[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4783439B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP4783439B2
JP4783439B2 JP2009010501A JP2009010501A JP4783439B2 JP 4783439 B2 JP4783439 B2 JP 4783439B2 JP 2009010501 A JP2009010501 A JP 2009010501A JP 2009010501 A JP2009010501 A JP 2009010501A JP 4783439 B2 JP4783439 B2 JP 4783439B2
Authority
JP
Japan
Prior art keywords
injection
hole
collision
plate member
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009010501A
Other languages
Japanese (ja)
Other versions
JP2009079598A (en
Inventor
良雄 岡本
英二 石井
正浩 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2009010501A priority Critical patent/JP4783439B2/en
Publication of JP2009079598A publication Critical patent/JP2009079598A/en
Application granted granted Critical
Publication of JP4783439B2 publication Critical patent/JP4783439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は、内燃機関に燃料を噴射する燃料噴射弁に係り、微粒化に優れた燃料噴霧を形成する技術に関するものである。   The present invention relates to a fuel injection valve that injects fuel into an internal combustion engine, and relates to a technique for forming a fuel spray excellent in atomization.

一般に、自動車用エンジン等に用いられる燃料噴射弁は、軸方向に燃料通路が設けられた筒状のノズル部と、該ノズル部の先端部内周側に設けられた噴孔を囲んで内周側に弁座が設けられた弁座部材と、前記ノズル部の燃料通路内に挿通して設けられた基端側が吸着部となり先端側が弁部となった弁体と、前記ノズル部の基端側に設けられて通電することによって該弁体の吸着部を吸引し該弁体を開弁する電磁アクチュエータとから構成されている。
燃料噴射弁では燃料消費量の低減、燃焼の未燃ガス成分(HC、CO)の排出量の低減、エンジンの安定した運転性能等の観点から燃料の微粒化が重要な要素の1つである。
In general, a fuel injection valve used in an automobile engine or the like has a cylindrical nozzle portion provided with a fuel passage in the axial direction and an inner peripheral side surrounding a nozzle hole provided on the inner peripheral side of the tip portion of the nozzle portion. A valve seat member provided with a valve seat; a valve body in which a proximal end side inserted into the fuel passage of the nozzle portion is an adsorption portion and a distal end side is a valve portion; and a proximal end side of the nozzle portion And an electromagnetic actuator that attracts the adsorbing portion of the valve body and opens the valve body when energized.
In fuel injection valves, atomization of fuel is one of the important factors from the viewpoints of reducing fuel consumption, reducing emissions of unburned gas components (HC, CO) of combustion, stable engine performance, etc. .

このような内燃機関の燃料噴射弁の例として、ノズル部の先端部に位置して弁座部材を覆うプレート部材が設けられ、その中央側には、流出する燃料を微粒化して噴射する複数の噴射孔が形成されているものがある(特許文献1参照)。このものでは、ノズル孔を小さく(孔長さと孔径の比を小さく)して流速を早めることが微粒化向上にとって有効であるが、反面所望の流量を確保するためにはノズル孔数を増やす必要がある。しかしながら、限られた寸法内で孔数を増やすと隣接する噴霧同士が接近することになり、噴霧同士が重なり合って粒子の再結合が生ずる。粒子の再結合が生じると粒径が増大してしまうことになり、微粒化に限界を生じていた。   As an example of such a fuel injection valve of an internal combustion engine, a plate member that covers the valve seat member is provided at the tip of the nozzle portion, and at the center side, a plurality of fuels that atomize and inject outflowing fuel are provided. Some have injection holes (see Patent Document 1). In this case, it is effective to improve the atomization by reducing the nozzle hole (reducing the ratio between the hole length and the hole diameter) and speeding up the flow, but it is necessary to increase the number of nozzle holes to ensure the desired flow rate. There is. However, increasing the number of pores within a limited size will cause adjacent sprays to approach each other, causing the sprays to overlap and cause particle recombination. When the recombination of particles occurs, the particle size increases, which limits the atomization.

一方、噴霧の微粒化を促進するために、2個以上の噴射孔からの噴射流を前方で互いに衝突させる孔組を複数設けることにより、粒径を小さくするなどの制御を行っているものがある(特許文献2参照)。このケースでは、衝突する噴射流の直進性を重んじており、その噴射流の速度や相対角度を大きくすることにより粒径を小さくしている。   On the other hand, in order to promote atomization of the spray, what controls the particle size is reduced by providing a plurality of hole sets that collide each other with the jet flow from two or more jet holes in front. Yes (see Patent Document 2). In this case, the straightness of the impinging jet flow is important, and the particle size is reduced by increasing the speed and relative angle of the jet flow.

特開2002−534638号公報JP 2002-534638 A 特開2002−28024号公報JP 2002-28024 A

上記従来技術のように、粒径を小さくするためには噴射燃料流の衝突速度や相対角度を大きくして衝突のエネルギーを大きくするが、反面得られた噴霧は飛散してしまう傾向にあり、これを抑制しなければならないという問題がある。燃料噴射弁は様々な流量条件下において微粒化性能に優れ、しかも噴霧の飛散がなくその噴射方向が定まった特性を有することも合わせて要求される。   As in the above prior art, in order to reduce the particle size, the collision speed and relative angle of the injected fuel flow are increased to increase the energy of the collision, but the obtained spray tends to scatter, There is a problem that this must be suppressed. The fuel injection valve is also required to be excellent in atomization performance under various flow conditions, and to have a characteristic that the spray direction is fixed without scattering of spray.

また一方、筆者らの実験解析から次のようなことが判明している。燃料噴霧の噴射方向は、内燃機関の吸気弁上に指向されると良く、しかもその皿部上に適度に分散させると良い燃焼結果が得られている。より好ましい方法は、吸気弁中心位置よりも内側方向に燃料噴霧濃度を濃くする(燃料噴霧中の大きい粒子群が向かっても良い)ことであり、機関の点火を確実に行わせしめ燃焼を安定化させる。これによって、燃料消費量の低減や燃焼の未燃ガス成分(HC、CO)の排出量の効果的な低減が可能となる。   On the other hand, the following has been found from our experimental analysis. The injection direction of the fuel spray is preferably directed on the intake valve of the internal combustion engine, and a good combustion result is obtained when the fuel spray is appropriately dispersed on the plate portion. A more preferable method is to increase the fuel spray concentration inward of the center position of the intake valve (large particles in the fuel spray may be directed), which ensures ignition of the engine and stabilizes combustion. Let As a result, it is possible to reduce the amount of fuel consumption and the amount of combustion unburned gas components (HC, CO) emitted effectively.

本発明は、このような背景を踏まえて課題解決がなされるもので、その目的は、燃料噴射弁の噴射流量を十分に確保しつつ微粒化性能に優れた噴霧を形成すると共に、微粒化噴霧の飛散防止が可能な噴霧特性を有する燃料噴射弁および燃料噴射方法を提供することを目的とする。   The present invention solves the problem based on such a background, and its purpose is to form a spray with excellent atomization performance while ensuring a sufficient injection flow rate of the fuel injection valve, and to atomize the spray. It is an object of the present invention to provide a fuel injection valve and a fuel injection method having spray characteristics that can prevent scattering of the fuel.

本発明は、板厚方向に貫通する複数の噴射孔を有するプレート部材と、該プレート部材の上流側に位置する弁座と、該弁座との間で燃料通路開閉を行う弁体と、該弁体を駆動する駆動装置を備えた燃料噴射弁において、
前記プレート部材(11)に形成された複数の噴孔(41,45)を有する第一の噴射孔組と、
前記燃料噴射弁の中心軸に対して該第一噴射孔組の外側であって、燃料の噴射流が噴射方向下流で互いに衝突するように前記プレート部材に形成された複数の衝突噴孔(40A、40B、42A、42B,44A、44B、46A、46B)を有する複数の第二の噴射孔組(40、42、44、46)と、
を備えた燃料噴射弁であって、
前記複数の第二の噴射孔組における衝突噴孔の衝突後の噴射方向(P−P)(Q−Q)がそれぞれ互いに異なり、前記第一の噴射孔組の燃料噴射方向(X−X)は、前記第二の噴射孔組の衝突後の噴射方向(P−P)(Q−Q)よりも前記燃料噴射弁の中心軸側に指向しているとともに、
前記噴孔の孔径に対する噴孔が形成されたプレート部材の板厚の比が、前記衝突噴孔の孔径に対する衝突噴孔が形成されたプレート部材の板厚の比よりも小さくなるよう設定された燃料噴射弁を提供する。
The present invention includes a plate member having a plurality of injection holes penetrating in the plate thickness direction, a valve seat positioned upstream of the plate member, a valve body for opening and closing a fuel passage between the valve seat, In a fuel injection valve provided with a drive device for driving a valve body,
A first injection hole set having a plurality of injection holes (41, 45) formed in the plate member (11);
A plurality of collision injection holes (40A) formed in the plate member so that the fuel injection flows collide with each other downstream of the first injection hole set with respect to the central axis of the fuel injection valve. 40B, 42A, 42B, 44A, 44B, 46A, 46B), a plurality of second injection hole sets (40, 42, 44, 46),
A fuel injection valve comprising:
The injection directions (PP) (QQ) after the collision of the collision nozzle holes in the plurality of second injection hole groups are different from each other, and the fuel injection direction (XX) of the first injection hole group is different from each other. Is directed to the center axis side of the fuel injection valve with respect to the injection direction (PP) (QQ) after the collision of the second injection hole set,
The ratio of the plate thickness of the plate member in which the nozzle hole is formed to the hole diameter of the nozzle hole is set to be smaller than the ratio of the plate thickness of the plate member in which the collision nozzle hole is formed to the hole diameter of the collision nozzle hole. A fuel injection valve is provided.

