[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4783933B2 - Ocean water circulation type natural seafood breeding system - Google Patents

Ocean water circulation type natural seafood breeding system Download PDF

Info

Publication number
JP4783933B2
JP4783933B2 JP2009173664A JP2009173664A JP4783933B2 JP 4783933 B2 JP4783933 B2 JP 4783933B2 JP 2009173664 A JP2009173664 A JP 2009173664A JP 2009173664 A JP2009173664 A JP 2009173664A JP 4783933 B2 JP4783933 B2 JP 4783933B2
Authority
JP
Japan
Prior art keywords
water
seafood
seaweed
marine
ocean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009173664A
Other languages
Japanese (ja)
Other versions
JP2011010645A (en
Inventor
政雄 ▲高▼橋
Original Assignee
政雄 ▲高▼橋
荒井 道夫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 政雄 ▲高▼橋, 荒井 道夫 filed Critical 政雄 ▲高▼橋
Priority to JP2009173664A priority Critical patent/JP4783933B2/en
Publication of JP2011010645A publication Critical patent/JP2011010645A/en
Application granted granted Critical
Publication of JP4783933B2 publication Critical patent/JP4783933B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/60Fishing; Aquaculture; Aquafarming

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Description

本発明は水産資源の栽培漁業技術に関し、特に海棲魚介類の最適な育成環境に関する。  The present invention relates to a fishery technology for cultivating marine resources, and particularly to an optimal breeding environment for marine seafood.

従来からの食用目的の魚介類飼育方法は、浮体付き漁網等によって囲まれた生け簀による海面養殖方法(例えば、特許文献1、2、3、参照。)と、陸上に設置した飼育水槽による養殖方法(例えば、特許文献4,5,6、参照。)が取られている。また、種苗から育てられた稚魚や稚貝を漁業対象海域の沿岸に放流し、減少傾向にある天然の水産資源を補充する栽培漁業(例えば、特許文献7,8,9参照。)も行われている。  Conventional edible seafood breeding methods include sea surface aquaculture methods (for example, see Patent Literatures 1, 2, and 3) surrounded by floating fishing nets, and aquaculture methods using aquaculture tanks installed on land. (For example, refer to Patent Documents 4, 5, and 6.). In addition, cultivated fisheries (see, for example, Patent Documents 7, 8, and 9) in which juveniles and juveniles raised from seedlings are released to the coast of the fishery target sea area to supplement natural fishery resources that are on the decline. ing.

特開平6−007056号公報JP-A-6-007056 特開2005−013185号公報JP 2005-013185 A 特開平6−209675号公報JP-A-6-209675 特開2008−283896号公報JP 2008-283896 A 特開2008−148687号公報JP 2008-148687 A 特開2002−233268号公報JP 2002-233268 A 特開2007−082466号公報Japanese Patent Laid-Open No. 2007-082466 特開平09−037677号公報JP 09-037677 A 特開2002−233265号公報JP 2002-233265 A

しかしながら海面養殖においては、過度な利益追求による過剰給餌や過密飼育により、水質悪化に伴う周辺海域の環境破壊を引き起こし、さらに変化のない一辺倒な給餌と閉鎖的で単調な育成環境に由来する飼育生物のストレス障害を招き、皮膚がまだらになる、背骨が曲がる等の飼育魚の奇形や病気の多発、成長阻害、また赤潮による壊滅的な打撃、嵐による施設の損壊等の多くの解決困難な問題が生じている。  However, in sea surface aquaculture, over-feeding and overcrowding due to excessive profit pursuits cause environmental destruction in the surrounding sea area due to deterioration of water quality, and further, rearing organisms derived from unrelenting feeding and closed, monotonous breeding environments There are many difficult problems to solve, such as malformation of fish and the occurrence of illness, growth inhibition, red tide catastrophic blows, facility damage due to storms, etc. Has occurred.

また、海際に設けられた掛け流し式陸上養殖においても、海面養殖と同様に水質汚染による環境破壊を進行させ、さらに奇形や病気の発生の為に大量の抗生物質やホルマリン、多数種の治療薬が使用され薬物汚染が問題視されている。  In addition, in the floating shore-based aquaculture provided at the seaside, the environmental destruction caused by water pollution is promoted as in the case of sea surface aquaculture. Drugs are used and drug contamination is regarded as a problem.

さらにまた近年普及傾向にある陸上の閉鎖型循環式飼育水槽に至っては、海水中の溶存酸素量を飽和状態まで近づけるために純酸素の添加まで行って、1m当たり100キロから150キロ(日本国内での一例を挙げると和歌山県水産試験場は1m当たり10キロ前後を推奨)という尋常ではない欧米式の超高密度飼育を模倣して硝化還元作用に基づく生物濾過を形成するための濾過システムを開発競争しているが、上記薬品漬けの劣悪環境に加えて複雑な濾過装置や海水配管と更に大型冷却設備等に大電力を必要とするとともに、人工飼料の給餌に多大なランニングコストが掛かる事に加えて、フジツボやイガイ及び牡蠣等の自然発生的な付着物の除去に掛かる永続的な装置のメンテナンスが困難を極めている。Furthermore it comes to land closed circulation type breeding aquarium in recent years widespread trend, performed amount of dissolved oxygen in the seawater to the addition of pure oxygen to approximate to saturation 150 kilometers from 100 kg per 1 m 3 (Japan filtration system for an example and Wakayama Prefectural Fisheries Experiment Station in the country, which mimics the ultra-high-density rearing of not extraordinary Western formula of recommended) the 10 kilometers back and forth per 1m 3 to form a biological filtration based on the nitrification reduction action However, in addition to the above-mentioned poor environment for pickling chemicals, it requires a large amount of power for complicated filtration equipment, seawater piping, and large cooling equipment, and it requires a lot of running costs to feed artificial feed. In addition, permanent equipment maintenance for removing naturally occurring deposits such as barnacles, mussels and oysters is extremely difficult.

また、稚魚や稚貝を漁業対象区域の沿岸海域に放流するという、水産庁主導の現行の栽培漁業に至っても、魚介類の卵(種苗)から稚魚や稚貝を育てる技術は、世界レベルで見ても最先端を行っているにもかかわらず、放流した稚魚や稚貝の総数に比して圧倒的に漁獲高が少なく歩留まりが悪いと言う事と(他の魚の餌食になる。放流場所から離れてしまう。岩陰に隠れて収穫出来ない。生き延びる事が出来ない。等の理由による。)、地球温暖化の影響による海水温の上昇や海水の酸性化、赤潮、磯やけなど環境悪化による藻場礁の衰退が水産資源の減少を招いている。  In addition, even in the current cultivated fishery industry led by the Fisheries Agency, where juveniles and larvae are released into the coastal waters of the fishery target area, the technology for growing fry and larvae from seafood eggs (seed seedlings) is seen on a global level. However, despite being at the cutting edge, it is said that the fish catch is low and the yield is overwhelming compared to the total number of juveniles and larvae released (becoming a prey for other fish. For example, it cannot be harvested because it is hidden behind a rock, it cannot survive, etc.), due to the rise in seawater temperature due to the effects of global warming, acidification of seawater, red tide, haze, etc. The decline of seaweed reefs has led to a decrease in marine resources.

更に近年の消費者による魚類の養殖物離れは、食文化の進歩による永続的なグルメブームと日本人の繊細な味覚による天然物嗜好に基づくものであり、油が強く味が無く身に締りがないなど、どの魚も似たような食味、過剰給餌や過密飼育による水質悪化に伴う環境破壊、抗生物質や薬品の投与、ホルマリン垂れ流し問題などの養殖に対するイメージダウンが根底になっている。  Furthermore, the recent shift of fish cultures by consumers is based on the enduring gourmet boom due to the advancement of food culture and the taste of natural products due to the delicate taste of Japanese people. No fish has a similar taste, environmental destruction due to deterioration of water quality due to overfeeding and overcrowding, administration of antibiotics and drugs, and aquaculture down the formalin runoff problem.

上記のような長年に亘る様々な問題点、すなわち野放図に利益のみを追求して環境破壊を加速させてきた海面養殖方法や、薬漬けで不健康な魚介類を生産し続けている陸上養殖方法を抜本的に改善するとともに、今後さらに沿岸域における地球温暖化の影響が著しく増大することを危惧し、対象魚介類が80数種類にも達する我が国の多様で優秀な稚魚、及び稚貝の生産技術を有する栽培漁業の放流場所である沿岸の岩礁域潮間帯部分を人工的に再現し、地上に自然の海と同様の成育環境を創造する事を目的とする。  Various problems over the years as described above, such as sea farming methods that have accelerated environmental destruction by pursuing only profits in open fields, and land farming methods that continue to produce unhealthy fishery products that are drugged In addition to drastic improvement, we are worried that the impact of global warming in the coastal area will increase significantly in the future, and we have a variety of excellent juvenile fish and shellfish production technologies in Japan that reach over 80 kinds of target seafood The purpose is to artificially reproduce the intertidal zone of the coastal reef area, which is the place where cultivated fisheries are released, and to create a growth environment similar to the natural sea on the ground.

本発明の課題解決手段は、上記目的を達成する為に、通常は沿岸域で行われる魚介類の栽培漁業を地上で行うものであり、逆台形を基本の断面形状とした水路で構成される長円形の周回式人工ラグーン内に、藻場礁を形成して岩礁性底棲魚介類の育成を行う緩斜面とベントス食性(ゴカイなど砂の中の生物を食べる魚)等の底棲魚介類の育成を行う砂質層とを設け、当該ラグーン内に再生可能エネルギーを主動力源とする海洋水取水システムによって、海水の酸性化や高水温化等の温暖化の影響を受けにくい深度の有光層水(海洋亜表層水)と、栄養塩を豊富に含む低温で無菌状態の補償深度以深(無光層)の海洋中深層水を、別々に取水及び混合して魚介類の天然の生育場所と同様の水温範囲に調整するとともに、混入してきた表層域から亜深海域までの多様な動植物プランクトンを含む海洋水を、再生可能エネルギーを主動力源とするパイプライン輸送によって導入することにより、植物プランクトンの基礎生産(一次生産)から始まる食物連鎖によって水圏の物質循環を人工的に創出し、地上に海洋生態系を再現する海洋水循環式天然型魚介類育成システムを設けたものである。  In order to achieve the above-mentioned object, the problem-solving means of the present invention is to carry out the fishery for fishery products normally carried out in the coastal area on the ground, and is composed of a water channel having a basic trapezoidal cross-sectional shape. In the oval-circular artificial lagoon, seaweed reefs such as a gentle slope that forms a seaweed reef and nurtures rocky bottom seafood and benthos food (fish that eats organisms in the sand and other sand) The ocean water intake system that uses renewable energy as the main power source in the lagoon has a depth that is not easily affected by warming such as acidification of seawater and high water temperature. Natural growth of seafood by separately taking and mixing light layer water (marine subsurface water) and low-temperature, sterile, deep water below the compensated depth (no light layer) rich in nutrients. Adjust to the same water temperature range as the place, and from the surface area that has mixed By introducing marine water containing various animal and phytoplanktons up to the deep sea by pipeline transportation using renewable energy as the main power source, material circulation in the hydrosphere through the food chain starting from basic production (primary production) of phytoplankton Is created and an ocean water circulation type natural seafood breeding system is established to reproduce the marine ecosystem on the ground.

1)海洋の表層水とは物理、化学、生物学的に性質の異なる低温で無菌状態の富栄養塩(硝酸塩、リン酸塩、ケイ酸塩、窒素等)に富む補償深度以深の海洋中深層水をベースとした海草及び海藻類や魚介類の育成は、自然界に比してより早い成長を促す。
2)天然物同様に自然な環境と多様な食性を確保出来る魚介類は、限りなく自然に近い美味なる生体に成長する。
3)水温調整が可能な事により、冷水域から熱帯域までの多様な海棲生物の育成が可能になる。
4)既存技術のみによるシンプルな構成のため、ポンプの故障以外のメカニカルトラブルは発生しない。
5)理想的環境で育った魚介類を適正価格で市場に流通させる事が出来る。
6)密生した藻場礁と二枚貝による温室効果ガスの吸収は水面面積の増大とともに地球温暖化の防止に貢献する。
7)システムの全動力源を再生可能エネルギーによって調達する事により、京都議定書に基づくカーボンマイナス(カーボンポジティブ)を達成することが可能になる。
8)アフリカ諸国、南アメリカ諸国、東南アジア諸国等の開発途上国で本発明を実施する場合、雇用と食糧の確保を永続的に達成することが出来、周辺地域の貧困層の経済を活性化させる事が可能になる。
1) The surface water of the ocean is deep in the ocean below the compensation depth rich in low-temperature, sterile eutrophic salts (nitrate, phosphate, silicate, nitrogen, etc.) that have different physical, chemical and biological properties. The development of water-based seaweeds and seaweeds and seafood promotes faster growth than the natural world.
2) Fish and shellfish that can ensure a natural environment and various foods as well as natural products grow into a delicious body that is as close to nature as possible.
3) The ability to adjust the water temperature makes it possible to grow a variety of marine organisms from cold water to the tropical zone.
4) Because of the simple configuration based only on existing technology, no mechanical trouble other than pump failure occurs.
5) The fish and shellfish grown in the ideal environment can be distributed to the market at an appropriate price.
6) Absorption of greenhouse gases by dense seaweed reefs and bivalves contributes to the prevention of global warming as the water surface area increases.
7) By procuring all power sources of the system with renewable energy, it is possible to achieve carbon minus (carbon positive) based on the Kyoto Protocol.
8) When the present invention is implemented in developing countries such as African countries, South American countries, Southeast Asian countries, etc., employment and food security can be achieved permanently, and the economy of the poor in the surrounding area can be activated. Things are possible.

本発明の概念図及び配管系統図である。It is the conceptual diagram and piping system diagram of this invention. 本発明を実施するための第1形態における基本的構造を示す斜視図である。It is a perspective view which shows the basic structure in the 1st form for implementing this invention. 本発明を実施するための第1形態における斜視断面図である。It is a perspective sectional view in the 1st form for carrying out the present invention. 本発明を実施するための第1の形態における水路部分を3連結した変形例の部分斜視断面図である。It is a fragmentary perspective sectional view of the modification which connected three waterway parts in the 1st form for carrying out the present invention. 本発明を実施するための第1の形態を前後左右に連結した変形例の斜視図である。It is a perspective view of the modification which connected the 1st form for carrying out the present invention back and forth, and right and left. 本発明を実施するための第2の形態における水路部分の斜視断面図である。It is a perspective sectional view of the channel part in the 2nd form for carrying out the present invention. 本発明を実施するための第2の形態を3連結した変形例の部分斜視断面図である。It is a fragmentary perspective sectional view of the modification which connected 3rd the 2nd form for implementing this invention. 本発明を実施するための第3の形態における水路部分の斜視断面図である。It is a perspective sectional view of the channel part in the 3rd form for carrying out the present invention. 本発明を実施するための第3の形態を3連結した変形例の部分斜視断面図である。It is a fragmentary perspective sectional view of the modification which connected the 3rd form for carrying out the present invention three.

以下、本発明の実施の形態として第1の実施例から第7の実施例まで図1から図9に基づいて説明する。  Hereinafter, the first to seventh examples of the present invention will be described with reference to FIGS.

図1の概念図中の配管系統図において、1及び2の海洋水取水口より取水された海水は、3及び4の取水管を通過し、5及び6の逆止弁を通って、7及び8のバルブにて適宜流量調整され、9のストレートティーズにより混合されて、10のエキセントリックレデューサーにて、圧送時の内部抵抗を軽減する目的と長期的な付着物の堆積による内径の縮小を考慮して大径化され、11のメインポンプにより12の送水管を通過して図2の周回式人工ラグーンに送られ複数台の水中ポンプにより良好な水流を発生させる。  In the piping system diagram in the conceptual diagram of FIG. 1, seawater taken from the ocean water intakes 1 and 2 passes through the intake pipes 3 and 4, passes through the check valves 5 and 6, and 7 and The flow rate is adjusted appropriately with 8 valves, mixed with 9 straight teeth, and with the purpose of reducing internal resistance during pumping with 10 eccentric reducers and considering the reduction of internal diameter due to long-term deposit accumulation The diameter is increased, and it passes through 12 water supply pipes by 11 main pumps and is sent to the revolving artificial lagoon of FIG. 2 to generate a good water flow by a plurality of submersible pumps.

本実施例を海際に設ける場合は必要としないが、長距離若しくは標高の高い場所に海洋水を送る場合、13の中継ポンプステーションを多用して送給圧を高め、図2の人工ラグーンに圧送される。必要なら更なる水温の上昇のために海水を人工ラグーン内に導入する直前に送水管の終点付近を幅広いオープンカルバート構造にして流速を弱め、水面面積を増大するとともに太陽光エネルギーで海水を暖める。以下、人工ラグーンを満杯にした海洋水は14のオーバーフロー水の出口より排水され15の復水管を通過して海洋に放出される。なお、海水を海水淡水化プラント若しくは水素製造装置等に再利用する場合においては復水管を必要としない。  This is not necessary when this embodiment is installed at the seaside, but when sending ocean water to a long distance or high altitude, use 13 relay pump stations to increase the feed pressure, and make the artificial lagoon of FIG. Pumped. If necessary, just before the seawater is introduced into the artificial lagoon to increase the water temperature, a wide open culvert structure near the end of the water pipe is used to reduce the flow velocity, increase the water surface area and warm the seawater with solar energy. Hereinafter, the ocean water filled with the artificial lagoon is drained from the outlet of 14 overflow waters, passes through 15 condensate pipes, and is discharged to the ocean. Note that a condensate pipe is not required when seawater is reused in a seawater desalination plant or a hydrogen production apparatus.

図2の長円形を基本形状とした周回式人工ラグーンは、掘削した地盤面若しくはFRPまたはコンクリート等の構造躯体Aをベースとして緩斜面Bと砂質層Cを備え魚介類を育成するための逆台形の断面形状を持った循環式水路を構成する。基本的な大きさは水深8mから10m前後、水路の幅約35m、内周約400m、外周約650m、総水量概算で135,000m前後の規模を想定するが、人工ラグーン自体はパイプライン輸送を通じて海洋と繋がった単なる海水の受け皿であり、緩斜面と砂地にて構成される単純な仕組みなので規模はそれ以上でも以下でも可能である。The orbital artificial lagoon based on the oval shape shown in FIG. 2 has a gentle slope B and a sandy layer C based on an excavated ground surface or a structural frame A such as FRP or concrete, and is a reverse for growing seafood. Constructs a circulation channel with a trapezoidal cross-sectional shape. The basic size is assumed to be about 8 to 10 m in depth, about 35 m in width, about 400 m in inner circumference, about 650 m in outer circumference, and about 135,000 m 3 in total water volume, but the artificial lagoon itself is pipeline transport It is a simple seawater tray connected to the ocean through and is a simple mechanism composed of gentle slopes and sandy grounds, so the scale can be higher or lower.

アワビやウニ、イセエビ等の育成に用いる小規模のものはFRPもしくはコンクリート構造等でも可能であり、また広大な平地を利用した大規模のものは、計画する人工ラグーンの輪郭線に沿って内側の地盤面を掘削し、掘削した土は輪郭線の外側に盛り土して土手を造る。土質によっては防水処理を施し、さらに内側の地盤面には小島を沢山設けて藻場礁を形成する緩斜面を多く造成すれば極めて簡単な土木工法で人工の海が造れ、小島を橋でつなげれば島のスペースに居住施設等も造れる。  Small-scale ones used for rearing abalone, sea urchins, lobsters, etc. can be FRP or concrete structures, and large-scale ones using vast flat land are located along the outline of the planned artificial lagoon. The ground is excavated, and the excavated soil is filled outside the outline to create a bank. Depending on the soil quality, waterproofing can be applied, and if you create many small islands on the inner ground surface and create many gentle slopes that form a seaweed reef, an artificial sea can be created by a very simple civil engineering method, and the islands can be connected by a bridge Residential facilities can be built in the island space.

以下に参考として、海洋水の輸送に流用可能な、現在稼働中の世界各国の石油パイプライン輸送システム及び本発明に併設を想定した海水淡水化プラントの代表的な能力を示す。この事により、本発明は充分に実現性があると考えられる。  For reference, typical capacities of oil pipeline transportation systems currently in operation around the world that can be diverted for transportation of ocean water and seawater desalination plants assumed to be attached to the present invention are shown below. As a result, the present invention is considered to be sufficiently feasible.

・・・パイプライン・・・
・トランスアラスカパイプライン(アメリカ アラスカ州)総延長約1300km(中継ポンプステーション 11ヶ所、それぞれ4台のポンプ)輸送能力 1日約11万4000m
・バクー トビリシ ジェイハン(BTC)パイプライン(アゼルバイジャン グルジア トルコ)総延長約1770km(最大標高2830m 中継ポンプステーション 8ヶ所)輸送能力 一日約16万m
・ドルジバパイプライン(ロシア ウクライナ)総延長約4000km(中継ポンプステーション 20ヶ所)輸送能力 一日約20万m
···pipeline···
・ Trans Alaska Pipeline (Alaska, USA) Total length of about 1300 km (11 relay pump stations, 4 pumps each) Transport capacity about 114,000 m 3 a day 3
・ Baku Tbilisi Jayhan (BTC) Pipeline (Azerbaijan Georgia Turkey) Total length of about 1770km (maximum altitude 2830m, 8 relay pump stations) Transportation capacity About 160,000m 3 a day 3
・ Doljiba Pipeline (Russia, Ukraine) Total length of about 4000 km (20 relay pump stations) Transportation capacity: about 200,000 m 3 a day 3

・・・海水淡水化プラント・・・
・・逆浸透方式(RO水)・・
・アシュケロン海水淡水化プラント(イスラエル)日量 33万トン
・福岡市東区海水淡水化プラント(日本)日量 5万トン
・・多段フラッシュ方式(蒸留法)・・
・ジェッダ No,4海水淡水化プラント(サウジアラビア)日量 22万トン
・アシュベール海水淡水化プラント(サウジアラビア)日量 100万トン
(以上 ウィキペディア USAより抜粋。)
... Seawater desalination plant ...
・ ・ Reverse osmosis method (RO water) ・ ・
・ Ashkelon desalination plant (Israel) 330,000 tons / day ・ Fukuoka City Higashi-ku desalination plant (Japan) 50,000 tons / day ・ ・ Multi-stage flash method (distillation method) ・ ・
・ Jeddah No.4 daily desalination plant (Saudi Arabia) 220,000 tons / day Ashvale desalination plant (Saudi Arabia) 1 million tons (excerpt from Wikipedia USA)

使用する海水は、表層水に比して明確な温度差と物理的特性の違いを有する水深300m以深の海洋中深層水と、地球温暖化による海水の高温化や酸性化の影響を受けにくい水深15m前後の有光層水(海洋亜表層水)を別々のパイプで取水する。
配管は海水による腐食に耐え得る塩化ビニールライニング、ポリエチレンライニング、ナイロンライニング、FRPライニング、スーパーステンレス、SUS304L、SUS316L、ABS樹脂管、ポリエチレン管、等の材質を選択し、炭素鋼を使用した配管にはさらなる腐食防止に再生可能エネルギーを利用した通電式電気防食を採用する。
The seawater to be used is a deep sea water with a depth of 300 m or less that has a clear temperature difference and physical characteristics compared to surface water, and a water depth that is not easily affected by the warming or acidification of seawater caused by global warming. About 15m of light layer water (ocean subsurface water) is taken with a separate pipe.
For piping that can withstand corrosion caused by seawater, select materials such as vinyl chloride lining, polyethylene lining, nylon lining, FRP lining, super stainless steel, SUS304L, SUS316L, ABS resin pipe, polyethylene pipe, etc. For piping using carbon steel Use energized anti-corrosion that uses renewable energy to further prevent corrosion.

図2の緩斜面Bは、太陽光エネルギーにより光合成を効率よく行うために、入射角がもっとも浅い冬季の太陽の軌道を基準とし、周回水路に組み込まれたときに全ての藻場礁面に満遍なく日差しが当たるように緩やかなスロープに造成する。  The gentle slope B in Fig. 2 is uniformly distributed over all seaweed reefs when incorporated in a circular channel, based on the solar trajectory in winter when the incident angle is the shallowest, in order to efficiently perform photosynthesis using solar energy. Create a gentle slope so that it can be exposed to sunlight.

表面は単なる平面ではなく有効栽培面積を増やす目的により水族館のように人工的な潮間帯の岩礁地帯を再現する。デザインは魚介類の隠れる穴等を多く造形した複雑な立体にする。また、貝類の採集が容易になるように手の届かないデッドスポットは造らない事およびアワビ等の餌になる流出海藻が留まり易い形状とする。  The surface is not just a flat surface, but an artificial intertidal reef area like an aquarium is reproduced for the purpose of increasing the effective cultivation area. The design is a complex solid with many holes for seafood. In order to facilitate the collection of shellfish, do not make dead spots that are out of reach, and make it easy for spilled seaweeds, such as abalone, to stay.

藻場礁を形成するための海藻類の増殖時は海に戻すオーバーフロー水の中に遊走子類が流出しないよう海水の取水を一時止めてクローズドサーキット(閉鎖循環回路)を造り、水温を最適温に上昇させて、養殖ワカメ等の生産技術を流用して海藻類の雌株からつくられた遊走子類を人工ラグーン内に大量に放出する。遊走子の定着が確認出来たら必要にして充分な量の海水を循環させる。  During the growth of seaweeds to form a seaweed reef, the intake of seawater is temporarily suspended in the overflow water to be returned to the sea to create a closed circuit (closed circulation circuit), and the water temperature is optimal The zoosporanges produced from seaweed female strains are released into artificial lagoons in large quantities by using production techniques such as cultured seaweed. If you can confirm the colonization of the zoospores, circulate a sufficient amount of seawater as necessary.

海藻が育ってきたらアワビやサザエ、ウニの稚貝、伊勢海老、メバルやアイナメ、カサゴ、ソイなどの魚介類の稚魚を放流する。タコやイシダイ、カニなどの貝類を食性とする魚介類は稚貝を食べてしまうので混泳させることは出来ない。  When seaweed grows, abalone, sazae, sea urchin larvae, Ise lobsters, sea bream, ainame, scorpion, soi and other seafood larvae are released. Seafoods that eat shellfish such as octopus, sea bream, and crabs eat larvae and cannot mix them.

導入海水中に捕らえられた動植物プランクトンは次第に単細胞原始藻類や海藻類、フジツボやイガイ、カキ、ホヤ類、海綿、甲殻類、ゴカイやワムシ等の形となって徐々に姿を現し、やがて魚介類に消費されて無給餌による食物連鎖が再現される。  The flora and fauna plankton caught in the introduced seawater gradually emerged in the form of unicellular primitive algae and seaweeds, barnacles and mussels, oysters, squirts, sponges, crustaceans, sandworms, rotifers, etc. The food chain with no feeding is reproduced.

藻場礁や砂地の面ではアマモなどの海草やワカメ等の一年草、多年草を多数種栽培し、次世代より胞子を人工ラグーン内で自然増殖させ植物の自然循環を構築する。  In terms of seaweed reefs and sandy areas, seagrasses such as sea bream and annual and perennial grasses such as seaweed are cultivated, and from the next generation, spores are naturally propagated in an artificial lagoon to build a natural circulation of plants.

図2の砂質層Cは、取水システム、中継ポンプステーション、ワイヤーブラシ付きピグを使用したパイプラインのメンテナンス時及び、海藻胞子類の有効着定期間、魚貝類の自然産卵時期等の一時的取水停止時において、魚類の排泄物等の分解により堆積する可能性のある硝酸銀を窒素として大気に放出する為の嫌気層を生成する目的により、厚い砂の層で構成される。  The sandy layer C in Fig. 2 is used for the temporary intake of the intake system, relay pump station, pipeline maintenance using wire brushed pigs, the effective settlement period of seaweed spores, and the natural spawning time of fish shellfish. It is composed of a thick sand layer for the purpose of producing an anaerobic layer for releasing silver nitrate into the atmosphere as silver nitrate, which can be deposited by decomposition of fish excrement and the like when stopped.

また上記砂質層の表面ではアナゴ、カレイやキス、ハゼ、マゴチ、舌ビラメなどのベントス食性を含む魚類やタイラギ、ホタテ等の貝類などの底棲性生物を育成する。  Also, on the surface of the sandy layer, benthic organisms such as fish including benthic foods such as sea bream, flatfish, kiss, goby, magoti and tongue flakes, and shellfish such as larvae and scallops are bred.

図4は魚介類育成エリアの増大目的で図2の水路部分を3連結した変形例である。  FIG. 4 is a modification in which three waterway portions in FIG. 2 are connected for the purpose of increasing the seafood breeding area.

図5は魚介類育成エリアの更なる増大を目的として図2の基本的構成を前後左右に多数連結した変形例である。  FIG. 5 is a modified example in which a large number of the basic configurations of FIG.

参考例1Reference example 1

図6は図2の水路部分から砂質層Cのみを取り去った構成であり、藻場礁を形成する緩斜面において稚貝類を食性としない岩礁性底棲魚類及び、アワビ、トコブシ、イセエビ、サザエ、ウニ等の無脊椎動物のみの育成に用いる。  FIG. 6 shows a structure in which only the sandy layer C is removed from the water channel portion of FIG. Used for breeding only invertebrates such as sea urchins.

参考例2Reference example 2

図7は魚介類育成エリアの増大を目的として図6の構成を3連結した変形例である。  FIG. 7 is a modified example in which three configurations of FIG. 6 are connected for the purpose of increasing the seafood breeding area.

参考例3Reference example 3

図8は図2の水路部分から緩斜面Bを取り去った砂質層Cのみによる構成であり、砂質層単体での構成では、平坦な海底にして水深を浅く取り、砂質性底棲魚介類の育成とともに高級海苔であるハバ海苔やアサクサ海苔等の栽培も可能とする。また、水深を深くしてホヤ、カキ、ワカメなど延縄式の養殖を可能とする。  FIG. 8 shows a structure composed only of the sandy layer C from which the gentle slope B has been removed from the water channel portion of FIG. 2. In the structure of the sandy layer alone, a flat sea bottom is used to reduce the water depth, As well as cultivating varieties, it is possible to cultivate haba nori and cassava nori that are high-class nori. In addition, it is possible to deepen the water depth and make longline aquaculture such as sea squirts, oysters and seaweed.

参考例4Reference example 4

図9は魚介類育成エリアの増大を目的として図8の構成を3連結した変形例である。  FIG. 9 is a modified example in which three configurations of FIG. 8 are connected for the purpose of increasing the seafood breeding area.

なお魚類の収穫方法は、水路を横断する二枚の刺し網にて囲い込み、適正に成長した生体のみを無傷で生きたまま収穫する。海藻類および貝類の収穫方法は、港湾潜水工事で一般的に行われていて軽装備で長時間潜水の可能な陸上からのエアコンプレッサーとエアホースによるフーカー式潜水にてダイバー作業で行う。労働安全衛生規則による潜水病(減圧症)の適用深度は12メートル以深なのでラグーンの深度をそれ未満の水深に設定することにより一日に8時間まで潜っていられ、さらにドライスーツを着用することにより冬季の潜水作業も快適である。  The fish is harvested by enclosing it with two stabbed nets that cross the waterway, and harvesting only living organisms that have grown properly, intact and alive. The seaweed and shellfish are harvested by divers using the air compressor and air hose from the land, which is generally used in harbor diving work and is capable of diving for a long time with light equipment. The depth of application of diving disease (decompression sickness) according to the occupational safety and health regulations is 12 meters or deeper. By setting the depth of the lagoon to a depth less than that, you can dive for up to 8 hours a day, and by wearing a dry suit Diving work in winter is also comfortable.

以下に補足として本発明によるその他の活用構想例を述べる。  In the following, other utilization concept examples according to the present invention will be described as a supplement.

現在、日本の原子力発電所は、旧ソビエト連邦のチェルノブイリ原発事故の原因であった人為的ミスの影響により、電力の需要に応じて出力を上下させる「負荷追従運転」が出来ない状態に置かれており、常に最大出力付近で運転されている。海水温が下がり熱効率の良い冬季及び日常夜間などの膨大な余剰エネルギーは、東京電力福島第二原子力発電所を例に挙げると毎秒300トン以上(一日2500万トン以上)もの大量の海水によって熱交換され、冷却に使用された海水は水温を上げられ海に戻されている。この膨大な余剰エネルギーを再利用して取水システム、パイプライン輸送の動力源などに使用し内陸部に広大な海洋牧場や安全な人工の珊瑚礁を実現すれば、原発の立地候補地のコンセンサスを得る可能性も充分期待される。  Currently, the nuclear power plant in Japan is in a state where it cannot perform “load following operation” that raises or lowers the output according to the power demand due to the influence of human error that caused the Chernobyl nuclear accident in the former Soviet Union. It is always operating near the maximum output. The enormous amount of surplus energy, such as in winter and daily nights when the seawater temperature is low and heat is efficient, is heated by a large amount of seawater of more than 300 tons per second (more than 25 million tons per day) for the TEPCO Fukushima Daini Nuclear Power Station. The seawater that has been exchanged and used for cooling is warmed and returned to the sea. Reuse this enormous surplus energy as a power source for intake systems, pipeline transportation, etc. to achieve a vast ocean ranch and a safe artificial reef inland, and gain consensus on potential site for nuclear power plant The possibility is fully expected.

再生可能エネルギーによる海水の電気分解によって、純酸素と純水素を作り出す事が可能になるので、近未来に計画されている次世代エネルギーの水素を貯留する施設を造る。また、水素ステーションのインフラを整備する事も出来、京都議定書によるCDM(クリーン開発メカニズム)に選定される可能性もある。同時に生成された純酸素は医療用や工業用に使われる。また今後、CO2の余剰排出枠の削減が厳しい企業はカーボンオフセットとして途上国を支援し、企業のブランドイメージを向上させるとともに資源を有効に活用することが出来る。  Since it is possible to produce pure oxygen and pure hydrogen by electrolysis of seawater with renewable energy, we will build a facility for storing hydrogen of the next generation energy planned in the near future. In addition, the infrastructure of the hydrogen station can be improved and may be selected as a CDM (Clean Development Mechanism) under the Kyoto Protocol. The pure oxygen produced at the same time is used for medical and industrial purposes. In the future, companies with severe reductions in excess CO2 allowances will be able to support developing countries as carbon offsets, improve corporate brand image and make effective use of resources.

海水中には全ての元素が含まれており、推定で45億トンのウランや600万トンの純金などが含まれている(ウィキペディアより)。近未来に海水から、あらゆる成分を取り出す方法が開発されれば、ほぼ無尽蔵に近い新しい資源が利用出来る。  Seawater contains all elements, with an estimated 4.5 billion tons of uranium and 6 million tons of pure gold (from Wikipedia). If a method for extracting all components from seawater in the near future is developed, new resources that are almost inexhaustible can be used.

日本国内において、現在高齢化により減少傾向にある農業従事者は、全国で相当量の遊休農地を抱えており、スペースが無駄な状態におかれている。
漁業従事者もまた高齢化問題や地球温暖化の影響による漁獲高の減少により生活が脅かされている。農家の遊休スペースを借地などで活用し、漁業者が内陸で本発明による漁業活動を行えば双方の問題は解決する。荒れた海など存在しないので収穫も楽であるし、人件費と費用の掛かる給餌は全く必要ない。
In Japan, farmers who are currently declining due to aging have a considerable amount of idle farmland nationwide, and space is wasted.
Fishermen are also threatened by the decline in catch due to the effects of aging and global warming. If the farmer's idle space is utilized on the leased land and the fisherman carries out the fishing activities according to the present invention inland, both problems will be solved. Since there is no rough sea, harvesting is easy, and labor and costly feeding are not necessary at all.

国連の援助機関や海外協力機関、政府開発援助(ODA)等の有償または無償援助で飢餓問題の残るアフリカ諸国、中国や東南アジア、南米などの沿岸域に本発明を実施し、地球温暖化の影響による水産資源の減少によって拡大する貧困層を救う。  Impacts of global warming by implementing the present invention in coastal areas such as United Nations aid agencies, overseas cooperation agencies, official development assistance (ODA), etc. Rescue the growing poor by reducing fishery resources.

原子力発電所の新設時に、本発明を実施して海棲哺乳類であるイルカの持つ高度な知能を活用し、珊瑚礁を備えたメンタルヘルスリハビリテーション施設を併設する。  When a nuclear power plant is newly established, the present invention will be implemented to utilize the advanced intelligence of a marine mammal, a dolphin, and a mental health rehabilitation facility equipped with a coral reef will be added.

猛毒クラゲの大量発生によりオープンしたばかりの海水浴場が僅か一週間で閉鎖される(2008年夏季日本国内)と言うような、地球温暖化の影響によると思われる異常な事態が既に始まっている。海洋気象もまた年々悪化傾向にある。このような状況を回避するには、内陸の遊休地に広大な人工の海を設ければ鮫などの危険生物のいない安全な子供達の海洋生物学習やスキューバダイビング、マリンフィッシング等の海洋レジャーを可能にし、また周辺に収穫した魚介類を利用した飲食施設や宿泊施設等を設ければ、一大海洋レクリエーションスポットを創ることが可能になる。  An unusual situation that seems to be due to the effects of global warming has already begun, such as a beach that has just opened due to the massive outbreak of highly poisonous jellyfish, which will be closed in a week (in Japan in the summer of 2008). Marine weather is also getting worse year by year. To avoid such a situation, if you have a vast artificial sea in an inland idle land, you can enjoy marine life such as marine life learning, scuba diving, marine fishing, etc. It is possible to create a large marine recreation spot by providing food and beverage facilities and lodging facilities that use seafood harvested in the vicinity.

ジオフロント(大深度地下)構想を活用して50メートル以上の深海を再現し、毛ガニやタラバガニ、キンキ、タラなどの深海性の海棲魚介類や宝石珊瑚の育成、加圧環境下での実験研究施設なども可能である。  Using the Geofront (Deep Underground) concept to reproduce deep seas of 50 meters or more, breeding deep-sea marine seafood such as hair crabs, king crab, kinki, cod, etc., experimenting under pressure Research facilities are also possible.

島嶼や標高の高い地域において本発明を実施する場合、最初に海洋水を最も標高の高い建設予定地に圧送し、以下、自然落下エネルギーを利用してオーバーフロー水を次第に標高の低い場所に送れば落下には動力源を必要とせずに段々畑状の複数の魚介類育成施設を造ることが可能であり、最終的に海際に最も近い建設予定地からオーバーフロー水を海洋に放出すれば復水管は必要としない。  When carrying out the present invention in an island or high altitude area, the ocean water is first pumped to the construction site with the highest altitude, and then the overflow water is gradually sent to a low altitude location using natural fall energy. It is possible to build multiple seafood breeding facilities in the form of terraced fields without the need of a power source for the fall, and if the overflow water is finally discharged from the construction site closest to the seashore, do not need.

近未来に核融合炉が実現し、実用可能となった時、必要な重水素は海水中から取り出すので併設して本発明を実施する。  When a nuclear fusion reactor is realized in the near future and becomes practical, the necessary deuterium is taken out of the seawater, and the present invention is also implemented.

今後原子力発電所や化学プラントなど、大量の海水を冷却材として使用する施設の新設には、本発明を併設して余剰エネルギーや海洋水の有効利用性を高める。  In the future, new facilities that use a large amount of seawater as a coolant, such as nuclear power plants and chemical plants, will be provided with the present invention to increase the effective utilization of surplus energy and ocean water.

例えば、ナショナルジオグラフィック誌日本語版2009年4月号P78からP79掲載の記録的な干ばつで死の湖となり再生不可能になったオーストラリア南東部マレー・ダーリング盆地のボガ湖に本発明を実施する事も考えられる。  For example, the present invention will be implemented in Lake Boga in the Murray Darling Basin, southeastern Australia, which became a lake of death and became unrecoverable due to a record drought published in the National Geographic Magazine April 2009 issue P78-P79. Things can also be considered.

本発明により、食用にならない海藻であるホンダワラ類やアオサ類などを大量に栽培し、バイオエタノールを生産する。  According to the present invention, a large amount of non-edible seaweeds such as Honda Walla and Aosa are cultivated to produce bioethanol.

A 掘削した地盤面、FRPまたはコンクリート等の構造躯体。
B 藻場礁を形成する緩斜面。
C 好、嫌気層を生成する砂質層。
1 深層水取水口
2 表層水取水口
3 深層水取水管
4 表層水取水管
5 深層水チェッキバルブ(逆止弁)
6 表層水チェッキバルブ(逆止弁)
7 深層水流量調整バタフライバルブ
8 表層水流量調整バタフライバルブ
9 ストレートティーズ(フィッティング)
10 エキセントリックレデューサー(フィッティング)
11 海洋水取水メインポンプ
12 海洋水送水管
13 中継ポンプステーション
14 オーバーフロー水出口
15 オーバーフロー水復水管
A Excavated ground surface, FRP or concrete structure such as concrete.
B A gentle slope that forms a seaweed reef.
C Sandy layer that produces good and anaerobic layers.
1 Deep water intake 2 Surface water intake 3 Deep water intake pipe 4 Surface water intake pipe 5 Deep water check valve (check valve)
6 Surface water check valve (check valve)
7 Deep water flow adjustment butterfly valve 8 Surface water flow adjustment butterfly valve 9 Straight teeth (fitting)
10 eccentric reducer (fitting)
11 Marine water intake main pump 12 Ocean water water pipe 13 Relay pump station 14 Overflow water outlet 15 Overflow water condensate pipe

Claims (5)

地上において魚介類の栽培漁業を行うシステムであって、逆台形の断面形状をもつ水路で構成された長円形を基本形状とする周回式の人工ラグーン内に、藻場礁を形成して岩礁性底棲魚介類の育成を行う緩斜面と砂質性底棲魚介類の育成を行う砂質層とを設け、当該ラグーン内にパイプライン輸送による海洋水を循環させる事によって自然界の食物連鎖による海洋生態系を再現し、無給餌で複数種の魚介類を育成すると共に、海洋植物や海棲二枚貝の水質浄化作用と水面面積の増大により温室効果ガスを吸収して食糧生産時のエネルギー効率を改善する事を特徴とする海洋水循環式天然型魚介類育成システム。A system that cultivates fishery products on the ground, and forms a seaweed reef in an orbital artificial lagoon with an elliptical shape composed of a waterway with an inverted trapezoidal cross section. By providing a gentle slope for breeding bottom seafood and a sandy layer for sandy bottom seafood, circulating ocean water by pipeline transportation in the lagoon, the ocean by the natural food chain Reproduce the ecosystem, cultivate multiple types of seafood without feeding, and improve the energy efficiency during food production by absorbing greenhouse gases through the purification of water and the surface area of marine plants and bivalve bivalves. A marine water circulation type natural seafood breeding system characterized by 前記緩斜面は、海藻遊走子類の着定基質を備えると共に潮間帯の岩礁地帯を模した造形を持ち、光合成を効率良く行う為の0度より大きく30度までの緩やかなスロープを持つ岩礁性底棲魚介類の育成エリアを備え、当該着定基質は海藻の胞子類を着定させて人工の藻場礁を形成する事を特徴とする請求項1記載の海洋水循環式天然型魚介類育成システム。The gentle slope has a substrate for setting seaweed zoospores and has a shape resembling a reef zone in the intertidal zone. It has a gentle slope from 0 to 30 degrees for efficient photosynthesis. A marine water circulation type natural seafood breeding according to claim 1, comprising an area for breeding bottom seafood, wherein the settlement substrate settles seaweed spores to form an artificial seaweed reef. system. 前記砂質層は、海草及び海藻栽培と砂質性底棲魚介類の育成エリアであると共に、好気バクテリア及び嫌気バクテリアの自然発生に由来する好気層並びに嫌気層を生成して硝化還元作用に基づく窒素循環を促すことを特徴とする請求項1又は2記載の海洋水循環式天然型魚介類育成システムThe sandy layer is a cultivation area for seaweed and seaweed cultivation and sandy bottom shark seafood, and generates aerobic and anaerobic layers derived from the natural generation of aerobic bacteria and anaerobic bacteria to nitrify and reduce. 3. A marine water circulation type natural fish and shellfish breeding system according to claim 1 or 2, wherein the nitrogen circulation based on the water is promoted. 前記海洋水は海洋亜表層の有光層水と補償深度以深の無光層水とを別々に取水及び混合し、水深の違いによる温度差を利用して魚介類の天然の成育場所と同様の適正水温範囲に調整する事を特徴とする請求項1乃至3のいずれか一項に記載の海洋水循環式天然型魚介類育成システムThe ocean water is the same as the natural growth place of seafood using the temperature difference due to the difference in water depth by separately taking and mixing the light layer water of the ocean subsurface layer and the non-light layer water below the compensation depth. The marine water circulation type natural seafood breeding system according to any one of claims 1 to 3, wherein the water temperature is adjusted to an appropriate water temperature range. 前記周回式人工ラグーン内に導入する海洋水の取水ポンプシステム、パイプライン輸送システムに係る中継ポンプ、人工ラグーン内の水流発生用水中ポンプ、通電式電気防食等の主動力源は、再生可能エネルギーである事を特徴とする請求項1乃至4のいずれか一項に記載の海洋水循環式天然型魚介類育成システムThe main power sources such as the ocean water intake pump system to be introduced into the revolving artificial lagoon, the relay pump related to the pipeline transportation system, the submersible pump for generating water flow in the artificial lagoon, and the energization type anticorrosion are renewable energy. The marine water circulation type natural seafood breeding system according to any one of claims 1 to 4, wherein there is a certain thing.
JP2009173664A 2009-07-03 2009-07-03 Ocean water circulation type natural seafood breeding system Expired - Fee Related JP4783933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009173664A JP4783933B2 (en) 2009-07-03 2009-07-03 Ocean water circulation type natural seafood breeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009173664A JP4783933B2 (en) 2009-07-03 2009-07-03 Ocean water circulation type natural seafood breeding system

Publications (2)

Publication Number Publication Date
JP2011010645A JP2011010645A (en) 2011-01-20
JP4783933B2 true JP4783933B2 (en) 2011-09-28

Family

ID=43590098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173664A Expired - Fee Related JP4783933B2 (en) 2009-07-03 2009-07-03 Ocean water circulation type natural seafood breeding system

Country Status (1)

Country Link
JP (1) JP4783933B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102845336A (en) * 2012-08-17 2013-01-02 大连獐子岛渔业集团股份有限公司 Offshore fresh-keeping transportation method and device for fresh seafood
CN103329846A (en) * 2013-05-24 2013-10-02 句容市龙泉大鲵繁殖中心 Fry polyculture slope circulating water giant salamander culture pond
CN104326630A (en) * 2014-10-27 2015-02-04 叶剑 Culture system and culture method for culturing aquatic product by using circulating water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103355230B (en) * 2013-07-03 2014-09-24 巫溪县农业委员会 Schizothorax intensified and quick breeding method
CN106336015A (en) * 2016-10-26 2017-01-18 国家海洋局北海预报中心 Biological compound system and method for treating low-temperature high-nutritive-salt waste aquaculture seawater

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818473U (en) * 1981-07-28 1983-02-04 トウカイジイア−ルシ−株式会社 fish tank
JPH10117630A (en) * 1996-10-23 1998-05-12 Masahiro Okamura Aquatic animal and plant breeding method and water tank for breeding aquatic animal and plant
JP2003284449A (en) * 2002-03-29 2003-10-07 Toshiba Corp Culturing system
JP3840249B2 (en) * 2005-01-18 2006-11-01 株式会社陸上養殖工学研究所 Closed circulation aquaculture equipment
JP4942070B2 (en) * 2005-09-30 2012-05-30 八雲町 Breeding facilities using deep ocean water and water quality adjustment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102845336A (en) * 2012-08-17 2013-01-02 大连獐子岛渔业集团股份有限公司 Offshore fresh-keeping transportation method and device for fresh seafood
CN103329846A (en) * 2013-05-24 2013-10-02 句容市龙泉大鲵繁殖中心 Fry polyculture slope circulating water giant salamander culture pond
CN104326630A (en) * 2014-10-27 2015-02-04 叶剑 Culture system and culture method for culturing aquatic product by using circulating water

Also Published As

Publication number Publication date
JP2011010645A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
New Farming freshwater prawns: a manual for the culture of the giant river prawn (Macrobrachium rosenbergii)
JP4783933B2 (en) Ocean water circulation type natural seafood breeding system
CN107018889A (en) A kind of Combined multifunctional artificial algal reef
KR200485957Y1 (en) Aquarium sea cucumbers using the land aquatic plant
CN105557569A (en) Pond culture method for Mastacembelus armatus
Bobat et al. Zebra mussel and fouling problems in the Euphrates Basin
Gökalp et al. Design for large-scale maricultures of the Mediterranean demosponge Chondrosia reniformis Nardo, 1847 for collagen production
CN102715103A (en) Biomimetic nest type high-energy water super-high density intensive soilless hairy crab storage and culture device
KR101286078B1 (en) Submerged cage facility for sea cucumber
Jadhav Aquaculture technology and environment
JPH08107732A (en) Culture of fishes and shellfishes
Callaway et al. Wave and tidal range energy devices offer environmental opportunities as artificial reefs
US20070181072A1 (en) Integrated system of shellfish production and utilization #2
Daniel Aquaculture using cold OTEC water
Kitto et al. Business aquaculture in Kuwait–challenges and solutions
Hargrave Impacts of man’s activities on aquatic systems
Loka et al. Training manual on Open sea cage culture
KR100429781B1 (en) Method for controlling algal bloom by using natural enemies
Rajasekar et al. Development of hatchery technology for marine ornamental damsel fishes with special reference to in captivity
Jak et al. Outline of concepts for aquaculture on floating modular islands: D8. 1
Kasim Artificial reefs and their possible role in ecosystem restoration and enhancement of marine fish production
CN207235725U (en) A kind of Combined multifunctional artificial algal reef
Koizumi Design of a Viability Test for Freshwater Prawn Aquaculture of Two Different Macrobrachium Species in Aneityum, Vanuatu
Kaempf An Independent Expert Assessment of the Viability of the Planned Port Lincoln Desalination Plant
Wright et al. Algoa Bay Sea-based Aquaculture Development Zone. Dispersion Modelling Study for Algoa 1 and Algoa 7–February 2019

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4783933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees