3.16 (6H, m), 3.04 (2H, t, J = 6.6 Hz), 2.16 (3H, s)。
N- (4- {6-Amino-5-cyano-2- [6- (3-oxo-3-piperazine) was prepared in the same manner as in Example 60 using the compound obtained in Example 73. -1-ylpropyl) pyridin-2-ylmethylsulfanyl] pyrimidin-4-yl} phenyl) acetamide hydrochloride was obtained.
Pale yellow powder
1 H-NMR (CD 3 OD) δ: 8.34 (1H, t, J = 7.8 Hz), 8.00 (1H, d, J = 7.8 Hz), 7.83 (2H, d, J = 8.7 Hz), 7.79 (1H , d, J = 7.8 Hz), 7.71 (2H, d, J = 8.7 Hz), 4.70 (2H, s), 3.77-3.74 (4H, m), 3.29-3.16 (6H, m), 3.04 (2H, t, J = 6.6 Hz), 2.16 (3H, s).

N,N-ジメチルエチレンジアミンに代えて1-(2-ジエチルアミノエチル)ピペラジンを用いて、実施例61に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(6-{3-[4-(2-ジエチルアミノエチル)ピペラジン-1-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド塩酸塩を得た。
無色粉末
1H-NMR (CD3OD) δ: 8.39 (1H, t, J = 7.8 Hz), 8.05 (1H, d, J = 7.8 Hz), 7.86 (1H, d, J = 7.8 Hz), 7.83 (2H, d, J = 9.0 Hz), 7.73 (2H, d, J = 9.0 Hz), 4.73 (2H, s), 3.69-3.07 (20H, m), 2.17 (3H, s), 1.38 (6H, t, J = 7.2 Hz)。
Using 1- (2-diethylaminoethyl) piperazine instead of N, N-dimethylethylenediamine in the same manner as described in Example 61, N- {4- [6-amino-5-cyano-2- (6- {3- [4- (2-Diethylaminoethyl) piperazin-1-yl] -3-oxopropyl} pyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide hydrochloride was obtained.
Colorless powder
1 H-NMR (CD 3 OD) δ: 8.39 (1H, t, J = 7.8 Hz), 8.05 (1H, d, J = 7.8 Hz), 7.86 (1H, d, J = 7.8 Hz), 7.83 (2H , d, J = 9.0 Hz), 7.73 (2H, d, J = 9.0 Hz), 4.73 (2H, s), 3.69-3.07 (20H, m), 2.17 (3H, s), 1.38 (6H, t, J = 7.2 Hz).

N-メチルピペラジンに代えて1-(2-ジイソプロピルアミノエチル)ピペラジンを用いて、実施例46に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(6-{3-[4-(2-ジイソプロピルアミノエチル)ピペラジン-1-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド塩酸塩を得た。
無色粉末
1H-NMR (DMSO-d6) δ: 10.23 (1H, s), 7.65-8.20 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.62 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 7.14 (1H, d, J = 7.8 Hz), 4.47 (2H, s), 3.40-3.29 (4H, m), 2.97-2.71 (4H, m), 2.69-2.51 (2H, m), 2.49-2.42 (2H, m), 2.30-2.18 (6H, m) 2.09 (3H, s), 0.92 (12H, d, J = 6.3Hz)。
Using 1- (2-diisopropylaminoethyl) piperazine instead of N-methylpiperazine in the same manner as described in Example 46, N- {4- [6-amino-5-cyano-2- ( 6- {3- [4- (2-diisopropylaminoethyl) piperazin-1-yl] -3-oxopropyl} pyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide hydrochloride was obtained.
Colorless powder
1 H-NMR (DMSO-d 6 ) δ: 10.23 (1H, s), 7.65-8.20 (2H, br s), 7.84 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.62 (1H, t, J = 7.8 Hz), 7.34 (1H, d, J = 7.8 Hz), 7.14 (1H, d, J = 7.8 Hz), 4.47 (2H, s), 3.40-3.29 ( 4H, m), 2.97-2.71 (4H, m), 2.69-2.51 (2H, m), 2.49-2.42 (2H, m), 2.30-2.18 (6H, m) 2.09 (3H, s), 0.92 (12H , d, J = 6.3Hz).

N,N-ジメチルエチレンジアミンに代えて1-[2-(ピロリジン-1-イル)エチル]ピペラジンを用いて、実施例61に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(6-{3-オキソ-3-[4-(2-ピロリジン-1-イルエチル)ピペラジン-1-イル]プロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド塩酸塩を得た。
淡黄色粉末
1H-NMR (DMSO-d6+D2O) δ: 8.09 (1H, t, J = 7.8 Hz), 7.80 (2H, d, J = 9.0 Hz), 7.77 (1H, d, J = 7.8 Hz), 7.72 (2H, d, J = 9.0 Hz), 7.57 (1H, d, J = 7.8 Hz), 4.62 (2H, s), 3.58 (2H, t, J = 7.2 Hz), 3.65-3.11 (16H, m), 2.91 (2H, t, J = 7.2 Hz), 2.11 (3H, s), 1.99 (4H, br s)。
In the same manner as described in Example 61, using 1- [2- (pyrrolidin-1-yl) ethyl] piperazine instead of N, N-dimethylethylenediamine, N- {4- [6-amino- 5-cyano-2- (6- {3-oxo-3- [4- (2-pyrrolidin-1-ylethyl) piperazin-1-yl] propyl} pyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] Phenyl} acetamide hydrochloride was obtained.
Pale yellow powder
1 H-NMR (DMSO-d 6 + D 2 O) δ: 8.09 (1H, t, J = 7.8 Hz), 7.80 (2H, d, J = 9.0 Hz), 7.77 (1H, d, J = 7.8 Hz) ), 7.72 (2H, d, J = 9.0 Hz), 7.57 (1H, d, J = 7.8 Hz), 4.62 (2H, s), 3.58 (2H, t, J = 7.2 Hz), 3.65-3.11 (16H , m), 2.91 (2H, t, J = 7.2 Hz), 2.11 (3H, s), 1.99 (4H, br s).

N,N-ジメチルエチレンジアミンに代えて1-[2-(モルホリン-4-イル)エチル]ピペラジンを用いて、実施例61に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(6-{3-[4-(2-モルホリン-4-イルエチル)ピペラジン-1-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド塩酸塩を得た。
淡黄色粉末
1H-NMR (CD3OD) δ: 8.39 (1H, t, J = 8.1 Hz), 8.05 (1H, d, J = 8.1 Hz), 7.85 (1H, d, J = 8.1 Hz), 7.83 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 4.73 (2H, s), 4.00 (4H, br s), 3.72 (4H, br s), 3.66-3.27 (14H, m), 3.09 (2H, br s), 2.17 (3H, s)。
In the same manner as described in Example 61, using 1- [2- (morpholin-4-yl) ethyl] piperazine instead of N, N-dimethylethylenediamine, N- {4- [6-amino- 5-cyano-2- (6- {3- [4- (2-morpholin-4-ylethyl) piperazin-1-yl] -3-oxopropyl} pyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] Phenyl} acetamide hydrochloride was obtained.
Pale yellow powder
1 H-NMR (CD 3 OD) δ: 8.39 (1H, t, J = 8.1 Hz), 8.05 (1H, d, J = 8.1 Hz), 7.85 (1H, d, J = 8.1 Hz), 7.83 (2H , d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 4.73 (2H, s), 4.00 (4H, br s), 3.72 (4H, br s), 3.66-3.27 (14H, m), 3.09 (2H, br s), 2.17 (3H, s).

N,N-ジメチルエチレンジアミンに代えて1-(N-メチルピペリジン-4-イルメチル)ピペラジンを用いて、実施例61に記載の方法と同様にして、N-{4-[6-アミノ-5-シアノ-2-(6-{3-[4-(2-ジエチルアミノエチル)ピペラジン-1-イル]-3-オキソプロピル}ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル}アセトアミド塩酸塩を得た。
淡黄色粉末
1H-NMR (CD3OD) δ: 8.39 (1H, t, J = 8.1 Hz), 8.03 (1H, d, J = 8.1 Hz), 7.84 (3H, br d, J = 9.0 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.74 (2H, s), 3.58-2.92 (18H, m), 2.88 (3H, s), 2.28-1.57 (5H, m), 2.17 (3H, s)。
Using 1- (N-methylpiperidin-4-ylmethyl) piperazine instead of N, N-dimethylethylenediamine in the same manner as described in Example 61, N- {4- [6-amino-5- Cyano-2- (6- {3- [4- (2-diethylaminoethyl) piperazin-1-yl] -3-oxopropyl} pyridin-2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl} acetamide hydrochloride Got.
Pale yellow powder
1 H-NMR (CD 3 OD) δ: 8.39 (1H, t, J = 8.1 Hz), 8.03 (1H, d, J = 8.1 Hz), 7.84 (3H, br d, J = 9.0 Hz), 7.72 ( 2H, d, J = 9.0 Hz), 4.74 (2H, s), 3.58-2.92 (18H, m), 2.88 (3H, s), 2.28-1.57 (5H, m), 2.17 (3H, s).

N,N-ジメチルエチレンジアミンに代えて1-メチルホモピペラジンを用いて、実施例61に記載の方法と同様にして、N-[4-(6-アミノ-5-シアノ-2-{6-[3-(4-メチル-[1,4]ジアゼパン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル}ピリミジン-4-イル)フェニル]アセトアミド塩酸塩を得た。
淡黄色粉末
1H-NMR (CD3OD) δ: 8.38 (1H, t, J = 7.8 Hz), 8.02 (1H, d, J = 7.8 Hz), 7.84 (2H, d, J = 9.0 Hz), 7.84 (1H, d, J = 7.8 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.72 (2H, s), 4.03-3.05 (12H, m), 2.89 (3H, s), 2.23-2.06 (2H, m), 2.16 (3H, s)。
Using 1-methylhomopiperazine instead of N, N-dimethylethylenediamine in the same manner as described in Example 61, N- [4- (6-amino-5-cyano-2- {6- [ 3- (4-Methyl- [1,4] diazepan-1-yl) -3-oxopropyl] pyridin-2-ylmethylsulfanyl} pyrimidin-4-yl) phenyl] acetamide hydrochloride was obtained.
Pale yellow powder
1 H-NMR (CD 3 OD) δ: 8.38 (1H, t, J = 7.8 Hz), 8.02 (1H, d, J = 7.8 Hz), 7.84 (2H, d, J = 9.0 Hz), 7.84 (1H , d, J = 7.8 Hz), 7.72 (2H, d, J = 9.0 Hz), 4.72 (2H, s), 4.03-3.05 (12H, m), 2.89 (3H, s), 2.23-2.06 (2H, m), 2.16 (3H, s).

N,N-ジメチルエチレンジアミンに代えて1-アミノ-4-メチルピペラジンを用いて、実施例61に記載の方法と同様にして、3-{6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル}-N-(4-メチルピペラジン-1-イル)プロピオンアミド塩酸塩を得た。
淡黄色粉末
1H-NMR (CD3OD) δ: 8.40 (1H, t, J = 8.1 Hz), 8.08 (1H, d, J = 8.1 Hz), 7.83 (2H, d, J = 8.7 Hz), 7.82 (1H, d, J = 8.1 Hz), 7.72 (2H, d, J = 8.7 Hz), 4.72 (2H, s), 3.48-2.70 (12H, m), 2.85 (3H, s), 2.16 (3H, s)。
3- {6- [4- (4-acetylaminophenyl) -6 in the same manner as described in Example 61, using 1-amino-4-methylpiperazine instead of N, N-dimethylethylenediamine. -Amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl} -N- (4-methylpiperazin-1-yl) propionamide hydrochloride was obtained.
Pale yellow powder
1 H-NMR (CD 3 OD) δ: 8.40 (1H, t, J = 8.1 Hz), 8.08 (1H, d, J = 8.1 Hz), 7.83 (2H, d, J = 8.7 Hz), 7.82 (1H , d, J = 8.1 Hz), 7.72 (2H, d, J = 8.7 Hz), 4.72 (2H, s), 3.48-2.70 (12H, m), 2.85 (3H, s), 2.16 (3H, s) .

参考例11で得た化合物に代えて参考例17-(2)で得た化合物を用い、実施例43と同様の方法に従って、N-(4-{6-アミノ-5-シアノ-2-[6-(3-オキソペンチル)ピリジン-2-イルメチルスルファニル]ピリミジン-4-イル}フェニル)アセトアミドを得た。
無色粉末
1H-NMR (DMSO-d6) δ: 10.23 (1H, s), 7.83 (2H, d, J = 9.0 Hz), 7.72 (2H, d, J = 9.0 Hz), 7.61 (1H, t, J = 7.5 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.13 (1H, d, J = 7.5 Hz), 4.45 (2H, s), 2.93 (2H, t, J = 6.9 Hz), 2.81 (2H, t, J = 6.9 Hz), 2.46 (2H, q, J = 7.2 Hz), 2.09 (3H, s), 0.90 (3H, t, J = 7.2 Hz).
実施例42〜82で得た化合物の構造を下記表13〜表15に示す。
Using the compound obtained in Reference Example 17- (2) instead of the compound obtained in Reference Example 11 and according to the same method as in Example 43, N- (4- {6-amino-5-cyano-2- [ 6- (3-Oxopentyl) pyridin-2-ylmethylsulfanyl] pyrimidin-4-yl} phenyl) acetamide was obtained.
Colorless powder
1 H-NMR (DMSO-d 6 ) δ: 10.23 (1H, s), 7.83 (2H, d, J = 9.0 Hz), 7.72 (2H, d, J = 9.0 Hz), 7.61 (1H, t, J = 7.5 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.13 (1H, d, J = 7.5 Hz), 4.45 (2H, s), 2.93 (2H, t, J = 6.9 Hz), 2.81 ( 2H, t, J = 6.9 Hz), 2.46 (2H, q, J = 7.2 Hz), 2.09 (3H, s), 0.90 (3H, t, J = 7.2 Hz).
The structures of the compounds obtained in Examples 42 to 82 are shown in Tables 13 to 15 below.

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

実施例18で得た化合物(塩酸塩として)20mg (25μM)、各種カルボン酸(30μM)、MP-カーボネート(25μM、Argonaut社製、macroporous polystyrene anion-exchange resin)およびHOBt-H2O 4.5mg(29μM)を、塩化メチレン-DMF(0.5mL-0.1mL)に添加し、得られた懸濁液を室温にて1時間振とうした。その後、反応混合物中にPS-カルボジイミド(33μM、Argonaut社製、N-Cyclohexylcarbodiimide-N'-propyloxymethyl polystyrene)を加え、室温にて終夜(約18時間)振とうした。反応液にPS-イソシアネート(75μM、Argonaut社製、Polystyrene methylisocyanate)を加えて室温にて3時間振とうし、未反応の原料を除去した。その後、MP-カーボネートを濾過し、塩化メチレン0.2mLおよびDMF 0.2mLで洗浄した。濾液と洗液とを合わせ、窒素ガスを吹き付け、塩化メチレンを揮発させ、残渣について下記条件のHPLCを行って、生成物を分取精製した。精製後の水溶液を凍結乾燥し、乾燥品を秤量後、下記条件下にLC/MS分析を行って、その構造を確認した。 20 mg (25 μM) of the compound obtained in Example 18 (as hydrochloride), various carboxylic acids (30 μM), MP-carbonate (25 μM, manufactured by Argonaut, macroporous polystyrene anion-exchange resin) and 4.5 mg of HOBt-H 2 O ( 29 μM) was added to methylene chloride-DMF (0.5 mL-0.1 mL) and the resulting suspension was shaken for 1 hour at room temperature. Thereafter, PS-carbodiimide (33 μM, N-Cyclohexylcarbodiimide-N′-propyloxymethyl polystyrene) added to the reaction mixture was shaken at room temperature overnight (about 18 hours). PS-isocyanate (75 μM, manufactured by Argonaut, Polystyrene methylisocyanate) was added to the reaction solution, and the mixture was shaken at room temperature for 3 hours to remove unreacted raw materials. The MP-carbonate was then filtered and washed with 0.2 mL methylene chloride and 0.2 mL DMF. The filtrate and the washing solution were combined, nitrogen gas was blown, methylene chloride was volatilized, the residue was subjected to HPLC under the following conditions, and the product was separated and purified. The purified aqueous solution was lyophilized, the dried product was weighed, and then subjected to LC / MS analysis under the following conditions to confirm its structure.

<HPLC条件>
カラム:CAPCELL PAK C18 (UG 120 S-5, 20mm×50mm) (分取精製)
CAPCELL PAK C18 (UG 120 S-3, 3.0mm×50mm) (分析)
溶離液:0.05%TFA-MeCN, 0.05%TFA-H2Oの混合溶液(適宜溶媒比を変更)
流速:36 mL/min (分取精製)
1.8 mL/min (分析)
<LC/MS分析条件>
システム:Waters Alliance 2795, Waters ZQ
MS検出:ESI positive。
<HPLC conditions>
Column: CAPCELL PAK C18 (UG 120 S-5, 20mm x 50mm) (Preparative purification)
CAPCELL PAK C18 (UG 120 S-3, 3.0mm × 50mm) (Analysis)
Eluent: 0.05% TFA-MeCN, 0.05% TFA-H 2 O mixed solution (change solvent ratio as appropriate)
Flow rate: 36 mL / min (preparative purification)
1.8 mL / min (analysis)
<LC / MS analysis conditions>
System: Waters Alliance 2795, Waters ZQ
MS detection: ESI positive.

この方法により、下記表16〜表24に示す各化合物を合成した。各表には、得られた化合物の理論質量数およびLC/MS観測結果([M+H])を併記する。   By this method, each compound shown in Table 16 to Table 24 below was synthesized. In each table, the theoretical mass number of the obtained compound and the LC / MS observation result ([M + H]) are also shown.

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

実施例18で得た化合物(塩酸塩として)20mg (25μM)のDMF 0.2mL溶液に、MP-カーボネート(125μM)を加えて室温にて3時間振とうした。その後、反応混合物を濾過し、濾液を各種スルホニルクロリド(50μM)のDMF 0.1mL溶液に加えた後、混合物中にジイソプロピルエチルアミン8.7μL(50μM)を加え、室温にて終夜(約18時間)振とうした。   MP-carbonate (125 μM) was added to a DMF 0.2 mL solution of 20 mg (25 μM) of the compound obtained in Example 18 (as hydrochloride), and the mixture was shaken at room temperature for 3 hours. Thereafter, the reaction mixture is filtered, and the filtrate is added to various sulfonyl chlorides (50 μM) in 0.1 mL of DMF, and then 8.7 μL (50 μM) of diisopropylethylamine is added to the mixture and shaken at room temperature overnight (about 18 hours). did.

反応液を実施例83-193に記載の条件下に同様にHPLCに付し、生成物を分取精製した。精製後の水溶液を凍結乾燥し、乾燥品を秤量後、実施例83-193に記載の条件下に同様にしてLC/MS分析して、その構造を確認した。   The reaction solution was subjected to HPLC in the same manner under the conditions described in Examples 83-193, and the product was purified by fractionation. The purified aqueous solution was lyophilized, the dried product was weighed, and then subjected to LC / MS analysis in the same manner under the conditions described in Example 83-193 to confirm the structure.

得られた化合物の構造および理論質量数およびLC/MS観測結果を表25に示す。   Table 25 shows the structure, the theoretical mass number, and the LC / MS observation result of the obtained compound.

Figure 0004794200
Figure 0004794200

実施例18で得た化合物(塩酸塩として)16mg (20μM)、各種アルキルハライド(22μM)および飽和炭酸カリウム水溶液(100μM)をDMF 0.2mLに溶解した溶液を、室温にて終夜(約18時間)振とうした。反応液にDMF 0.2mLを加えて希釈した後、希釈液を実施例83-193に記載の条件下に同様にHPLCに付して、生成物を分取精製した。また、精製後の水溶液を凍結乾燥し、乾燥品を秤量後、同様にしてLC/MS分析して、その構造を確認した。   A solution obtained by dissolving 16 mg (20 μM) of the compound (as hydrochloride) obtained in Example 18, various alkyl halides (22 μM), and saturated potassium carbonate aqueous solution (100 μM) in 0.2 mL of DMF was allowed to stand overnight at room temperature (about 18 hours). Shake. After diluting the reaction solution by adding 0.2 mL of DMF, the diluted solution was subjected to HPLC in the same manner under the conditions described in Example 83-193, and the product was separated and purified. Further, the purified aqueous solution was freeze-dried, the dried product was weighed, and then subjected to LC / MS analysis in the same manner to confirm the structure.

得られた各化合物の構造および理論質量数およびLC/MS観測結果を表26〜表28に示す。   Tables 26 to 28 show the structures, theoretical mass numbers, and LC / MS observation results of the obtained compounds.

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

実施例18の化合物 (塩酸塩として)20mg(25μM)のTHF-DMF(3:1)混液0.6mLに、各種アルデヒド(28μM)のDMF28μL溶液および酢酸7μL(125μM)を加えた。反応混合物に MP-シアノボロハイドライド(63μM、Argonaut社製、Macroporous triethylammonium methylpolystyrene cyanoborohydride)を加え、室温にて2日間振とうした。MP-シアノボロハイドライドを濾去し、濾液を実施例83-193に記載の条件下に同様にしてHPLCに付し、生成物を分取精製した。また、精製後の水溶液を凍結乾燥し、乾燥品を秤量後、同様にしてLC/MS分析を行って、生成物の構造を確認した。   Compound of Example 18 (as hydrochloride) To 0.6 mL of a mixture of 20 mg (25 μM) of THF-DMF (3: 1), 28 μL solutions of various aldehydes (28 μM) in DMF and 7 μL (125 μM) of acetic acid were added. MP-cyanoborohydride (63 μM, manufactured by Argonaut, Macroporous triethylammonium methylpolystyrene cyanoborohydride) was added to the reaction mixture, and the mixture was shaken at room temperature for 2 days. MP-cyanoborohydride was removed by filtration, the filtrate was subjected to HPLC in the same manner as described in Example 83-193, and the product was separated and purified. Further, the purified aqueous solution was freeze-dried, the dried product was weighed, and then LC / MS analysis was performed in the same manner to confirm the structure of the product.

得られた各化合物の構造および理論質量数およびLC/MS観測結果を表29〜表33に示す。   Table 29 to Table 33 show the structure, theoretical mass number, and LC / MS observation results of each compound obtained.

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

実施例45で得た化合物24mg(50μM)、原料アミン類としての各種1級或いは2級アルキルアミン(100μM)およびHOBt-H2O 8.9mg(58μM)を塩化エチレン-DMF(0.5mL-0.2mL)混液に懸濁させ、得られる液を、室温にて10分間振とうした。原料として塩形態のアミン類を用いる場合には、該原料アミン類と等モル量のMP-カーボネート(Argonaut社製)を反応系内に添加した。その後、反応混合物にPS-カルボジイミド(Argonaut社製、67μM)を加えて、室温にて終夜(約18時間)振とうした。 24 mg (50 μM) of the compound obtained in Example 45, various primary or secondary alkyl amines (100 μM) as raw material amines and 8.9 mg (58 μM) of HOBt-H 2 O were mixed with ethylene chloride-DMF (0.5 mL-0.2 mL). ) Suspended in a mixed solution, and the resulting solution was shaken at room temperature for 10 minutes. When salt-form amines were used as raw materials, MP-carbonate (manufactured by Argonaut) in an equimolar amount with the raw material amines was added to the reaction system. Thereafter, PS-carbodiimide (Argonaut, 67 μM) was added to the reaction mixture, and the mixture was shaken at room temperature overnight (about 18 hours).

反応混合物を濾過し、PS-カルボジイミドおよびMP-カーボネート(該レジンを利用する場合)を濾去後、DMF (0.15mL)を用いて洗浄した。濾液および洗液を合わせ、窒素ガスを吹き付けて塩化エチレンを揮発させ、残渣をDMF 0.15mLで希釈し、希釈液を実施例83-193に記載の条件下に同様にしてHPLCに付して生成物の分取精製を行った。また、精製後の水溶液を凍結乾燥し、乾燥品を秤量後、同様にしてLC/MS分析を行って、生成物の構造を確認した。   The reaction mixture was filtered and PS-carbodiimide and MP-carbonate (when using the resin) were filtered off and washed with DMF (0.15 mL). The filtrate and washing solution are combined, nitrogen gas is blown to volatilize ethylene chloride, the residue is diluted with 0.15 mL of DMF, and the diluted solution is generated by HPLC under the same conditions as described in Example 83-193. Preparative purification of the product was performed. Further, the purified aqueous solution was freeze-dried, the dried product was weighed, and then LC / MS analysis was performed in the same manner to confirm the structure of the product.

得られた各化合物の構造および理論質量数およびLC/MS観測結果を表34〜表45に示す。   The structures, theoretical mass numbers, and LC / MS observation results of the obtained compounds are shown in Table 34 to Table 45.

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

以下、本発明化合物につき行われた薬理試験例を挙げる。   The following are examples of pharmacological tests conducted on the compounds of the present invention.

(1)アデノシンA2a受容体発現細胞におけるc-AMP産生作用
本実験は、文献(Klotz k.N. et al., Naunyn- Schmiedeberg's Arch. Pharmacol., (1998) 357, 1-9; Shryock J.C. et al., Molecular Pharmacology, (1998) 53, 886-893)に記載された方法を参考に以下の通り行った。
(1) c-AMP production action in adenosine A2a receptor-expressing cells This experiment is based on literature (Klotz kN et al., Naunyn-Schmiedeberg's Arch. Pharmacol., (1998) 357, 1-9; Shryock JC et al., The method was described as follows with reference to the method described in Molecular Pharmacology, (1998) 53, 886-893).

細胞としてはアデノシンA2a受容体(Human)を発現させたHEK293 cell (PerkinElmer Life Sciences, Code No. RBHA2AC)を使用した。   HEK293 cell (PerkinElmer Life Sciences, Code No. RBHA2AC) in which adenosine A2a receptor (Human) was expressed was used as the cell.

培地としては10%FBS (Fetal bovine serum)および1mM sodium pyruvateを含むDulbecco’s modified Eagles medium (DMEM)を使用した。   As the medium, Dulbecco's modified Eagles medium (DMEM) containing 10% FBS (Fetal bovine serum) and 1 mM sodium pyruvate was used.

本細胞を96 well plateに播き(1×105 /well)、一晩培養した。上清を除去した後、20mM HEPES、0.1mM IBMX(3-isobutyl-1-methylxanthine)および2unit/mL Adenosine deaminase を含むDMEM(FBSは除く)を0.1mL/well添加し、37℃で30分間インキュベートした。培地中被検薬物濃度が所定濃度となるよう被検薬物のDMSO溶液を添加した培地を各ウェルに0.1mL/well加え、更に30分間インキュベートした。上清を除去した後、細胞溶解液を添加して反応を停止させた。各ウェルのc-AMP量をc-AMP enzyme immunoassay(EIA)system (Amersham Biosciences, Code No.RPN225)を用いて測定した。 The cells were seeded on a 96 well plate (1 × 10 5 / well) and cultured overnight. After removing the supernatant, add 0.1 mL / well of DMEM (excluding FBS) containing 20 mM HEPES, 0.1 mM IBMX (3-isobutyl-1-methylxanthine) and 2 unit / mL Adenosine deaminase, and incubate at 37 ° C for 30 minutes did. 0.1 mL / well of a medium containing a DMSO solution of a test drug was added to each well so that the test drug concentration in the medium was a predetermined concentration, and further incubated for 30 minutes. After removing the supernatant, a cell lysate was added to stop the reaction. The amount of c-AMP in each well was measured using a c-AMP enzyme immunoassay (EIA) system (Amersham Biosciences, Code No. RPN225).

対照薬としてCGS-21680 (2-p-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride, Sigma, code C141) を用いて同一操作を繰り返した。   The same operation was repeated using CGS-21680 (2-p-carboxyethyl) phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride, Sigma, code C141) as a control drug.

対照薬の培地中濃度が1μMの際のc-AMP量測定結果を100(%)として、各被検薬物を所定濃度で使用して求められたc-AMP測定値をそれぞれ換算し、該値が50(%)となる場合の各被験薬物の培地中濃度を求めて、これをEC50値とした。   When the concentration of the control drug in the medium at 1 μM is 100 (%), the c-AMP measurement value obtained using each test drug at a predetermined concentration is converted to the value. The concentration of each test drug in the medium in the case of 50 (%) was determined, and this was used as the EC50 value.

被検薬物として前記各実施例で製造した以下の本発明化合物を使用して得られた上記試験の結果を、下記表46および表47に示す。尚、表には、比較のため、下記構造を有するWO 03/053441 A1の実施例6に記載の化合物(比較化合物Aとする)およびWO 03/008384 A1の実施例1に記載の化合物(比較化合物Bとする)を用いて行った同一試験の結果を併記する。
<比較化合物A>
The results of the above tests obtained using the following compounds of the present invention produced in the above Examples as test drugs are shown in Table 46 and Table 47 below. In the table, for comparison, the compound described in Example 6 of WO 03/053441 A1 (referred to as Comparative Compound A) having the following structure and the compound described in Example 1 of WO 03/008384 A1 (Comparative) The results of the same test using Compound B) are also shown.
<Comparative Compound A>

Figure 0004794200
Figure 0004794200

<比較化合物B> <Comparative Compound B>

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

表46および表47に示される結果から、本発明化合物はいずれも強力なA2a受容体活性化作用を有することが明らかである。   From the results shown in Table 46 and Table 47, it is clear that all of the compounds of the present invention have a potent A2a receptor activation action.

(2)アデノシンA1アゴニスト作用
本実験は文献(Shryock J.C. et al., Molecular Pharmacology, (1998) 53, 886-893; Ito H. et al., European Journal of Pharmacology, (1999) 365, 309-315)に記載された方法を参考にして以下の通り行った。即ち、雄性Wistarラット(日本チャールズリバー)の大脳皮質を摘出し、Tris buffer (50mM Tris-HCl : pH7.4)を加えてホモジナイズした後、遠心分離(1000×g、10min)した。上清を採取し、遠心分離(20,000×g、20min)した。上清を除去した後、沈殿物にTris bufferを加えて懸濁させ、再度遠心分離(20,000×g、20min)した。上清を除去後、沈殿物に2units/mL ADA(adenosine deaminase)を含むTris bufferを加えて懸濁させ、以後の試験に用いる細胞膜調製液を調製した。この液は使用まで-80℃で保存した。
(2) Adenosine A1 Agonist Action This experiment is based on literature (Shryock JC et al., Molecular Pharmacology, (1998) 53, 886-893; Ito H. et al., European Journal of Pharmacology, (1999) 365, 309-315 ) Was carried out as follows with reference to the method described in). Specifically, the cerebral cortex of male Wistar rats (Nippon Charles River) was extracted, homogenized with Tris buffer (50 mM Tris-HCl: pH 7.4), and then centrifuged (1000 × g, 10 min). The supernatant was collected and centrifuged (20,000 × g, 20 min). After removing the supernatant, the precipitate was suspended in Tris buffer and centrifuged again (20,000 × g, 20 min). After removing the supernatant, a Tris buffer containing 2 units / mL ADA (adenosine deaminase) was added to the precipitate and suspended therein to prepare a cell membrane preparation for use in subsequent tests. This solution was stored at −80 ° C. until use.

上記細胞膜調製液の細胞膜10μgに相当する量を5mM MgCl2、1mM EDTA、1mM dithiothreitol、100mM NaCl、0.01mM GDP(guanosine diphosphate)、5mg/mL BSAおよび2units/mL ADAを含むTris-bufferに加えて、25℃で30分間インキュベートした。更に[35S] GTPγS (Guanosine 5'-[γ-thio]triphosphate)(最終濃度0.4nM)および所定濃度(被験化合物の最終濃度から換算した濃度)の被験化合物を加えて、25℃で45分間インキュベートした。反応混合物をガラス繊維フィルター(unifilter-96 GF/B, Perkin Elmer Life Sciences)で濾過し、反応を停止させた。フィルターを氷冷した5mM MgCl2を含むTris-bufferで5回洗浄した。フィルターの放射活性をTop count NXT(Perkin Elmer Life Sciences)で測定した。非特異的結合は0.01mM GTPγS存在下での[35S]GTPγS結合活性で表した。 In addition to the Tris-buffer containing 5 mM MgCl 2 , 1 mM EDTA, 1 mM dithiothreitol, 100 mM NaCl, 0.01 mM GDP (guanosine diphosphate), 5 mg / mL BSA and 2 units / mL ADA And incubated at 25 ° C. for 30 minutes. Furthermore, [ 35 S] GTPγS (Guanosine 5 ′-[γ-thio] triphosphate) (final concentration 0.4 nM) and a test compound having a predetermined concentration (concentration converted from the final concentration of the test compound) were added, and the mixture was added at 25 ° C. for 45 minutes. Incubated. The reaction mixture was filtered through a glass fiber filter (unifilter-96 GF / B, Perkin Elmer Life Sciences) to stop the reaction. The filter was washed five times with ice-cooled Tris-buffer containing 5 mM MgCl 2 . The radioactivity of the filter was measured with Top count NXT (Perkin Elmer Life Sciences). Nonspecific binding was expressed as [ 35 S] GTPγS binding activity in the presence of 0.01 mM GTPγS.

対照薬としてCPA (N6-Cyclopentyladenosine, Sigma, code C-8031)1μMを用いて得られた上記試験の結果([35S] GTPγS結合活性)を100%として、各被験化合物の相対活性(%、A1アゴニスト作用)を算出した。 The relative activity (%) of each test compound was defined with the result of the above test ([ 35 S] GTPγS binding activity) obtained using 1 μM CPA (N 6 -Cyclopentyladenosine, Sigma, code C-8031) as a control drug being 100%. , A1 agonistic action) was calculated.

前記各実施例で得た本発明化合物(その塩を含む)の1μM、100nMおよび10nMをそれぞれ被験化合物として用いた場合の上記試験結果を、下記表48に示す。尚、表48には、比較化合物として、前記薬理試験例(1)に記載の比較化合物AおよびBを用いた場合の結果を併記する。   Table 48 below shows the test results when 1 μM, 100 nM, and 10 nM of the compound of the present invention (including salts thereof) obtained in the above Examples were used as test compounds, respectively. Table 48 also shows the results when the comparative compounds A and B described in the pharmacological test example (1) are used as the comparative compounds.

Figure 0004794200
Figure 0004794200

表48に示される結果から次のことが明らかである。即ち、本発明化合物のA1受容体活性化作用(A1アゴニスト作用)は比較化合物に比してかなり弱く、このことから、本発明化合物は、アデノシンA2a受容体に選択的に作用し得ることが判る。   From the results shown in Table 48, the following is clear. That is, the A1 receptor activating action (A1 agonistic action) of the compound of the present invention is considerably weaker than that of the comparative compound, which indicates that the compound of the present invention can selectively act on the adenosine A2a receptor. .

上記表48に記載した本発明化合物以外の前記各実施例で得た本発明化合物について、同一試験を行った結果、いずれの化合物も表48に示される本発明化合物の場合とほぼ同様のA1アゴニスト作用を示すことが確認された。   As a result of conducting the same test on the compounds of the present invention obtained in the respective examples other than the compounds of the present invention described in Table 48 above, almost all of the compounds were A1 agonists similar to those of the compounds of the present invention shown in Table 48. It was confirmed to show an action.

(3)家兎眼圧測定試験
被験化合物は10mMリン酸緩衝液(pH7.5)(以下点眼基剤という)を用いて、所定濃度の溶液または懸濁液に調製して試験に利用した。即ち、所定濃度に調製した際、完全に溶解しない被験化合物の場合は、その濃度の懸濁液として使用した。
(3) Rabbit intraocular pressure measurement test A test compound was prepared in a solution or suspension of a predetermined concentration using a 10 mM phosphate buffer (pH 7.5) (hereinafter referred to as eye drop base) and used for the test. That is, in the case of a test compound that does not completely dissolve when adjusted to a predetermined concentration, it was used as a suspension at that concentration.

試験には体重2.0-4.0kgのNewZealand系雌性白色家兎 (北山ラベス)を用いた。   NewZealand female white rabbits (Kitayama Labes) weighing 2.0-4.0 kg were used for the test.

眼圧測定はPneumatonometer(Model 30 Classic、メンター社)を用いて無麻酔下で行った。また、眼圧測定の前に0.4%オキシブプロカイン塩酸塩(「べノキシールTM」0.4%点眼液、参天製薬)で表面麻酔を行った。 Intraocular pressure measurement was performed without anesthesia using a Pneumatonometer (Model 30 Classic, Mentor). Further, prior to the measurement of intraocular pressure, surface anesthesia was performed with 0.4% oxybuprocaine hydrochloride (“Benoxeal ” 0.4% ophthalmic solution, Santen Pharmaceutical).

眼圧が安定している動物を選択し、1群4匹として、被験化合物を片眼に50μL点眼し、反対眼を対照眼として点眼基剤を投与した。眼圧測定は点眼前、点眼0.5、1、2、3、4および6時間後に、それぞれ実施した。眼圧に対する作用は、点眼前値からの変化量(ΔIOP、mmHg、平均±標準誤差)で表した。被験化合物として、前記薬理試験例(1)に記載の比較化合物AおよびB(いずれも1%懸濁液として利用した)を用いて得られた結果を、被験化合物毎に下記表49および表50に示す。   An animal with stable intraocular pressure was selected, and 50 μL of the test compound was instilled into one eye as 4 animals per group, and an eye drop base was administered with the opposite eye as the control eye. Intraocular pressure was measured before instillation and 0.5, 1, 2, 3, 4 and 6 hours after instillation, respectively. The effect on intraocular pressure was expressed as the amount of change from the pre-instillation value (ΔIOP, mmHg, mean ± standard error). As test compounds, the results obtained using Comparative Compounds A and B described in the Pharmacological Test Example (1) (both used as a 1% suspension) are shown in Table 49 and Table 50 below for each test compound. Shown in

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

上記と同様に動物を前処置し、眼圧が安定している動物を選択し、各群5-8匹として、各被験化合物に対して2群を用いた。投与群の家兎の片眼に被験化合物を投与し、眼圧を測定した。対照群の家兎の片眼に点眼基剤を投与し、眼圧を測定した。眼圧測定は前記と同様、点眼前、点眼0.5、1、2、3、4および6時間後に実施し、眼圧に対する作用は、点眼前値からの変化量(ΔIOP、mmHg、平均±標準誤差)で表した。   Animals were pretreated in the same manner as described above, and animals with stable intraocular pressure were selected. Two groups were used for each test compound as 5-8 animals in each group. The test compound was administered to one eye of a rabbit in the administration group, and the intraocular pressure was measured. An eye drop base was administered to one eye of a rabbit in a control group, and the intraocular pressure was measured. As described above, intraocular pressure measurement was performed before instillation, 0.5, 1, 2, 3, 4 and 6 hours after instillation. )

被験化合物として、対照化合物CGS-21680および本発明化合物(実施例で得た化合物)のそれぞれを用いて得られた結果を、被験化合物毎に下記表51〜表67に示す。   The results obtained using each of the control compound CGS-21680 and the compound of the present invention (compounds obtained in Examples) as test compounds are shown in Table 51 to Table 67 below for each test compound.

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

Figure 0004794200
Figure 0004794200

上記表51〜表67に記載した本発明化合物以外の前記各実施例1〜84で得た本発明化合物について、同一試験を行った結果、いずれの化合物も表51〜表67に示す結果とほぼ同様の結果を与えることが確認された。   As a result of conducting the same test on the compounds of the present invention obtained in Examples 1 to 84 other than the compounds of the present invention described in Table 51 to Table 67, all the compounds were almost the same as the results shown in Table 51 to Table 67. It was confirmed to give similar results.

表49〜表67に示される結果から次のことが明らかである。   The following is clear from the results shown in Table 49 to Table 67.

即ち、表49および表50に示す通り、比較化合物AおよびBは、1%懸濁液という比較的高濃度でも、有意な眼圧降下作用を示さなかった。   That is, as shown in Table 49 and Table 50, Comparative Compounds A and B did not show a significant intraocular pressure-lowering effect even at a relatively high concentration of 1% suspension.

試験した本発明化合物は、表52〜表67に示すとおり、いずれも、眼圧降下作用を示した。特に表54〜表67に示す本発明化合物は、既に眼圧降下作用を報告されているCGS-21680(表51参照)と対比して、該化合物より低濃度で同等の眼圧降下作用を示した。また表55〜表67に示す本発明化合物は試験した濃度(0.01%〜0.03%)以上の高濃度(0.3%〜1%)で溶解補助剤なしに可溶であり、この点からも点眼剤として有用であることが判った。   As shown in Tables 52 to 67, all of the tested compounds of the present invention exhibited an intraocular pressure-lowering effect. In particular, the compounds of the present invention shown in Tables 54 to 67 show equivalent intraocular pressure-lowering effects at a lower concentration than the compounds compared to CGS-21680 (see Table 51), which has already been reported to have intraocular pressure-lowering effects. It was. Further, the compounds of the present invention shown in Table 55 to Table 67 are soluble at high concentrations (0.3% to 1%) higher than the tested concentrations (0.01% to 0.03%) without solubilizing agents. As useful.

Claims (5)

一般式(1):
Figure 0004794200
[式中、
1は水素原子、低級アルキルカルボニル基、低級アルケニルカルボニル基、フェニルカルボニル基または低級アルコキシカルボニル基を示す。
2は低級アルキレン基を示す。
3は(1)水素原子、(2)低級アルキル基または下記基(3)〜基(12)のいずれかを示す。
Figure 0004794200
上記基(3)〜基(12)において、R4は低級アルキレン基、R5は水素原子または低級アルキル基、R6は低級アルケニレン基、R7は低級アルキニレン基およびRは低級アルキル基を示し、Z1〜Z3はそれぞれ下記(a1)-(a38)、(b1)-(b8)および(c1)-(c22)からなる群から選ばれるいずれかの基を示す。
1:(a1)低級アルキル基、(a2)アリール低級アルキル基、(a3)アミノアリール低級アルキル基、(a4)アリール低級アルケニル基、(a5)ヘテロアリール低級アルキル基、(a6)ヘテロアリール低級アルケニル基、(a7)ヘテロアリールアリール低級アルキル基、(a8)ヒドロキシ低級アルキル基、(a9)アリールオキシ低級アルキル基、(a10)アミノ低級アルキル基、(a11)アミノカルボニル低級アルキル基、(a12)低級アルキルカルボニル基、(a13)低級アルコキシ低級アルキルカルボニル基、(a14)アミノ低級アルキルカルボニル基、(a15)アリールカルボニル基、(a16)アリール低級アルキルカルボニル基、(a17)アリール低級アルケニルカルボニル基、(a18)アリールオキシ低級アルキルカルボニル基、(a19)ヘテロアリールカルボニル基、(a20)ヘテロアリール低級アルキルカルボニル基、(a21)ヘテロアリール低級アルケニルカルボニル基、(a22)ヘテロアリールオキシ低級アルキルカルボニル基、(a23)ヘテロアリールスルファニル低級アルキルカルボニル基、(a24)ヘテロアリールアリールカルボニル基、(a25)アリールスルファニル低級アルキルカルボニル基、(a26)アリールカルボニル低級アルキルカルボニル基、(a27)アリールアミノ低級アルキルカルボニル基、(a28)低級アルコキシカルボニル基、(a29)低級アルキルスルホニル基、(a30)アリールスルホニル基、(a31)ヘテロアリールスルホニル基、(a32)水素原子、(a33)飽和複素環を有する低級アルキル基、(a34)飽和複素環を有するカルボニル低級アルキル基、(a35)飽和複素環を有するアリール低級アルキル基、(a36)飽和複素環を有するカルボニル基、(a37)飽和複素環を有する低級アルキルカルボニル基、(a38)飽和複素環を有するアリールカルボニル基。
尚、上記(a3)、(a10)、(a11)および(a14)に記載の各基の一部を構成するアミノ基は、低級アルキル基、カルボニル基および低級アルキルカルボニル基からなる群から選ばれる置換基の1または2個で置換されていてもよく、上記(a2)、(a15)、(a16)、(a17)、(a18)、(a30)および(a35)に記載の各基の一部を構成するアリール基は、ハロゲン、水酸基、低級アルキル基、低級アルコキシ基、ハロゲノ低級アルコキシ基、アリール基、アリールオキシ基、メチレンジオキシ基、ジハロゲノメチレンジオキシ基、カルボキシル基、低級アルコキシカルボニル基、低級アルキルカルボニルオキシ基、ニトロ基、低級アルキルアミノ基、低級アルキルカルボニルアミノ基およびアミノスルホニル基からなる群から選ばれる置換基の1〜3個で置換されていてもよく、上記(a5)、(a19)〜(a24)および(a31)に記載の各基の一部を構成するヘテロアリール基は、ハロゲン、水酸基、低級アルキル基、ヒドロキシ低級アルキル基、ハロゲノ低級アルキル基、アリール基、ハロゲノアリール基、低級アルキルスルファニル基、アミノカルボニル基およびカルボキシル基からなる群から選ばれる置換基の1〜3個で置換されていてもよい。更に、上記(a33)〜(a38)に記載の各基の一部を構成する飽和複素環は、5−7員の含窒素飽和複素環基または該基に1乃至は2個のベンゼン環が縮合した基であって且つ該環を構成する窒素原子上に1個の低級アルキル基または低級アルキルカルボニル基を有していてもよく、また該環を構成する炭素原子上に1または2個のオキソ基を有していてもよい。
2:(b1)水素原子、(b2)低級アルコキシカルボニル基、(b3)アミノ低級アルキルカルボニル基、(b4)低級アルケニルカルボニル基、(b5)飽和複素環を有する低級アルキルカルボニル基、(b6)飽和複素環を有するピペリジノ低級アルキルカルボニル基、(b7)飽和複素環を有するカルボニル基および(b8)低級アルキルスルホニル基。
尚、上記(b3)に記載の各基の一部を構成するアミノ基は、1または2個の低級アルキル基で置換されていてもよい。更に、上記(b5)から(b7)に記載の各基の一部を構成する飽和複素環は、5−7員の含窒素飽和複素環基であって且つ該環を構成する窒素原子上に1個の低級アルキル基を有していてもよい。
3:(c1)水酸基、(c2)低級アルコキシ基、(c3)アミノ基、(c4)アミノ低級アルキルアミノ基、(c5)ピペラジノ基、(c6)アミノ低級アルキルピペラジノ基、(c7)アミノカルボニル低級アルキルピペラジノ基、(c8)1,4-ジアゼパン-1-イル基、(c9)アミノ低級アルキル-1,4-ジアゼパン-1-イル基、(c10)ピペリジノ基、(c11)アミノピペリジノ基、(c12)アミノ低級アルキルアミノピペリジノ基、(c13)アミノ低級アルキルピペリジノ基、(c14)ピロリジノ基、(c15)飽和複素環を有するアミノ基、(c16)飽和複素環を有する低級アルキルアミノ基、(c17)飽和複素環を有するピペラジノ基、(c18)飽和複素環を有する低級アルキルピペラジノ基、(c19)飽和複素環を有するカルボニル低級アルキルピペラジノ基、(c20)飽和複素環を有する低級アルキル-1,4-ジアゼパン-1-イル基、(c21)飽和複素環を有するピペリジノ基および(c22)飽和複素環を有する低級アルキルモルホリノ基。
尚、上記(c3)のアミノ基、並びに(c4)、(c6)、(c7)、(c9)、(c11)、(c12)、(c13)、(c15)および(c16)に記載の各基の一部を構成するアミノ基は、低級アルキル基、ヒドロキシ低級アルキル基、アリール基、ヘテロアリール基、アリール低級アルキル基、アルキコキシアリール低級アルキル基、ヘテロアリール低級アルキル基および低級アルコキシカルボニル基からなる群から選ばれる置換基の1または2個で置換されていてもよく、上記(c11)に記載の基の一部を構成するアミノ基は、1個のアリール低級アルキルカルボニル基で置換されていてもよい。また上記(c5)のピペラジノ基および(c8)の1,4-ジアゼパン-1-イル基は、その4位に低級アルキル基、ヒドロキシ低級アルキル基、低級アルコキシ低級アルキル基、アリール基、低級アルキルアリール基、ヒドロキシアリール基、シアノアリール基、ハロゲノアリール基、アリール低級アルキル基、低級アルコキシアリール低級アルキル基、ハロゲノアリールオキシ低級アルキル基、ヘテロアリール基、低級アルキルへテロアリール基、ハロゲノ低級アルキルへテロアリール基、シアノへテロアリール基、ヘテロアリール低級アルキル基、低級アルコキシカルボニル基および低級アルキルカルボニル基からなる群から選ばれる置換基のいずれか1個を有していてもよい。更に、上記(c15)〜(c22)に記載の各基の一部を構成する飽和複素環は、5−7員の含窒素飽和複素環基であって、該基には1乃至2個のベンゼン環が縮合していてもよく、また該基は、これを構成する窒素原子上に低級アルキル基、アリール基、シアノアリール基、低級アルキルカルボニル基、ハロゲノ低級アルキルアリール基およびアリール低級アルキル基からなる群から選ばれる置換基のいずれか1個を有していてもよい。更に、上記(c5)のピペラジノ基、(c10)のピペリジノ基および(c15)〜(c22)に記載の各基の一部を構成する飽和複素環は、これらの環を構成する炭素原子上に水酸基、オキソ基、低級アルキル基、ヒドロキシ低級アルキル基、アリール基、アリール低級アルキル基、アミノカルボニル基および低級アルキルアミノ基からなる群から選ばれる置換基のいずれか1個を有していてもよい。]
で表される4−アミノ−5−シアノピリミジン誘導体またはその製剤学的に許容される塩。
General formula (1):
Figure 0004794200
[Where
R 1 represents a hydrogen atom, a lower alkylcarbonyl group, a lower alkenylcarbonyl group, a phenylcarbonyl group or a lower alkoxycarbonyl group.
R 2 represents a lower alkylene group.
R 3 represents (1) a hydrogen atom, (2) a lower alkyl group, or any of the following groups (3) to (12).
Figure 0004794200
In the groups (3) to (12), R 4 is a lower alkylene group, R 5 is a hydrogen atom or a lower alkyl group, R 6 is a lower alkenylene group, R 7 is a lower alkynylene group, and R 8 is a lower alkyl group. Z 1 to Z 3 each represent any group selected from the group consisting of the following (a1)-(a38), (b1)-(b8) and (c1)-(c22).
Z 1 : (a1) lower alkyl group, (a2) aryl lower alkyl group, (a3) aminoaryl lower alkyl group, (a4) aryl lower alkenyl group, (a5) heteroaryl lower alkyl group, (a6) heteroaryl lower Alkenyl group, (a7) heteroarylaryl lower alkyl group, (a8) hydroxy lower alkyl group, (a9) aryloxy lower alkyl group, (a10) amino lower alkyl group, (a11) aminocarbonyl lower alkyl group, (a12) Lower alkylcarbonyl group, (a13) lower alkoxy lower alkylcarbonyl group, (a14) amino lower alkylcarbonyl group, (a15) arylcarbonyl group, (a16) aryl lower alkylcarbonyl group, (a17) aryl lower alkenylcarbonyl group, a18) aryloxy lower alkylcarbonyl group, (a19) heteroarylcarbonyl group, (a20) heteroaryl lower alkylcarbonyl group Group, (a21) heteroaryl lower alkenylcarbonyl group, (a22) heteroaryloxy lower alkylcarbonyl group, (a23) heteroarylsulfanyl lower alkylcarbonyl group, (a24) heteroarylarylcarbonyl group, (a25) arylsulfanyl lower alkyl Carbonyl group, (a26) arylcarbonyl lower alkylcarbonyl group, (a27) arylamino lower alkylcarbonyl group, (a28) lower alkoxycarbonyl group, (a29) lower alkylsulfonyl group, (a30) arylsulfonyl group, (a31) hetero An arylsulfonyl group, (a32) a hydrogen atom, (a33) a lower alkyl group having a saturated heterocyclic ring, (a34) a carbonyl lower alkyl group having a saturated heterocyclic ring, (a35) an aryl lower alkyl group having a saturated heterocyclic ring, (a36) ) A carbonyl group having a saturated heterocyclic ring; (a37) a lower alkyl group having a saturated heterocyclic ring. A bonyl group, (a38) an arylcarbonyl group having a saturated heterocyclic ring;
The amino group constituting a part of each group described in the above (a3), (a10), (a11) and (a14) is selected from the group consisting of a lower alkyl group, a carbonyl group and a lower alkylcarbonyl group. One or two of the substituents may be substituted, and one of each group described in the above (a2), (a15), (a16), (a17), (a18), (a30) and (a35) The aryl group constituting the part is halogen, hydroxyl group, lower alkyl group, lower alkoxy group, halogeno lower alkoxy group, aryl group, aryloxy group, methylenedioxy group, dihalogenomethylenedioxy group, carboxyl group, lower alkoxycarbonyl Group, a lower alkylcarbonyloxy group, a nitro group, a lower alkylamino group, a lower alkylcarbonylamino group, and an aminosulfonyl group may be substituted with 1 to 3 substituents selected from the group (a 5), heteroaryl group constituting a part of each group described in (a19) to (a24) and (a31) is halogen, hydroxyl group, lower alkyl group, hydroxy lower alkyl group, halogeno lower alkyl group, aryl group , A halogenoaryl group, a lower alkylsulfanyl group, an aminocarbonyl group and a carboxyl group may be substituted with 1 to 3 substituents. Furthermore, the saturated heterocyclic ring constituting a part of each group described in the above (a33) to (a38) is a 5- to 7-membered nitrogen-containing saturated heterocyclic group or 1 to 2 benzene rings in the group. The condensed group may have one lower alkyl group or lower alkylcarbonyl group on the nitrogen atom constituting the ring, and 1 or 2 carbon atoms constituting the ring It may have an oxo group.
Z 2 : (b1) a hydrogen atom, (b2) a lower alkoxycarbonyl group, (b3) an amino lower alkylcarbonyl group, (b4) a lower alkenylcarbonyl group, (b5) a lower alkylcarbonyl group having a saturated heterocyclic ring, (b6) A piperidino lower alkylcarbonyl group having a saturated heterocyclic ring, (b7) a carbonyl group having a saturated heterocyclic ring, and (b8) a lower alkylsulfonyl group.
The amino group constituting a part of each group described in the above (b3) may be substituted with 1 or 2 lower alkyl groups. Further, the saturated heterocyclic ring constituting a part of each group described in the above (b5) to (b7) is a 5- to 7-membered nitrogen-containing saturated heterocyclic group and is on the nitrogen atom constituting the ring. It may have one lower alkyl group.
Z 3 : (c1) hydroxyl group, (c2) lower alkoxy group, (c3) amino group, (c4) amino lower alkylamino group, (c5) piperazino group, (c6) amino lower alkyl piperazino group, (c7) Aminocarbonyl lower alkyl piperazino group, (c8) 1,4-diazepan-1-yl group, (c9) amino lower alkyl-1,4-diazepan-1-yl group, (c10) piperidino group, (c11) An aminopiperidino group, (c12) an amino lower alkylaminopiperidino group, (c13) an amino lower alkylpiperidino group, (c14) a pyrrolidino group, (c15) an amino group having a saturated heterocyclic ring, and (c16) a saturated heterocyclic ring. (C17) a piperazino group having a saturated heterocyclic ring, (c18) a lower alkyl piperazino group having a saturated heterocyclic ring, (c19) a carbonyl lower alkyl piperazino group having a saturated heterocyclic ring, (c20 ) Lower alkyl-1,4-diazepan-1-yl group having a saturated heterocyclic ring, (c21) saturated heterocyclic ring Lower alkyl morpholino group having a piperidino group, and (c22) a saturated heterocyclic ring having.
Incidentally, the amino group of the above (c3), and each of (c4), (c6), (c7), (c9), (c11), (c12), (c13), (c15) and (c16) The amino group constituting a part of the group is a lower alkyl group, a hydroxy lower alkyl group, an aryl group, a heteroaryl group, an aryl lower alkyl group, an alkyloxyaryl lower alkyl group, a heteroaryl lower alkyl group and a lower alkoxycarbonyl group. The amino group constituting a part of the group described in (c11) above may be substituted with one aryl lower alkylcarbonyl group, which may be substituted with one or two substituents selected from the group consisting of It may be. In addition, the piperazino group in (c5) and the 1,4-diazepan-1-yl group in (c8) have a lower alkyl group, a hydroxy lower alkyl group, a lower alkoxy lower alkyl group, an aryl group, a lower alkyl aryl at the 4-position. Group, hydroxyaryl group, cyanoaryl group, halogenoaryl group, aryl lower alkyl group, lower alkoxyaryl lower alkyl group, halogenoaryloxy lower alkyl group, heteroaryl group, lower alkyl heteroaryl group, halogeno lower alkyl heteroaryl group, It may have any one of substituents selected from the group consisting of a cyanoheteroaryl group, a heteroaryl lower alkyl group, a lower alkoxycarbonyl group and a lower alkylcarbonyl group. Furthermore, the saturated heterocyclic ring constituting a part of each group described in the above (c15) to (c22) is a 5- to 7-membered nitrogen-containing saturated heterocyclic group, and the group includes 1 to 2 saturated heterocyclic rings. The benzene ring may be condensed, and the group may be formed from a lower alkyl group, an aryl group, a cyanoaryl group, a lower alkylcarbonyl group, a halogeno lower alkylaryl group and an aryl lower alkyl group on a nitrogen atom constituting the benzene ring. Any one of substituents selected from the group consisting of: Furthermore, the piperazino group of (c5), the piperidino group of (c10) and the saturated heterocyclic ring constituting a part of each group described in (c15) to (c22) are on the carbon atoms constituting these rings. It may have any one of substituents selected from the group consisting of a hydroxyl group, an oxo group, a lower alkyl group, a hydroxy lower alkyl group, an aryl group, an aryl lower alkyl group, an aminocarbonyl group and a lower alkylamino group. . ]
A 4-amino-5-cyanopyrimidine derivative represented by the formula or a pharmaceutically acceptable salt thereof.
3が、
Figure 0004794200
[ここで、R4は請求項1におけるR4の定義と同じ。Z3は、 (c3)アミノ基、(c4)アミノ低級アルキルアミノ基、 (c5)ピペラジノ基、(c6)アミノ低級アルキルピペラジノ基、 (c8)1,4-ジアゼパン-1-イル基、 (c10)ピペリジノ基、(c11)アミノピペリジノ基、(c18)飽和複素環を有する低級アルキルピペラジノ基、(c21)飽和複素環を有するピペリジノ基または(c22)飽和複素環を有する低級アルキルモルホリノ基を示す。
尚、上記(c3)のアミノ基、並びに(c4)、(c6)および (c11)に記載の各基の一部を構成するアミノ基は、低級アルキル基、ヒドロキシ低級アルキル基、フェニル基、1−メチルピペリジン−4−イル基、4−メチルピペラジノ基、2−(1−ピペリジル)エチル基および低級アルコキシカルボニル基からなる群から選ばれる置換基の1または2個で置換されていてもよく、上記(c11)に記載の基の一部を構成するアミノ基は、1個のフェニル低級アルキルカルボニル基で置換されていてもよい。また上記(c5)のピペラジノ基および(c8)の1,4-ジアゼパン-1-イル基は、その4位に低級アルキル基、ヒドロキシ低級アルキル基、低級アルコキシ低級アルキル基、フェニル基、低級アルキルフェニル基、ヒドロキシフェニル基、シアノフェニル基、ハロゲノフェニル基、フェニル低級アルキル基、低級アルコキシフェニル低級アルキル基、ハロゲノフェニルオキシ低級アルキル基、ピリジル基、低級アルキルピリジル基、ハロゲノ低級アルキルピリジル基、シアノピリジル基、ピリジル低級アルキル基、低級アルコキシカルボニル基および低級アルキルカルボニル基からなる群から選ばれる置換基のいずれか1個を有していてもよい。更に、上記(c18)および(c22)に記載の各基の一部を構成する飽和複素環は、ピロリジル、ピロリジノ、ピペリジル、ピペリジノ、ピペラジル、ピペラジノ、1,4-ジアゼパン-1-イル、テトラヒドロフリル、1,3-ジオキソラニル、テトラヒドロチエニル、モルホリル、モルホリノおよびテトラヒドロイミダゾリルからなる群から選ばれた1価の飽和複素環基を意味し、また該基は、これを構成する窒素原子上に低級アルキル基、フェニル基、シアノフェニル基、低級アルキルカルボニル基、ハロゲノ低級アルキルフェニル基およびフェニル低級アルキル基からなる群から選ばれる置換基のいずれか1個を有していてもよい。更に、上記(c5)のピペラジノ基、(c10)のピペリジノ基、(c18)の飽和複素環を有する低級アルキルピペラジノ基または(c22)の飽和複素環を有する低級アルキルモルホリノ基に記載の各基の一部を構成する飽和複素環は、これらの環を構成する炭素原子上に水酸基、オキソ基、低級アルキル基、ヒドロキシ低級アルキル基、フェニル基、フェニル低級アルキル基、アミノカルボニル基および低級アルキルアミノ基からなる群から選ばれる置換基のいずれか1個を有していてもよい。]
である、請求項1に記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。
R 3 is
Figure 0004794200
[Wherein R 4 has the same definition as R 4 in claim 1. Z 3 is (c3) amino group, (c4) amino lower alkylamino group, (c5) piperazino group, (c6) amino lower alkylpiperazino group, (c8) 1,4-diazepan-1-yl group, (c10) piperidino group, (c11) aminopiperidino group, (c18) lower alkyl piperazino group having a saturated heterocyclic ring, (c21) piperidino group having a saturated heterocyclic ring, or (c22) lower alkyl morpholino group having a saturated heterocyclic ring Indicates.
The amino group constituting the above (c3) amino group and a part of each group described in (c4), (c6) and (c11) are a lower alkyl group, a hydroxy lower alkyl group, a phenyl group, -Methylpiperidin-4-yl group, 4-methylpiperazino group, 2- (1-piperidyl) ethyl group and lower alkoxycarbonyl group may be substituted with 1 or 2 substituents, The amino group constituting a part of the group described in (c11) may be substituted with one phenyl lower alkylcarbonyl group. In addition, the piperazino group of (c5) and the 1,4-diazepan-1-yl group of (c8) have a lower alkyl group, a hydroxy lower alkyl group, a lower alkoxy lower alkyl group, a phenyl group, a lower alkyl phenyl group at the 4-position. Group, hydroxyphenyl group, cyanophenyl group, halogenophenyl group, phenyl lower alkyl group, lower alkoxyphenyl lower alkyl group, halogenophenyloxy lower alkyl group, pyridyl group, lower alkylpyridyl group, halogeno lower alkylpyridyl group, cyanopyridyl group , Any one of substituents selected from the group consisting of a pyridyl lower alkyl group, a lower alkoxycarbonyl group, and a lower alkylcarbonyl group. Further, the saturated heterocyclic ring constituting a part of each group described in the above (c18) and (c22) is pyrrolidyl, pyrrolidino, piperidyl, piperidino, piperazyl, piperazino, 1,4-diazepan-1-yl, tetrahydrofuryl. 1,3-dioxolanyl, tetrahydrothienyl, morpholyl, morpholino and tetrahydroimidazolyl, and means a monovalent saturated heterocyclic group selected from the group consisting of a lower alkyl group on the nitrogen atom constituting the group. Any one of substituents selected from the group consisting of phenyl group, cyanophenyl group, lower alkylcarbonyl group, halogeno lower alkylphenyl group, and phenyl lower alkyl group. Further, each of the piperazino group in (c5), the piperidino group in (c10), the lower alkyl piperazino group having a saturated heterocyclic ring in (c18) or the lower alkylmorpholino group having a saturated heterocyclic ring in (c22). The saturated heterocyclic ring constituting a part of the group is a hydroxyl group, an oxo group, a lower alkyl group, a hydroxy lower alkyl group, a phenyl group, a phenyl lower alkyl group, an aminocarbonyl group and a lower alkyl on the carbon atoms constituting these rings. It may have any one substituent selected from the group consisting of amino groups. ]
The 4-amino-5-cyanopyrimidine derivative according to claim 1 or a pharmaceutically acceptable salt thereof.
3が、
Figure 0004794200
[ここで、R4は請求項1におけるR4の定義と同じ。
3は、
(c3) 低級アルキル基、1−メチルピペリジン−4−イル基、4−メチルピペラジノ基および2−(1−ピペリジル)エチル基からなる群から選ばれる置換基の1または2個で置換されていてもよいアミノ基、
(c4)アミノ基上に低級アルキル基および低級アルコキシカルボニル基からなる群から選ばれる置換基を1または2個で置換されていてもよいアミノ低級アルキルアミノ基、
(c5) 低級アルキル基および低級アルコキシカルボニル基からなる群から選ばれる置換基1個で置換されていてもよいピペラジノ基、
(c6)アミノ基上に低級アルキル基を1または2個で置換されていてもよいアミノ低級アルキルピペラジノ基、
(c8) 1個の低級アルキル基で置換されていてもよい1,4-ジアゼパン-1-イル基、
(c10)2−ヒドロキシメチルピペリジノ基、
(c11) アミノ基上に低級アルキル基の1または2個で置換されていてもよいアミノピペリジノ基、
(c18) ピロリジル、ピロリジノ、ピペリジル、ピペリジノ、モルホリルおよびモルホリノ基からなる群から選ばれた飽和複素環基を有する低級アルキルピペラジノ基(該複素環基を構成する窒素原子上に低級アルキル基1個を有していてもよい)
(c21) 4−(1−ピペリジル)ピペリジノ基
または
(c22) ピペリジル、ピペリジノ、ピペラジルおよびピペラジノ基からなる群から選ばれる飽和複素環を有する低級アルキルモルホリノ基(該複素環基を構成する窒素原子上に低級アルキル基1個を有していてもよい)
を示す。]
である、請求項2に記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。
R 3 is
Figure 0004794200
[Wherein R 4 has the same definition as R 4 in claim 1.
Z 3 is
(c3) substituted with one or two substituents selected from the group consisting of a lower alkyl group, 1-methylpiperidin-4-yl group, 4-methylpiperazino group and 2- (1-piperidyl) ethyl group Good amino group,
(c4) an amino lower alkylamino group optionally substituted with one or two substituents selected from the group consisting of a lower alkyl group and a lower alkoxycarbonyl group on the amino group;
(c5) a piperazino group optionally substituted with one substituent selected from the group consisting of a lower alkyl group and a lower alkoxycarbonyl group,
(c6) an amino lower alkyl piperazino group optionally substituted with one or two lower alkyl groups on the amino group,
(c8) 1,4-diazepan-1-yl group optionally substituted with one lower alkyl group,
(c10 ) 2 -hydroxymethylpiperidino group,
(c11) an aminopiperidino group optionally substituted with one or two lower alkyl groups on the amino group;
(c18) A lower alkyl piperazino group having a saturated heterocyclic group selected from the group consisting of pyrrolidyl, pyrrolidino, piperidyl, piperidino, morpholyl and morpholino groups (lower alkyl group 1 on the nitrogen atom constituting the heterocyclic group) pieces may have),
(c21) 4- (1-piperidyl) piperidino group or
(c22) a lower alkylmorpholino group having a saturated heterocyclic ring selected from the group consisting of piperidyl, piperidino, piperazyl and piperazino groups (which may have one lower alkyl group on the nitrogen atom constituting the heterocyclic group) )
Indicates. ]
The 4-amino-5-cyanopyrimidine derivative according to claim 2 or a pharmaceutically acceptable salt thereof.
1が水素原子または低級アルキルカルボニル基であり、R2がメチレン基であり、R3が、
Figure 0004794200
[ここで、Z3は、
(c3) 低級アルキル基、1−メチルピペリジン−4−イル基、4−メチルピペラジノ基および2−(1−ピペリジル)エチル基からなる群から選ばれる置換基が1または2個置換されていてもよいアミノ基、
(c4)アミノ基上に低級アルキル基および低級アルコキシカルボニル基からなる群から選ばれる置換基が1または2個置換されていてもよいアミノ低級アルキルアミノ基、
(c5) 低級アルキル基および低級アルコキシカルボニル基からなる群から選ばれる置換基が1個置換されていてもよいピペラジノ基、
(c6)アミノ基上に低級アルキル基が1または2個置換されていてもよいアミノ低級アルキルピペラジノ基、
(c8) 1個の低級アルキル基で置換されていてもよい1,4-ジアゼパン-1-イル基、
(c10)2−ヒドロキシメチルピペリジノ基、
(c11) アミノ基上に低級アルキル基が1または2個置換されていてもよいアミノピペリジノ基、
(c18) ピロリジノ低級アルキルピペラジノ基、ピペリジ低級アルキルピペラジノ基(ピペリジ基を構成する窒素原子上に低級アルキル基1個を有していてもよい)もしくはモルホリノ低級アルキルピペラジノ基、
(c21) 4−(1−ピペリジル)ピペリジノ基
または
(c22) ピペリジノ低級アルキルモルホリノ基もしくはピペラジノ低級アルキルモルホリノ基(ピペラジノ基を構成する窒素原子上に低級アルキル基1個を有していてもよい)を示す。]
である、請求項3に記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。
R 1 is a hydrogen atom or a lower alkylcarbonyl group, R 2 is a methylene group, R 3 is
Figure 0004794200
[Where Z 3 is
(c3) One or two substituents selected from the group consisting of a lower alkyl group, 1-methylpiperidin-4-yl group, 4-methylpiperazino group and 2- (1-piperidyl) ethyl group may be substituted. An amino group,
(c4) an amino lower alkylamino group optionally having 1 or 2 substituents selected from the group consisting of a lower alkyl group and a lower alkoxycarbonyl group on the amino group;
(c5) a piperazino group optionally substituted by one substituent selected from the group consisting of a lower alkyl group and a lower alkoxycarbonyl group;
(c6) an amino lower alkyl piperazino group optionally substituted with one or two lower alkyl groups on the amino group,
(c8) 1,4-diazepan-1-yl group optionally substituted with one lower alkyl group,
(c10 ) 2 -hydroxymethylpiperidino group,
(c11) an aminopiperidino group in which one or two lower alkyl groups may be substituted on the amino group,
(c18) a pyrrolidino-lower alkyl piperazino group, (which may have one lower alkyl group on the nitrogen atom constituting the piperidyl group) piperidyl-lower alkyl piperazino groups or morpholino-lower alkylpiperazino Group,
(c21) 4- (1-piperidyl) piperidino group or
(c22) A piperidino lower alkylmorpholino group or piperazino lower alkylmorpholino group (which may have one lower alkyl group on the nitrogen atom constituting the piperazino group). ]
The 4-amino-5-cyanopyrimidine derivative according to claim 3 or a pharmaceutically acceptable salt thereof.
下記1)〜15)から選択される請求項1〜4のいずれかに記載の4-アミノ-5-シアノピリミジン誘導体またはその製剤学的に許容される塩。
1) N-[4-(6-アミノ-5-シアノ-2-[6-[3-(4-メチルピペラジン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル]ピリミジン-4-イル)フェニル]アセトアミド、
2) 3-[6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル]-N-(2-ジメチルアミノエチル)プロピオンアミド、
3) 3-[6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル]-N-(2-ジメチルアミノエチル)-N-メチルプロピオンアミド、
4) 3-[6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル]-N-(2-ジメチルアミノプロピル)-N-メチルプロピオンアミド、
5) 3-[6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル]-N-[2-(ピペリジン-1-イル)エチル]プロピオンアミド、
6) 3-[6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル]-N-(2-ジエチルアミノエチル)プロピオンアミド、
7) 3-[6-[4-(4-アセチルアミノフェニル)-6-アミノ-5-シアノピリミジン-2-イルスルファニルメチル]ピリジン-2-イル]-N-メチル-N-(1-メチルピペリジン-4-イル)プロピオンアミド、
8) N-(4-[6-アミノ-2-[6-(3-[1,4’]ビピペリジニル-1’-イル-3-オキソプロピル)ピリジン-2-イルメチルスルファニル]-5-シアノピリミジン-4-イル]フェニル)アセトアミド、
9) N-[4-(6-アミノ-5-シアノ-2-[6-[3-オキソ-3-(2-ピペリジン-1-イルメチルモルホリン-4-イル)プロピル]ピリジン-2-イルメチルスルファニル]ピリミジン-4-イル)フェニル]アセトアミド、
10) N-[4-[6-アミノ-5-シアノ-2-(6-[3-[2-(4-エチルピペラジン-1-イルメチル)モルホリン-4-イル]-3-オキソプロピル]ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル]アセトアミド、
11) N-[4-[6-アミノ-5-シアノ-2-(6-[3-[4-(2-ジイソプロピルアミノエチル)ピペラジン-1-イル]-3-オキソプロピル]ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル]アセトアミド、
12) N-[4-[6-アミノ-5-シアノ-2-(6-[3-オキソ-3-[4-(2-ピロリジン-1-イルエチル)ピペラジン-1-イル]プロピル]ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル]アセトアミド、
13) N-[4-[6-アミノ-5-シアノ-2-(6-[3-[4-(2-モルホリン-4-イルエチル)ピペラジン-1-イル]-3-オキソプロピル]ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル]アセトアミド、
14) N-[4-[6-アミノ-5-シアノ-2-(6-[3-[4-(2-ジエチルアミノエチル)ピペラジン-1-イル]-3-オキソプロピル]ピリジン-2-イルメチルスルファニル)ピリミジン-4-イル]フェニル]アセトアミド、
15) N-[4-(6-アミノ-5-シアノ-2-[6-[3-(4-メチル-[1,4]ジアゼパン-1-イル)-3-オキソプロピル]ピリジン-2-イルメチルスルファニル]ピリミジン-4-イル)フェニル]アセトアミド。
The 4-amino-5-cyanopyrimidine derivative or a pharmaceutically acceptable salt thereof according to any one of claims 1 to 4, which is selected from the following 1) to 15).
1) N- [4- (6-Amino-5-cyano-2- [6- [3- (4-methylpiperazin-1-yl) -3-oxopropyl] pyridin-2-ylmethylsulfanyl] pyrimidine- 4-yl) phenyl] acetamide,
2) 3- [6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl] -N- (2-dimethylaminoethyl) propion Amide,
3) 3- [6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl] -N- (2-dimethylaminoethyl)- N-methylpropionamide,
4) 3- [6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl] -N- (2-dimethylaminopropyl)- N-methylpropionamide,
5) 3- [6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl] -N- [2- (piperidine-1- Yl) ethyl] propionamide,
6) 3- [6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl] -N- (2-diethylaminoethyl) propionamide ,
7) 3- [6- [4- (4-Acetylaminophenyl) -6-amino-5-cyanopyrimidin-2-ylsulfanylmethyl] pyridin-2-yl] -N-methyl-N- (1-methyl Piperidin-4-yl) propionamide,
8) N- (4- [6-Amino-2- [6- (3- [1,4 '] bipiperidinyl-1'-yl-3-oxopropyl) pyridin-2-ylmethylsulfanyl] -5-cyano Pyrimidin-4-yl] phenyl) acetamide,
9) N- [4- (6-Amino-5-cyano-2- [6- [3-oxo-3- (2-piperidin-1-ylmethylmorpholin-4-yl) propyl] pyridin-2-yl Methylsulfanyl] pyrimidin-4-yl) phenyl] acetamide,
10) N- [4- [6-Amino-5-cyano-2- (6- [3- [2- (4-ethylpiperazin-1-ylmethyl) morpholin-4-yl] -3-oxopropyl] pyridine -2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl] acetamide,
11) N- [4- [6-Amino-5-cyano-2- (6- [3- [4- (2-diisopropylaminoethyl) piperazin-1-yl] -3-oxopropyl] pyridine-2- Ylmethylsulfanyl) pyrimidin-4-yl] phenyl] acetamide,
12) N- [4- [6-Amino-5-cyano-2- (6- [3-oxo-3- [4- (2-pyrrolidin-1-ylethyl) piperazin-1-yl] propyl] pyridine- 2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl] acetamide,
13) N- [4- [6-Amino-5-cyano-2- (6- [3- [4- (2-morpholin-4-ylethyl) piperazin-1-yl] -3-oxopropyl] pyridine- 2-ylmethylsulfanyl) pyrimidin-4-yl] phenyl] acetamide,
14) N- [4- [6-Amino-5-cyano-2- (6- [3- [4- (2-diethylaminoethyl) piperazin-1-yl] -3-oxopropyl] pyridin-2-yl Methylsulfanyl) pyrimidin-4-yl] phenyl] acetamide,
15) N- [4- (6-Amino-5-cyano-2- [6- [3- (4-methyl- [1,4] diazepan-1-yl) -3-oxopropyl] pyridine-2- Ylmethylsulfanyl] pyrimidin-4-yl) phenyl] acetamide.
JP2005125880A 2004-04-30 2005-04-25 4-amino-5-cyanopyrimidine derivatives Expired - Fee Related JP4794200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125880A JP4794200B2 (en) 2004-04-30 2005-04-25 4-amino-5-cyanopyrimidine derivatives

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004135999 2004-04-30
JP2004135999 2004-04-30
JP2005125880A JP4794200B2 (en) 2004-04-30 2005-04-25 4-amino-5-cyanopyrimidine derivatives

Publications (3)

Publication Number Publication Date
JP2005336168A JP2005336168A (en) 2005-12-08
JP2005336168A5 JP2005336168A5 (en) 2008-05-01
JP4794200B2 true JP4794200B2 (en) 2011-10-19

Family

ID=35490113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125880A Expired - Fee Related JP4794200B2 (en) 2004-04-30 2005-04-25 4-amino-5-cyanopyrimidine derivatives

Country Status (1)

Country Link
JP (1) JP4794200B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452044B (en) * 2007-06-15 2014-09-11 Mitsubishi Tanabe Pharma Corp Morpholine derivative
DE102008013587A1 (en) * 2008-03-11 2009-09-17 Bayer Schering Pharma Aktiengesellschaft Heteroaryl-substituted dicyanopyridines and their use
AR075196A1 (en) * 2009-02-03 2011-03-16 Otsuka Pharma Co Ltd A CYANOPIRIMIDINE DERIVATIVE FOR THE TREATMENT OF AN EYE DISEASE
JP5823766B2 (en) * 2010-07-30 2015-11-25 大塚製薬株式会社 Pharmaceutical composition
CN109651358B (en) * 2017-10-11 2023-04-07 上海迪诺医药科技有限公司 4-aminopyridine derivative, pharmaceutical composition, preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0108611A (en) * 2000-02-25 2003-05-06 Hoffmann La Roche Adenosine Receptor Modulators
DE10110754A1 (en) * 2001-03-07 2002-09-19 Bayer Ag Substituted 2-thio-3,5-dicyano-4-aryl-6-aminopyridines and their use
DE10134481A1 (en) * 2001-07-16 2003-01-30 Bayer Ag Substituted 2-thio-3,5-dicyano-4-phenyl-6-aminopyridines and their use
JP2003206230A (en) * 2002-01-10 2003-07-22 Yamanouchi Pharmaceut Co Ltd Cyanoheterocyclic derivative or its salt

Also Published As

Publication number Publication date
JP2005336168A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP5201817B2 (en) Pharmaceutical composition
US7989446B2 (en) 4-amino 5-cyanopyrimidine derivatives
JP3989444B2 (en) New compounds
CN102712624B (en) Indole compound and pharmaceutical use thereof
TWI532727B (en) Pyrazinecarboxamide compound
KR20210040368A (en) Inhibitors of cyclin dependent kinases
NZ566862A (en) Diarylamine-containing compounds and compositions, and their use as modulators of C-kit receptors
JP5753625B2 (en) 5- (Phenyl / pyridinyl-ethynyl) -2-pyridine / 2-pyrimidine-carboxamide as mGluR5 modulator
WO2007114323A1 (en) Aminopyrrolidine compound
KR20070113225A (en) Fused thiazole derivatives having affinity for the histamine h3 receptor
EP3821947A1 (en) Heterocyclic trpml1 agonists
JP4705575B2 (en) Coumarins as iNOS inhibitors
JP2002530378A (en) Quinoline derivatives as NK-2 and NK-3 receptor ligands
JP4794200B2 (en) 4-amino-5-cyanopyrimidine derivatives
JPH07330777A (en) Thieno(3,2,d)pyrimidin-4-one derivative
JP5760005B2 (en) Novel (heterocycle / tetrahydropyridine)-(piperazinyl) -1-alkanones and (heterocycle / dihydropyrrolidine)-(piperazinyl) -1-alkanone derivatives and their use as p75 inhibitors
US20160009697A1 (en) Pyridine derivatives as 5-ht6 receptor antagonists
JP2005538996A (en) Compound

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Ref document number: 4794200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees