[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4785388B2 - Rubber composition for tread and pneumatic tire using the same - Google Patents

Rubber composition for tread and pneumatic tire using the same Download PDF

Info

Publication number
JP4785388B2
JP4785388B2 JP2005031791A JP2005031791A JP4785388B2 JP 4785388 B2 JP4785388 B2 JP 4785388B2 JP 2005031791 A JP2005031791 A JP 2005031791A JP 2005031791 A JP2005031791 A JP 2005031791A JP 4785388 B2 JP4785388 B2 JP 4785388B2
Authority
JP
Japan
Prior art keywords
rubber composition
tread
rubber
mass
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005031791A
Other languages
Japanese (ja)
Other versions
JP2005307166A (en
Inventor
秀之 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005031791A priority Critical patent/JP4785388B2/en
Publication of JP2005307166A publication Critical patent/JP2005307166A/en
Application granted granted Critical
Publication of JP4785388B2 publication Critical patent/JP4785388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、トレッド用ゴム組成物及びそれを用いた空気入りタイヤに関し、特にタイヤに用いた際に、低温領域及び高温領域のいずれにおいても優れたグリップ性能を発揮できるトレッド用ゴム組成物に関するものである。   The present invention relates to a rubber composition for a tread and a pneumatic tire using the same, and particularly to a rubber composition for a tread that can exhibit excellent grip performance in both a low temperature region and a high temperature region when used in a tire. It is.

高速走行で使用される空気入りタイヤのトレッドゴムには、高いグリップ性能が要求される。従来、タイヤに高いグリップ性能を付与するために、スチレン含有率の高いスチレン−ブタジエン共重合体ゴム(SBR)を含むゴム組成物をトレッドに用いて、ポリマー間のヒステリシスロスをグリップに活かす方法、樹脂を高充填したゴム組成物をトレッドに適用し、該樹脂のアドヒージョン効果をグリップに活かす方法、カーボンブラックを高充填したゴム組成物をトレッドに適用し、ゴム組成物のヒステリシスをグリップに活かす方法、粒子径の小さなカーボンブラックを配合したゴム組成物をトレッドに適用する方法等が採られてきた。また、低温時のグリップ性能を向上させるために、低凝固点可塑剤を配合して低温での弾性率を低下させたゴム組成物が、タイヤのトレッドに用いられてきた。   High grip performance is required for tread rubber of pneumatic tires used in high-speed running. Conventionally, in order to impart high grip performance to a tire, a rubber composition containing a styrene-butadiene copolymer rubber (SBR) having a high styrene content is used for a tread, and hysteresis loss between polymers is utilized in the grip. A method in which a rubber composition highly filled with resin is applied to the tread and the adhesion effect of the resin is applied to the grip, and a rubber composition highly filled with carbon black is applied to the tread and the hysteresis of the rubber composition is applied to the grip For example, a method of applying a rubber composition containing carbon black having a small particle diameter to a tread has been adopted. In order to improve grip performance at low temperatures, a rubber composition containing a low freezing point plasticizer and having a reduced elastic modulus at low temperatures has been used for tire treads.

しかしながら、スチレン含有率の高いSBRはガラス転移温度が高いため、該SBRを含むゴム組成物をタイヤのトレッドに用いると、走行時のタイヤ温度の近傍でタイヤの諸物性の温度依存性が大きくなり、温度変化に対するタイヤの性能変化が大きくなるという問題があった。   However, since SBR with a high styrene content has a high glass transition temperature, when a rubber composition containing the SBR is used for a tire tread, the temperature dependence of various physical properties of the tire increases in the vicinity of the tire temperature during running. There has been a problem that the performance change of the tire with respect to the temperature change becomes large.

また、ゴム組成物中のカーボンブラックや軟化剤の配合量を増加させたり、粒径の小さなカーボンブラックを配合すると、ゴム組成物中でのカーボンブラックの分散性が低下するため、該ゴム組成物をタイヤのトレッドに用いた場合、タイヤの耐摩耗性が低下してしまうという問題点があった。   In addition, increasing the blending amount of carbon black or softener in the rubber composition or blending carbon black with a small particle size reduces the dispersibility of the carbon black in the rubber composition. When is used for a tire tread, there is a problem that the wear resistance of the tire is lowered.

更に、樹脂を多量に配合した場合、樹脂の影響によって、タイヤの温度に対する性能変化が大きくなるという問題があった。   Furthermore, when a large amount of resin is blended, there is a problem that the performance change with respect to the temperature of the tire becomes large due to the influence of the resin.

これに対して、スチレン含有率が高く、ガラス転移温度が高いSBRをゴム成分として用いた系において、プロセスオイルやC9芳香族系樹脂を主成分とする石油樹脂及び軟化点が40℃未満のクマロンインデン樹脂の混合物を配合する方法(例えば、特許文献1参照)、粒子径の小さなカーボンブラックとアルキルフェノール系樹脂を併用する方法(例えば、特許文献2参照)、ジエン系ゴムに対してナフサの熱分解によって得られるC5留分とスチレン又はビニルトルエンとの共重合体樹脂を配合する方法(例えば、特許文献3参照)、イソプレンゴムと低凝固点可塑剤を配合する方法(例えば、特許文献4参照)等が知られている。また、温度依存性を少なくするために、スチレン含有率が低く、ガラス転移温度が低いSBRをゴム成分として用いた系において、天然樹脂/合成樹脂を多量に配合する方法(例えば、特許文献5参照)等が試みられてきた。しかしながら、これらの方法をもってしても、グリップ性能を十分に向上させることができず、依然として改良の余地あった。 In contrast, high styrene content, in a system using a high glass transition temperature is SBR as a rubber component, a petroleum resin and the softening point of the main component process oil and C 9 aromatic resin is less than 40 ° C. A method of blending a coumarone indene resin mixture (for example, see Patent Document 1), a method of using carbon black having a small particle size and an alkylphenol-based resin in combination (for example, see Patent Document 2), a naphtha with respect to a diene rubber a method of blending the copolymer resin with C 5 fraction and styrene or vinyl toluene obtained by thermal decomposition (e.g., see Patent Document 3), a method of blending the isoprene rubber and a low freezing point plasticizers (e.g., Patent Document 4 For example). Further, in order to reduce temperature dependency, a method of blending a large amount of natural resin / synthetic resin in a system using SBR having a low styrene content and a low glass transition temperature as a rubber component (see, for example, Patent Document 5) ) Etc. have been tried. However, even with these methods, the grip performance cannot be sufficiently improved, and there is still room for improvement.

特開平5−214170号公報JP-A-5-214170 特開平6−200078号公報JP-A-6-200078 特開平9−328577号公報Japanese Patent Laid-Open No. 9-328577 特開平10−273560号公報Japanese Patent Laid-Open No. 10-273560 特開2003−253051号公報JP 2003-253051 A

そこで、本発明の目的は、上記従来技術の問題を解決し、タイヤのトレッドに用いた場合に、優れたグリップ性能を発揮でき、特に低温領域及び高温領域のいずれにおいても優れたグリップ性能を発揮できるトレッド用ゴム組成物を提供することにある。また、本発明の他の目的は、かかるトレッド用ゴム組成物を用い、グリップ性能に優れた空気入りタイヤを提供することにある。   Accordingly, the object of the present invention is to solve the above-mentioned problems of the prior art and to exhibit excellent grip performance when used for a tire tread, particularly excellent grip performance in both a low temperature region and a high temperature region. An object of the present invention is to provide a rubber composition for a tread that can be used. Another object of the present invention is to provide a pneumatic tire using such a tread rubber composition and having excellent grip performance.

本発明者は、上記目的を達成するために鋭意検討した結果、特定範囲の軟化点及びOH価を有するフェノール系樹脂と、一定以下の凝固点を有する可塑剤とを配合してなるゴム組成物をタイヤのトレッドに用いることで、幅広い温度領域でタイヤのグリップ性能を改善できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventor has obtained a rubber composition comprising a phenolic resin having a softening point and an OH value within a specific range and a plasticizer having a freezing point below a certain level. It has been found that the grip performance of a tire can be improved in a wide temperature range by using it for a tire tread, and the present invention has been completed.

即ち、本発明のトレッド用ゴム組成物は、ゴム成分(A)100質量部に対して、充填剤(B)30〜200質量部と、p-t-ブチルフェノールアセチレン樹脂(C)10質量部以上と、トリ(2-エチルヘキシル)ホスフェート(TOP)、トリブチルホスフェート(TBP)、ジ(2-エチルヘキシル)セバケート(DOS)、ジイソオクチルセバケート(DIOS)、ジ(2-エチルヘキシル)アジペート(DOA)、ジイソオクチルアジペート(DIOA)からなる群から選択される少なくとも1種の可塑剤(D)10質量部以上とを配合してなることを特徴とする。 That is, the rubber composition for a tread of the present invention has a filler (B) of 30 to 200 parts by mass and a pt-butylphenol acetylene resin (C) of 10 parts by mass or more with respect to 100 parts by mass of the rubber component (A). And tri (2-ethylhexyl) phosphate (TOP), tributyl phosphate (TBP), di (2-ethylhexyl) sebacate (DOS), diisooctyl sebacate (DIOS), di (2-ethylhexyl) adipate (DOA), It is characterized by blending at least 10 parts by mass of at least one plasticizer (D) selected from the group consisting of diisooctyl adipate (DIOA) .

本発明のトレッド用ゴム組成物の好適例においては、前記ゴム成分(A)は、スチレン含有率が20〜70質量%のスチレン−ブタジエン共重合体ゴムを含む。   In a preferred example of the rubber composition for a tread of the present invention, the rubber component (A) contains a styrene-butadiene copolymer rubber having a styrene content of 20 to 70% by mass.

本発明のトレッド用ゴム組成物の他の好適例においては、前記充填剤(B)がカーボンブラックを含む。   In another preferred embodiment of the rubber composition for a tread of the present invention, the filler (B) contains carbon black.

本発明のトレッド用ゴム組成物の他の好適例においては、前記充填剤(B)が、シリカ及び/又は下記一般式(I):
wM・xSiOy・zH2O ・・・ (I)
(式中、Mは、アルミニウム、マグネシウム、チタン、カルシウム、及びジルコニウムからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、及びそれらの水和物、又はこれらの金属の炭酸塩から選ばれる少なくとも一種であり;w、x、y及びzは、それぞれ1〜5の整数、0〜10の整数、2〜5の整数及び0〜10の整数である)で表される無機化合物を含む。
In another preferred embodiment of the rubber composition for a tread of the present invention, the filler (B) is silica and / or the following general formula (I):
wM · xSiO y · zH 2 O (I)
(Wherein, M is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium, and zirconium, oxides or hydroxides of these metals, and hydrates thereof, or carbonates of these metals. And w, x, y, and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10) including.

また、本発明の空気入りタイヤは、上記トレッド用ゴム組成物をトレッドゴムとして用いたことを特徴とする。ここで、該空気入りタイヤは、高速競技車用タイヤであるのが好ましい。   The pneumatic tire according to the present invention is characterized in that the tread rubber composition is used as a tread rubber. Here, it is preferable that the pneumatic tire is a tire for a high-speed competition vehicle.

本発明によれば、ゴム組成物に、p-t-ブチルフェノールアセチレン樹脂と、トリ(2-エチルヘキシル)ホスフェート(TOP)、トリブチルホスフェート(TBP)、ジ(2-エチルヘキシル)セバケート(DOS)、ジイソオクチルセバケート(DIOS)、ジ(2-エチルヘキシル)アジペート(DOA)、ジイソオクチルアジペート(DIOA)からなる群から選択される少なくとも1種の可塑剤とを配合することで、低温領域及び高温領域のいずれにおいてもタイヤに優れたグリップ性能を発現させることが可能なトレッド用ゴム組成物を提供することができる。また、該トレッド用ゴム組成物を用いた、幅広い温度領域で優れたグリップ性能を有する空気入りタイヤを提供することができる。 According to the present invention, a rubber composition comprises a pt-butylphenol acetylene resin, tri (2-ethylhexyl) phosphate (TOP), tributyl phosphate (TBP), di (2-ethylhexyl) sebacate (DOS), diiso By blending at least one plasticizer selected from the group consisting of octyl sebacate (DIOS), di (2-ethylhexyl) adipate (DOA), and diisooctyl adipate (DIOA) , a low temperature region and a high temperature region Any of the above can provide a rubber composition for a tread capable of exhibiting excellent grip performance in a tire. Moreover, the pneumatic tire which has the outstanding grip performance in the wide temperature range using this rubber composition for treads can be provided.

以下に、本発明を詳細に説明する。本発明のトレッド用ゴム組成物は、ゴム成分(A)100質量部に対して、充填剤(B)30〜200質量部と、p-t-ブチルフェノールアセチレン樹脂(C)10質量部以上と、トリ(2-エチルヘキシル)ホスフェート(TOP)、トリブチルホスフェート(TBP)、ジ(2-エチルヘキシル)セバケート(DOS)、ジイソオクチルセバケート(DIOS)、ジ(2-エチルヘキシル)アジペート(DOA)、ジイソオクチルアジペート(DIOA)からなる群から選択される少なくとも1種の可塑剤(D)10質量部以上とを配合してなることを特徴とする。上記p-t-ブチルフェノールアセチレン樹脂(C)は、軟化点で軟化してヒステリシスロスを生じ、軟化点以降の高温領域におけるグリップ性能を大幅に向上させる。また、上記可塑剤(D)は、低温時のゴム組成物の弾性率を低下させ、トレッドと路面との真実接触面積を増大させ、粘着摩擦力が高くなるため、低温領域におけるグリップ性能を大幅に向上させる。 The present invention is described in detail below. The rubber composition for a tread of the present invention has a filler (B) of 30 to 200 parts by mass, a pt-butylphenol acetylene resin (C) of 10 parts by mass or more, with respect to 100 parts by mass of the rubber component (A). Tri (2-ethylhexyl) phosphate (TOP), tributyl phosphate (TBP), di (2-ethylhexyl) sebacate (DOS), diisooctyl sebacate (DIOS), di (2-ethylhexyl) adipate (DOA), diiso It is characterized by comprising at least one plasticizer (D) selected from the group consisting of octyl adipate (DIOA) and at least 10 parts by mass. The pt-butylphenol acetylene resin (C) is softened at the softening point to cause hysteresis loss, and the grip performance in a high temperature region after the softening point is greatly improved. In addition, the plasticizer (D) reduces the elastic modulus of the rubber composition at low temperatures, increases the real contact area between the tread and the road surface, and increases the adhesive frictional force, greatly improving the grip performance in the low temperature region. To improve.

また、上記p-t-ブチルフェノールアセチレン樹脂(C)及び上記可塑剤(D)を併用することで、p-t-ブチルフェノールアセチレン樹脂(C)又は可塑剤(D)を単独で配合した場合に比べて、タイヤのグリップ性能を更に向上させることができることに加えて、低温領域におけるグリップ性能及び高温領域におけるグリップ性能が高度に両立される。なお、軟化点が低すぎる樹脂(所謂、タッキファイヤー等の粘着付与剤)を上記可塑剤(D)と併用しても、グリップ性能を向上させることができないため、本発明のトレッド用ゴム組成物においては、軟化点が110℃以上のp-t-ブチルフェノールアセチレン樹脂(C)を用いるまた、本発明のトレッド用ゴム組成物において、p-t-ブチルフェノールアセチレン樹脂(C)及び可塑剤(D)を併用することで得られるグリップ性の改良効果は、従来の低ガラス転移点を有するポリマー及び樹脂の併用効果、高ガラス転移点を有するポリマー及び低融点軟化剤の併用効果に比べても高い。 In addition, by using the pt-butylphenol acetylene resin (C) and the plasticizer (D) in combination, the pt-butylphenol acetylene resin (C) or the plasticizer (D) is blended alone. In addition to further improving the grip performance of the tire, the grip performance in the low temperature region and the grip performance in the high temperature region are highly compatible. Note that the rubber composition for a tread of the present invention cannot be improved even when a resin having a too low softening point (so-called tackifier such as tackifier) is used in combination with the plasticizer (D). , A pt-butylphenol acetylene resin (C) having a softening point of 110 ° C. or higher is used . Further, in the rubber composition for a tread of the present invention, the grip improving effect obtained by using the pt-butylphenol acetylene resin (C) and the plasticizer (D) has a conventional low glass transition point. It is higher than the combined effect of the polymer and the resin, and the combined effect of the polymer having a high glass transition point and the low melting point softener.

本発明のトレッド用ゴム組成物に用いるゴム成分(A)としては、天然ゴム(NR)、スチレン−ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、ポリイソプレンゴム(IR)等のジエン系ゴムを例示することができる。これらゴム成分は、一種単独でも二種以上のブレンドでもよい。また、上記ゴム成分(A)は、スチレン含有率が20〜70質量%であるスチレン−ブタジエン共重合体ゴムを含むのが好ましい。スチレン含有率が20質量%以上のSBRを用いることで、適度に高いtanδが得られ、トレッド配合物として適度なグリップ性能を発揮することができる。また、スチレン含有率が70質量%を超えると、ポリマー(SBR)のTgが高すぎるため、本配合を用いても良好なグリップを得ることができない。ここで、ゴム成分(A)中のスチレン含有率が20〜70質量%のSBRの含有率は、80質量%以上であるのが好ましい。   Examples of the rubber component (A) used in the tread rubber composition of the present invention include natural rubber (NR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), polyisoprene rubber (IR) and other dienes. A system rubber can be illustrated. These rubber components may be used alone or in a blend of two or more. The rubber component (A) preferably contains styrene-butadiene copolymer rubber having a styrene content of 20 to 70% by mass. By using SBR having a styrene content of 20% by mass or more, an appropriately high tan δ can be obtained, and an appropriate grip performance can be exhibited as a tread compound. On the other hand, if the styrene content exceeds 70% by mass, the Tg of the polymer (SBR) is too high, so that a good grip cannot be obtained even when using this composition. Here, the content of SBR having a styrene content of 20 to 70% by mass in the rubber component (A) is preferably 80% by mass or more.

本発明のトレッド用ゴム組成物に用いる充填剤(B)としては、特に制限はなく、カーボンブラック及び無機充填剤を用いることができる。ここで、該無機充填剤としては、シリカ及び上記一般式(I)で表される無機化合物等が好ましい。これら充填剤(B)は、1種単独で用いても、2種以上を混合して用いてもよい。上記充填剤(B)は、上記ゴム成分(A)100質量部に対して30〜200質量部配合され、補強性とそれによる諸物性の改良効果の観点から、50〜150質量部配合されるのが好ましい。充填剤(B)の配合量が30質量部未満では、タイヤのグリップ性能を十分に確保することができず、200質量部を超えると、ゴム組成物の加工性が低下する傾向がある。   There is no restriction | limiting in particular as a filler (B) used for the rubber composition for treads of this invention, Carbon black and an inorganic filler can be used. Here, as the inorganic filler, silica and inorganic compounds represented by the above general formula (I) are preferable. These fillers (B) may be used alone or in combination of two or more. The filler (B) is blended in an amount of 30 to 200 parts by mass with respect to 100 parts by mass of the rubber component (A), and is blended in an amount of 50 to 150 parts by mass from the viewpoints of reinforcing properties and effects of improving various physical properties. Is preferred. When the blending amount of the filler (B) is less than 30 parts by mass, sufficient grip performance of the tire cannot be ensured, and when it exceeds 200 parts by mass, the workability of the rubber composition tends to be lowered.

上記カーボンブラックとしては、特に制限はなく、SRF、GPF、FEF、HAF、ISAF、SAF等のグレードのものを用いることができ、ヨウ素吸着量(IA)が60mg/g以上、且つジブチルフタレート(DBP)吸油量が80mL/100g以上のカーボンブラックが好ましい。カーボンブラックを用いることにより、タイヤのグリップ性能及び耐破壊特性の改良効果を向上させることができる。なお、更に優れた耐摩耗性をタイヤに発現させるためには、HAF、ISAF、SAF級のものを用いることが特に好ましい。また、セチルトリメチルアンモニウムブロマイド(CTAB)吸着法による外部表面積が130〜200m2/gの範囲にあり、24M4DBP吸油量が80mL/100g以上のものが好ましい。なお、24M4DBP吸油量とは、24,000psiの圧力で4回繰返し圧縮を加えた後のDBP吸油量である。 The carbon black is not particularly limited, and grades such as SRF, GPF, FEF, HAF, ISAF, and SAF can be used. The iodine adsorption amount (IA) is 60 mg / g or more, and dibutyl phthalate (DBP). ) Carbon black having an oil absorption of 80 mL / 100 g or more is preferred. By using carbon black, the improvement effect of the grip performance and fracture resistance of the tire can be improved. In order to further improve the wear resistance of the tire, it is particularly preferable to use HAF, ISAF, or SAF grades. Moreover, the external surface area by the cetyltrimethylammonium bromide (CTAB) adsorption method is in the range of 130 to 200 m 2 / g, and the 24M4DBP oil absorption is preferably 80 mL / 100 g or more. The 24M4 DBP oil absorption is the DBP oil absorption after four times of compression at a pressure of 24,000 psi.

上記シリカとしては、特に制限はなく、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらの中でも、耐破壊特性の改良効果、ウェットグリップ性及び低転がり抵抗性の両立効果が最も顕著な点で、湿式シリカが好ましい。また、該シリカは、窒素吸着法による比表面積が80〜300m2/gの範囲にあることが好ましく、100〜220m2/gの範囲にあることが更に好ましい。シリカの比表面積が80m2/g以上の場合、十分な補強性が発揮され、300m2/g以下の場合、作業性の低下を防止することができる。なお、通常は、ゴムの白色補強性充填剤として用いられる微粉の無水ケイ酸や含水ケイ酸を用いる。上記シリカとして、具体的には、比表面積が約200m2/gの「Nipsil」[日本シリカ工業(株)製]、比表面積が約117m2/gの「Zeosil 1115MP」[ローディア社製]等の市販品を使用することができる。 The silica is not particularly limited, and examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, and the like. Wet silica is preferred in terms of the most remarkable effect of achieving both grip properties and low rolling resistance. Further, the silica is preferably the specific surface area measured by the nitrogen adsorption method is in the range of 80~300m 2 / g, and still more preferably in the range of 100~220m 2 / g. When the specific surface area of silica is 80 m 2 / g or more, sufficient reinforcement is exhibited, and when it is 300 m 2 / g or less, workability can be prevented from being lowered. Usually, fine powdered silicic acid or hydrous silicic acid used as a white reinforcing filler for rubber is used. As the silica, specifically, "Nipsil" [manufactured by Nippon Silica Industrial Co., Ltd.] having a specific surface area of about 200 meters 2 / g, "Zeosil 1115MP" having a specific surface area of about 117m 2 / g [Rhodia] etc. Commercial products can be used.

上記無機化合物として、具体的には、アルミナ一水和物(Al23・H2O)、ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)3]、アルミナ(Al23)、炭酸アルミニウム[Al2(CO3)3]、水酸化マグネシウム[Mg(OH)2]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO3)、タルク(3MgO・4SiO2・H2O)、アタパルジャイト(5MgO・8SiO2・9H2O)、チタン白(TiO2)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)2]、酸化アルミニウムマグネシウム(MgO・Al23)、クレー(Al23・2SiO2)、カオリン(Al23・2SiO2・2H2O)、パイロフィライト(Al23・4SiO2・H2O)、ベントナイト(Al23・4SiO2・2H2O)、ケイ酸アルミニウム(Al2SiO5、Al4・3SiO4・5H2O等)、ケイ酸マグネシウム(Mg2SiO4、MgSiO3等)、ケイ酸カルシウム(Ca2SiO4等)、ケイ酸アルミニウムカルシウム(Al23・CaO・2SiO2等)、ケイ酸マグネシウムカルシウム(CaMgSiO4)、炭酸カルシウム(CaCO3)、酸化ジルコニウム(ZrO2)、水酸化ジルコニウム[ZrO(OH)2・nH2O]、炭酸ジルコニウム[Zr(CO3)2]、各種ゼオライト、長石、マイカ、モンモリロナイト等が挙げられ、これらの中でも、Mがアルミニウムであるものが好ましい。なお、上記無機化合物は、更に、カリウム、ナトリウム、鉄、マグネシウム等の金属、フッ素等の元素、及び−NH4等の基を含有していてもよい。 Specific examples of the inorganic compound include alumina monohydrate (Al 2 O 3 .H 2 O), aluminum hydroxide [Al (OH) 3 ] such as gibbsite, bayerite, and alumina (Al 2 O 3 ). , Aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3 ), talc (3MgO · 4SiO 2 · H 2 O), attapulgite (5MgO.8SiO 2 .9H 2 O), titanium white (TiO 2 ), titanium black (TiO 2n-1 ), calcium oxide (CaO), calcium hydroxide [Ca (OH) 2 ], aluminum magnesium oxide (MgO. Al 2 O 3), clay (Al 2 O 3 · 2SiO 2 ), kaolin (Al 2 O 3 · 2SiO 2 · 2H 2 O), pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O , Bentonite (Al 2 O 3 · 4SiO 2 · 2H 2 O), aluminum silicate (Al 2 SiO 5, Al 4 · 3SiO 4 · 5H 2 O etc.), magnesium silicate (Mg 2 SiO 4, MgSiO 3 etc.) , Calcium silicate (Ca 2 SiO 4 etc.), aluminum calcium silicate (Al 2 O 3 · CaO · 2SiO 2 etc.), magnesium calcium silicate (CaMgSiO 4 ), calcium carbonate (CaCO 3 ), zirconium oxide (ZrO 2) ), Zirconium hydroxide [ZrO (OH) 2 .nH 2 O], zirconium carbonate [Zr (CO 3 ) 2 ], various zeolites, feldspar, mica, montmorillonite, etc. Among these, M is aluminum. Those are preferred. The inorganic compound may further contain a metal such as potassium, sodium, iron and magnesium, an element such as fluorine, and a group such as —NH 4 .

本発明のトレッド用ゴム組成物に用いるp-t-ブチルフェノールアセチレン樹脂(C)は、軟化点(測定法:ASTM E28-58-T)が110〜150℃で且つOH価(測定法:JIS K0070)が180 mgKOH/g以上であることを要し、OH価が180〜300 mgKOH/gの範囲にあることが好ましい。p-t-ブチルフェノールアセチレン樹脂(C)は、ゴム組成物への粘着付与性を有することに加え、軟化点で軟化してヒステリシスロスを生じ、軟化点以降におけるタイヤのグリップ性能を大幅に向上させることができる。上記p-t-ブチルフェノールアセチレン樹脂(C)の軟化点が110℃未満では、タイヤのグリップ性能が低下する場合があり、150℃を超えると、ヒステリシスロス特性の温度依存性が高くなり過ぎる場合があると共に、ゴム組成物の加工性が悪化する場合がある。また、上記p-t-ブチルフェノールアセチレン樹脂(C)のOH価が180未満では、アドヒージョンとしての効果が小さく、メリットが非常に小さい。また、OH価が300を超えると、作業性が大幅に悪化するため、使用するのが難しくなる。 The pt-butylphenol acetylene resin (C) used in the rubber composition for a tread of the present invention has a softening point (measurement method: ASTM E28-58-T) of 110 to 150 ° C. and an OH value (measurement method: JIS K0070). ) Is 180 mgKOH / g or more, and the OH value is preferably in the range of 180 to 300 mgKOH / g. The pt-butylphenol acetylene resin (C) has a tackifying property to the rubber composition and softens at the softening point to cause hysteresis loss, thereby greatly improving the grip performance of the tire after the softening point. be able to. If the softening point of the pt-butylphenol acetylene resin (C) is less than 110 ° C, the grip performance of the tire may be deteriorated. If it exceeds 150 ° C, the temperature dependence of the hysteresis loss characteristic may become too high. In addition, the processability of the rubber composition may deteriorate. In addition, when the pt-butylphenol acetylene resin (C) has an OH value of less than 180, the effect as adhesion is small and the merit is very small. On the other hand, if the OH value exceeds 300, workability is greatly deteriorated, and it becomes difficult to use.

上記p-t-ブチルフェノールアセチレン樹脂(C)、一般には分子量が数百〜数千の熱可塑性樹脂で、天然ゴムや合成ゴムに配合することによって粘着性を付与する樹脂である。ここでp-t-ブチルフェノールアセチレン樹脂としては、商品名コレシン(OH価=193.4mgKOH/g, BASF社製)が挙げられる。本発明では、配合されたゴム組成物の耐摩耗性とグリップ特性の観点から、p-t-ブチルフェノールアセチレン樹脂を使用するThe pt-butylphenol acetylene resin (C) is generally a thermoplastic resin having a molecular weight of several hundred to several thousand, and is a resin that imparts tackiness when blended with natural rubber or synthetic rubber. Here, as the pt-butylphenol acetylene resin , trade name cholecin (OH value = 193.4 mgKOH / g, manufactured by BASF) can be mentioned. In the present invention, pt-butylphenol acetylene resin is used from the viewpoint of the wear resistance and grip characteristics of the blended rubber composition.

上記p-t-ブチルフェノールアセチレン樹脂(C)の配合量は、上記ゴム成分(A)100質量部に対して10質量部以上であり、p-t-ブチルフェノールアセチレン樹脂(C)の配合量が10質量部未満では、軟化点以降におけるタイヤのグリップ性能を向上させる効果が小さい。 The amount of the p-t-butylphenol acetylene resin (C) is the rubber component (A) 10 parts by mass or more with respect to 100 parts by weight of the amount of p-t-butylphenol acetylene resin (C) is 10 If it is less than the mass part, the effect of improving the grip performance of the tire after the softening point is small.

本発明のトレッド用ゴム組成物に用いる可塑剤(D)は、凝固点が-50℃以下であることを要する。該可塑剤(D)は、低温(高周波)時のゴム組成物の弾性率を低下させ、トレッドと路面との真実接触面積を増大させて、粘着摩擦力を向上させ、タイヤのグリップ性能を大幅に向上させる効果を有する。上記可塑剤(D)の凝固点が-50℃を超えると、低温(高周波)時のゴム組成物の弾性率を十分に低下させることができず、トレッドと路面との真実接触面積及び粘着摩擦力を向上させる効果が小さく、タイヤのグリップ性能を十分に向上させることができない。   The plasticizer (D) used in the rubber composition for a tread of the present invention needs to have a freezing point of -50 ° C or lower. The plasticizer (D) reduces the elastic modulus of the rubber composition at low temperature (high frequency), increases the real contact area between the tread and the road surface, improves the adhesive friction force, and greatly improves the grip performance of the tire. Has the effect of improving. When the freezing point of the plasticizer (D) exceeds -50 ° C., the elastic modulus of the rubber composition at low temperature (high frequency) cannot be sufficiently reduced, and the real contact area and adhesive frictional force between the tread and the road surface. The effect of improving the tire is small, and the grip performance of the tire cannot be sufficiently improved.

上記可塑剤(D)は、トリ(2-エチルヘキシル)ホスフェート(TOP)、トリブチルホスフェート(TBP)ジ(2-エチルヘキシル)セバケート(DOS)、ジイソオクチルセバケート(DIOS)ジ(2-エチルヘキシル)アジペート(DOA)、ジイソオクチルアジペート(DIOA)からなる群から選択され、これら可塑剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 The plasticizer (D) is tri (2-ethylhexyl) phosphate (TOP), tributyl phosphate (TBP) , di (2-ethylhexyl) sebacate (DOS), diisooctyl sebacate (DIOS) , di (2-ethylhexyl) . ) Selected from the group consisting of adipate (DOA) and diisooctyl adipate (DIOA). These plasticizers may be used alone or in combination of two or more.

上記可塑剤(D)の配合量は、上記ゴム成分(A)100質量部に対して10質量部以上であり、10〜50質量部の範囲が好ましく、15〜40質量部の範囲が更に好ましく、20〜30質量部の範囲がより一層好ましい。可塑剤(D)の配合量が10質量部未満では、低温(高周波)時のゴム組成物の弾性率を低下させ、トレッドと路面との真実接触面積及び粘着摩擦力を向上させて、タイヤのグリップ性能を向上させる効果が小さくなる。   The compounding amount of the plasticizer (D) is 10 parts by mass or more with respect to 100 parts by mass of the rubber component (A), preferably in the range of 10-50 parts by mass, and more preferably in the range of 15-40 parts by mass. The range of 20 to 30 parts by mass is even more preferable. When the blending amount of the plasticizer (D) is less than 10 parts by mass, the elastic modulus of the rubber composition at low temperature (high frequency) is lowered, and the true contact area between the tread and the road surface and the adhesive frictional force are improved. The effect of improving grip performance is reduced.

本発明のトレッド用ゴム組成物には、上記ゴム成分(A)、充填剤(B)、p-t-ブチルフェノールアセチレン樹脂(C)、可塑剤(D)の他に、ゴム工業界で通常使用される配合剤、例えば、オイル類、老化防止剤、加硫剤、加硫助剤、加硫促進剤、スコーチ防止剤等を、本発明の目的を害しない範囲内で適宜選択して配合することができる。これら配合剤としては、市販品を好適に使用することができる。なお、上記ゴム組成物は、ゴム成分(A)に、充填剤(B)、p-t-ブチルフェノールアセチレン樹脂(C)及び可塑剤(D)と、必要に応じて適宜選択した各種配合剤とを配合して、混練り、熱入れ、押出等することにより製造することができる。 The rubber composition for a tread of the present invention is usually used in the rubber industry in addition to the rubber component (A), filler (B), pt-butylphenol acetylene resin (C), and plasticizer (D). For example, oils, anti-aging agents, vulcanizing agents, vulcanization aids, vulcanization accelerators, scorch preventing agents, and the like are appropriately selected and blended within a range that does not impair the object of the present invention. be able to. As these compounding agents, commercially available products can be suitably used. The rubber composition includes a rubber component (A), a filler (B), a pt-butylphenol acetylene resin (C) and a plasticizer (D), and various compounding agents appropriately selected as necessary. And kneading, heating, extruding, and the like.

本発明の空気入りタイヤは、上述のトレッド用ゴム組成物をトレッドゴムとして用いたことを特徴とする。また、該空気入りタイヤは、高速走行重視型の高速競技車用タイヤとして特に好適である。本発明の空気入りタイヤは、上記ゴム組成物をトレッドゴムとして用いているため、広い温度範囲においてグリップ性能が特に優れている。なお、本発明の空気入りタイヤは、上述のゴム組成物をトレッドに用いる以外特に制限は無く、常法に従って製造することができる。また、該空気入りタイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。   The pneumatic tire of the present invention is characterized by using the above-described tread rubber composition as a tread rubber. Further, the pneumatic tire is particularly suitable as a tire for a high-speed competition car that emphasizes high-speed running. Since the pneumatic tire of the present invention uses the rubber composition as a tread rubber, the grip performance is particularly excellent in a wide temperature range. The pneumatic tire of the present invention is not particularly limited except that the above rubber composition is used for the tread, and can be produced according to a conventional method. Further, as the gas filled in the pneumatic tire, an inert gas such as nitrogen, argon, helium, or the like can be used in addition to normal or air whose oxygen partial pressure is adjusted.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

表1又は表2に示す配合処方に従って、バンバリーミキサーを用いて混練し、タイヤトレッド用ゴム組成物を調製した。得られたトレッド用ゴム組成物に対して、下記の方法でヒステリシスロス特性を評価した。結果を表1及び表2に示す。   According to the formulation shown in Table 1 or Table 2, the rubber composition for tire treads was prepared by kneading using a Banbury mixer. The hysteresis loss characteristic was evaluated by the following method with respect to the obtained rubber composition for treads. The results are shown in Tables 1 and 2.

(1)ヒステリシスロス特性
各ゴム組成物を加硫して得られた加硫ゴムに対して、レオメトリックス社製粘弾性測定試験機を用いて、動的歪1%の条件下で、50℃におけるtanδを測定し、表1においては比較例1のゴム組成物のtanδを100として指数表示し、表2においては比較例3のゴム組成物のtanδを100として指数表示した。指数値が大きい程、tanδが大きく、グリップ性能に優れることを示す。
(1) Hysteresis loss characteristics For vulcanized rubbers obtained by vulcanizing each rubber composition, using a rheometrics viscoelasticity measuring tester at a dynamic strain of 1%, 50 ° C In Table 1, the tan δ of the rubber composition of Comparative Example 1 was expressed as 100, and in Table 2, the tan δ of the rubber composition of Comparative Example 3 was expressed as 100. The larger the index value, the larger the tan δ and the better the grip performance.

次に、上記トレッド用ゴム組成物をトレッドゴムに用いて、サイズ:225/40R18のJYタイヤ(競技用タイヤ)を試作した。得られたタイヤに対して、下記の方法でグリップ特性を評価した。結果を表1及び表2に示す。   Next, using the rubber composition for a tread as a tread rubber, a JY tire (competition tire) having a size of 225 / 40R18 was prototyped. The grip characteristics of the obtained tire were evaluated by the following method. The results are shown in Tables 1 and 2.

(2)実車グリップ特性
上記タイヤを装着した実車により、乾燥したサーキットを実走行して、タイヤのドライグリップ性能を評価した。具体的には、10周目から20週目までの周回タイムの平均値の逆数を求め、表1においては比較例1のタイヤを100として指数表示し、表2においては比較例3のタイヤを100として指数表示した。指数値が大きい程、周回タイムの平均値が小さく、グリップ性能に優れることを示す。
(2) Actual vehicle grip characteristics The actual vehicle equipped with the tire was actually run on a dry circuit, and the dry grip performance of the tire was evaluated. Specifically, the reciprocal of the average value of the lap times from the 10th lap to the 20th lap is obtained. In Table 1, the tire of Comparative Example 1 is displayed as an index, and in Table 2, the tire of Comparative Example 3 is displayed. The index is shown as 100. The larger the index value, the smaller the average value of the lap time, and the better the grip performance.

Figure 0004785388
Figure 0004785388

Figure 0004785388
Figure 0004785388

*1 乳化重合SBR, スチレン含有率=35質量%, ビニル結合量=18%, ゴム成分100質量部に対して37.5質量部のアロマ油で油展.
*2 乳化重合SBR, スチレン含有率=45質量%, ビニル結合量=18%, ゴム成分100質量部に対して37.5質量部のアロマ油で油展.
*3 CTAB吸着法による外部表面積=148m2/g, 24M4DBP吸油量=102mL/100g.
*4 富士興産(株)製, 「アロマックス#3」.
*5 大八化学社製, ジ(2-エチルヘキシル)セバケート(DOS), 凝固点=-65℃以下.
*6 大八化学社製, トリ(2-エチルヘキシル)ホスフェート(TOP), 凝固点=-70℃以下.
*7 The C. P. Hall社製, アジピックアシッド ジイソオクチル エステル(DIOA), 凝固点=-60℃.
*8 BASF社製, 「コレシン」, 軟化点=110〜130℃, OH基=193.4mgKOH/g.
*9 C9留分を(共)重合して得られる芳香族系石油樹脂, 新日本石油化学(株)製, 「ネオポリマー140」, 軟化点=145℃.
*10 C9留分を(共)重合して得られる芳香族系石油樹脂, 新日本石油化学(株)製, 「ネオポリマー170S」, 軟化点=160℃.
*11 ヤスハラケミカル(株)製, YSポリスターS145, OH基=100.4mgKOH/g.
*12 N-(1,3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミン.
*13 1,3-ジフェニルグアニジン.
*14 ジベンゾチアジルジサルファイド.
* 1 Emulsion polymerization SBR, styrene content = 35% by mass, vinyl bond content = 18%, oil extended with 37.5 parts by mass of aroma oil for 100 parts by mass of rubber component.
* 2 Emulsion polymerization SBR, styrene content = 45% by mass, vinyl bond content = 18%, oil extended with 37.5 parts by mass of aroma oil for 100 parts by mass of rubber component.
* 3 External surface area by CTAB adsorption method = 148m 2 / g, 24M4DBP oil absorption = 102mL / 100g.
* 4 “Aromax # 3” manufactured by Fuji Kosan Co., Ltd.
* 5 Daihachi Chemical Co., Ltd., Di (2-ethylhexyl) sebacate (DOS), Freezing point = -65 ° C or less.
* 6 Manufactured by Daihachi Chemical Co., Ltd., tri (2-ethylhexyl) phosphate (TOP), freezing point = -70 ° C or less.
* 7 The CP Hall, adipic acid diisooctyl ester (DIOA), freezing point = -60 ℃.
* 8 Made by BASF, “Cholecin”, softening point = 110 to 130 ° C., OH group = 193.4 mgKOH / g.
* 9 C 9 fraction (co) polymer obtained by aromatic petroleum resin, Nippon Petrochemicals Co., Ltd., "Neo Polymer 140", softening point = 145 ° C..
* 10 C 9 fraction (co) polymerization to obtained aromatic petroleum resin, Nippon Petrochemicals Co., Ltd., "Neo polymer 170S", softening point = 160 ° C..
* 11 YShara Chemical Co., Ltd., YS Polyster S145, OH group = 100.4 mgKOH / g.
* 12 N- (1,3-Dimethylbutyl) -N'-phenyl-p-phenylenediamine.
* 13 1,3-Diphenylguanidine.
* 14 Dibenzothiazyl disulfide.

表1から、p-t-ブチルフェノールアセチレン樹脂(C)と可塑剤(D)とを併用した実施例1のゴム組成物及びタイヤは、p-t-ブチルフェノールアセチレン樹脂(C)及び可塑剤(D)の併用による相乗効果により、可塑剤(D)を配合した比較例1のゴム組成物及びタイヤ、並びにp-t-ブチルフェノールアセチレン樹脂(C)を配合した比較例2のゴム組成物及びタイヤに比べて、ヒステリシスロス及び実車グリップ性能が大きく向上していることが分る。 From Table 1, the rubber composition and tire of Example 1 which used pt-butylphenol acetylene resin (C) and a plasticizer (D) in combination are represented by pt-butylphenol acetylene resin (C) and plasticizer (D ) In combination with the rubber composition and tire of Comparative Example 1 blended with the plasticizer (D), and the rubber composition and tire of Comparative Example 2 blended with the pt-butylphenol acetylene resin (C). It can be seen that the hysteresis loss and the actual vehicle grip performance are greatly improved.

また、表2の比較例3の結果から、可塑剤(D)の配合量を10質量部以上にする必要があることが分る。更に、実施例2〜4の結果から、凝固点が本発明で規定する上限を満たす種々の可塑剤(D)と、軟化点及びOH価が本発明で規定する範囲を満たすp-t-ブチルフェノールアセチレン樹脂(C)とを用いて、タイヤのグリップ性能を大幅に改善できることが分る。なお、C9系芳香族樹脂を含むものの、p-t-ブチルフェノールアセチレン樹脂(C)を含まない比較例4〜7のタイヤは、実施例2〜4のタイヤに比べ、実車グリップ性能の向上幅が小さいことが分る。また、OH価が180未満のフェノール系樹脂を含む比較例8のタイヤは、比較例3のタイヤに比べ実車グリップ性能が向上していなかった。
Moreover, it turns out from the result of the comparative example 3 of Table 2 that the compounding quantity of a plasticizer (D) needs to be 10 mass parts or more. Furthermore, from the results of Examples 2 to 4, various plasticizers (D) whose freezing point satisfies the upper limit defined by the present invention, and pt-butylphenol acetylene satisfying the ranges defined by the present invention for softening point and OH number It can be seen that the tire grip performance can be greatly improved by using the resin (C). Incidentally, although containing C 9 aromatic resins, tire of Comparative Example 4-7 not containing p-t-butylphenol acetylene resin (C), compared with the tires of Examples 2-4, improved width of the actual vehicle grip performance Is small. The tire of Comparative Example 8 containing a phenolic resin having an OH value of less than 180 did not improve the actual vehicle grip performance as compared with the tire of Comparative Example 3.

Claims (6)

ゴム成分(A)100質量部に対して、
充填剤(B)30〜200質量部と、
p-t-ブチルフェノールアセチレン樹脂(C)10質量部以上と、
トリ(2-エチルヘキシル)ホスフェート(TOP)、トリブチルホスフェート(TBP)、ジ(2-エチルヘキシル)セバケート(DOS)、ジイソオクチルセバケート(DIOS)、ジ(2-エチルヘキシル)アジペート(DOA)、ジイソオクチルアジペート(DIOA)からなる群から選択される少なくとも1種の可塑剤(D)10質量部以上と
を配合してなるトレッド用ゴム組成物。
For 100 parts by mass of rubber component (A),
30-200 parts by weight of filler (B),
10 parts by mass or more of pt-butylphenol acetylene resin (C),
Tri (2-ethylhexyl) phosphate (TOP), tributyl phosphate (TBP), di (2-ethylhexyl) sebacate (DOS), diisooctyl sebacate (DIOS), di (2-ethylhexyl) adipate (DOA), diiso A rubber composition for a tread comprising: at least one plasticizer (D) selected from the group consisting of octyl adipate (DIOA) and at least 10 parts by mass.
前記ゴム成分(A)は、スチレン含有率が20〜70質量%のスチレン−ブタジエン共重合体ゴムを含むことを特徴とする請求項1に記載のトレッド用ゴム組成物。   The rubber composition for a tread according to claim 1, wherein the rubber component (A) contains a styrene-butadiene copolymer rubber having a styrene content of 20 to 70 mass%. 前記充填剤(B)がカーボンブラックを含むことを特徴とする請求項1に記載のトレッド用ゴム組成物。   The rubber composition for a tread according to claim 1, wherein the filler (B) contains carbon black. 前記充填剤(B)が、シリカ及び/又は下記一般式(I):
wM・xSiOy・zH2O ・・・ (I)
(式中、Mは、アルミニウム、マグネシウム、チタン、カルシウム、及びジルコニウムからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、及びそれらの水和物、又はこれらの金属の炭酸塩から選ばれる少なくとも一種であり;w、x、y及びzは、それぞれ1〜5の整数、0〜10の整数、2〜5の整数及び0〜10の整数である)で表される無機化合物を含むことを特徴とする請求項1に記載のトレッド用ゴム組成物。
The filler (B) is silica and / or the following general formula (I):
wM · xSiO y · zH 2 O (I)
(Wherein, M is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium, and zirconium, oxides or hydroxides of these metals, and hydrates thereof, or carbonates of these metals. And w, x, y, and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10) The rubber composition for a tread according to claim 1, comprising:
請求項1〜4のいずれかに記載のトレッド用ゴム組成物をトレッドゴムとして用いた空気入りタイヤ。 A pneumatic tire using the tread rubber composition according to claim 1 as a tread rubber. 高速競技車用タイヤであることを特徴とする請求項5に記載の空気入りタイヤ。 The pneumatic tire according to claim 5 , wherein the pneumatic tire is a tire for a high-speed competition vehicle.
JP2005031791A 2004-03-26 2005-02-08 Rubber composition for tread and pneumatic tire using the same Active JP4785388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005031791A JP4785388B2 (en) 2004-03-26 2005-02-08 Rubber composition for tread and pneumatic tire using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004091879 2004-03-26
JP2004091879 2004-03-26
JP2005031791A JP4785388B2 (en) 2004-03-26 2005-02-08 Rubber composition for tread and pneumatic tire using the same

Publications (2)

Publication Number Publication Date
JP2005307166A JP2005307166A (en) 2005-11-04
JP4785388B2 true JP4785388B2 (en) 2011-10-05

Family

ID=35436285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031791A Active JP4785388B2 (en) 2004-03-26 2005-02-08 Rubber composition for tread and pneumatic tire using the same

Country Status (1)

Country Link
JP (1) JP4785388B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350535A (en) * 2004-06-09 2005-12-22 Sumitomo Rubber Ind Ltd Rubber composition for tire
JP5019775B2 (en) * 2006-04-03 2012-09-05 株式会社ブリヂストン Rubber composition and tire using the same
FR2910905B1 (en) * 2006-12-27 2010-08-20 Michelin Soc Tech PLASTICATING SYSTEM AND RUBBER COMPOSITION FOR PNEUMATIC INCORPORATING SAID SYSTEM
JP5094128B2 (en) * 2007-01-10 2012-12-12 株式会社ブリヂストン Rubber composition for tire tread and pneumatic tire using the same
JP5265118B2 (en) * 2007-01-19 2013-08-14 株式会社ブリヂストン Rubber composition and pneumatic tire using the same
JP5194546B2 (en) * 2007-04-25 2013-05-08 横浜ゴム株式会社 Rubber composition
JP2010248421A (en) * 2009-04-17 2010-11-04 Bridgestone Corp Rubber composition and pneumatic tire using the same
ES2439278T3 (en) * 2010-07-07 2014-01-22 Continental Reifen Deutschland Gmbh Rubble Mix
FR2968006B1 (en) 2010-11-26 2012-12-21 Michelin Soc Tech TIRE TREAD TIRE
JP5438169B2 (en) * 2012-06-21 2014-03-12 住友ゴム工業株式会社 Rubber composition and tire using the same
JP6521559B2 (en) * 2013-08-08 2019-05-29 住友ゴム工業株式会社 Tread rubber composition for high performance wet tire and high performance wet tire
JP6558869B2 (en) * 2013-08-08 2019-08-14 住友ゴム工業株式会社 Tread rubber composition for high performance tire and high performance tire
KR101600331B1 (en) 2013-12-09 2016-03-21 한국타이어 주식회사 Rubber composition for tire innerliner and tire manufactured by using the same
JP6594611B2 (en) * 2014-08-07 2019-10-23 住友ゴム工業株式会社 High performance tires
JP6030696B1 (en) 2015-04-21 2016-11-24 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP6790351B2 (en) * 2015-12-04 2020-11-25 住友ゴム工業株式会社 Rubber composition and tires
US10301459B2 (en) * 2016-07-19 2019-05-28 The Goodyear Tire & Rubber Company Tire with rubber tread containing a combination of styrene/butadiene elastomers and traction resins and pre-hydrophobated precipitated silica reinforcement
JP2019014809A (en) * 2017-07-06 2019-01-31 住友ゴム工業株式会社 Pneumatic tire
JP6993188B2 (en) * 2017-11-16 2022-01-13 Toyo Tire株式会社 Rubber composition for tires and pneumatic tires using them

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116443A (en) * 1992-10-09 1994-04-26 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP3410170B2 (en) * 1993-09-24 2003-05-26 株式会社ブリヂストン Rubber composition for tire tread
JP3778650B2 (en) * 1997-02-03 2006-05-24 住友ゴム工業株式会社 Rubber composition for tire tread
JP4037744B2 (en) * 2001-12-28 2008-01-23 株式会社ブリヂストン Rubber composition and tire using the same

Also Published As

Publication number Publication date
JP2005307166A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP4785388B2 (en) Rubber composition for tread and pneumatic tire using the same
JP5019775B2 (en) Rubber composition and tire using the same
JP2006249230A (en) Rubber composition for tread and pneumatic tire using the same
US8697793B2 (en) Rubber composition for use in tires
JP2007332246A (en) Rubber composition and tire using the same
WO2005090463A1 (en) Pneumatic tire
JP2007302713A (en) Tire rubber composition and tire using the same
JP2005023144A (en) Pneumatic tire
JP2009280699A (en) Tire
JP4733968B2 (en) Rubber composition for tire and pneumatic tire using the same
JP4094365B2 (en) Rubber composition and tire using the same
JP2002080638A (en) Rubber composition for tire tread
JP2014218566A (en) Tread rubber composition for high-performance wet tire, and high-performance wet tire
JP4945084B2 (en) Rubber composition and pneumatic tire using the same
JP2004051856A (en) Rubber composition and tire using the same
JP5407305B2 (en) Rubber composition for tire tread
JP2004204100A (en) Pneumatic tire
JP2005002295A (en) Rubber composition for tire and tire
JP6980781B2 (en) Rubber compositions, crosslinked rubber compositions, rubber articles and tires
JP3995921B2 (en) Rubber composition and tire
JP4945083B2 (en) Rubber composition and pneumatic tire using the same
JP5129454B2 (en) Rubber composition for tire tread and pneumatic tire using the same
JP6994030B2 (en) Rubber compositions, crosslinked rubber compositions, rubber articles and tires
JP5001571B2 (en) Rubber composition and pneumatic tire using the same.
JP2009173737A (en) Method for producing rubber composition, rubber composition, and tire using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4785388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250