本発明は、板厚方向に貫通する複数の噴射孔を有するプレート部材と、該プレート部材の上流側に位置する弁座と、該弁座との間で燃料通路の開閉を行う弁体と、該弁体を駆動する駆動装置を備えた燃料噴射弁において、
前記プレート部材(11)に形成された複数の噴孔(41,45)を有する第一の噴射孔組と、
前記燃料噴射弁の中心軸に対して該第一噴射孔組の外側であって、燃料の噴射流が噴射方向下流で互いに衝突するように前記プレート部材に形成された複数の衝突噴孔(40A、40B、42A、42B,44A、44B、46A、46B)を有する複数の第二の噴射孔組(40、42、44、46)と、
を備えた燃料噴射弁であって、
前記複数の第二の噴射孔組における衝突噴孔の衝突後の噴射方向(P−P)(Q−Q)がそれぞれ互いに異なり、前記第一の噴射孔組の噴孔の軸(X−X)は、前記第二の噴射孔組の衝突後の噴射方向(P−P)(Q−Q)よりも前記燃料噴射弁の中心軸側に近づいているとともに、
前記噴孔の孔径と噴孔が形成されたプレート部材の板厚の比が、前記衝突噴孔の孔径に対する衝突噴孔が形成されたプレート部材の板厚の比よりも小さくなるよう設定された燃料噴射弁を提供する。
The present invention includes a plate member having a plurality of injection holes penetrating in the plate thickness direction, a valve seat positioned on the upstream side of the plate member, and a valve body that opens and closes a fuel passage between the valve seat, In a fuel injection valve provided with a drive device for driving the valve body,
A first injection hole set having a plurality of injection holes (41, 45) formed in the plate member (11);
A plurality of collision injection holes (40A) formed in the plate member so that the fuel injection flows collide with each other downstream of the first injection hole set with respect to the central axis of the fuel injection valve. 40B, 42A, 42B, 44A, 44B, 46A, 46B), a plurality of second injection hole sets (40, 42, 44, 46),
A fuel injection valve comprising:
The injection directions (PP) (QQ) after the collision of the collision nozzle holes in the plurality of second injection hole groups are different from each other, and the axis (XX) of the nozzle holes of the first nozzle hole group ) Is closer to the central axis side of the fuel injection valve than the injection direction (PP) (QQ) after the collision of the second injection hole set,
The ratio of the hole diameter of the nozzle hole to the plate thickness of the plate member in which the nozzle hole is formed was set to be smaller than the ratio of the plate thickness of the plate member in which the collision nozzle hole was formed to the hole diameter of the collision nozzle hole. A fuel injection valve is provided.

本発明は、板厚方向に貫通する複数の噴射孔を有するプレート部材と、該プレート部材の上流側に位置する弁座と、該弁座との間で燃料通路の開閉を行う弁体と、該弁体を駆動する駆動装置を備え、吸気弁装置のステムへ向けて燃料を噴射する燃料噴射弁において、
前記プレート部材(11)に形成された複数の噴孔(41,45)を有する第一の噴射孔組と、
前記燃料噴射弁の中心軸に対して該第一噴射孔組の外側であって、燃料の噴射流が噴射方向下流で互いに衝突するように前記プレート部材に形成された複数の衝突噴孔(40A、40B、42A、42B,44A、44B、46A、46B)を有する複数の第二の噴射孔組(40、42、44、46)と、
を備えた燃料噴射弁であって、
前記複数の第二の噴射孔組における衝突噴孔の衝突後の噴射方向(P−P)(Q−Q)がそれぞれ互いに異なり、前記第一の噴射孔組の噴孔の軸(X−X)は、前記第二の噴射孔組の衝突後の噴射方向(P−P)(Q−Q)よりも前記吸気弁装置のステムの内側に近づいているとともに、
前記噴孔の孔径に対する噴孔が形成されたプレート部材の板厚の比が、前記衝突噴孔の孔径に対する衝突噴孔が形成されたプレート部材の板厚の比よりも小さくなるよう設定された燃料噴射弁を提供する。
The present invention includes a plate member having a plurality of injection holes penetrating in the plate thickness direction, a valve seat positioned on the upstream side of the plate member, and a valve body that opens and closes a fuel passage between the valve seat, In a fuel injection valve that includes a drive device that drives the valve body and injects fuel toward the stem of the intake valve device,
A first injection hole set having a plurality of injection holes (41, 45) formed in the plate member (11);
A plurality of collision injection holes (40A) formed in the plate member so that the fuel injection flows collide with each other downstream of the first injection hole set with respect to the central axis of the fuel injection valve. 40B, 42A, 42B, 44A, 44B, 46A, 46B), a plurality of second injection hole sets (40, 42, 44, 46),
A fuel injection valve comprising:
The injection directions (PP) (QQ) after the collision of the collision nozzle holes in the plurality of second injection hole groups are different from each other, and the axis (XX) of the nozzle holes of the first nozzle hole group ) Is closer to the inside of the stem of the intake valve device than the injection direction (PP) (QQ) after the collision of the second injection hole set,
The ratio of the plate thickness of the plate member in which the nozzle hole is formed to the hole diameter of the nozzle hole is set to be smaller than the ratio of the plate thickness of the plate member in which the collision nozzle hole is formed to the hole diameter of the collision nozzle hole. A fuel injection valve is provided.

本発明の燃料噴射弁によれば、複数個の噴孔を有するプレート部材の該噴孔の孔長さと孔径の比が少なくとも1つ以上は相異なるように組み合わせてなり、これらの孔組が2つの異なる方向に燃料噴射を行うようにした。得られる噴霧は外側に微粒化された噴霧を有し、内側に貫通力の強い噴霧を有してなり、この内側の貫通力の強い噴霧の牽引効果により噴霧の飛散を抑制できる。
また、このような噴霧構造体を形成するノズル孔集合体は微粒化性能を損なうことなく大きな流量を確保でき、その性能や設計自由度を高めることができる。
According to the fuel injection valve of the present invention, the plate member having a plurality of nozzle holes is combined such that the ratio of the hole length and the hole diameter of the nozzle holes is different from each other. Fuel injection was performed in two different directions. The resulting spray has an atomized spray on the outside and a spray having a strong penetrating force on the inside, and spraying of the spray can be suppressed by the traction effect of the spray having a strong penetrating force on the inside.
Further, the nozzle hole assembly forming such a spray structure can secure a large flow rate without impairing the atomization performance, and can enhance the performance and the degree of design freedom.

さらに、本発明の燃料噴射弁を搭載した内燃機関にあっては、内側にある貫通力の強い噴霧が吸気弁ステム内側に指向され、周辺の微粒化の良い噴霧が吸気弁皿部内に収まるように指向されるので、吸気通路やシリンダ内壁面への燃料付着が避けられ燃焼性能が著しく向上し、未燃ガス成分(HC、CO)の排出を大幅に低減できる。   Further, in the internal combustion engine equipped with the fuel injection valve of the present invention, the spray having a strong penetrating force on the inside is directed to the inside of the intake valve stem so that the spray having a good atomization in the periphery is contained in the intake valve plate. Therefore, the fuel can be prevented from adhering to the intake passage and the inner wall surface of the cylinder, the combustion performance is remarkably improved, and the emission of unburned gas components (HC, CO) can be greatly reduced.

本実施例は、板厚方向に貫通する複数の噴射孔を有するプレート部材と、該プレート部材の上流側に位置する弁座と、該弁座との間で燃料通路の開閉を行う弁体と、該弁体を駆動する駆動手段とを備えた燃料噴射弁において、前記プレート部材は噴射孔下流で所望方向に向けられた複数個の非衝突の孔を有するものであって、内側の所望範囲に配置される複数個の噴孔の板厚と孔径の比が、該外側に配置される複数個の噴孔の同比より大きくなるように構成した。   In this embodiment, a plate member having a plurality of injection holes penetrating in the plate thickness direction, a valve seat positioned on the upstream side of the plate member, and a valve body for opening and closing the fuel passage between the valve seat and In the fuel injection valve comprising the driving means for driving the valve body, the plate member has a plurality of non-collision holes directed in a desired direction downstream of the injection holes, and has an inner desired range. The ratio of the plate thickness and the hole diameter of the plurality of nozzle holes arranged in the nozzle is configured to be larger than the ratio of the plurality of nozzle holes arranged on the outside.

これにより、内側の噴孔により得られる指向性の強い噴霧(貫通力の強い噴霧)と、外側の噴孔により得られる微粒化の良い噴霧が形成されると共に、該微粒化噴霧が前記指向性の強い噴霧を囲うように形成し、該貫通力の強い噴霧により微粒化噴霧を牽引して、噴霧の飛散のない噴霧構造体とすることができる。   As a result, a highly directional spray obtained by the inner nozzle hole (a spray having a strong penetrating force) and a fine atomized spray obtained by the outer nozzle hole are formed, and the atomized spray is formed by the directivity. The spray structure is formed so as to surround the strong spray, and the atomized spray is pulled by the spray having a strong penetrating force so that the spray structure does not scatter the spray.

また本実施例は、板厚方向に貫通する複数の噴射孔を有するプレート部材と、該プレート部材の上流側に位置する弁座と、該弁座との間で燃料通路の開閉を行う弁体と、該弁体を駆動する駆動手段とを備えた燃料噴射弁において、前記プレート部材には噴射孔下流で互いに衝突する対の孔と、所望方向に噴射される非衝突の孔とが複数個配置され、前者の衝突孔の板厚と径の比が後者の非衝突孔の板厚と径の比より大きくなるように構成した。   Further, in this embodiment, a plate member having a plurality of injection holes penetrating in the plate thickness direction, a valve seat positioned on the upstream side of the plate member, and a valve body for opening and closing the fuel passage between the valve seats And a drive means for driving the valve body, wherein the plate member has a plurality of pairs of holes that collide with each other downstream of the injection holes and non-collision holes that are injected in a desired direction. The ratio of the thickness and diameter of the former collision hole is larger than that of the latter non-collision hole.

これにより、内側の非衝突の噴孔により得られる貫通力の強い噴霧と、外側の互いに衝突する対の噴孔により得られる微粒化の良い噴霧が形成されると共に、該微粒化噴霧を前記貫通力の強い噴霧により牽引して、噴霧の飛散のない噴霧構造体を形成できる。
そして、本実施例は、前記プレート部材に設けた複数個の噴孔は左右対称となるように配置され、噴射孔下流で2つの異なる方向に噴射される2組の孔組集合体となるよう構成した。
As a result, a spray with strong penetrating force obtained by the inner non-collision nozzle hole and a spray with good atomization obtained by the pair of outer nozzle holes colliding with each other are formed, and the atomization spray is passed through the penetrating nozzle. It is possible to form a spray structure that is pulled by strong spray and has no spray scattering.
In this embodiment, the plurality of injection holes provided in the plate member are arranged so as to be symmetrical, so that two sets of hole assemblies are injected downstream of the injection holes in two different directions. Configured.

これにより、微粒化の良い噴霧を2方向に生じさせることができる。また、このようなノズル孔組集合体により、噴射量が大きくなっても互いに重なり合うことがないように噴射方向を定めることができる。   Thereby, spray with good atomization can be generated in two directions. Further, with such a nozzle hole assembly, it is possible to determine the injection direction so as not to overlap each other even if the injection amount increases.

さらに本実施例は、複数個の吸気ポートを開閉する吸気弁装置と、該吸気弁装置の上流側に配置され、エンジン制御装置からの制御信号に基づいて駆動される燃料噴射弁とを備え、前記吸気弁装置により制御される吸入空気と前記燃料噴射弁から噴射される燃料噴霧とを、共に燃焼室内に送り込む構成の燃料噴射装置を用いた燃料噴射方法において、前記燃料噴射弁は、請求項1乃至項のいずれかに記載された複数個の噴霧構造体を形成するものであり、該噴霧構造体は吸気弁装置の皿部内に収まるように指向されるような燃料噴射方法とした。 Further, the present embodiment includes an intake valve device that opens and closes a plurality of intake ports, and a fuel injection valve that is arranged on the upstream side of the intake valve device and is driven based on a control signal from the engine control device, In the fuel injection method using the fuel injection device configured to send both the intake air controlled by the intake valve device and the fuel spray injected from the fuel injection valve into a combustion chamber, the fuel injection valve includes: A plurality of spray structures described in any one of items 1 to 3 are formed, and the fuel injection method is configured such that the spray structures are oriented so as to be accommodated in the dish portion of the intake valve device.

これにより、吸気管内壁面等への燃料付着が防止されると共に、吸気弁中心位置よりも内側方向に噴射した貫通力の強い噴霧(燃料濃度が濃い噴霧)によって、機関の点火を確実に行わせしめることができ、以って燃焼を安定化させ、燃料消費量の低減や燃焼の未燃ガス成分(HC、CO)の排出量の効果的な低減が可能となる。   This prevents fuel from adhering to the inner wall surface of the intake pipe, etc., and ensures that the engine is ignited by a spray with a strong penetration force (a spray with a high fuel concentration) injected inward from the center position of the intake valve. Thus, combustion can be stabilized, and the fuel consumption can be reduced and the emission amount of unburned gas components (HC, CO) of combustion can be effectively reduced.

以下、この発明の最良の実施形態について図1乃至図4及び図8を参照しながら説明する。図1は本発明の燃料噴射弁の構造を示す縦断面図、図2は本発明の実施例1に係るノズル部を示す部分拡大断面図、図3はプレート部材11の中央部を拡大して示す要部拡大図、図4は左右の孔組より噴射される2方向の噴霧構造体を示す噴射弁の部分拡大断面図である。図8はノズル孔部の板厚tと孔径dとの寸法比によって示される噴霧特性の一例を示している。   Hereinafter, the best embodiment of the present invention will be described with reference to FIGS. 1 to 4 and FIG. 1 is a longitudinal sectional view showing a structure of a fuel injection valve according to the present invention, FIG. 2 is a partially enlarged sectional view showing a nozzle portion according to Embodiment 1 of the present invention, and FIG. 3 is an enlarged central portion of a plate member 11. FIG. 4 is a partial enlarged cross-sectional view of an injection valve showing a spray structure in two directions injected from the left and right hole sets. FIG. 8 shows an example of spray characteristics indicated by the dimensional ratio between the plate thickness t of the nozzle hole and the hole diameter d.

図1は本発明の燃料噴射弁の一例として、通常時閉型の電磁式燃料噴射弁を示す。(但し、本発明の効果は電磁式燃料噴射弁に限定されるものではない。)
燃料噴射弁1は、電磁コイル9を取り囲む磁性体のヨーク6と、電磁コイル9の中心に位置し一端がヨーク6と接触したコア7と、前記電磁コイル9が励磁されると所定量リフトする弁体3と、この弁体3に対接するシート面10と、弁体3とシート面10の隙間を通って流れる燃料を噴射する燃料噴射室2、および燃料噴射室2の下に複数のノズル孔20、21、23、24を有するプレート部材11を備えている。また、コア7の中心には、弁体3をシート面10に押圧する弾性部材としてのスプリング8が備えてある。コイル9に通電されていない状態においては、弁体3とシート面10とが密着している。燃料は図示しない燃料ポンプによって圧力を付与された状態で燃料供給口より供給され、弁体3とシート面10の密着位置まで燃料噴射弁の燃料噴射室2は燃料で満たされている。コイル9に通電され、磁力によって弁体3が変位して、ノズル部4に設けたシート面10から離れると、燃料は燃料噴射室2で軸中心付近に集約されたのち、プレート部材11に沿って流れて、複数のノズル孔20、21、23、24(後述)より噴射された噴霧構造体30A、31Aがエンジンの吸気ポート等に向けて噴射される構造になっている。
FIG. 1 shows a normally closed electromagnetic fuel injection valve as an example of the fuel injection valve of the present invention. (However, the effect of the present invention is not limited to the electromagnetic fuel injection valve.)
The fuel injection valve 1 lifts a predetermined amount when the magnetic coil 6 surrounding the electromagnetic coil 9, the core 7 positioned at the center of the electromagnetic coil 9 and having one end in contact with the yoke 6, and the electromagnetic coil 9 is excited. A valve body 3, a seat surface 10 in contact with the valve body 3, a fuel injection chamber 2 that injects fuel flowing through a gap between the valve body 3 and the seat surface 10, and a plurality of nozzles below the fuel injection chamber 2 A plate member 11 having holes 20, 21, 23 and 24 is provided. A spring 8 is provided at the center of the core 7 as an elastic member that presses the valve body 3 against the seat surface 10. When the coil 9 is not energized, the valve body 3 and the seat surface 10 are in close contact with each other. The fuel is supplied from the fuel supply port in a state where pressure is applied by a fuel pump (not shown), and the fuel injection chamber 2 of the fuel injection valve is filled with fuel up to the contact position between the valve body 3 and the seat surface 10. When the coil 9 is energized and the valve element 3 is displaced by the magnetic force and leaves the seat surface 10 provided in the nozzle portion 4, the fuel is concentrated in the vicinity of the axial center in the fuel injection chamber 2, and then along the plate member 11. The spray structures 30A, 31A injected from a plurality of nozzle holes 20, 21, 23, 24 (described later) are injected toward an intake port of the engine or the like.

図2は本発明の実施例1に係るノズル部を示す部分拡大断面図である。本発明の特徴は、図3に示すように燃料通路内にあるプレート部材11には、噴射孔下流において所望方向に向かうノズル孔とされた複数個のノズル孔組20、21およびノズル孔23、24(単一のノズル孔のためにいずれも非衝突の孔)を設置していることである。そして本実施形態の場合、複数個のノズル孔のうち、少なくとも1つ以上のノズル孔の該孔長さt´と孔径dとの比が他のノズル孔のそれと異なるというものである。ノズル孔の傾斜はわずかであり、孔長さt´は板厚tに近似させることができる。従って、以後t/dは板厚tに対する孔径で取り扱う。従って、板厚を孔の長さと読み替え得る。プレート部材11の凸部22に形成されるノズル孔組23、24はt/dが大きく、同比の小さいノズル孔組20、21は周辺に配置されている。また、これらのノズル孔組はY軸を挟んで対称に形成されており、ノズル孔組20、23は図の左向きに傾斜した孔であり、ノズル孔組21、24は図の右向きに傾斜した孔である。   FIG. 2 is a partially enlarged cross-sectional view showing the nozzle portion according to the first embodiment of the present invention. The feature of the present invention is that, as shown in FIG. 3, the plate member 11 in the fuel passage has a plurality of nozzle hole sets 20 and 21 and nozzle holes 23 which are nozzle holes directed in a desired direction downstream of the injection holes. 24 (all non-collision holes for a single nozzle hole). In this embodiment, the ratio of the hole length t ′ and the hole diameter d of at least one nozzle hole among the plurality of nozzle holes is different from that of the other nozzle holes. The inclination of the nozzle hole is slight, and the hole length t ′ can be approximated to the plate thickness t. Therefore, hereinafter, t / d is handled as a hole diameter with respect to the plate thickness t. Therefore, the plate thickness can be read as the length of the hole. The nozzle hole sets 23 and 24 formed in the convex portion 22 of the plate member 11 have a large t / d, and the nozzle hole sets 20 and 21 having the same ratio are arranged in the periphery. These nozzle hole sets are formed symmetrically across the Y axis. The nozzle hole sets 20 and 23 are inclined to the left in the figure, and the nozzle hole sets 21 and 24 are inclined to the right in the figure. It is a hole.

次に、これらのノズル孔組によって生成される噴霧形態を、図4を用いて説明する。図4はY軸を挟んで左右の孔組より噴射される2方向の噴霧構造体を示す噴射弁の部分拡大断面図であって、噴孔直下の噴霧形態を模式的に示したものである。   Next, the spray form produced | generated by these nozzle hole groups is demonstrated using FIG. FIG. 4 is a partial enlarged cross-sectional view of an injection valve showing a spray structure in two directions injected from the left and right hole sets across the Y axis, and schematically shows the spray form immediately below the injection hole. .

ノズル孔組20、21にて生成される噴霧は、t/dが小さいので噴射エネルギーが大きく比較的広がりのある微粒化の良い噴霧30a、31aとなる。また、ノズル孔組23、24にて生成される噴霧は、凸部22に配置されることから、t/dが大きくそのために噴射エネルギーが小さくなる。しかし、広がりが小さく貫通力の強い噴霧30b、31bとなる。図8の同図(a)に非衝突型のノズル孔のt/dと噴霧特性(粒径)の関係を示しているが、t/dを大きくすると粒径は大きくなる。すなわち、貫通力の強い噴霧形態となる。   The sprays generated by the nozzle hole sets 20 and 21 are sprays 30a and 31a with good atomization with a large spray energy and relatively wide spread because of a small t / d. Moreover, since the spray produced | generated in the nozzle hole groups 23 and 24 is arrange | positioned at the convex part 22, t / d is large and, therefore, injection energy becomes small. However, the sprays 30b and 31b have a small spread and a strong penetration force. FIG. 8A shows the relationship between the t / d of the non-collision type nozzle hole and the spray characteristics (particle size). When the t / d is increased, the particle size is increased. That is, it becomes a spray form with a strong penetration force.

本実施形態のポイントは、この貫通力の強い噴霧30b、31bの両側を覆うように微粒化された噴霧30a、31aが形成されるために、この貫通力の強い噴霧に牽引されてその飛散を防止できるというものである。そして流下するに従い、互いの噴霧は合わさって噴霧構造体30A、31Aを形成することであり、これにより2方向噴霧が形成される。なお、この噴霧構造体30A、31Aの別なる特徴は、貫通力の強い狭角(本実施例の場合0°)の噴霧が噴射方向を決定していることである。すなわち、エンジンによって異なる種々の噴射方向要求に対して最良の噴霧性能を提供できることになる。   The point of this embodiment is that the sprays 30a and 31a atomized so as to cover both sides of the sprays 30b and 31b having a strong penetrating force are formed. It can be prevented. As they flow down, the sprays are combined to form spray structures 30A, 31A, thereby forming a two-way spray. Note that another feature of the spray structures 30A and 31A is that the narrow-angle spray (0 ° in the present embodiment) having a strong penetrating force determines the injection direction. That is, the best spray performance can be provided for various injection direction requirements that differ depending on the engine.

図5は本発明の実施例2に係るノズル部を示す部分拡大断面図である。本発明は図6に示すように、燃料通路内にあるプレート部材11には噴射孔下流において衝突する対の孔40A、40Bと、所望の方向に向かう単一の孔組41(非衝突)とが設置されている。
そしてこの実施形態の場合、ノズル孔組40は直線P−P線を挟んで対称に形成され、図の左向きに傾斜した2個の孔40A、40Bより構成されている。また、ノズル孔組42はX軸を挟んで対称の位置に形成されており、2個の孔42A、42Bは同じように直線Q−Q線を挟んで対称に形成され、図の左向きに傾斜するように構成されている。さらに、ノズル孔組41はX軸上に形成され、同じように図の左向きに傾斜するように構成されている。
FIG. 5 is a partially enlarged cross-sectional view showing a nozzle portion according to Embodiment 2 of the present invention. In the present invention, as shown in FIG. 6, the plate member 11 in the fuel passage has a pair of holes 40A and 40B that collide downstream of the injection holes, and a single hole set 41 (non-collision) directed in a desired direction. Is installed.
In the case of this embodiment, the nozzle hole set 40 is formed symmetrically across the straight line PP, and is composed of two holes 40A and 40B inclined to the left in the drawing. The nozzle hole set 42 is formed at a symmetrical position with the X axis in between, and the two holes 42A and 42B are formed symmetrically with the straight QQ line in the same manner and tilted to the left in the figure. Is configured to do. Further, the nozzle hole set 41 is formed on the X-axis and is similarly inclined to the left in the drawing.

本実施形態のポイントは、ノズル孔組40、42の板厚tと孔径dの比t/dがノズル孔組41の同比より大きくしてあることである。具体的には、プレート部材11の中心付近に凹部48を形成しており、ノズル孔組40、42はこの部分より外側の板厚が厚くなっている箇所に設けられている。   The point of this embodiment is that the ratio t / d between the plate thickness t and the hole diameter d of the nozzle hole sets 40 and 42 is larger than the same ratio of the nozzle hole set 41. Specifically, a recess 48 is formed in the vicinity of the center of the plate member 11, and the nozzle hole sets 40 and 42 are provided at locations where the plate thickness outside the portion is thicker.

この理由について、再度図8を用いて説明する。同図(b)に衝突型ノズルの噴霧特性を示すが、衝突型ノズルではt/dを大きくすると微粒化性能が向上する。これはt/dを大きくすると噴射方向の定まった燃料流が噴射され、下流の所望の位置で確実に衝突が起こるというものである。噴射燃料の衝突が適確に行われると微粒化度は高められることになる。   The reason for this will be described again with reference to FIG. FIG. 4B shows the spray characteristics of the collision type nozzle. In the collision type nozzle, when t / d is increased, the atomization performance is improved. This is because when t / d is increased, a fuel flow having a fixed injection direction is injected, and a collision occurs reliably at a desired downstream position. When the collision of the injected fuel is accurately performed, the atomization degree is increased.

43は3組のノズル孔組404142により構成されたノズル孔組集合体で、Y軸よりも左側に配置されている。 Reference numeral 43 denotes a nozzle hole set assembly constituted by three nozzle hole sets 40 , 41 , and 42 , and is arranged on the left side of the Y axis.

一方、44、45、46は左側のノズル孔組40、41、42に対してY軸を挟んで対称に形成された3組のノズル孔組で、中央のノズル孔組45はX軸上に配置した単一の孔で右向きに傾斜しており、上側のノズル孔組44は2つの孔44A、44Bにより構成される。下側のノズル孔組46は2つの孔46A、46Bによって構成され、それぞれ噴射孔下流において衝突するように形成されている。   On the other hand, 44, 45 and 46 are three nozzle hole groups formed symmetrically with respect to the left nozzle hole group 40, 41 and 42 across the Y axis, and the central nozzle hole group 45 is located on the X axis. The arranged single hole is inclined rightward, and the upper nozzle hole set 44 is constituted by two holes 44A and 44B. The lower nozzle hole set 46 is constituted by two holes 46A and 46B, which are formed so as to collide with each other downstream of the injection holes.

47は3組のノズル孔組44、45、46により構成された他方のノズル孔組集合体で、Y軸よりも右側に配置されている。   Reference numeral 47 denotes the other nozzle hole set assembly constituted by three nozzle hole sets 44, 45, and 46, which is arranged on the right side of the Y axis.

次に、これらのノズル孔組集合体43、47によって生成される噴霧形態を、図7を用いて説明する。図7はY軸を挟んで左右の孔組より噴射される2方向の噴霧構造体を示す噴射弁の部分拡大断面図であって、噴孔直下の噴霧形態を模式的に示したものである。ノズル孔組40、42にて生成される噴霧は、衝突効果によって比較的広がりのある微粒化の良い噴霧42aとなる。一方、ノズル孔組41にて生成される噴霧は、単一の孔で形成されるので広がりが小さく貫通力の強い噴霧41aとなる。本実施形態のポイントは、この貫通力の強い噴霧41aの外側を覆うように微粒化された噴霧42aが形成されるために、この貫通力の強い噴霧に牽引されてその飛散を防止できるというものである。そして流下するに従い、互いの噴霧は合わさって噴霧構造体43を形成する。この1つの噴霧構造体43aは、図に示すように、左方向の所望位置に向かって噴射される。 Next, the spray form produced | generated by these nozzle hole assembly aggregates 43 and 47 is demonstrated using FIG. FIG. 7 is a partial enlarged cross-sectional view of an injection valve showing a spray structure in two directions injected from the left and right hole sets across the Y axis, and schematically shows the spray form immediately below the injection hole. . The spray generated by the nozzle hole sets 40 and 42 becomes a spray 42a having a relatively wide spread and good atomization due to a collision effect. On the other hand, since the spray generated by the nozzle hole set 41 is formed by a single hole, it becomes a spray 41a having a small spread and a strong penetration force. The point of this embodiment is that the atomized spray 42a is formed so as to cover the outer side of the spray 41a having a strong penetrating force, so that the spray can be prevented by being pulled by the spray having a strong penetrating force. It is. As they flow down, the sprays are combined to form a spray structure 43a. As shown in the drawing, this one spray structure 43a is jetted toward a desired position in the left direction.

Y軸を挟んで形成されるもう1つの噴霧構造体47aは、前記のような作用により、ノズル孔組44及びノズル孔組46に対応する微粒化の良い噴霧46aと、その中心部に生成される広がりが小さく貫通力の強い噴霧45aとよりなる。同じように微粒化された噴霧が牽引され、もう1つの噴霧構造体47aを形成し、図に示すように、右方向の所望位置に向かって噴射される。   Another spray structure 47a formed across the Y axis is generated in the center of the spray hole 46a with good atomization corresponding to the nozzle hole set 44 and the nozzle hole set 46 by the action as described above. The spray 45a has a small spread and a strong penetration force. Similarly atomized spray is pulled to form another spray structure 47a which is sprayed toward the desired position in the right direction as shown.

これにより、2つの噴霧構造体43a、47aを有する2方向噴霧が形成される。この噴霧構造体43a、47aのもう1つの特徴は、噴霧の噴射方向を貫通力の強い噴霧が決定することである。   As a result, a two-way spray having two spray structures 43a and 47a is formed. Another feature of the spray structures 43a and 47a is that the spray having a strong penetrating force determines the spray direction of the spray.

図9に、本発明に係る実施例3のプレート部材50の中央部を拡大して示す要部拡大断面図を示す。本実施形態は、実施例2のプレート部材11の孔配置を別体型で構成したもので、プレート部材50は、板厚が薄いプレート部材51と板厚が厚いプレート部材53よりなる。   FIG. 9 shows an enlarged cross-sectional view of a main part showing an enlarged central part of the plate member 50 of Example 3 according to the present invention. In this embodiment, the hole arrangement of the plate member 11 of the second embodiment is configured as a separate type, and the plate member 50 includes a plate member 51 having a small plate thickness and a plate member 53 having a large plate thickness.

プレート部材53には、噴射孔下流において衝突する孔組55と所望方向に向かう単一の孔組54(非衝突)とが左向きに傾斜し少なくとも1つ以上は形成されている。一方、同じように、噴射孔下流において衝突する孔組57と所望方向に向かう単一の孔組56(非衝突)とが右向きに傾斜するように形成されている。
プレート部材51には、衝突する孔組55、57に対応する孔組55a、57aと単一の孔組54、56に連通する大径なる孔52が形成されている。
In the plate member 53, a hole set 55 that collides downstream of the injection holes and a single hole set 54 (non-collision) directed in a desired direction are inclined leftward, and at least one is formed. On the other hand, similarly, the hole set 57 colliding with the downstream side of the injection hole and the single hole set 56 (non-collision) directed in the desired direction are formed so as to incline to the right.
The plate member 51 is formed with a hole set 55a, 57a corresponding to the colliding hole set 55, 57 and a large diameter hole 52 communicating with the single hole set 54, 56.

本実施形態のポイントは、板厚の減少により孔加工が容易になることであり、これによってコスト低減が図れるというものである。得られる噴霧は、実施例1と同様なものであり、その作用効果も同じものとなる。なお、プレート部材51とプレート部材53の板厚の大小関係は、本実施形態の説明とは逆の組み合わせであっても構わず、噴霧形成を行う上での設計自由度は高いというものである。さらに別体化することにより、上流側のプレート部材は、この場合はプレート部材51になるが、微粒化に都合の良い形状とすることも可能であり設計の自由度を高めている。例えば、面精度を粗くして燃料流れに乱れを付加し微粒化を促進するということなどであり、このような設計事象は同業者において容易に行うことができる。   The point of this embodiment is that hole processing is facilitated by reducing the plate thickness, which can reduce the cost. The obtained spray is the same as that of Example 1, and the effect is also the same. Note that the thickness relationship between the plate member 51 and the plate member 53 may be a combination opposite to that described in the present embodiment, and the degree of design freedom in performing spray formation is high. . Further, by separating, the upstream plate member becomes the plate member 51 in this case, but it is possible to make the shape convenient for atomization, and the degree of freedom of design is increased. For example, the surface accuracy is roughened, the turbulence is added to the fuel flow, and atomization is promoted. Such a design event can be easily performed by those skilled in the art.

図10に、本発明に係る実施例4のプレート部材61の中央部を拡大して示す要部拡大断面図を示す。本実施形態は、実施例2のプレート部材11の孔41、45部分を押圧プレス成形して凹部62を形成し、その部分的の板厚を薄くしたものである。具体的には、深さで数十ミクロンの窪みを設けるというものである。   In FIG. 10, the principal part expanded sectional view which expands and shows the center part of the plate member 61 of Example 4 which concerns on this invention is shown. In this embodiment, the holes 41 and 45 of the plate member 11 of Example 2 are press-press formed to form the recess 62, and the partial plate thickness is reduced. Specifically, a dent of several tens of microns in depth is provided.

プレート部材61には、噴射孔下流において衝突する孔組64と所望方向に向かう単一の孔組63(非衝突)とが左向きに傾斜し少なくとも1つ以上は形成されている。一方、同じように、噴射孔下流において衝突する孔組66と所望方向に向かう単一の孔組65(非衝突)とが右向きに傾斜するように形成されている。   The plate member 61 is formed with at least one or more hole sets 64 that collide downstream of the injection holes and a single hole set 63 (non-collision) that heads in a desired direction and is inclined leftward. On the other hand, the hole set 66 colliding downstream of the injection holes and the single hole set 65 (non-collision) heading in the desired direction are formed so as to incline to the right.

本実施形態のポイントは、前の実施例と同様に、板厚の減少により孔加工が容易になることであり、これによってコスト低減が図れるというものである。得られる噴霧は実施例1と同様なものであり、その作用効果も同じものとなる。なお、種々の噴霧形状を生成する必要からプレス成形部位は本実施形態の範囲にとらわれず、その設置については所望の位置や複数箇所でも構わない。このような設計事象は同業者において容易に行うことができる。   The point of the present embodiment is that, as in the previous example, the hole processing is facilitated by the reduction of the plate thickness, which can reduce the cost. The obtained spray is the same as that of Example 1, and the effect is also the same. In addition, since it is necessary to generate various spray shapes, the press molding site is not limited to the scope of the present embodiment, and the installation may be at a desired position or a plurality of locations. Such a design event can be easily performed by a person skilled in the art.

先の実施例のあっては、単一のノズル孔によって噴霧が非交差衝突であるノズル孔を使用したが、噴霧が交差衝突する形体のノズル孔組であっても交差衝突する角度を狭角とすることによって単一のノズル孔と同様の効果を得、更に燃料を微粒化するという効果が得られる。本実施形態においては、リード噴霧の生成を単一のノズル孔ではなく衝突する噴霧を形成する2つのノズル孔組で形成するというもので、微粒化性能が前者に比べて優れ、かつ貫通力の強い噴霧の形成を維持するという特徴を有している。この例の場合には、リード噴霧が狭角で交差衝突した2つの噴霧によって形成される。   In the previous embodiment, a nozzle hole in which the spray is non-cross-collision by a single nozzle hole was used. However, even if the nozzle hole set has a shape in which the spray cross-collises, the angle of cross-collision is narrow. Thus, the same effect as that of a single nozzle hole can be obtained, and further the effect of atomizing the fuel can be obtained. In this embodiment, the generation of the lead spray is not formed by a single nozzle hole but is formed by two nozzle hole sets that form a colliding spray, and the atomization performance is superior to the former and the penetrating force is improved. It has the characteristic of maintaining the formation of a strong spray. In this example, the lead spray is formed by two sprays that collide with each other at a narrow angle.

図11は、図1に示した本発明に係る燃料噴射弁1を内燃機関に搭載した一例を示すもので、燃料噴射弁より得られる2つの噴霧構造体と、吸気弁装置との関係を示すために機関上部より視た概略図である。   FIG. 11 shows an example in which the fuel injection valve 1 according to the present invention shown in FIG. 1 is mounted on an internal combustion engine, and shows the relationship between two spray structures obtained from the fuel injection valve and the intake valve device. Therefore, it is the schematic seen from the engine upper part.

図に示した内燃機関において、100は多気筒内燃機関の気筒の1つを示しており、101は吸気ポートを開閉する吸気弁装置の弁皿部、102は吸気弁装置の吸気弁ステム、103は吸気ポートを分離する中央隔壁104を有し上流側において連通する吸気通路である。なお105は燃焼室、106は排気弁装置、107は点火装置である。30A、31Aは燃料噴射弁1から噴射される噴霧構造体を模式的に示している。なお、吸気弁装置は図に示されるように2つ並設されている。いわゆる、複吸気式の内燃機関を示している。したがって、燃料噴射弁1からの噴霧構造体30A、31Aは、それぞれの吸気弁装置の皿部101内に向かって噴射されている。このように燃料噴射弁1は、吸気弁装置の上流側に1つ配設される、マルチポイントインジェクション(MPI)システム化された燃料噴射方式を採用している。   In the internal combustion engine shown in the figure, 100 indicates one of the cylinders of the multi-cylinder internal combustion engine, 101 is a valve plate portion of an intake valve device that opens and closes an intake port, 102 is an intake valve stem of the intake valve device, 103 Is an intake passage having a central partition 104 separating the intake ports and communicating on the upstream side. Reference numeral 105 denotes a combustion chamber, 106 denotes an exhaust valve device, and 107 denotes an ignition device. Reference numerals 30 </ b> A and 31 </ b> A schematically show spray structures injected from the fuel injection valve 1. Two intake valve devices are juxtaposed as shown in the figure. A so-called double intake type internal combustion engine is shown. Therefore, the spray structures 30A and 31A from the fuel injection valve 1 are injected toward the dish portion 101 of each intake valve device. As described above, the fuel injection valve 1 employs a fuel injection system that is arranged as a multi-point injection (MPI) system, one disposed upstream of the intake valve device.

本実施形態で特徴的なことは、燃料噴射弁より噴射される微粒化された噴霧30A、31Aが吸気弁装置の皿部101内に向けて噴射され、内側にある貫通力の強い噴霧30b、31bが吸気弁装置のステム102より内方に向けられていることである。これによって、吸気通路やシリンダヘッドの内壁面への燃料液滴の付着が抑制される。特に、貫通力の強い噴霧30b、31bは、点火装置107回りに可燃性混合気を形成するに有効な噴射形態になっている。また、周辺の微粒化性能の良い噴霧30a、31aは、混合気の質や形成状態の向上に有効に作用している。   What is characteristic in this embodiment is that the atomized sprays 30A and 31A injected from the fuel injection valve are injected into the dish portion 101 of the intake valve device, and the spray 30b having a strong penetrating force inside is provided. 31b is directed inward from the stem 102 of the intake valve device. As a result, the adhesion of fuel droplets to the intake passage and the inner wall surface of the cylinder head is suppressed. In particular, the sprays 30b and 31b having a strong penetrating force are effective in forming a combustible air-fuel mixture around the ignition device 107. Further, the peripheral sprays 30a and 31a having good atomization performance effectively act to improve the quality and formation state of the air-fuel mixture.

上記のことより、本発明の燃料噴射弁を備えた内燃機関では、燃料噴射弁から噴射された燃料噴霧の余分な部位への付着が抑制されることから、燃焼の未燃ガス成分(HC、CO)の排出を大幅に低減できる。   From the above, in the internal combustion engine provided with the fuel injection valve of the present invention, since the adhesion of the fuel spray injected from the fuel injection valve to the excessive portion is suppressed, the unburned gas component of combustion (HC, CO) emissions can be greatly reduced.

以上のように、板厚方向に貫通する複数の噴射孔を有するプレート部材と、該プレート部材の上流側に位置する弁座と、該弁座との間で燃料通路の開閉を行う弁体と、該弁体を駆動する駆動装置を備えた燃料噴射弁による燃料噴射方法において、非交差衝突の孔軸延長線を有する噴射孔と、前記プレート部材の内側であって該噴射孔に近接配置され、非交差衝突の孔軸延長線を有する噴射孔とを備え、外側に配置される噴射孔の位置の板厚に対する孔径の比に比べて内側に配置される噴射孔の位置の板厚に対する孔径の比を小さくし、非交差衝突の孔軸延長線を有する噴射孔から噴霧を行い、他方の単一の噴射孔から非交差衝突である単一の噴射を行い、前者の噴霧は吸気弁装置の皿部に、そして後者の噴霧は周囲の噴霧を誘引してリード噴霧として吸気弁装置のステム中心より内側に、それぞれ指向するようにして噴霧構造体を形成するようにした燃料噴射方法が構成される。   As described above, a plate member having a plurality of injection holes penetrating in the plate thickness direction, a valve seat positioned on the upstream side of the plate member, and a valve body that opens and closes the fuel passage between the valve seat and In a fuel injection method using a fuel injection valve provided with a driving device for driving the valve body, an injection hole having a hole axis extension line of non-crossing collision is disposed inside the plate member and in proximity to the injection hole. And a hole diameter with respect to the plate thickness at the position of the injection hole arranged on the inside compared to the ratio of the hole diameter with respect to the plate thickness at the position of the injection hole arranged on the outside The spray is made from the injection hole having the hole axis extension line of the non-crossing collision, and the single spraying which is the non-crossing collision is made from the other single injection hole. The latter spray, and the latter spray, attracts the surrounding spray and leads Fuel injection method as inward from the stem center of the intake valve device, so as to direct each to form a spray structure as is formed.

更に、板厚方向に貫通する複数の噴射孔を有するプレート部材と、該プレート部材の上流側に位置する弁座と、該弁座との間で燃料通路の開閉を行う弁体と、該弁体を駆動する駆動装置を備えた燃料噴射弁による燃料噴射方法において、対をなし、それぞれの孔軸延長線が噴射孔下流で広角で交差衝突する噴射孔と、前記プレート部材の内側であって、該噴射孔に近接配置され、非交差衝突の孔軸延長線を有する噴射孔とを備え、外側に配置される噴射孔の位置の板厚に対する孔径の比に比べて内側に配置される噴射孔の位置の板厚に対する孔径の比を同一もしくは大きくし、対をなす噴射孔からそれぞれの孔軸延長線が噴射孔下流で広角に交差衝突するように噴霧を行い、他方の単一の噴射孔から非交差衝突である単一の噴射を行い、広角の噴霧は吸気弁装置の皿部に、そして狭角の噴霧は周囲の噴霧を誘引してリード噴霧として吸気弁装置のステム中心より内側に、それぞれ指向するようにして噴霧構造体を形成するようにした燃料噴射方法が構成される。   Furthermore, a plate member having a plurality of injection holes penetrating in the plate thickness direction, a valve seat located upstream of the plate member, a valve body for opening and closing a fuel passage between the valve seat, and the valve In a fuel injection method using a fuel injection valve provided with a drive device for driving a body, a pair of injection holes each having a hole axis extension line intersecting at a wide angle downstream of the injection hole and an inner side of the plate member, And an injection hole having a hole axis extension line of non-crossing collision, which is disposed in the vicinity of the injection hole, and is disposed on the inner side as compared with the ratio of the hole diameter to the plate thickness at the position of the injection hole disposed on the outer side. The ratio of the hole diameter to the plate thickness at the hole position is the same or larger, and spray is performed so that each hole axis extension line crosses and collides at a wide angle downstream from the pair of injection holes, and the other single injection A single shot that is non-crossing collision from the hole, wide angle A spray structure is formed so that the spray is directed to the tray portion of the intake valve device, and the narrow-angle spray is directed toward the inside of the stem center of the intake valve device as a lead spray by attracting the surrounding spray. The fuel injection method is configured.

上記のことより、本発明の燃料噴射弁を備えた内燃機関では、燃料噴射弁から噴射された燃料噴霧の余分な部位への付着が抑制されることから、燃焼の未燃ガス成分(HC、CO)の排出を大幅に低減できる。   From the above, in the internal combustion engine provided with the fuel injection valve of the present invention, since the adhesion of the fuel spray injected from the fuel injection valve to the excessive portion is suppressed, the unburned gas component of combustion (HC, CO) emissions can be greatly reduced.

本発明の燃料噴射弁の構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the fuel injection valve of this invention. 本発明の実施例に係るノズル部を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the nozzle part which concerns on the Example of this invention. 実施例1に係るプレート部材の中央部を拡大して示す要部拡大図である。It is a principal part enlarged view which expands and shows the center part of the plate member which concerns on Example 1. FIG. 左右の孔組より噴射される2方向の噴霧構造体を示す燃料噴射弁の要部拡大断面図である。It is a principal part expanded sectional view of the fuel injection valve which shows the spray structure of 2 directions injected from a hole set on either side. 実施例2に係るノズル部を示す要部拡大断面図である。FIG. 6 is an enlarged cross-sectional view showing a main part of a nozzle part according to a second embodiment. 実施例2に係るプレート部材の中央部を拡大して示す要部拡大図である。It is a principal part enlarged view which expands and shows the center part of the plate member which concerns on Example 2. FIG. 左右の孔組より噴射される2方向の噴霧構造体を示す燃料噴射弁の要部拡大断面図である。It is a principal part expanded sectional view of the fuel injection valve which shows the spray structure of 2 directions injected from a hole set on either side. 噴射孔の板厚tと孔径dとの寸法比によって示される噴霧特性の一例を説明するための図である。It is a figure for demonstrating an example of the spray characteristic shown by the dimension ratio of the board thickness t of an injection hole, and the hole diameter d. 実施例3に係る別体型のプレート部材の中央部を拡大して示す要部拡大断面図である。FIG. 9 is an enlarged cross-sectional view of a main part showing an enlarged central part of a separate plate member according to Example 3; 実施例4に係る凹部付きのプレート部材の中央部を拡大して示す要部拡大断面図である。It is a principal part expanded sectional view which expands and shows the center part of the plate member with a recessed part which concerns on Example 4. FIG. 吸気弁装置へ向けて噴射する噴霧構造体の様子を示す図である。It is a figure which shows the mode of the spray structure injected toward the intake valve apparatus.

1…燃料噴射弁、2…燃料噴射室、3…弁体、4…ノズル部、5…燃料通路、6…ヨーク、7…コア、8…スプリング、9…コイル、10…シート面、11…プレート部材、20、21、23、24…ノズル孔組、22…プレート部材の凸部、30A、31A、43a、47a…噴霧構造体、40、41、42、44、45、46…ノズル孔組、43、47…ノズル孔集合体、62…凹み部、101…吸気弁装置、102…吸気弁装置のステム、103…吸気通路、104…中央隔壁、105…燃焼室、106…排気弁装置、107…点火装置。   DESCRIPTION OF SYMBOLS 1 ... Fuel injection valve, 2 ... Fuel injection chamber, 3 ... Valve body, 4 ... Nozzle part, 5 ... Fuel passage, 6 ... Yoke, 7 ... Core, 8 ... Spring, 9 ... Coil, 10 ... Seat surface, 11 ... Plate member, 20, 21, 23, 24 ... Nozzle hole set, 22 ... Projection of plate member, 30A, 31A, 43a, 47a ... Spray structure, 40, 41, 42, 44, 45, 46 ... Nozzle hole set 43, 47 ... Nozzle hole assembly, 62 ... Depression, 101 ... Intake valve device, 102 ... Intake valve device stem, 103 ... Intake passage, 104 ... Central partition, 105 ... Combustion chamber, 106 ... Exhaust valve device, 107: Ignition device.

Claims (3)

板厚方向に貫通する複数の噴射孔を有するプレート部材と、該プレート部材の上流側に位置する弁座と、該弁座との間で燃料通路開閉を行う弁体と、該弁体を駆動する駆動装置を備えた燃料噴射弁において、
前記プレート部材(11)に形成された複数の噴孔(41,45)を有する第一の噴射孔組と、
前記燃料噴射弁の中心軸に対して該第一噴射孔組の外側であって、燃料の噴射流が噴射方向下流で互いに衝突するように前記プレート部材に形成された複数の衝突噴孔(40A、40B、42A、42B,44A、44B、46A、46B)を有する複数の第二の噴射孔組(40、42、44、46)と、
を備えた燃料噴射弁であって、
前記複数の第二の噴射孔組における衝突噴孔の衝突後の噴射方向(P−P)(Q−Q)がそれぞれ互いに異なり、前記第一の噴射孔組の燃料噴射方向(X−X)は、前記第二の噴射孔組の衝突後の噴射方向(P−P)(Q−Q)よりも前記燃料噴射弁の中心軸側に指向しているとともに、
前記噴孔が形成されたプレート部材の板厚tが、前記衝突噴孔が形成されたプレート部材の板厚よりも小さく、かつ前記噴孔の孔径dに対する該噴孔が形成されたプレート部材の板厚tの比t/dが、前記衝突噴孔の孔径に対する前記衝突噴孔が形成されたプレート部材の板厚の比である板厚/孔径に対して小さくなるように設定されて、前記衝突噴孔からの衝突後の噴射が、微粒化の高い噴霧を形成し、かつ前記噴孔からの噴射が、該衝突による微粒化の高い噴霧に比べて貫通力の強い噴霧を該微粒化の高い噴霧の内側に形成することを特徴とする燃料噴射弁。
A plate member having a plurality of injection holes penetrating in the plate thickness direction, a valve seat located upstream of the plate member, a valve body for opening and closing a fuel passage between the valve seat, and driving the valve body In a fuel injection valve equipped with a drive device
A first injection hole set having a plurality of injection holes (41, 45) formed in the plate member (11);
A plurality of collision injection holes (40A) formed in the plate member so that the fuel injection flows collide with each other downstream of the first injection hole set with respect to the central axis of the fuel injection valve. 40B, 42A, 42B, 44A, 44B, 46A, 46B), a plurality of second injection hole sets (40, 42, 44, 46),
A fuel injection valve comprising:
The injection directions (PP) (QQ) after the collision of the collision nozzle holes in the plurality of second injection hole groups are different from each other, and the fuel injection direction (XX) of the first injection hole group is different from each other. Is directed to the center axis side of the fuel injection valve with respect to the injection direction (PP) (QQ) after the collision of the second injection hole set,
The thickness of the plate member in which the nozzle hole is formed is smaller than the plate thickness of the plate member in which the collision nozzle hole is formed, and the plate member in which the nozzle hole is formed with respect to the hole diameter d of the nozzle hole. The ratio t / d of the plate thickness t is set to be smaller than the plate thickness / hole diameter, which is the ratio of the plate thickness of the plate member on which the collision injection hole is formed to the hole diameter of the collision injection hole , The injection after the collision from the collision nozzle forms a highly atomized spray, and the injection from the nozzle hole generates a spray having a strong penetrating force compared to the spray having a high atomization due to the collision. A fuel injection valve formed inside a high spray.
板厚方向に貫通する複数の噴射孔を有するプレート部材と、該プレート部材の上流側に位置する弁座と、該弁座との間で燃料通路の開閉を行う弁体と、該弁体を駆動する駆動装置を備えた燃料噴射弁において、
前記プレート部材(11)に形成された複数の噴孔(41,45)を有する第一の噴射孔組と、
前記燃料噴射弁の中心軸に対して該第一噴射孔組の外側であって、燃料の噴射流が噴射方向下流で互いに衝突するように前記プレート部材に形成された複数の衝突噴孔(40A、40B、42A、42B,44A、44B、46A、46B)を有する複数の第二の噴射孔組(40、42、44、46)と、
を備えた燃料噴射弁であって、
前記複数の第二の噴射孔組における衝突噴孔の衝突後の噴射方向(P−P)(Q−Q)がそれぞれ互いに異なり、前記第一の噴射孔組の噴孔の軸(X−X)は、前記第二の噴射孔組の衝突後の噴射方向(P−P)(Q−Q)よりも前記燃料噴射弁の中心軸側に近づいているとともに、
前記噴孔が形成されたプレート部材の板厚tが、前記衝突噴孔が形成されたプレート部材の板厚よりも小さく、かつ前記噴孔の孔径dに対する該噴孔が形成されたプレート部材の板厚tの比t/dが、前記衝突噴孔の孔径に対する前記衝突噴孔が形成されたプレート部材の板厚の比である板厚/孔径に対して小さくなるように設定されて、前記衝突噴孔からの衝突後の噴射が、微粒化の高い噴霧を形成し、かつ前記噴孔からの噴射が、該衝突による微粒化の高い噴霧に比べて貫通力の強い噴霧を該微粒化の高い噴霧の内側に形成することを特徴とする燃料噴射弁。
A plate member having a plurality of injection holes penetrating in the plate thickness direction, a valve seat located upstream of the plate member, a valve body for opening and closing a fuel passage between the valve seat, and the valve body In a fuel injection valve provided with a driving device for driving,
A first injection hole set having a plurality of injection holes (41, 45) formed in the plate member (11);
A plurality of collision injection holes (40A) formed in the plate member so that the fuel injection flows collide with each other downstream of the first injection hole set with respect to the central axis of the fuel injection valve. 40B, 42A, 42B, 44A, 44B, 46A, 46B), a plurality of second injection hole sets (40, 42, 44, 46),
A fuel injection valve comprising:
The injection directions (PP) (QQ) after the collision of the collision nozzle holes in the plurality of second injection hole groups are different from each other, and the axis (XX) of the nozzle holes of the first nozzle hole group ) Is closer to the central axis side of the fuel injection valve than the injection direction (PP) (QQ) after the collision of the second injection hole set,
The thickness of the plate member in which the nozzle hole is formed is smaller than the plate thickness of the plate member in which the collision nozzle hole is formed, and the plate member in which the nozzle hole is formed with respect to the hole diameter d of the nozzle hole. the ratio t / d of the thickness t is set to be smaller than the plate thickness / hole diameter is the ratio of the plate thickness of the collision nozzle hole formed plate member relative to the hole diameter of the impingement injection hole, The injection after the collision from the collision nozzle forms a highly atomized spray, and the injection from the nozzle hole atomizes the spray having a strong penetrating force compared to the spray that is highly atomized by the collision. A fuel injection valve characterized by being formed inside a high spray.
板厚方向に貫通する複数の噴射孔を有するプレート部材と、該プレート部材の上流側に位置する弁座と、該弁座との間で燃料通路の開閉を行う弁体と、該弁体を駆動する駆動装置を備え、吸気弁装置のステムへ向けて燃料を噴射する燃料噴射弁において、
前記プレート部材(11)に形成された複数の噴孔(41,45)を有する第一の噴射孔組と、
前記燃料噴射弁の中心軸に対して該第一噴射孔組の外側であって、燃料の噴射流が噴射方向下流で互いに衝突するように前記プレート部材に形成された複数の衝突噴孔(40A、40B、42A、42B,44A、44B、46A、46B)を有する複数の第二の噴射孔組(40、42、44、46)と、
を備えた燃料噴射弁であって、
前記複数の第二の噴射孔組における衝突噴孔の衝突後の噴射方向(P−P)(Q−Q)がそれぞれ互いに異なり、前記第一の噴射孔組の噴孔の軸(X−X)は、前記第二の噴射孔組の衝突後の噴射方向(P−P)(Q−Q)よりも前記吸気弁装置のステムの内側に近づいているとともに、
前記噴孔が形成されたプレート部材の板厚tが、前記衝突噴孔が形成されたプレート部材の板厚よりも小さく、かつ前記噴孔の孔径dに対する該噴孔が形成されたプレート部材の板厚tの比t/dが、前記衝突噴孔の孔径に対する前記衝突噴孔が形成されたプレート部材の板厚の比である板厚/孔径に対して小さくなるように設定されて、前記衝突噴孔からの衝突後の噴射が、微粒化の高い噴霧を形成し、かつ前記噴孔からの噴射が、該衝突による微粒化の高い噴霧に比べて貫通力の強い噴霧を該微粒化の高い噴霧の内側に形成することを特徴とする燃料噴射弁。
A plate member having a plurality of injection holes penetrating in the plate thickness direction, a valve seat located upstream of the plate member, a valve body for opening and closing a fuel passage between the valve seat, and the valve body In a fuel injection valve that includes a drive device for driving and injects fuel toward the stem of the intake valve device,
A first injection hole set having a plurality of injection holes (41, 45) formed in the plate member (11);
A plurality of collision injection holes (40A) formed in the plate member so that the fuel injection flows collide with each other downstream of the first injection hole set with respect to the central axis of the fuel injection valve. 40B, 42A, 42B, 44A, 44B, 46A, 46B), a plurality of second injection hole sets (40, 42, 44, 46),
A fuel injection valve comprising:
The injection directions (PP) (QQ) after the collision of the collision nozzle holes in the plurality of second injection hole groups are different from each other, and the axis (XX) of the nozzle holes of the first nozzle hole group ) Is closer to the inside of the stem of the intake valve device than the injection direction (PP) (QQ) after the collision of the second injection hole set,
The thickness of the plate member in which the nozzle hole is formed is smaller than the plate thickness of the plate member in which the collision nozzle hole is formed, and the plate member in which the nozzle hole is formed with respect to the hole diameter d of the nozzle hole. the ratio t / d of the thickness t is set to be smaller than the plate thickness / hole diameter is the ratio of the plate thickness of the collision nozzle hole formed plate member relative to the hole diameter of the impingement injection hole, The injection after the collision from the collision nozzle forms a highly atomized spray, and the injection from the nozzle hole atomizes the spray having a strong penetrating force compared to the spray that is highly atomized by the collision. A fuel injection valve characterized by being formed inside a high spray.
JP2009010501A 2009-01-21 2009-01-21 Fuel injection valve Expired - Fee Related JP4783439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010501A JP4783439B2 (en) 2009-01-21 2009-01-21 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010501A JP4783439B2 (en) 2009-01-21 2009-01-21 Fuel injection valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004013780A Division JP4276958B2 (en) 2004-01-22 2004-01-22 Fuel injection valve and fuel injection method

Publications (2)

Publication Number Publication Date
JP2009079598A JP2009079598A (en) 2009-04-16
JP4783439B2 true JP4783439B2 (en) 2011-09-28

Family

ID=40654519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010501A Expired - Fee Related JP4783439B2 (en) 2009-01-21 2009-01-21 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP4783439B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206332A (en) * 2014-04-23 2015-11-19 三菱電機株式会社 Fuel injection valve, spray generator with fuel injection valve, and spark ignition internal combustion engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064126A (en) * 2009-09-17 2011-03-31 Hitachi Automotive Systems Ltd Fuel injection valve
JP5161853B2 (en) * 2009-09-29 2013-03-13 三菱電機株式会社 Fuel injection valve
JP5875443B2 (en) * 2012-03-30 2016-03-02 日立オートモティブシステムズ株式会社 Fuel injection valve
JP5491612B1 (en) * 2012-12-11 2014-05-14 三菱電機株式会社 Fluid injection valve and spray generating device
JP6117323B2 (en) * 2015-12-04 2017-04-19 日立オートモティブシステムズ株式会社 Fuel injection valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2773095B2 (en) * 1988-02-12 1998-07-09 株式会社日立製作所 Fuel injection valve
JP3164023B2 (en) * 1997-06-25 2001-05-08 トヨタ自動車株式会社 Fuel injection valve for internal combustion engine
JP3865603B2 (en) * 2001-07-13 2007-01-10 株式会社日立製作所 Fuel injection valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206332A (en) * 2014-04-23 2015-11-19 三菱電機株式会社 Fuel injection valve, spray generator with fuel injection valve, and spark ignition internal combustion engine

Also Published As

Publication number Publication date
JP2009079598A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
US9127635B2 (en) Method of generating spray by fluid injection valve, fluid injection valve, and spray generation apparatus
JP4783439B2 (en) Fuel injection valve
US20060191511A1 (en) Fuel injector and in-cylinder direct-injection gasoline engine
JP4072402B2 (en) Fuel injection valve and internal combustion engine equipped with the same
JP5933720B2 (en) Fuel injection valve
JP5295337B2 (en) Spray generation method using fluid injection valve, fluid injection valve, and spray generation device
JP5491612B1 (en) Fluid injection valve and spray generating device
KR101019324B1 (en) Fuel injection valve
JP4300197B2 (en) Fuel injection valve and internal combustion engine using the same
JP4276958B2 (en) Fuel injection valve and fuel injection method
JP4332437B2 (en) Fuel injection valve and fuel injection method
WO2012011454A1 (en) Fuel injection valve and vehicle internal combustion engine incorporating same
JP4306656B2 (en) Fuel injection valve
JP5627742B1 (en) Fluid injection valve and spray generating device
JP4555955B2 (en) Fuel injection valve and internal combustion engine equipped with the same
JP2003148299A (en) Fuel injection valve and internal combustion engine loaded with the same
JP7298484B2 (en) Intake structure of internal combustion engine
JP4036175B2 (en) Fuel injection valve
JP2014001660A (en) Fuel injection valve of internal combustion engine
JP2007138746A (en) Fuel supply device
US20040074472A1 (en) Spray collision nozzle for direct injection engines
JP2007327501A (en) Fuel injection valve
JP2015078604A (en) Fluid injection valve and spark ignition engine
JP2007182767A (en) Fuel injection valve
JP5478671B2 (en) Spray generation method using fluid injection valve, fluid injection valve, and spray generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4783439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees