[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4787445B2 - Antigen-specific IgE antibody production inhibitor - Google Patents

Antigen-specific IgE antibody production inhibitor Download PDF

Info

Publication number
JP4787445B2
JP4787445B2 JP2001551502A JP2001551502A JP4787445B2 JP 4787445 B2 JP4787445 B2 JP 4787445B2 JP 2001551502 A JP2001551502 A JP 2001551502A JP 2001551502 A JP2001551502 A JP 2001551502A JP 4787445 B2 JP4787445 B2 JP 4787445B2
Authority
JP
Japan
Prior art keywords
production
ifn
antigen
ige antibody
lactosylceramide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001551502A
Other languages
Japanese (ja)
Inventor
高橋  毅
真也 永渕
吉孝 中村
高二 矢島
有 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Original Assignee
Meiji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd filed Critical Meiji Co Ltd
Priority to JP2001551502A priority Critical patent/JP4787445B2/en
Application granted granted Critical
Publication of JP4787445B2 publication Critical patent/JP4787445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/40Transferrins, e.g. lactoferrins, ovotransferrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/661Phosphorus acids or esters thereof not having P—C bonds, e.g. fosfosal, dichlorvos, malathion or mevinphos
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pulmonology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

技術分野
本発明は、アトピー性皮膚炎等のアレルギー性疾患の予防ないしは改善に有効なIgE抗体産生抑制剤に関する。また、本発明は生体内における免疫系を刺激して免疫を賦活化する組成物に関する。
背景技術
ラクトフェリン(LF)は、乳汁だけでなく、唾液、涙、胆汁、膵液などのような外分泌液に含まれる鉄結合性糖タンパク質であり、また、炎症部位において活性化した好中球により放出される。
LFは広範なスペクトラムの生物活性を有する。例えば、抗菌作用、抗ウイルス作用、抗腫瘍作用、癌転移巣形成抑制作用等である。
また、LFはサイトカイン分泌に対して影響を及ぼす。例えば、ヒト好中球からのインターロイキン−8(IL−8)の分泌促進、IL−1やIL−6、TNFαの分泌制御、GM−CSFの遺伝子レベルでの発現の抑制等である。
サイトカインの選択的な産生は、様々な病態において、保護的役割あるいは病因的役割を果たしている。例えば、大部分のアレルギーは、IgE抗体の関与するI型アレルギーであるが、このIgE産生は、IL−4を中心とするシステムにより誘導される一方、インターフェロン−γ(IFN−γ)を中心とするシステムにより産生制御されている。IFN−γはその上位のIL−12やIL−18により産生誘導される。
IFN−γは、また、様々な免疫修飾機能による抗ウイルス活性、抗微生物活性、及び抗腫瘍活性を有している(J.Immunol.,130:2011−2013,1983;Proc.Natl.Acad.Sci.USA 85:4874−4878,1988)。
Nakajimaらは、ウシLF(bLF)経口投与後のマウスの脾細胞をマイトジェン(Con A)の存在下で培養すると、IFN−γの産生は増強されたが、一方、IL−4の産生は増強されなかった、と報告している(Biomedical Research,29(1):27−33,1999)。
上述したように、LFは、多彩な生物活性やサイトカイン産生制御に関与している。そこで、本発明は、LFの新たな生物活性を見出し、該活性に基づき、LFを有効成分とする医薬品や機能性食品を提供することを課題とする。また、LFと組み合わせることにより、LFの生物活性を増強する作用を有する経口摂取可能な物質を見出すことを課題とする。
発明の開示
本発明者らは、LF、加熱処理したLF、あるいはLF加水分解物を経口摂取したマウスに、主要食品アレルゲンである卵白アルブミン(OVA)を免疫すると、OVA特異的IgE抗体の産生が抑制されること、及び脾細胞培養系における抗原特異的IL−4の産生が抑制されることを見出した。また、LFの存在下でマクロファージを培養すると、マクロファージのIL−12の産生が増強されることを見出した。さらに、LFとセラミド類を組み合わせて用いると、脾細胞培養系におけるIFN−γの産生が著明に増強することを見出した。LFの経口摂取による抗原特異的IgE抗体の産生抑制は、IL−4産生の抑制によりIgE抗体産生Bリンパ球の活性化の抑制やIL−12産生増強によるTh1/Th2バランスのTh1優位へのシフトによるものと考えられる。すなわち、LFを経口摂取することにより、Th2免疫の方向へのシフトによる細胞性免疫の低下を防ぎ、アレルギー疾患や抗体を介した腎炎などを予防あるいは改善することができる。さらに、LFとセラミド類との組み合わせによるIFN−γの著明な産生増強は、LFとセラミド類とを組み合わせが、ウイルス性疾患、細菌感染症、あるいは腫瘍に対して有効であることがわかる。
すなわち、本発明はLFまたはその加水分解物を有効成分として含有するヒトを含む哺乳動物のIgE抗体産生抑制剤を提供するものである。
また、本発明はLFまたはその加水分解物を有効成分として含有するヒトを含む哺乳動物のIgE抗体産生を抑制して免疫を調節するための組成物を提供するものである。
また、本発明はLFまたはその加水分解物及びセラミド類を含有するヒトを含む哺乳動物のIFN−γ産生増強剤組成物、抗ウイルス剤組成物、抗細菌感染症剤組成物及び抗腫瘍剤組成物を提供するものである。
また、本発明はLFまたはその加水分解物及びセラミド類を含有するヒトを含む哺乳動物の免疫賦活剤組成物を提供するものである。
また、本発明はLFまたはその加水分解物のヒトを含む哺乳動物のIgE抗体産生抑制剤製造のための使用を提供するものである。
また、本発明はLFまたはその加水分解物の、ヒトを含む哺乳動物のIgE抗体産生を抑制して免疫を調節するための組成物製造のための使用を提供するものである。
また、本発明はLFまたはその加水分解物及びセラミド類の、ヒトを含む哺乳動物のIFN−γ産生増強剤組成物、抗ウイルス剤組成物、抗細菌感染症剤組成物及び抗腫瘍剤組成物製造のための使用を提供するものである。
また、本発明はLFまたはその加水分解物及びセラミド類の、ヒトを含む哺乳動物の免疫賦活剤組成物製造のための使用を提供するものである。
また、本発明はLFまたはその加水分解物の有効量を投与することを特徴とするヒトを含む哺乳動物のIgE抗体の産生抑制方法を提供するものである。
また、本発明はLFまたはその加水分解物の有効量を投与することを特徴とするヒトを含む哺乳動物のIgE抗体産生を抑制して免疫を調節する方法を提供するものである。
また、本発明はLFまたはその加水分解物及びセラミド類の有効量を投与することを特徴とするヒトを含む哺乳動物のIFN−γ産生増強方法、又はウイルス性疾患、細菌感染症もしくは腫瘍の処置方法を提供するものである。
さらに本発明はLFまたはその加水分解物及びセラミド類の有効量を投与することを特徴とするヒトを含む哺乳動物の免疫賦活方法を提供するものである。
発明を実施するための最良の形態
多くのアレルギー性疾患においては、アレルゲン特異的IgEがその発症に関与することが知られており、実際、アレルギー患者においては、血清中のアレルゲン特異的IgEがしばしば認められる(Allergy Clin.Immunol.,16:161,1996)。したがって、IgE産生を抑制することがアレルギーの予防、治療のために効果的方法の一つとされている。
IgEの産生には、CD4ヘルパーT細胞(Th細胞)の産生するサイトカインが重要な役割を果たしている。Th細胞は、産生するサイトカインおよびその機能の違いにより、細胞性免疫に関わるTh1細胞と液性免疫に関与するTh2細胞の2つの亜集団に大別されるが、そのうちIgEの産生に関与するのはTh2細胞である(J.Immunol.,136:2348,1986)。
Th1細胞、Th2細胞はそれぞれ産生するサイトカインによって互いにその分化・機能発現を抑制しあう関係にある。すなわち、Th2細胞はIL−4、IL−5、およびIL−6を産生してIgE産生を正に調節している。逆にTh1細胞の産生するIFN−γは、IgEクラススイッチやTh2細胞応答を抑制することでIgE産生を抑制する。このため、IgE産生やアレルギー性疾患はTh2細胞応答の亢進を特徴とする(Nature,383:787,1996)。したがって、Th1細胞応答を誘導してTh1/Th2バランスを正常に戻すことでその予防や改善ができる。そこで食品成分中から、Th1応答を誘導しやすい因子を検索する試みがなされており、これまである種の乳酸菌(Int.Arch.Allergy Immunol.,115:278,1998)やヌクレオチド(Int.Arch.Allergy Immunol.,122:33,2000)などが、その効果を示すことが明らかにされている。
近年、LFの経口投与による生体防御効果がさまざまな動物モデルで報告されている。そこで本発明者らは、先ず、マウスを用い、LFを自由に経口摂取させた場合の、血清中の全IgEおよび抗原特異的IgEの産生について調べた。その結果、LFを自由に経口摂取すると、全IgE抗体産生および抗原特異的IgE産生を抑制することが明らかとなった。
LFの生理活性は熱処理によって低下することが知られている(J.Pediatr.,90:29,1977)。したがって、LFを加熱処理することによって、LFの全IgE抗体産生および抗原特異的IgE産生抑制能が低下する可能性が考えられる。そこで、加熱処理したLFの、全IgE抗体産生および抗原特異的IgE産生に与える影響を検討した。さらに、OVA存在下で脾細胞を培養し、培養上清中のサイトカイン(IFN−γ、IL−4)レベルを調べた。その結果、LFは加熱することにより、抗原特異的IgE抗体産生抑制作用およびIL−4産生抑制作用が失われることはないことが明らかとなった。
LFおよび加熱処理したLFを経口摂取すると、全IgE抗体産生および抗原特異的IgE産生が対照群に対し有意に抑制されることが明らかとなった。また、抗原で感作された脾細胞を該抗原存在下で培養するとIL−4産生が対照群に対し有意に低下することが明らかとなった。
そこでさらに加水分解したLFを自由に経口摂取させた場合における全IgE抗体産生および抗原特異的IgE産生に与える影響を検討した。また、抗原感作された脾細胞を該抗原存在下で培養し、上清中のサイトカイン(IFN−γ、IL−4)レベルを調べた。その結果、全IgE抗体産生および抗原特異的IgE産生は、LF加水分解物摂取群において低下傾向が見られた。一方、IFN−γの産生は、各濃度のOVA存在下でLF加水分解物摂取群で増加傾向が示されたが、IL−4については、LF加水分解物摂取群と対照群との間に差はみられなかった。
IL−12は、単球、マクロファージ、樹状細胞などの抗原提示細胞が産生するサイトカインで、IFN−γの産生やヘルパーT細胞のTh1への分化の誘導に重要な役割を果たす(Blood,84:4008,1994;J.Leukoc.Biol.,55:280,1994)。Gazzinelliら(J.Immunol.,153:2533,1994)は、Toxoplasma gondiiをマウスに感染させると、脾臓や腹腔の細胞のIL−12産生が上昇し、このマウスにさらに抗IL−12抗体を投与すると、脾臓細胞のIFN−γ産生が低下し、IL−4やIL−10産生が上昇することを報告した。また、Nastalaら(J.Immunol.,153:1697,1994)は、ガンを移植したマウスにIL−12を投与すると、ガンの増殖を抑制し、血中のIFN−γ濃度が上昇することを見出している。
そこで、チオグリコレート培地で誘導したマウス腹腔マクロファージをLFと共に培養しIL−12産生を調べた。その結果、LFはマクロファージのIL−12産生を誘導することが明らかとなった。
ところで、以前は軽い皮膚炎と考えられていたアトピー性皮膚炎は、現在では乳児から成人にまで見られる難病の一つに数えられ、社会的にも大きな問題となっている。その原因の一つとして、表皮におけるスフィンゴ脂質の代謝異常が疑われている。実際アトピー患者の多くは表皮のセラミド量が減少している。セラミド類は、美容食品としても利用され始めている。そこで、本発明者らはLFとセラミド類との組み合わせの経口摂取は、アレルギー性疾患の予防・改善において、LF単独よりもさらにその効果を増強するのではないかと考えた。
そこで、LFとセラミド類との組み合わせが、IFN−γ産生に及ぼす効果について調べた。その結果、LFとセラミド類との組み合わせは、脾細胞におけるIFN−γ産生を著明に増強することが明らかとなった。スフィンゴ脂質では、ケフィア(発酵乳)中のリゾスフィンゴ脂質(スフィンゴシン、スフィンゴミエリン、ロゾフォスファチジルコリンなど)がIFN−β産生を促進することが知られている(Biotherapy:115−123,1994)。また、スフィンゴシン投与によって、感染マウスの血中IFN−β及びIFN−γが上昇したことか報告されている(Osada,K.et al.:Animal Cell technology:Development towards the 21st Century 1995,1067−1071)。
これらの結果から、LFの経口摂取による抗原特異的IgE抗体の産生抑制は、IL−4産生の抑制によりIgE抗体産生Bリンパ球の活性化の抑制やIL−12産生増強によるTh1/Th2バランスのTh1優位へのシフトによるものと考えられる。したがって、LFの経口摂取は、アレルギー炎症性疾患の予防ならびに改善に有効である。そこで、食品への栄養補強物として、その有効量を添加すれば、日常の食生活のなかでアレルギー性疾患の予防ならびに改善ができ、また、該疾患に対する医薬品としても利用できる。アレルギー炎症性疾患としては、例えば、慢性気管支喘息、アトピー性皮膚炎、花粉症(アレルギー性鼻炎)、アレルギー性血管炎、アレルギー性結膜炎、アレルギー胃腸炎、アレルギー性肝障害、アレルギー性膀胱炎、及びアレルギー性紫斑病等が挙げられる。あるいは抗体を介した腎炎などを予防あるいは改善することが期待できる。
また、LFとセラミド類を組み合わせて用いると、IFN−γの産生が著明に増強することから、LFとセラミド類とを組み合わせて用いることにより、Th1/Th2バランスのTh1優位へのシフトによるIgE抗体の産生抑制がわかる。IFN−γは抗ウイルス作用、抗腫瘍作用、細胞障害性Tリンパ球の誘導作用、ナチュラルキラー細胞(NK細胞)活性の誘導作用、好中球の活性化作用、マクロファージの活性化作用、MHCクラスIIの発現促進作用、IL−2レセプターの発現促進作用、Fcレセプターの発現促進作用などが知られている。また、IFNは、もともと生体の異物に対する防御機構の一端を担う生体物質であり、極めて選択毒性が高く、生体にとって安全性の高いものである。そこで、LFとセラミド類を組み合わせた組成物を含む食品などを経口摂取すると、生体細胞を刺激して、IFN−γの分泌を促進し、IFN−γの上記生理活性を引き出すことができる。したがって、LFとセラミド類を組み合わせた組成物は、抗ウイルス剤、抗腫瘍剤、抗微生物感染症剤となり得る。LFの安全性については、ラットを用いたウシLFの急性毒性試験及び亜急性毒性試験では、最大用量である2,000mg/kg/体重/dayのウシLFの投与によっても、何ら異常は認められてない(Milk Science Vol.48,No.3,p227−232,1999)。また、セラミドの安全性については、マウスに対するオリザセラミドのLD50は5,000mg/kg以上である(FOOD Style Vol.4,No.10:99−105,2000)。
本発明で用いることのできるLFは、例えば、市販のLF、哺乳動物(例えば、ヒト、ウシ、ヒツジ、ヤギ、ウマ等)の初乳、移行乳、常乳、末期乳等、またはこれらの乳由来の脱脂乳、ホエー等から常法(例えば、イオン交換クロマトグラフィー等)により分離したLF、酸又は酵素による加水分解物、それらを塩酸、クエン酸等により脱鉄したアポLF、アポLFを鉄、銅、亜鉛、マンガン等の金属でキレートさせた金属飽和又は部分飽和LF等を含む。
本発明のLF加水分解物の調製には公知の加水分解手段を用いることができる。加水分解に酵素を用いる場合、酵素として、本発明ではトリプシンを用いたが、その他の酵素、例えばペプシン、パパインも用いられるが、加水分解物が本発明の活性を有する限りこれらの酵素に限定されない。加水分解物は加熱により酵素を失活させた後、限外濾過などの常法により分画し濃縮操作を施してもよい。得られた液状の加水分解物はそのまま用いてもよいし、凍結乾燥して用いてもよい。
組換えLFは、Orla M.Conneelyら(米国特許5,766,939)により記載されたのと実質上同じアミノ酸配列を有するポリペプチドを含む。また、天然(native)に生じる対立遺伝子変異体、及び天然のLFに比べて、1以上のアミノ酸の挿入、置換、又は欠失により修飾されたLFを含む。組換えLFは、また、トランスジェニック動物、例えば、ウシにおいて発現された組換えLFを包含し、ここでグリコシル化パターンは、ヒトミルクから得られた天然のLFのグリコシル化パターンと異なりうる。
本発明に用いるセラミド類はセラミド関連物質を含み、例えば、スフィンゴ脂質、とりわけスフィンゴ糖脂質が好ましい。スフィンゴ糖脂質としては、例えば、最も単純なスフィンゴ糖脂質は乳、脳および腎などに見出されるセレブロシド、さらにそれに硫酸基のついたスルファチド、中性糖が数分子ついたセラミドオリゴヘキソシド、アミノ糖のついたグロボシド、シアル酸のついたガングリオシド類などが挙げられる。スフィンゴ糖脂質糖鎖の違いにより構造が判明しているもので100種類を超えるが、本発明の作用を有するものは全て含まれる。好ましくはラクトシルセラミド、ガラクトシルセラミド、グルコシルセラミドなどが挙げられる。また、リン脂質の一種でもあるスフィンゴミェリン(牛乳中に含まれる)なども好ましい。このほか、不斉合成技術などにより、天然のセラミドの化学合成が可能となり、光学活性なセラミドの開発も行われている。セラミド2、コスモファームのセラミド3がそれである。本発明においてはこれらのセラミドも本発明の作用を有する限り用いることができる。さらに植物由来のセラミドが注目され、利用されはじめている。例えば、米由来のスフィンゴ脂質は、動物性のスフィンゴ脂質と同様に、長鎖塩基スフィンゴシンに脂肪酸が酸アミド結合した疎水性セラミドが基本骨格となっている。また、米由来のスフィンゴ脂質は、長鎖塩基スフィンゴシンおよび脂肪酸の炭素数の違い、水酸基や二重結合の有無によって、分種に多様性がある。帯広畜産大学の藤野教授らの報告によると、少なくとも20種類を越えるスフィンゴ脂質分子種が存在する。本発明はこれらのセラミドも含む。
本発明において、LF(全てのLFおよびそれらと同等の生理活性をもつLFの誘導体並びにそれらの加水分解物を含む)とセラミド類の含量は、セラミド類が、該組成物の総重量に基づき、好ましくは0.00001〜0.1重量%、より好ましくは0.00005〜0.01重量%、特に好ましくは0.0001〜0.05重量%、LFが、該組成物の総重量に基づき、好ましくは0.005〜10重量%、特に好ましくは0.01〜5重量%、最も好ましくは0.01〜3重量%と推定されるが、当業者であれば、対照とする組成物に応じて、例えば後述する実験により最適な量を容易に決定できると考えられる。ちなみに母乳中のセラミド含量は公知であり、セラミド類配合量において一応の目安となると考えられる。
本発明により、LFの経口摂取が抗原特異的IgE抗体産生を抑制することが明らかにされた。したがって、当業者はこの発明に基づき、上述した各種LFのなかから、本発明に適用できる好ましい形態のLF及び有効量を、例えば、IgE抗体産生を指標にして、選択し、臨床データ、或いは臨床症状等と、患者における血清IgEとの関連を勘案し、食品、栄養補助食品、病者用食品、乳児用調製粉乳、健康食品、健康強調表示食品、機能性食品、特定保健用食品、或いは医薬品等に用いる場合の、該LFの形状及び有効投与量を決定することが可能である。したがって、このようにして決定されたLFの種類及びその有効投与量は、本発明に包含される。LFを食品等に添加・加工する技術は周知慣用である。医薬品としてLFの有効量を用いる場合、当業者公知の種々の製剤形態に加工して用いることができる。
実施例
以下に本発明を試験例および実施例を挙げて説明するが、本発明はこれらの試験例および実施例により限定されるものではない。
以下の試験例において、試験例1〜4及び6は3週齢の雄性幼若BALB/cマウス(日本SLC;Shizuoka,Japan)を用い、試験例5は8週齢の雌性BALB/cマウス(日本SLC;Shizuoka,Japan)を用いた。対照群と実験群との有意差検定はStudent’s t testにより行った。
[試験例1] ウシLF(bLF)のIgE抗体産生抑制作用
マウスには実験期間中、LF投与群(n=7)にはカゼインをタンパク質原とした食餌(AIN76準拠)および1%ウシLF(bLF、DMVジャパン社製)を含む水を自由摂取させた。対照群(n=8)には上記食餌とbLFを含まない水を自由摂取させた。
実験開始後、5日目および19日目に、マウス1匹当たり、卵白アルブミン(OVA、生化学工業社製)10μgを水酸化アルミニウム4mgとともに腹腔免疫した。26日目に、眼窩から採血して、血清中の総IgE抗体レベル及びOVA特異IgE抗体レベルをELISA法で測定した。血清中の総IgE抗体レベル(図1)及びOVA特異IgE抗体レベル(図2)ともにbLF群のマウスの方が対照群に比べ有意(p<0.05)に低下した。
[試験例2] bLFのIL−4産生抑制作用
試験例1において、26日目に脾臓を摘出し脾細胞浮遊液を調製した。溶血処理をした後、脾細胞を種々の濃度(5、10、50、および100μg/ml)のOVA存在下で72時間培養した。培養後に培養上清中のIL−4レベルをELISA法で測定した。bLF投与群(n=7)では、各濃度のOVAにおけるIL−4レベルは、対照群(n=8)におけるそれらに比べすべて低下した(図3)。
[試験例3] 加熱処理bLFのIgE抗体およびサイトカイン産生抑制作用
試験例1の食餌にbLFを2.2%添加した食餌[bLF(+)]を70℃で1時間加熱した。対照として、bLF無添加の食餌[bLF(−)]も同様に70℃で1時間加熱した。
マウスに、実験期間中、bLF(+)(実験群)あるいはbLF(−)(対照群)を自由摂取させた。実験開始後5日目、14日目、23日目、および33日目に、10μgの卵白アルブミン(OVA、生化学工業社製)を4mgの水酸化アルミニウムとともにマウスの腹腔に免疫した。3回目の腹腔免疫後8日目(30日目)(7週齢)に尾部から採血し、血清中の抗体をELISA法で測定した。また、3回目の腹腔免疫後11日目(33日目)および4回目の腹腔免疫後8日目(40日目)に脾細胞を個体別に採取した。脾細胞は各種濃度のOVA(0、50、100、200および400μg/ml)とともに72時間、10%FCS、100U/mlペニシリンG、100μg/mlストレプトマイシンおよび5×10−5Mの2−メルカプトエタノールを含むRPMI 1640培地で培養した。培養後、培養上清中のIFN−γ、およびIL−4レベルをELISA法で測定した。
免疫を3回行った場合、実験群の血清中の全IgE抗体レベルおよびおよびOVA特異的IgE抗体レベルは、対照群のそれらに比べて有意に低下した(図4及び5)。また、脾細胞の、各濃度のOVA(0、50、100、および200μg/ml)におけるIFN−γ産生は、実験群と対照群との間でほとんど差が見られなかった(図6)。一方、脾細胞の、上記各濃度のOVAにおけるIL−4産生は、実験群の方が対照群に比べて全般的に低く、200μg/mlのOVAの刺激下では、実験群の方が対照群に比べて有意に低下した(図7)。
免疫を4回行った場合、脾細胞の、各濃度のOVA(0、50、100、200、および400μg/ml)におけるIFN−γ産生は、免疫3回の場合と同様に、両群間でほとんど差が見られなかった(図8)。一方、上記各濃度のOVAにおけるIL−4産生は、実験群の方が対照群に比べて、全般的に有意に低下した(図9)。
以上の結果から、bLFは加熱することにより、抗原特異的IgE抗体産生抑制作用およびIL−4産生抑制作用が失われることはないことが判明した。
[試験例4] 加水分解bLFのIgE抗体およびサイトカイン産生抑制作用
(1)加水分解bLFの作製
トリプシン(和光純薬(株)、207−09891、生化学用、ブタ膵臓製、4500 USP trypsin units/mg)を滅菌PBSに溶解し、トリプシン原液(×500、50mg/ml)とした。10gのbLF(和光純薬(株)、127−04122、lot.KSG7724)を25mM CaCl−0.1M Tris−HCl(pH8.2)中に1%となるように溶解した。この1LのbLF溶液を37℃に加温した後、トリプシン原液2mlを添加し、37℃で4時間反応させた。反応後、80℃で30分間加熱し酵素を失活させた。1700×gにて20分間遠心分離した後、上清を回収し、0.45μmのフィルターにより濾過滅菌した。サンプルをマイクロアシライザーS1(旭化成工業製)により処理し、サンプル中の塩を除いた。0.45μmのフィルターにより再度濾過滅菌した後、試験に供するまでの間−20℃で保存した。bLF加水分解物の収率はほぼ100%であった。したがって、bLF加水分解物濃度は1%となった。
マウスに、試験例1の食餌およびbLF加水分解物を1%含む溶液を自由摂取させた。対照群には、同様の固形飼料とbLFを含まない水を自由摂取させた。実験開始後5日目と19日目に、10μgの卵白アルブミン(OVA、生化学工業社製)を4mgの水酸化アルミニウムとともにマウス腹腔に免疫した。2回目の免疫後8日目(26日目)に採血し、血清中の抗体をELISA法で測定した。また、このとき脾細胞を個体別に採取した。脾細胞はOVA(0〜400μg/ml)とともに72時間培養し、培養上清中のIFN−γ、およびIL−4レベルをELISA法で測定した。
実験群における血清中の全IgE抗体レベルおよびOVA特異的なIgEレベルは、対照群のそれらに比べて低下する傾向が見られた(図10及び11)。
脾細胞の、各種OVA濃度におけるIFN−γ産生は、実験群の方が対照群に比べて全般的に高くなる傾向が認められた(図12)。一方、IL−4産生は、実験群と対照群との間でほとんど差が見られなかった(図13)。
[試験例5] LFのIL−12産生に及ぼす影響
IL−12は比較的新しく見出されたサイトカインであるが、T細胞やNK細胞に作用してIFN−γの産生を誘導することが知られている(J.Exp.Med.,173:869−879,1991;J.Exp.Med.,177:1199−1204,1993)。IL−12の産生誘導にはLPSなどの菌体成分の刺激が有効であり、その産生細胞としては、マクロファージ、B細胞、好中球など多岐にわたる細胞が含まれる。
本発明者らは、bLF(和光社製)を添加した培地中で腹腔マクロファージを培養し、その培養上清中のIL−12のレベルをELISA法で測定した。
MF食(オリエンタル酵母社製)を自由摂取させたマウスに、2.5mlのチオグリコレート培地(DIFCO社製)を腹腔内注射し、腹腔マクロファージを活性化した。4日後に腹腔に1%FCSを含むDulbeccoのリン酸緩衝液(Dulbeccos’PBS、ニッスイ)を注入し、腹腔細胞を回収した。細胞を2回洗浄後、再度DulbeccoのPBSに懸濁し、96ウェルプレートに注入(2×10細胞/0.2ml well)した後、プレートをCOインキュベーターで2時間インキュベートした。吸着していない細胞を除いた後、各ウェルに、10%FCS、100U/mlペニシリンG、100μg/mlストレプトマイシンおよび5×10−5Mの2−メルカプトエタノール、及び100μg/mlのbLF(和光社製)を含むRPMI 1640培地を200μl注入した。対照として、bLFを含まない上記培地を用いた。プレートはCOインキュベーター中18時間培養した。培養後、上清中のIL−12レベルをELISA法で測定した。結果をを図14に示す。bLFを培地に添加すると、マクロファージのIL−12産生が著明に増強した。
以上の結果から、ラクトフェリンは、マクロファージのIL−12産生を誘導することが示された。
[試験例6] セラミドのIFN−γ産生に与える影響
日本SLC社のBALB/cマウス(3週齢、雄)を実験に供した。マウスは体重の平均値およびばらつきがほぼ等しくなるように1群3匹で、ラクトシルセラミド投与群(実験群)および、ラクトシルセラミド非投与群対照群)に群分けした。
セラミドは、ラクトシルセラミド(ウシバターミルク由来、和光純薬工業(株)、生化学用試薬126−04491、lot.ELK6191)を用いた。ラクトシルセラミドは0.5% Tween20を含む0.9% NaCl溶液に200μg/mlの濃度で分散させ、使用時まで−20℃で保存した。使用時に解凍し、等量の滅菌PBSを加えよく混合した後、マウス一匹当たりラクトシルセラミド溶液200μlを14日間毎日(ただし、土曜と日曜日を除く)腹腔内投与した(20μg/マウス)。対照群には溶媒のみ(0.5% Tween20を含む0.9% NaCl溶液に等量の滅菌PBSを加えたもの)を投与した。
投与後14日目にマウスから得た脾細胞を96穴マイクロプレート(Falcon社製、No.3072)に1ウェル当たり4×10個播種した。培養には10%ウシ胎児血清(日本バイオテスト社製、lot.10086−1)、ペニシリン100U/ml、ストレプトマイシン100μg/ml、および2−メルカプトエタノール(5×10−5M)を含むRPMI1640培地(Gibco社製、No.11875−093)を用いた。培養は4連で行い、bLF(Meggle社製、0または100μg/ml)の存在下で20時間培養した。培養後、培養上清中のIFN−γをELISAキット(ENDOGEN社製)により測定した。データはラクトシルセラミドの投与、およびbLFによる刺激を要因とする2元配置分散分析(2×2、危険率5%)で分析した。
結果を図15に示した。セラミドを投与しなかった場合、bLFの存在の有無に関係なくIFN−γの産生は見られなかった。セラミドを予め投与した場合、bLFの非存在下および存在下共にIFN−γ産生が有意に増加することが示された。さらに、これらセラミドおよびbLFの二つの要因には相互作用が確認され(p=0.0016)たことから、ラクトシルセラミドの投与はウシLF刺激によるIFN−γ産生を増強することが判明した。
実施例1
乳清タンパク質を原料としない下記処方の牛乳アレルギー治療ミルクエピトレス(明治乳業(株)製)にウシLFを0.01%配合した。

Figure 0004787445
実施例2
乳清タンパク質を原料として含む加水分解乳、明治のびやか(明治乳業(株)製)にウシLFを0.01%配合した。
Figure 0004787445
産業上の利用可能性
本発明により、LFの経口摂取により、生体内のIgE抗体産生を抑制することが明らかにされた。
【図面の簡単な説明】
図1は、マウスにおける、1%ウシLF経口摂取群(■:n=7)および対照群(□:n=8)に対するOVA抗原感作後の血清中の総IgE濃度(平均値±SD;p<0.05)を示す図である。
図2は、同上における血清中のOVA特異IgE抗体価(平均値±SD;p<0.05)を示す図である。
図3は、同上における脾細胞のIL−4産生能を示す図である(細胞は各群でプールした)。●:1%ウシLF経口摂取群、■:対照群。
図4は、マウスにおける、2.2%加熱処理ウシLF経口摂取群(n=19)および対照群(n=17)に対するOVA抗原感作(3回)後の血清中の全IgE抗体濃度を示す図である。(p<0.05)
図5は、同上における血清中のOVA特異的なIgE抗体価を示す図である。(p<0.05)
図6は、同上における、脾細胞のOVA特異的なIFN−γ産生を示す図である。(ウシLF経口摂取群:n=11、対照群:n=10)
図7は、同上における、脾細胞のOVA特異的なIL−4産生を示す図である。(p<0.05)
図8は、マウスにおける、2.2%加熱処理ウシLF経口摂取群(n=8)および対照群(n=7)に対するOVA抗原感作(4回)後の脾臓細胞のOVA特異的なIFN−γ産生を示す図である。
図9は、同上における、脾細胞のOVA特異的なIL−4産生を示す図である。(Control群;7匹、2.2%bLF;8匹)
図10は、マウスにおける、1%ウシLF加水分解物の経口摂取群(n=7)および対照群(n=8)に対するOVA抗原感作後の血清中の全IgE抗体濃度を示す図である。(p<0.05)
図11は、同上における、血清中のOVA特異的なIgE抗体価に与える影響を示す図である。
図12は、同上における、脾細胞のOVA特異的なIFN−γ産生を示す図である。
図13は、同上における、脾細胞のOVA特異的なIL−4産生を示す図である。
図14は、マウスの腹腔マクロファージを、100μg/mlのウシLFの存在下で培養 後の培養上清中のIL−12産生を示す図である。(**p<0.01)
図15は、ラクトシルセラミドを腹腔投与後のマウスの脾細胞あるいはラクトシルセラミド非投与後の脾細胞を、100μg/mlのウシLFの存在下あるいは非存在下で培養した場合の、培養上清中のIFN−γ産生を示す図である。 Technical field
The present invention relates to an IgE antibody production inhibitor effective for the prevention or improvement of allergic diseases such as atopic dermatitis. The present invention also relates to a composition that stimulates the immune system in vivo to activate immunity.
Background art
Lactoferrin (LF) is an iron-binding glycoprotein contained in exocrine fluids such as saliva, tears, bile, pancreatic juice as well as milk, and is also released by neutrophils activated at the site of inflammation .
LF has a broad spectrum of biological activities. For example, antibacterial action, antiviral action, antitumor action, cancer metastasis formation inhibitory action and the like.
LF also affects cytokine secretion. For example, promotion of secretion of interleukin-8 (IL-8) from human neutrophils, regulation of secretion of IL-1, IL-6, and TNFα, suppression of gene expression of GM-CSF, and the like.
Selective production of cytokines plays a protective or pathogenic role in various pathologies. For example, most allergies are type I allergies involving IgE antibodies, but this IgE production is induced by a system centered on IL-4, while interferon-γ (IFN-γ) is the center. Production is controlled by the system. Production of IFN-γ is induced by IL-12 and IL-18, which are higher in the rank.
IFN-γ also has antiviral activity, antimicrobial activity, and antitumor activity due to various immunomodulating functions (J. Immunol., 130: 2011-2013, 1983; Proc. Natl. Acad. Sci. USA 85: 4874-4878, 1988).
Nakajima et al. Showed that when mouse splenocytes after oral administration of bovine LF (bLF) were cultured in the presence of mitogen (Con A), IFN-γ production was enhanced, whereas IL-4 production was enhanced. Have been reported (Biomedical Research, 29 (1): 27-33, 1999).
As described above, LF is involved in various biological activities and cytokine production control. Then, this invention makes it a subject to discover the new biological activity of LF, and to provide the pharmaceutical and functional food which use LF as an active ingredient based on this activity. Another object is to find an orally ingestible substance having an action of enhancing the biological activity of LF by combining with LF.
Disclosure of the invention
When the present inventors immunize mice orally ingested with LF, heat-treated LF, or LF hydrolyzate with ovalbumin (OVA), a major food allergen, production of OVA-specific IgE antibodies is suppressed. And the production of antigen-specific IL-4 in the spleen cell culture system was found to be suppressed. It was also found that when macrophages are cultured in the presence of LF, IL-12 production of macrophages is enhanced. Furthermore, it has been found that when LF and ceramide are used in combination, the production of IFN-γ in the spleen cell culture system is markedly enhanced. Inhibition of antigen-specific IgE antibody production by oral ingestion of LF is due to suppression of activation of IgE antibody-producing B lymphocytes by suppression of IL-4 production and shift of Th1 / Th2 balance to Th1 dominance by enhancement of IL-12 production It is thought to be due to. That is, by ingesting LF, it is possible to prevent a decrease in cellular immunity due to a shift toward Th2 immunity, and to prevent or improve allergic diseases, antibody-mediated nephritis, and the like. Furthermore, it can be seen that the significant production enhancement of IFN-γ by the combination of LF and ceramides is effective against viral diseases, bacterial infections, or tumors when LF and ceramides are combined.
That is, the present invention provides an IgE antibody production inhibitor for mammals including humans containing LF or a hydrolyzate thereof as an active ingredient.
The present invention also provides a composition for regulating immunity by suppressing IgE antibody production in mammals including humans containing LF or a hydrolyzate thereof as an active ingredient.
The present invention also relates to an IFN-γ production enhancer composition, an antiviral agent composition, an antibacterial infection agent composition and an antitumor agent composition for mammals including humans containing LF or a hydrolyzate thereof and ceramides. It provides things.
The present invention also provides an immunostimulant composition for mammals including humans containing LF or a hydrolyzate thereof and ceramides.
The present invention also provides use of LF or a hydrolyzate thereof for producing an IgE antibody production inhibitor for mammals including humans.
The present invention also provides use of LF or a hydrolyzate thereof for producing a composition for regulating immunity by suppressing IgE antibody production in mammals including humans.
The present invention also relates to an IFN-γ production enhancer composition, an antiviral agent composition, an antibacterial infection agent composition and an antitumor agent composition of mammals including humans, such as LF or a hydrolyzate thereof and ceramides. The use for manufacturing is provided.
Moreover, this invention provides use of LF or its hydrolyzate, and ceramides for manufacture of the immunostimulant composition of mammals including a human.
The present invention also provides a method for suppressing the production of IgE antibodies in mammals including humans, which comprises administering an effective amount of LF or a hydrolyzate thereof.
The present invention also provides a method for regulating immunity by suppressing IgE antibody production in mammals including humans, which comprises administering an effective amount of LF or a hydrolyzate thereof.
The present invention also relates to a method for enhancing IFN-γ production in mammals including humans characterized by administering an effective amount of LF or a hydrolyzate thereof and ceramides, or treatment of viral diseases, bacterial infections or tumors A method is provided.
Furthermore, the present invention provides a method for immunizing mammals including humans, characterized by administering an effective amount of LF or a hydrolyzate thereof and ceramides.
BEST MODE FOR CARRYING OUT THE INVENTION
In many allergic diseases, it is known that allergen-specific IgE is involved in its development, and in fact, allergen-specific IgE in serum is often found in allergic patients (Allergy Clin. Immunol., 16: 161, 1996). Therefore, suppressing IgE production is considered as one of the effective methods for preventing and treating allergies.
For the production of IgE, CD4+Cytokines produced by helper T cells (Th cells) play an important role. Th cells are broadly divided into two subpopulations, Th1 cells involved in cellular immunity and Th2 cells involved in humoral immunity, depending on the cytokines produced and differences in their functions, of which they are involved in the production of IgE. Are Th2 cells (J. Immunol., 136: 2348, 1986).
Th1 cells and Th2 cells have a relationship in which differentiation and functional expression are mutually suppressed by cytokines produced. That is, Th2 cells produce IL-4, IL-5, and IL-6 to positively regulate IgE production. Conversely, IFN-γ produced by Th1 cells suppresses IgE production by suppressing IgE class switching and Th2 cell responses. For this reason, IgE production and allergic diseases are characterized by an enhanced Th2 cell response (Nature, 383: 787, 1996). Therefore, it can be prevented or improved by inducing a Th1 cell response and returning the Th1 / Th2 balance to normal. Thus, attempts have been made to search for factors that are likely to induce a Th1 response in food ingredients, and some types of lactic acid bacteria (Int. Arch. Allergy Immunol., 115: 278, 1998) and nucleotides (Int. Arch. Allergy Immunol., 122: 33, 2000) has been shown to show the effect.
In recent years, the biological defense effect by oral administration of LF has been reported in various animal models. Therefore, the present inventors first examined the production of total IgE and antigen-specific IgE in serum when mice were used and LF was freely orally ingested. As a result, it has been clarified that when LF is orally ingested freely, total IgE antibody production and antigen-specific IgE production are suppressed.
It is known that the physiological activity of LF decreases by heat treatment (J. Pediatr., 90:29, 1977). Therefore, it can be considered that heat treatment of LF reduces the ability of LF to inhibit total IgE antibody production and antigen-specific IgE production. Therefore, the effect of heat-treated LF on total IgE antibody production and antigen-specific IgE production was examined. Furthermore, splenocytes were cultured in the presence of OVA, and cytokine (IFN-γ, IL-4) levels in the culture supernatant were examined. As a result, it has been clarified that, by heating LF, the antigen-specific IgE antibody production inhibitory action and the IL-4 production inhibitory action are not lost.
It was revealed that when LF and heat-treated LF were orally ingested, total IgE antibody production and antigen-specific IgE production were significantly suppressed compared to the control group. In addition, when spleen cells sensitized with an antigen were cultured in the presence of the antigen, it was revealed that IL-4 production was significantly reduced compared to the control group.
Therefore, the influence of hydrolyzed LF on total IgE antibody production and antigen-specific IgE production when freely ingested was examined. Antigen-sensitized spleen cells were cultured in the presence of the antigen, and the levels of cytokines (IFN-γ, IL-4) in the supernatant were examined. As a result, total IgE antibody production and antigen-specific IgE production tended to decrease in the LF hydrolyzate intake group. On the other hand, the production of IFN-γ showed an increasing tendency in the LF hydrolyzate ingestion group in the presence of each concentration of OVA, but for IL-4, between the LF hydrolyzate ingestion group and the control group There was no difference.
IL-12 is a cytokine produced by antigen-presenting cells such as monocytes, macrophages, and dendritic cells, and plays an important role in the production of IFN-γ and induction of helper T cell differentiation into Th1 (Blood, 84). : 4008, 1994; J. Leukoc. Biol., 55: 280, 1994). Gazzinelli et al. (J. Immunol., 153: 2533, 1994) infecting mice with Toxoplasma gondii increased IL-12 production in cells of the spleen and abdominal cavity, and further administered anti-IL-12 antibodies to these mice. Then, IFN-γ production of spleen cells was decreased, and IL-4 and IL-10 production was reported to increase. Nastala et al. (J. Immunol., 153: 1697, 1994) have shown that when IL-12 is administered to mice transplanted with cancer, the growth of cancer is suppressed and the concentration of IFN-γ in the blood increases. Heading.
Therefore, mouse peritoneal macrophages induced with thioglycolate medium were cultured with LF and examined for IL-12 production. As a result, it was revealed that LF induces macrophage IL-12 production.
By the way, atopic dermatitis, formerly considered to be mild dermatitis, is now counted as one of the intractable diseases seen from infants to adults, and has become a serious social problem. One of the causes is suspected to be an abnormal metabolism of sphingolipids in the epidermis. In fact, many patients with atopy have reduced ceramide levels in the epidermis. Ceramides are beginning to be used as beauty foods. Therefore, the present inventors thought that oral ingestion of a combination of LF and ceramides may further enhance the effect of LF and ceramides in preventing and improving allergic diseases more than LF alone.
Therefore, the effect of the combination of LF and ceramides on IFN-γ production was examined. As a result, it became clear that the combination of LF and ceramides remarkably enhanced IFN-γ production in splenocytes. As for sphingolipids, it is known that lysosphingolipids (sphingosine, sphingomyelin, rozophosphatidylcholine, etc.) in kefir (fermented milk) promote IFN-β production (Biotherapy: 115-123, 1994). . In addition, it has been reported that the administration of sphingosine increased IFN-β and IFN-γ in blood of infected mice (Osada, K. et al .: Animal Cell technology: Development towers the 21st Century 1995, 1067-1071. ).
From these results, suppression of the production of antigen-specific IgE antibody by ingestion of LF is the suppression of the activation of IgE antibody-producing B lymphocytes by suppression of IL-4 production and the Th1 / Th2 balance by enhancement of IL-12 production. This is thought to be due to a shift to Th1 dominance. Therefore, oral intake of LF is effective in preventing and improving allergic inflammatory diseases. Therefore, if an effective amount is added as a nutritional supplement to foods, allergic diseases can be prevented and improved in daily eating habits, and can also be used as a medicine for the diseases. Allergic inflammatory diseases include, for example, chronic bronchial asthma, atopic dermatitis, hay fever (allergic rhinitis), allergic vasculitis, allergic conjunctivitis, allergic gastroenteritis, allergic liver disorder, allergic cystitis, and Examples include allergic purpura. Alternatively, it can be expected to prevent or improve antibody-mediated nephritis.
In addition, when LF and ceramides are used in combination, the production of IFN-γ is remarkably enhanced. Therefore, by using LF and ceramides in combination, IgE due to a shift of Th1 / Th2 balance to Th1 dominance is achieved. It can be seen that antibody production is suppressed. IFN-γ is antiviral, antitumor, cytotoxic T lymphocyte induction, natural killer cell (NK cell) activity induction, neutrophil activation, macrophage activation, MHC class II expression promoting action, IL-2 receptor expression promoting action, Fc receptor expression promoting action and the like are known. In addition, IFN is a biological substance that originally plays a part in a defense mechanism against foreign substances in a living body, and has extremely high selective toxicity and high safety for a living body. Therefore, when a food containing a composition containing LF and ceramide is orally ingested, the biological cells are stimulated to promote the secretion of IFN-γ and the physiological activity of IFN-γ can be derived. Therefore, a composition combining LF and ceramides can be an antiviral agent, an antitumor agent, or an antimicrobial infection agent. Regarding the safety of LF, in the acute toxicity test and subacute toxicity test of bovine LF using rats, no abnormality was observed even when the maximum dose of 2,000 mg / kg / body weight / day was administered. (Milk Science Vol. 48, No. 3, p227-232, 1999). As for the safety of ceramide, LD50Is 5,000 mg / kg or more (FOOD Style Vol. 4, No. 10: 99-105, 2000).
Examples of the LF that can be used in the present invention include commercially available LF, mammals (eg, humans, cows, sheep, goats, horses, etc.) colostrum, transitional milk, regular milk, terminal milk, etc., or these milks. LF separated from non-fat milk, whey, etc. by conventional methods (for example, ion exchange chromatography), hydrolyzate by acid or enzyme, Apo LF obtained by removing iron with hydrochloric acid, citric acid, etc., Apo LF Metal saturated or partially saturated LF chelated with metals such as copper, zinc and manganese.
A known hydrolysis means can be used for the preparation of the LF hydrolyzate of the present invention. In the case of using an enzyme for hydrolysis, trypsin is used as an enzyme in the present invention, but other enzymes such as pepsin and papain are also used, but the enzyme is not limited to these enzymes as long as the hydrolyzate has the activity of the present invention. . The hydrolyzate may be deactivated by heating, then fractionated by a conventional method such as ultrafiltration, and concentrated. The obtained liquid hydrolyzate may be used as it is, or may be used after lyophilization.
Recombinant LF is available from Orla M. et al. Polypeptides having substantially the same amino acid sequence as described by Connelly et al. (US Pat. No. 5,766,939) are included. Also included are naturally occurring allelic variants and LF modified by insertion, substitution, or deletion of one or more amino acids as compared to natural LF. Recombinant LF also encompasses recombinant LF expressed in transgenic animals, such as cattle, where the glycosylation pattern may differ from that of native LF obtained from human milk.
The ceramides used in the present invention contain a ceramide-related substance, and for example, sphingolipids, particularly sphingoglycolipids are preferred. As glycosphingolipids, for example, the simplest glycosphingolipids are cerebrosides found in milk, brain and kidney, sulfatides with sulfate groups, ceramide oligohexosides with several neutral sugars, amino Examples include globoside with sugar and gangliosides with sialic acid. Although the structure has been revealed by the difference in glycosphingolipid sugar chain and more than 100 types, all having the action of the present invention are included. Preferred are lactosylceramide, galactosylceramide, glucosylceramide and the like. Also preferred is sphingomyelin (which is contained in milk) which is also a kind of phospholipid. In addition, chemical synthesis of natural ceramides has become possible through asymmetric synthesis techniques, and optically active ceramides have also been developed. It is Ceramide 2 and Ceramide 3 from Cosmo Farm. In the present invention, these ceramides can also be used as long as they have the action of the present invention. Furthermore, plant-derived ceramide has attracted attention and is beginning to be used. For example, rice-derived sphingolipids, like animal sphingolipids, have a basic skeleton made of a hydrophobic ceramide in which a fatty acid is bonded to an acid amide to a long-chain base sphingosine. In addition, sphingolipids derived from rice have a variety of species depending on the difference in carbon number between the long-chain base sphingosine and the fatty acid, and the presence or absence of hydroxyl groups and double bonds. According to a report by Prof. Fujino from Obihiro University of Agriculture and Veterinary Medicine, there are at least 20 types of sphingolipid molecular species. The present invention also includes these ceramides.
In the present invention, the content of LF (including all LF and derivatives of LF having physiological activity equivalent to them and their hydrolysates) and ceramides is determined based on the total weight of the composition by ceramides, Preferably 0.00001-0.1 wt%, more preferably 0.00005-0.01 wt%, particularly preferably 0.0001-0.05 wt%, LF is based on the total weight of the composition, Preferably it is estimated to be 0.005 to 10% by weight, particularly preferably 0.01 to 5% by weight, and most preferably 0.01 to 3% by weight. Thus, for example, it is considered that the optimum amount can be easily determined by an experiment described later. Incidentally, the content of ceramide in breast milk is known, and is considered to be a temporary standard in the amount of ceramides.
According to the present invention, it has been clarified that oral intake of LF suppresses antigen-specific IgE antibody production. Therefore, a person skilled in the art can select a preferred form of LF and an effective amount applicable to the present invention from the above-mentioned various LFs based on the present invention, for example, using IgE antibody production as an index, clinical data, or clinical data. Taking into account the relationship between symptoms and serum IgE in patients, foods, dietary supplements, foods for the sick, infant formulas, health foods, health claims, functional foods, foods for specified health use, or pharmaceuticals It is possible to determine the shape and effective dose of the LF when used in the above. Therefore, the type of LF determined in this way and the effective dose thereof are included in the present invention. The technique of adding and processing LF to foods is well known. When an effective amount of LF is used as a medicine, it can be processed into various preparation forms known to those skilled in the art.
Example
The present invention will be described below with reference to test examples and examples, but the present invention is not limited to these test examples and examples.
In the following test examples, Test Examples 1 to 4 and 6 use 3-week-old male young BALB / c mice (Japan SLC; Shizuoka, Japan), and Test Example 5 uses 8-week-old female BALB / c mice ( Japan SLC; Shizuoka, Japan) was used. The significant difference test between the control group and the experimental group was performed by Student's t test.
[Test Example 1] Inhibition of IgE antibody production by bovine LF (bLF)
During the experiment period, mice were allowed to freely ingest LF-administered group (n = 7) with a diet containing casein as a protein source (AIN76 compliant) and 1% bovine LF (bLF, manufactured by DMV Japan). The control group (n = 8) was allowed to freely consume the above diet and water not containing bLF.
On the 5th and 19th days after the start of the experiment, 10 μg of ovalbumin (OVA, manufactured by Seikagaku Corporation) was immunized intraperitoneally with 4 mg of aluminum hydroxide per mouse. On day 26, blood was collected from the orbit and the total IgE antibody level and the OVA-specific IgE antibody level in the serum were measured by ELISA. Both serum total IgE antibody levels (FIG. 1) and OVA-specific IgE antibody levels (FIG. 2) were more significant in mice in the bLF group than in the control group (*p <0.05).
[Test Example 2] IL-4 production inhibitory action of bLF
In Test Example 1, the spleen was removed on the 26th day to prepare a spleen cell suspension. After hemolysis, splenocytes were cultured for 72 hours in the presence of various concentrations (5, 10, 50, and 100 μg / ml) of OVA. After culture, the IL-4 level in the culture supernatant was measured by ELISA. In the bLF administration group (n = 7), IL-4 levels in each concentration of OVA were all reduced compared to those in the control group (n = 8) (FIG. 3).
[Test Example 3] IgE antibody and cytokine production inhibitory action of heat-treated bLF
A diet [bLF (+)] obtained by adding 2.2% of bLF to the diet of Test Example 1 was heated at 70 ° C. for 1 hour. As a control, a diet without bLF [bLF (−)] was similarly heated at 70 ° C. for 1 hour.
Mice were allowed to freely take bLF (+) (experimental group) or bLF (−) (control group) during the experimental period. On days 5, 14, 23, and 33 after the start of the experiment, 10 μg of ovalbumin (OVA, manufactured by Seikagaku Corporation) was immunized to the abdominal cavity of the mouse together with 4 mg of aluminum hydroxide. On the 8th day (30th day) (7 weeks old) after the third peritoneal immunization, blood was collected from the tail and the antibody in the serum was measured by ELISA. Spleen cells were collected on an individual basis on the 11th day (33rd day) after the third peritoneal immunization and on the 8th day (40th day) after the fourth peritoneal immunization. Splenocytes were collected for 72 hours with various concentrations of OVA (0, 50, 100, 200 and 400 μg / ml), 10% FCS, 100 U / ml penicillin G, 100 μg / ml streptomycin and 5 × 10-5The cells were cultured in RPMI 1640 medium containing M 2-mercaptoethanol. After culture, IFN-γ and IL-4 levels in the culture supernatant were measured by ELISA.
When three immunizations were performed, total IgE antibody levels and OVA-specific IgE antibody levels in the serum of the experimental group were significantly reduced compared to those of the control group (FIGS. 4 and 5). In addition, IFN-γ production of splenocytes at various concentrations of OVA (0, 50, 100, and 200 μg / ml) showed almost no difference between the experimental group and the control group (FIG. 6). On the other hand, IL-4 production of spleen cells in the above-mentioned concentrations of OVA was generally lower in the experimental group than in the control group, and under the stimulation of 200 μg / ml OVA, the experimental group was the control group. (Fig. 7).
When immunization was performed 4 times, IFN-γ production in spleen cells at various concentrations of OVA (0, 50, 100, 200, and 400 μg / ml) was similar between both groups as in the case of 3 immunizations. Little difference was seen (Figure 8). On the other hand, IL-4 production in the OVA at each concentration was generally significantly decreased in the experimental group compared to the control group (FIG. 9).
From the above results, it was found that bLF does not lose its antigen-specific IgE antibody production inhibitory effect and IL-4 production inhibitory effect by heating.
[Test Example 4] Inhibitory action of hydrolyzed bLF on IgE antibody and cytokine production
(1) Preparation of hydrolyzed bLF
Trypsin (Wako Pure Chemical Industries, Ltd., 207-089891, for biochemistry, porcine pancreas, 4500 USP trypsin units / mg) was dissolved in sterile PBS to obtain a trypsin stock solution (× 500, 50 mg / ml). 10 g of bLF (Wako Pure Chemical Industries, Ltd., 127-04122, lot.KSG7724) was added to 25 mM CaCl2-It dissolved so that it might become 1% in 0.1M Tris-HCl (pH 8.2). This 1 L bLF solution was heated to 37 ° C., 2 ml of trypsin stock solution was added, and the mixture was reacted at 37 ° C. for 4 hours. After the reaction, the enzyme was inactivated by heating at 80 ° C. for 30 minutes. After centrifugation at 1700 × g for 20 minutes, the supernatant was collected and sterilized by filtration through a 0.45 μm filter. The sample was treated with a microacylator S1 (manufactured by Asahi Kasei Kogyo) to remove the salt in the sample. The solution was sterilized by filtration again with a 0.45 μm filter and then stored at −20 ° C. until the test. The yield of bLF hydrolyzate was almost 100%. Therefore, the bLF hydrolyzate concentration was 1%.
Mice were allowed to freely eat the diet of Test Example 1 and a solution containing 1% of bLF hydrolyzate. In the control group, the same solid feed and water containing no bLF were freely ingested. On days 5 and 19 after the start of the experiment, 10 μg of ovalbumin (OVA, manufactured by Seikagaku Corporation) was immunized with 4 mg of aluminum hydroxide into the abdominal cavity of the mouse. Blood was collected on the 8th day (26th day) after the second immunization, and the antibody in the serum was measured by ELISA. At this time, spleen cells were collected individually. Spleen cells were cultured with OVA (0 to 400 μg / ml) for 72 hours, and IFN-γ and IL-4 levels in the culture supernatant were measured by ELISA.
Serum total IgE antibody levels and OVA-specific IgE levels in the experimental group tended to decrease compared to those in the control group (FIGS. 10 and 11).
IFN-γ production of splenocytes at various OVA concentrations tended to be generally higher in the experimental group than in the control group (FIG. 12). On the other hand, there was almost no difference in IL-4 production between the experimental group and the control group (FIG. 13).
[Test Example 5] Effect of LF on IL-12 production
IL-12 is a relatively newly discovered cytokine, but is known to act on T cells and NK cells to induce production of IFN-γ (J. Exp. Med., 173: 869). -879, 1991; J. Exp. Med., 177: 1199-1204, 1993). Stimulation of bacterial cell components such as LPS is effective in inducing IL-12 production, and the production cells include a wide variety of cells such as macrophages, B cells, and neutrophils.
The present inventors cultured peritoneal macrophages in a medium supplemented with bLF (manufactured by Wako), and measured the level of IL-12 in the culture supernatant by ELISA.
Intraperitoneal macrophages were activated by intraperitoneally injecting 2.5 ml of thioglycolate medium (manufactured by DIFCO) into mice that freely ingested an MF diet (manufactured by Oriental Yeast). Four days later, Dulbecco's phosphate buffer containing 1% FCS (Dulbeccos'PBS, Nissui) was injected into the peritoneal cavity, and peritoneal cells were collected. The cells were washed twice and then resuspended in Dulbecco's PBS and injected into a 96-well plate (2 × 105Cells / 0.2 ml well)2Incubated for 2 hours in incubator. After removing non-adsorbed cells, each well contained 10% FCS, 100 U / ml penicillin G, 100 μg / ml streptomycin and 5 × 10-5200 μl of RPMI 1640 medium containing M 2-mercaptoethanol and 100 μg / ml bLF (manufactured by Wako) was injected. As a control, the above medium without bLF was used. Plate is CO2The cells were cultured for 18 hours in an incubator. After culture, the IL-12 level in the supernatant was measured by ELISA. The results are shown in FIG. When bLF was added to the medium, macrophage IL-12 production was markedly enhanced.
From the above results, it was shown that lactoferrin induces IL-12 production of macrophages.
[Test Example 6] Effect of ceramide on IFN-γ production
Japan SLC BALB / c mice (3 weeks old, male) were subjected to the experiment. The mice were divided into 3 groups per group so that the average values and variations in body weight were almost equal, and the group was divided into lactosylceramide administration group (experimental group) and lactosylceramide non-administration group control group.
As the ceramide, lactosylceramide (derived from bovine buttermilk, Wako Pure Chemical Industries, Ltd., biochemical reagent 126-04491, lot. ELK6191) was used. Lactosylceramide was dispersed in a 0.9% NaCl solution containing 0.5% Tween 20 at a concentration of 200 μg / ml and stored at −20 ° C. until use. After thawing at the time of use, after adding an equal volume of sterile PBS and mixing well, 200 μl of lactosylceramide solution per mouse was administered intraperitoneally every day for 14 days (excluding Saturday and Sunday) (20 μg / mouse). The control group was administered with solvent alone (0.9% NaCl solution containing 0.5% Tween 20 plus an equal amount of sterile PBS).
On the 14th day after administration, spleen cells obtained from mice were placed in a 96-well microplate (Falcon, No. 3072) at 4 × 10 4 per well.5Individual seeded. For the culture, 10% fetal bovine serum (manufactured by Nippon Biotest Co., Ltd., lot.10086-1), penicillin 100 U / ml, streptomycin 100 μg / ml, and 2-mercaptoethanol (5 × 10 5-5M) -containing RPMI 1640 medium (Gibco, No. 11875-093) was used. The culture was performed in quadruplicate, and cultured for 20 hours in the presence of bLF (Megle, 0 or 100 μg / ml). After the culture, IFN-γ in the culture supernatant was measured by an ELISA kit (manufactured by Endogen). Data were analyzed by two-way analysis of variance (2 × 2, risk factor 5%) with lactosylceramide administration and bLF stimulation as factors.
The results are shown in FIG. When ceramide was not administered, IFN-γ production was not seen regardless of the presence or absence of bLF. When ceramide was pre-administered, IFN-γ production was shown to increase significantly both in the absence and presence of bLF. Furthermore, since interaction between these two factors, ceramide and bLF, was confirmed (p = 0.016), it was found that administration of lactosylceramide enhances IFN-γ production by bovine LF stimulation.
Example 1
0.01% of bovine LF was blended in milk allergy treatment milk epitres (manufactured by Meiji Dairies Co., Ltd.) having the following prescription without using whey protein as a raw material.
Figure 0004787445
Example 2
Hydrolyzed milk containing whey protein as a raw material, Meiji Nobiyaka (manufactured by Meiji Dairies Co., Ltd.) was mixed with 0.01% bovine LF.
Figure 0004787445
Industrial applicability
According to the present invention, it has been clarified that oral ingestion of LF suppresses in vivo IgE antibody production.
[Brief description of the drawings]
FIG. 1 shows the total IgE concentration in serum after sensitization to OVA antigen (mean value ± SD; mean value ± SD;) in a 1% bovine LF oral intake group (■: n = 7) and a control group (□: n = 8).*p <0.05).
FIG. 2 shows the above-mentioned serum OVA-specific IgE antibody titer (mean ± SD;*p <0.05).
FIG. 3 is a diagram showing the IL-4 production ability of splenocytes in the same manner (cells were pooled in each group). ●: 1% bovine LF oral intake group, ■: control group.
FIG. 4 shows the total IgE antibody concentration in the serum after OVA antigen sensitization (3 times) in the mice with the 2.2% heat-treated bovine LF oral intake group (n = 19) and the control group (n = 17). FIG. (*p <0.05)
FIG. 5 is a graph showing the OVA-specific IgE antibody titer in serum as described above. (*p <0.05)
FIG. 6 is a diagram showing OVA-specific IFN-γ production of splenocytes in the same manner as above. (Bovine LF oral intake group: n = 11, control group: n = 10)
FIG. 7 is a diagram showing OVA-specific IL-4 production of splenocytes in the same manner as above. (*p <0.05)
FIG. 8 shows OVA-specific IFN of spleen cells in mice after sensitization of OVA antigen (4 times) to 2.2% heat-treated bovine LF oral intake group (n = 8) and control group (n = 7). FIG. 6 is a diagram showing γ production.
FIG. 9 is a diagram showing OVA-specific IL-4 production of splenocytes in the same manner as above. (Control group: 7 animals, 2.2% bLF; 8 animals)
FIG. 10 is a graph showing the total IgE antibody concentration in serum after OVA antigen sensitization in mice orally administered with 1% bovine LF hydrolyzate (n = 7) and control group (n = 8). . (*p <0.05)
FIG. 11 is a diagram showing the influence on serum OVA-specific IgE antibody titer in the same as above.
FIG. 12 is a diagram showing OVA-specific IFN-γ production of splenocytes in the same manner as above.
FIG. 13 is a diagram showing OVA-specific IL-4 production of splenocytes in the same manner as above.
FIG. 14 shows IL-12 production in the culture supernatant after culturing mouse peritoneal macrophages in the presence of 100 μg / ml bovine LF. (**p <0.01)
FIG. 15 shows culture supernatants when mouse spleen cells after intraperitoneal administration of lactosylceramide or spleen cells after non-administration of lactosylceramide were cultured in the presence or absence of 100 μg / ml bovine LF. It is a figure which shows IFN-gamma production in it.

Claims (7)

ラクトフェリンまたはそのトリプシン分解物とラクトシルセラミドとを有効成分として含有するヒトを含む哺乳動物の抗原特異的IgE抗体産生抑制剤。An antigen-specific IgE antibody production inhibitor for mammals including humans, which contains lactoferrin or its trypsin degradation product and lactosylceramide as active ingredients. ラクトフェリンまたはそのトリプシン分解物とラクトシルセラミドとを有効成分として含有するヒトを含む哺乳動物の抗原特異的IgE抗体産生を抑制して免疫を調節するための組成物。A composition for regulating immunity by suppressing the production of antigen-specific IgE antibodies in mammals including humans, which contains lactoferrin or its trypsin degradation product and lactosylceramide as active ingredients. ラクトフェリンまたはそのトリプシン分解物とラクトシルセラミドとを含有するヒトを含む哺乳動物のIFN−γ産生増強剤組成物。A composition for enhancing IFN-γ production in mammals including humans, comprising lactoferrin or a trypsin degradation product thereof and lactosylceramide. ラクトフェリンまたはそのトリプシン分解物とラクトシルセラミドとを有効成分として含有するヒトを含む哺乳動物に対する抗ウイルス剤組成物。An antiviral composition for mammals including humans, which contains lactoferrin or its trypsin degradation product and lactosylceramide as active ingredients. ラクトフェリンまたはそのトリプシン分解物とラクトシルセラミドとを有効成分として含有するヒトを含む哺乳動物に対する抗細菌感染症剤組成物。An antibacterial infection agent composition for mammals including humans, which contains lactoferrin or its tryptic degradation product and lactosylceramide as active ingredients. ラクトフェリンまたはそのトリプシン分解物とラクトシルセラミドとを有効成分として含有するヒトを含む哺乳動物に対する抗腫瘍剤組成物。An antitumor agent composition for mammals including humans, which contains lactoferrin or its tryptic degradation product and lactosylceramide as active ingredients. ラクトフェリンまたはそのトリプシン分解物とラクトシルセラミドとを含有するヒトを含む哺乳動物の免疫賦活剤組成物。An immunostimulant composition for mammals including humans, which contains lactoferrin or its trypsin degradation product and lactosylceramide.
JP2001551502A 2000-01-14 2001-01-12 Antigen-specific IgE antibody production inhibitor Expired - Fee Related JP4787445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001551502A JP4787445B2 (en) 2000-01-14 2001-01-12 Antigen-specific IgE antibody production inhibitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000005480 2000-01-14
JP2000005480 2000-01-14
PCT/JP2001/000161 WO2001051079A1 (en) 2000-01-14 2001-01-12 Antigen-specific ige antibody production inhibitors
JP2001551502A JP4787445B2 (en) 2000-01-14 2001-01-12 Antigen-specific IgE antibody production inhibitor

Publications (1)

Publication Number Publication Date
JP4787445B2 true JP4787445B2 (en) 2011-10-05

Family

ID=18534145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001551502A Expired - Fee Related JP4787445B2 (en) 2000-01-14 2001-01-12 Antigen-specific IgE antibody production inhibitor

Country Status (6)

Country Link
JP (1) JP4787445B2 (en)
CN (2) CN100384472C (en)
AU (1) AU782539B2 (en)
HK (1) HK1076735A1 (en)
NZ (1) NZ519957A (en)
WO (1) WO2001051079A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152624A1 (en) * 2002-12-06 2004-08-05 Atul Varadhachary Oral lactoferrin in the treatment of sepsis
JP2005350452A (en) * 2004-05-14 2005-12-22 Meiji Milk Prod Co Ltd Composition having IgE production inhibitory action and method for inhibiting IgE production
JP5061143B2 (en) * 2009-03-12 2012-10-31 株式会社クロイスターズ Topical skin preparation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233226A (en) * 1988-02-02 1989-09-19 Roussel Uclaf Utilization of milk protein in production of antiviral agent
JPH0559081A (en) * 1991-08-29 1993-03-09 Kirin Brewery Co Ltd New sphingoglycolipid, its production and use
JPH09194388A (en) * 1996-01-22 1997-07-29 Morinaga Milk Ind Co Ltd Anti-angiogenic agent
WO1997026891A1 (en) * 1996-01-22 1997-07-31 Beiersdorf Ag Sphingolipids effective against bacteria, parasites, protozoans, fungi and viruses
JPH09294585A (en) * 1996-04-24 1997-11-18 Suu Chin-Shian Recombined eukaryotic plasmid containing allergen gene and its use for preventing and/or treating allergic disease
JPH1045618A (en) * 1996-07-26 1998-02-17 Morinaga Milk Ind Co Ltd Apoptosis inducer
WO1999041266A1 (en) * 1998-02-12 1999-08-19 Emory University Sphingolipid derivatives and their methods of use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936076A (en) * 1991-08-29 1999-08-10 Kirin Beer Kabushiki Kaisha αgalactosylceramide derivatives
FR2728793A1 (en) * 1994-12-28 1996-07-05 Oreal Compsns. for treating sensitive skin
JP2001519815A (en) * 1997-04-10 2001-10-23 エイジェニックス・インコーポレイテッド Use of lactoferrin in the treatment of allergen-induced disorders

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233226A (en) * 1988-02-02 1989-09-19 Roussel Uclaf Utilization of milk protein in production of antiviral agent
JPH0559081A (en) * 1991-08-29 1993-03-09 Kirin Brewery Co Ltd New sphingoglycolipid, its production and use
JPH09194388A (en) * 1996-01-22 1997-07-29 Morinaga Milk Ind Co Ltd Anti-angiogenic agent
WO1997026891A1 (en) * 1996-01-22 1997-07-31 Beiersdorf Ag Sphingolipids effective against bacteria, parasites, protozoans, fungi and viruses
JPH09294585A (en) * 1996-04-24 1997-11-18 Suu Chin-Shian Recombined eukaryotic plasmid containing allergen gene and its use for preventing and/or treating allergic disease
JPH1045618A (en) * 1996-07-26 1998-02-17 Morinaga Milk Ind Co Ltd Apoptosis inducer
WO1999041266A1 (en) * 1998-02-12 1999-08-19 Emory University Sphingolipid derivatives and their methods of use

Also Published As

Publication number Publication date
CN1395490A (en) 2003-02-05
WO2001051079A1 (en) 2001-07-19
CN1626240A (en) 2005-06-15
CN100384472C (en) 2008-04-30
CN1205998C (en) 2005-06-15
AU782539B2 (en) 2005-08-04
HK1076735A1 (en) 2006-01-27
AU2551501A (en) 2001-07-24
NZ519957A (en) 2003-08-29

Similar Documents

Publication Publication Date Title
Oddy A review of the effects of breastfeeding on respiratory infections, atopy, and childhood asthma
Peters et al. Inhalation of stable dust extract prevents allergen induced airway inflammation and hyperresponsiveness
CN112823647B (en) Application of composition in improving or promoting growth of infant
JP4787445B2 (en) Antigen-specific IgE antibody production inhibitor
JP2003137804A (en) Interleukin-18 inducer
WO2002038146A1 (en) Mucosal immunomodulator and use thereof
JP4463525B2 (en) Desensitization therapy agent
Hanson et al. Human milk: Its components and their immunobiologic functions
JP2022155522A (en) Suppressive agent for immune function decline and method for suppressing immune function decline
Neu et al. Update on host defense and immunonutrients
JP2009114080A (en) Composition for treating atopic dermatitis
JP4672163B2 (en) A composition for inducing specific antibody production against lipid A of gram-negative bacteria.
US20220280604A1 (en) Composition for boosting the immune system
JP2813356B2 (en) Viral disease preventive / therapeutic agent and interferon production enhancement method
JP2001048804A (en) TNF-α production inhibitor
JP5120971B2 (en) Bone resorption inhibitor
JP2005145831A (en) Allergic constitution-improving agent
JPH0838047A (en) healthy food
JP5379884B2 (en) Bone resorption inhibitor
JP6555738B2 (en) Preventive / ameliorating agent for diseases with fatigue
WO2017060498A1 (en) N-glycolyneuraminic acid for the prevention or treatment of asthma and allergy
Baker Influence of milk proteins on the immune response of mice
GOING Saturday State of the Art Presentation
JP2006096752A (en) Colostrum or colostrum-derived composition and method using colostrum or colostrum-drived composition
JP2010065010A (en) Composition for preventing and/or treating gastritis, gastric ulcer and/or duodenal ulcer, and food/drink containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

R150 Certificate of patent or registration of utility model

Ref document number: 4787445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees