JP4780008B2 - Plating wire for solar cell and manufacturing method thereof - Google Patents
Plating wire for solar cell and manufacturing method thereof Download PDFInfo
- Publication number
- JP4780008B2 JP4780008B2 JP2007071753A JP2007071753A JP4780008B2 JP 4780008 B2 JP4780008 B2 JP 4780008B2 JP 2007071753 A JP2007071753 A JP 2007071753A JP 2007071753 A JP2007071753 A JP 2007071753A JP 4780008 B2 JP4780008 B2 JP 4780008B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- conductor
- plating
- solar cell
- orientation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Metal Extraction Processes (AREA)
- Photovoltaic Devices (AREA)
Description
本発明は、太陽電池のSi結晶を接続する太陽電池用めっき線及びその製造方法に関するものである。 The present invention relates to a solar cell plating wire for connecting Si crystals of a solar cell and a method for manufacturing the same.
太陽電池には多結晶及び単結晶のSiウェハが用いられているが、図1に示すように、Siウェハ(太陽電池セル1)の所定の領域に接続用リード線2をはんだで接合し、これを通じて発電された電力を伝送する構成となっている。公知例には、図3に示すように、導体3にタフピッチCuや無酸素Cuなどの純Cuの平角導体を用い、めっき層4にSn−Pb共晶はんだを適用したものがある(特許文献1等)。
Polycrystalline and single-crystal Si wafers are used for solar cells. As shown in FIG. 1, the connecting
また、近年環境への配慮からPbを含まないはんだを使用したものへの切り替えが検討されている(特許文献2等)。
In recent years, switching to a solder that does not contain Pb has been studied in consideration of the environment (
太陽電池を構成する部材のうち材料コストの大半をSi結晶ウェハが占める。そのため、Si結晶ウェハの薄板化が検討されているが、薄板化した際に、図2(a)に示す接続用リード線2と太陽電池セル1の接合時の加熱プロセスや、太陽電池使用時の温度変化により、図2(b)に示すように、太陽電池セル1が反ったり、破損したりするという不具合が生ずる。
The Si crystal wafer occupies most of the material cost among the members constituting the solar cell. Therefore, thinning of the Si crystal wafer has been studied. When the thinning is performed, the heating process at the time of joining the
これに対処するため、接続用リード線として熱膨張が小さい材料のニーズが高まっている。例えば、表1に示すように、低熱膨張材であるインバー(Fe−36mass%Ni)を用い、図4に示すように、Cu5/インバー6/Cu5のクラッド材(CIC)で導体3を形成し、そのCICの導体3をめっき層4(はんだめっき)で被覆した接続用リード線2を用いることで、Siとの熱膨張整合が可能になる。表1は、Cu/インバー/Cuのクラッド材、Cu、Fe−36mass%Ni(インバー)、Siの材料特性を示したものである。
In order to cope with this, there is an increasing demand for a material having low thermal expansion as a connecting lead wire. For example, as shown in Table 1, invar (Fe-36 mass% Ni), which is a low thermal expansion material, is used, and as shown in FIG. 4, the conductor 3 is formed with a cladding material (CIC) of Cu5 / Invar6 / Cu5. By using the connecting
また、導電率の高い導体の0.2%耐力を低減することにより、Siとの熱膨張整合を可能とし、はんだ接続後の導体熱収縮によって発生する、セルを反らせる力を低減させた太陽電池用リード線がある(特許文献3)。 In addition, by reducing the 0.2% proof stress of conductors with high conductivity, it is possible to achieve thermal expansion matching with Si, and to reduce the cell warping force generated by conductor thermal contraction after solder connection. There is a lead wire (Patent Document 3).
図4に示したCICを用いた接続用リード線は、インバー6の導電率が低い(体積抵抗率が高い)ことから、CIC全体の導電率も低下してしまい、太陽電池としての発電効率が下落してしまうという問題があった。
In the connection lead wire using the CIC shown in FIG. 4, the conductivity of the
また、特許文献3記載の太陽電池用リード線において、セルを反らせる力を低減させるためには、めっき層を備える太陽電池用リード線における導体の0.2%耐力を、ある基準値以下にする必要がある。しかしながら、導体の0.2%耐力をある基準値以下にするために一定の熱処理条件で製造しても、結晶方位は必ずしも一定にならず、製品の0.2%耐力にばらつきが生じることから、歩留り向上が困難であった。 Moreover, in the solar cell lead wire described in Patent Document 3, in order to reduce the force of warping the cell, the 0.2% proof stress of the conductor in the solar cell lead wire provided with the plating layer is set to a certain reference value or less. There is a need. However, even if the conductor is manufactured under certain heat treatment conditions to make the 0.2% proof stress below a certain reference value, the crystal orientation is not necessarily constant, and the 0.2% proof stress of the product varies. Yield improvement was difficult.
さらに、よく知られている0.2%耐力を低減させる方法として、熱処理で結晶粒を大きくする手法があるが、この方法をとる際は、一般に、結晶粒が容易に粗大化しやすい無酸素Cu(酸素濃度≦10ppm)や、高純度Cu(99.9999%)が太陽電池用リード線の導体材料として用いられるため、材料コストが高くなるという問題があった。 Furthermore, as a well-known method for reducing the 0.2% yield strength, there is a method of enlarging crystal grains by heat treatment. In general, when this method is employed, the oxygen-free Cu that tends to coarsen the crystal grains easily. Since (oxygen concentration ≦ 10 ppm) and high-purity Cu (99.9999%) are used as the conductor material of the solar cell lead wire, there is a problem that the material cost is increased.
本発明の目的は、Siセルとはんだ接続した後の熱収縮時においてもSiセルの反りが少なく、かつ高導電性を有する太陽電池用めっき線を提供することにある。また、本発明の他の目的は、Siセルの反りを少なくするために要求される0.2%耐力のばらつきが小さく、かつ、低コスト化が可能な太陽電池用めっき線の製造方法を提供することにある。 An object of the present invention is to provide a solar cell plating wire that has a low warpage of the Si cell and high conductivity even during thermal contraction after the solder connection with the Si cell. Another object of the present invention is to provide a method of manufacturing a plated wire for a solar cell that has a small variation in 0.2% proof stress required to reduce the warpage of the Si cell and that can be reduced in cost. There is to do.
上記の目的を達成するために、請求項1の発明は、太陽電池セルに接合すべく、断面平角状に形成された導体の表面の一部又は全部にめっき層が被覆された太陽電池用めっき線において、上記導体の中心部の結晶方位(めっき線の軸方位)が、(211)方位と(100)方位であり、(211)方位の配向割合が30%以上
であり、上記めっき線の引張り試験における0.2%耐力が90MPa以下であることを特徴とする太陽電池用めっき線である。
In order to achieve the above object, the invention of
A 0.2% proof stress in a tensile test of the plated wire is 90 MPa or less .
請求項2の発明は、上記導体の体積抵抗率が50μΩ・mm以下である請求項1記載の太陽電池用めっき線である。
The invention according to
請求項3の発明は、上記導体が、純銅で構成される請求項1又は2記載の太陽電池用めっき線である。
The invention according to claim 3 is the solar cell plating wire according to
請求項4の発明は、上記導体材料がタフピッチCu、リン脱酸Cuのいずれかである請求項1から3いずれか記載の太陽電池用めっき線である。 A fourth aspect of the present invention is the solar cell plating wire according to any one of the first to third aspects, wherein the conductor material is one of tough pitch Cu and phosphorus deoxidized Cu.
請求項5の発明は、上記導体の引張り試験における0.2%耐力が70MPa以下である請求項1から4いずれか記載の太陽電池用めっき線である。
The invention according to
請求項6の発明は、上記めっき層が、Sn系はんだ、あるいは第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1種の元素を0.1wt%以上含むSn系合金はんだの被覆層である請求項1から5いずれか記載の太陽電池用めっき線である。
According to a sixth aspect of the present invention, the plating layer contains 0.1 wt% of Sn-based solder or at least one element selected from Pb, In, Bi, Sb, Ag, Zn, Ni, and Cu as the second component. 6. The solar cell plated wire according to
請求項7の発明は、太陽電池セルに接合すべく、断面平角状に形成された導体の表面の一部又は全部にめっき層が被覆された太陽電池用めっき線の製造方法において、上記導体の材料で、先ず、荒引き線を作製し、その荒引き線に伸線加工を施し、その伸線された荒引き線に圧延加工あるいはスリット加工を施して断面平角状に成形した後、通電方式もしくはバッチ式の設備で焼鈍熱処理を施し、上記導体の中心部の結晶方位(めっき線の軸方位)が(211)方位と(100)方位であり、(211)方位の配向割合が30%以上であり、前記焼鈍熱処理が施された上記導体の表面にめっき層を被覆し、得られためっき線の引張り試験における0.2%耐力を90MPa以下とすることを特徴とする太陽電池用めっき線の製造方法である。 The invention according to claim 7 is a method for producing a plated wire for a solar battery in which a plating layer is coated on a part or all of the surface of a conductor formed in a rectangular cross section so as to be bonded to a solar battery cell. First of all, a rough drawing wire is prepared with a material, the rough drawing wire is drawn, and the drawn rough drawing wire is rolled or slitted to be formed into a rectangular cross section. Alternatively, annealing heat treatment is performed in a batch-type equipment, and the crystal orientation (axis direction of the plating wire) of the conductor is (211) orientation and (100) orientation, and the orientation ratio of (211) orientation is 30% or more A plated layer for a solar cell , wherein the surface of the conductor subjected to the annealing heat treatment is coated with a plating layer, and the 0.2% proof stress in a tensile test of the obtained plated wire is 90 MPa or less. It is a manufacturing method.
請求項8の発明は、上記伸線加工の工程の合間に、上記荒引き線に通電方式もしくはバッチ式の設備で熱処理を施す請求項7記載の太陽電池用めっき線の製造方法である。 The invention of claim 8 is the method for producing a plated wire for a solar cell according to claim 7, wherein the roughing wire is subjected to heat treatment with a current-carrying or batch-type equipment between the wire drawing steps.
本発明の太陽電池用めっき線によれば、Siセルとはんだ接続後の熱収縮時においてもSiセルの反りが少なく、かつ高い導電性が得られる。また、0.2%耐力のばらつきを抑制することができ、歩留り向上が可能である。 According to the plated wire for solar cell of the present invention, the Si cell is less warped and has high conductivity even during thermal contraction after the solder connection with the Si cell. Further, variation in 0.2% proof stress can be suppressed, and yield can be improved.
以下、本発明の実施の形態を添付図面に基いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
一般に熱膨張率の異なる異種金属を高温で接続した場合には、温度変化に熱膨張率、ヤング率を積算した値が反りを発生させる力となる。しかし、太陽電池のように接続する両部材(太陽電池用めっき線、Siセル)の剛性が著しく異なり、またはんだ接続温度も200℃以上と高温のものでは、断面積が小さい導体(太陽電池用めっき線)の方が降伏してしまい、上記熱膨張率、ヤング率による力がそのまま反り発生力とはならない。 In general, when dissimilar metals having different thermal expansion coefficients are connected at a high temperature, a value obtained by integrating the thermal expansion coefficient and Young's modulus with the temperature change is a force for generating warpage. However, both members (solar cell plating wire, Si cell) connected like a solar cell are remarkably different in rigidity, or a conductor having a small cross-sectional area (for solar cell) when the connecting temperature is as high as 200 ° C. or higher. (Plating wire) yields, and the force due to the thermal expansion coefficient and Young's modulus does not directly generate warpage.
導体の降伏応力が小さいと、小さい力で導体が塑性変形してしまい、それ以上の変形抵抗とならない。そのため、塑性変形の指標である0.2%耐力の小さい導体を用いた太陽電池用めっき線は、Siセルへはんだ接続した後のセル反り量を低減させる効果がある。 If the yield stress of the conductor is small, the conductor is plastically deformed with a small force, and no further deformation resistance is obtained. Therefore, the plating wire for solar cells using a conductor having a small 0.2% proof stress, which is an index of plastic deformation, has an effect of reducing the amount of cell warpage after solder connection to the Si cell.
ところが、従来、導体の0.2%耐力を精度良く低減するために、導体の結晶構造を制御することに関して規定したものはなかった。これについて、本発明者らが鋭意研究した結果、導体の中心部の結晶方位の内、ある結晶方位を所定の割合で成長させることで、0.2%耐力の低減、及びそのばらつきの抑制を達成できることを見出した。 However, there has been no provision for controlling the crystal structure of the conductor in order to accurately reduce the 0.2% yield strength of the conductor. As a result of intensive studies by the present inventors, by growing a certain crystal orientation at a predetermined ratio in the crystal orientation of the central portion of the conductor, it is possible to reduce 0.2% proof stress and to suppress variations thereof. I have found that I can achieve it.
本発明の好適一実施の形態に係る太陽電池用めっき線は、図3に示した一般的な太陽電池用めっき線2と同様の構造を有しており、導体3の表面の全部にめっき層4を被覆したものである。本実施の形態に係る太陽電池用めっき線の導体3は、その中心部の結晶方位(めっき線の軸方位)が、(211)方位と(100)方位であり、(211)方位の配向割合が30%以上であることに特徴がある。
The solar cell plating wire according to a preferred embodiment of the present invention has a structure similar to that of the general solar
太陽電池用めっき線2における導体3の0.2%耐力は70MPa以下、特に40〜70MPaが望ましく、また、太陽電池用めっき線2全体の0.2%耐力は90MPa以下、特に60〜90MPaが望ましい。導体3の断面形状は、図1に示したSiセル1への接続が容易となるよう平角型のものが望ましい。
The 0.2% proof stress of the conductor 3 in the solar cell plated
導体3の構成材としては、体積抵抗率が比較的小さい材料が好ましく、例えば、表2に示すように、Cuの他にAu、Ag、Alなどがあり、0.2%耐力も低減できる可能性がある。この中で体積抵抗率が最も低いのはAgであり、発電効率を最大限にすることが可能である。また、低コスト化を優先するときにはCuが良く、軽量化を図りたいときにはAlを選択するのが望ましい。 The material of the conductor 3 is preferably a material having a relatively small volume resistivity. For example, as shown in Table 2, there are Au, Ag, Al, etc. in addition to Cu, and the 0.2% proof stress can be reduced. There is sex. Among these, Ag has the lowest volume resistivity and can maximize power generation efficiency. Further, Cu is preferable when cost reduction is prioritized, and Al is preferably selected when weight reduction is desired.
Cuの種類としてはタフピッチCu、無酸素Cu、リン脱酸Cu、高純度Cu(純度99.9999%以上)のいずれを用いることも可能である。0.2%耐力を最も小さくするためには純度が高いCuが有利であり、すなわち高純度Cuを選択する。一方、低コスト化を図りたい時には、不純物を含むため0.2%耐力はやや大きいものの、タフピッチCuもしくはリン脱酸Cuを選択する。 As the kind of Cu, any of tough pitch Cu, oxygen-free Cu, phosphorus deoxidized Cu, and high-purity Cu (purity 99.9999% or more) can be used. In order to minimize the 0.2% yield strength, Cu having high purity is advantageous, that is, high purity Cu is selected. On the other hand, when it is desired to reduce the cost, tough pitch Cu or phosphorous deoxidized Cu is selected although the 0.2% proof stress is somewhat large because it contains impurities.
めっき層4の被覆材として、例えば、はんだめっきや、銅線のめっき材として一般的に用いられる慣用のめっきが挙げられる。また、めっき層4の被覆は、導体3の一部、例えば、導体の上下面のみであってもよい。
Examples of the coating material for the
はんだめっきのはんだとしては、Sn系はんだ、あるいは第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1種の元素を0.1wt%以上含むSn系合金はんだが挙げられ、これらのはんだは、第3成分として1000ppm以下の微量元素を含んでいてもよい。 As solder for solder plating, Sn-based solder or Sn-based alloy containing 0.1 wt% or more of at least one element selected from Pb, In, Bi, Sb, Ag, Zn, Ni, Cu as the second component A solder is mentioned, These solders may contain 1000 ppm or less of trace elements as the 3rd ingredient.
また、慣用のめっきとしては、Ni、Ag、Sn、Zn、Cr、Au、Pd、Ru、Ptから選択される少なくとも1種の元素を含む金属材料が挙げられる。この慣用のめっきをめっき層4として用いる場合、例えば、導電性接着剤を用いてSiセル1との接合がなされる。
Further, examples of conventional plating include metal materials containing at least one element selected from Ni, Ag, Sn, Zn, Cr, Au, Pd, Ru, and Pt. When this conventional plating is used as the
導体3の0.2%耐力を70MPa以下、太陽電池用めっき線2全体の0.2%耐力を90MPa以下としたのは、この範囲であれば、図4に示したCu/インバー/Cuのクラッド材(CIC)を用いた従来の太陽電池用めっき線よりも、Si反りを低減することが可能であり、大きな効果が得られるためである。
If the 0.2% proof stress of the conductor 3 is 70 MPa or less and the 0.2% proof stress of the entire solar cell plated
この太陽電池用めっき線2を、図1に示したSiセル1の所定の接点領域(例えば、Agメッキ領域)に接続することで、太陽電池アセンブリが得られる。
The solar cell assembly is obtained by connecting the solar
次に、本実施の形態に係る太陽電池用めっき線2の製造方法の一例を説明する。
Next, an example of the manufacturing method of the
先ず、導体の構成材として純銅を溶解する。この純銅としては、タフピッチ銅、リン脱酸Cu、無酸素Cu、高純度Cu(純度99.9999%以上)が挙げられる。 First, pure copper is dissolved as a conductor constituent material. Examples of the pure copper include tough pitch copper, phosphorus deoxidized Cu, oxygen-free Cu, and high-purity Cu (purity 99.9999% or more).
この銅溶湯を用いて、銅の荒引き線を連続的に製造する。また、この荒引き線に、伸線加工を施す。この伸線加工の工程の合間に、荒引き線に通電方式もしくはバッチ式の設備で熱処理(再結晶処理)を施す。伸線加工と再結晶熱処理は、適宜、繰り返し行ってもよい。 Using this molten copper, a rough wire for copper is continuously produced. Moreover, a wire drawing process is given to this rough drawing line. Between these wire drawing processes, heat treatment (recrystallization treatment) is performed on the roughing wire using a current-carrying method or batch-type equipment. The wire drawing and recrystallization heat treatment may be repeated as appropriate.
伸線された荒引き線に、圧延加工(あるいはスリット加工)を施して断面平角状の導体3を作製する。その後、平角状の導体3に通電方式もしくはバッチ式の設備で熱処理(焼鈍処理)を施す。この加工と熱処理によって、導体3の中心部の結晶方位(めっき線の軸方位)が、(211)方位に30%以上の割合で配向され、かつ、導体3の0.2%耐力が70MPa以下に調整される。 The drawn rough wire is subjected to rolling (or slitting) to produce a conductor 3 having a rectangular cross section. Thereafter, the flat conductor 3 is subjected to heat treatment (annealing treatment) using an energization method or batch-type equipment. By this processing and heat treatment, the crystal orientation of the central portion of the conductor 3 (axis direction of the plating wire) is oriented at a ratio of 30% or more in the (211) orientation, and the 0.2% proof stress of the conductor 3 is 70 MPa or less. Adjusted to
熱処理後、導体3の表面にめっき層4を被覆し、本実施の形態に係る太陽電池用めっき線2が得られる。めっき層4は、太陽電池用めっき線2の0.2%耐力が90MPa以下となるように、めっき種類及びめっき厚さが調整される。
After the heat treatment, the
導体3の中心部における結晶方位(211)の配向割合は、例えば、再結晶熱処理の熱処理温度、熱処理時間や圧延加工の加工条件を調整することで、調整可能である。 The orientation ratio of the crystal orientation (211) in the central portion of the conductor 3 can be adjusted by adjusting, for example, the heat treatment temperature of the recrystallization heat treatment, the heat treatment time, and the processing conditions of the rolling process.
導体3の加工法としては圧延加工、スリット加工のいずれも適用可能である。丸線から圧延して平角化する方式は長尺で均一なものが製造できる。スリット方式では種々の幅の材料に対応できるメリットがある。 As the processing method of the conductor 3, both rolling processing and slit processing are applicable. The method of rolling from a round wire and flattening can produce a long and uniform product. The slit method has the merit that it can cope with materials of various widths.
また、本発明に係る太陽電池セル接続用配線導体およびはんだめっき線は、セルとの接続がなされた複数箇所に変形しやすい加工部を含んでいても良く、加工方法としてエッチング、プレス、曲げ成形のうちのいずれか、あるいは、複数を併用してもよい。さらに、その加工は素材線材、素材線材を圧延成形した圧延線材、板状素材にスリットをいれた箔状線材のいずれに施してもよい。 Moreover, the wiring conductor for connecting solar cells and the solder plating wire according to the present invention may include a deformed portion that is easily deformed at a plurality of locations connected to the cell, and etching, pressing, and bending as processing methods. Any one or a plurality of them may be used in combination. Further, the processing may be applied to any of a material wire, a rolled wire obtained by rolling the material wire, and a foil-like wire obtained by slitting a plate material.
0.2%耐力を低減するための熱処理方式としては、通電加熱方式でもバッチ式加熱方式でも適用可能である。連続で長尺にわたって処理する場合には通電加熱方式が向いており、安定した熱処理が必要な場合にはバッチ式加熱方式が望ましい。また、導体3の酸化を防止する観点から、水素還元雰囲気の炉を用いて熱処理を行ってもよい。 As a heat treatment method for reducing the 0.2% proof stress, either an electric heating method or a batch heating method can be applied. The energization heating method is suitable for continuous and long processing, and the batch heating method is desirable when stable heat treatment is required. Further, from the viewpoint of preventing the conductor 3 from being oxidized, heat treatment may be performed using a furnace in a hydrogen reducing atmosphere.
次に、本実施の形態の作用を説明する。 Next, the operation of the present embodiment will be described.
本実施の形態に係る太陽電池用めっき線2によれば、導体3の中心部の結晶方位(めっき線の軸方位)が、(211)方位に30%以上の割合で配向されることで、導体3自体の0.2%耐力のばらつきが小さくなり、歩留まりが向上する。また、このように、(211)方位に30%以上の割合で配向させることで、導体3自体の0.2%耐力も低くなることから、セル反り抑制効果も得られる。すなわち、太陽電池用めっき線2は、導体3の結晶構造を精密に制御することにより、0.2%耐力の低減および特性のばらつきを抑制でき、それによって、はんだ接続後の導体熱収縮によって発生する、セルを反らせる力を低減させることができると共に、製品の歩留り向上が可能となる。
According to the solar
また、導体3の構成材に、低コストのタフピッチCuやリン脱酸Cuを用いても、無酸素Cuや高純度Cuと同等の効果が得られるため、製品(太陽電池用めっき線2)の低コスト化が可能となる。さらに、導体3の構成材は純銅であるため、図4に示したCICを導体として用いた場合と比較して、導電率は良好である。
Moreover, even if low-cost tough pitch Cu or phosphorus deoxidized Cu is used as the constituent material of the conductor 3, the same effect as that of oxygen-free Cu or high-purity Cu can be obtained, so that the product (
また、太陽電池用めっき線2におけるはんだめっきのはんだ組成は、これまで、Siセル1との熱膨張整合を考慮して低温接続が可能なものが求められていたが、本構造の導体3を用いることで、接続温度の高いSn−Ag−Cu系の組成のはんだを用いることも可能である。また、はんだ接続の代わりに導電性接着剤を用いてもよい。
Further, the solder composition of the solder plating in the solar
本発明の一実施例を以下に示す。 An embodiment of the present invention is shown below.
Cu導体(荒引き線)に伸線加工を施すと共に、その伸線加工の工程の合間に通電方式もしくはバッチ式の設備で荒引線に熱処理を行った。その後、伸線後の荒引き線に、さらに、幅2.0mm、厚さ0.16mmの平角線状に圧延成形加工を施し、所定の条件で焼鈍した後、その周囲をSn−3%Ag−0.5%Cu系の鉛フリーはんだで被覆し、表3に示すように、導体材料の中心部の結晶方位(リード線中心部の軸方位)が異なる種々のはんだめっき被覆平角線を製作した(試料1〜13)。
The Cu conductor (rough drawing wire) was drawn, and heat treatment was performed on the rough drawing wire with a current-carrying system or batch-type equipment between the drawing processes. Thereafter, the rough drawn wire after wire drawing is further rolled and formed into a flat wire shape having a width of 2.0 mm and a thickness of 0.16 mm, annealed under predetermined conditions, and then the periphery thereof is Sn-3% Ag -Coated with 0.5% Cu-based lead-free solder, and as shown in Table 3, produces various types of solder-plated rectangular wires with different crystal orientations in the center of the conductor material (axial orientation of the lead wire center) (
結晶方位は、各はんだめっき被覆平角線断面の中心部におけるX線回折プロファイルの回折ピーク強度比から求めた。また、0.2%耐力は、引張速度20mm/minの引張試験で得られたS−S曲線から0.2%耐力点荷重を求め、導体の断面積で除して算出した。 The crystal orientation was determined from the diffraction peak intensity ratio of the X-ray diffraction profile at the center of each solder plating coated rectangular wire cross section. The 0.2% yield strength was calculated by obtaining a 0.2% yield strength load from an SS curve obtained by a tensile test at a tensile rate of 20 mm / min, and dividing by the cross-sectional area of the conductor.
表3に示すように、結晶方位を制御して作製したはんだめっき被覆平角線(試料1〜11)の0.2%耐力は、最大値と最小値の差(ばらつき)が小さく10MPa以下だったが、結晶方位を制御しない従来の製法で作製したはんだめっき被覆平角線(試料12,13)の0.2%耐力は、ばらつきが大きく20MPa以上であった。
As shown in Table 3, the 0.2% proof stress of the solder plating coated rectangular wires (
また、導体中心部の結晶方位(リード線中心部の軸方位)が、(211)方位に30%以上の割合で配向しているはんだめっき被覆平角線(試料1〜8)は、導体の0.2%耐力が低く、70MPa以下であるのに対して、それ以外のはんだめっき被覆平角線(試料9〜12)は0.2%耐力が大きい。
Also, the solder-plated rectangular wires (
さらに、0.2%耐力が60、70、100、160MPaの各はんだ被覆平角線を、縦150mm×横150mm×厚み200μmのSiセルにはんだ接続した際の、セルの反りを調べた。セル反りの評価結果を表4に示す。 Furthermore, the warpage of the cell was investigated when each solder-coated rectangular wire having a 0.2% proof stress of 60, 70, 100, and 160 MPa was soldered to a Si cell having a length of 150 mm, a width of 150 mm, and a thickness of 200 μm. Table 4 shows the evaluation results of the cell warpage.
表4に示すように、0.2%耐力の低下とともにセルの反り量も低減しており、はんだめっき被覆Cu平角線で0.2%耐力が70MPaのものは、タフピッチCuを導体として用いた従来のはんだめっき被覆Cu平角線(試料12、0.2%耐力は160MPa)と比べて、セルの反り量を1/2程度に低減できた。 As shown in Table 4, the amount of warpage of the cell is reduced as the 0.2% proof stress is decreased, and the tough pitch Cu is used as the conductor when the solder plating coated Cu flat wire has a 0.2% proof stress of 70 MPa. Compared with the conventional solder-plated Cu rectangular wire (sample 12, 0.2% proof stress is 160 MPa), the amount of warpage of the cell could be reduced to about ½.
比較として、Cu/インバー/Cu(比率2:1:2)を導体として用いたはんだめっき被覆Cu平角線(0.2%耐力は100MPa)と、0.2%耐力が60MPaのはんだめっき被覆Cu平角線を、それぞれSiセルとはんだ接続した際のセルの反りを調べた。前者の反り量は3.0mm程度であったが、後者の反り量は1.5mm程度であり、セルの反りが半分になることを確認できた。 For comparison, a solder plating coated Cu rectangular wire (0.2% proof stress is 100 MPa) using Cu / Invar / Cu (ratio 2: 1: 2) as a conductor and a solder plating coated Cu having a 0.2% proof stress of 60 MPa. The warp of the cell when the flat wire was soldered to the Si cell was examined. Although the amount of warping of the former was about 3.0 mm, the amount of warping of the latter was about 1.5 mm, and it was confirmed that the cell warping was halved.
反り量がこの範囲(3.0mm程度)以下のものであれば、太陽電池接続用リード線として使用可能である。 If the amount of warpage is within this range (about 3.0 mm), it can be used as a lead wire for connecting solar cells.
1 太陽電池セル(Siセル)
2 太陽電池用めっき線(はんだめっき平角線)
3 導体
4 めっき層
5 Cu
6 インバー
1 Solar cell (Si cell)
2 Plating wire for solar cell (Solder-plated flat wire)
3
6 Invar
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007071753A JP4780008B2 (en) | 2006-12-14 | 2007-03-20 | Plating wire for solar cell and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006337093 | 2006-12-14 | ||
JP2006337093 | 2006-12-14 | ||
JP2007071753A JP4780008B2 (en) | 2006-12-14 | 2007-03-20 | Plating wire for solar cell and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008168339A JP2008168339A (en) | 2008-07-24 |
JP4780008B2 true JP4780008B2 (en) | 2011-09-28 |
Family
ID=39696922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007071753A Active JP4780008B2 (en) | 2006-12-14 | 2007-03-20 | Plating wire for solar cell and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4780008B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5073386B2 (en) * | 2007-07-05 | 2012-11-14 | 株式会社Neomaxマテリアル | ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE |
JP5446188B2 (en) * | 2008-09-17 | 2014-03-19 | 新日鐵住金株式会社 | Interconnector for semiconductor wire mounting and interconnector for solar cell |
JP5418189B2 (en) * | 2009-12-04 | 2014-02-19 | 日立金属株式会社 | Solar cell lead wire and solar cell using the same |
WO2011114983A1 (en) * | 2010-03-17 | 2011-09-22 | 株式会社アルバック | Solar cell module and process for production thereof |
TWI499067B (en) | 2010-03-17 | 2015-09-01 | Nippon Steel & Sumitomo Metal Corp | Interconnects for metal tape and solar collectors |
JP5981087B2 (en) * | 2010-05-14 | 2016-08-31 | 古河電気工業株式会社 | Flat rectangular copper wire and manufacturing method thereof, flat rectangular copper wire for solar cell and manufacturing method thereof |
JP5367754B2 (en) * | 2010-06-11 | 2013-12-11 | 古河電気工業株式会社 | Solder plated wire manufacturing method and manufacturing apparatus |
CN103582954B (en) * | 2011-05-27 | 2016-08-17 | 新日铁住金株式会社 | Connectors used for solar batteries and solaode module |
JP2014042065A (en) * | 2013-11-01 | 2014-03-06 | Hitachi Metals Ltd | Lead wire for solar battery, and solar battery |
WO2015147213A1 (en) * | 2014-03-26 | 2015-10-01 | 新日鉄住金マテリアルズ株式会社 | Conductor, and solar-cell interconnector |
CN105382443B (en) * | 2015-12-18 | 2018-07-03 | 黄河水电光伏产业技术有限公司 | A kind of preparation method of solder |
EP3518294B1 (en) * | 2016-09-20 | 2022-06-15 | Kaneka Corporation | Solar cell module comprising a wiring line material for connecting solar cells |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1121660A (en) * | 1997-07-03 | 1999-01-26 | Hitachi Cable Ltd | Connecting wire for solar battery |
JP5491682B2 (en) * | 2004-08-13 | 2014-05-14 | 日立金属株式会社 | Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell |
-
2007
- 2007-03-20 JP JP2007071753A patent/JP4780008B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008168339A (en) | 2008-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4780008B2 (en) | Plating wire for solar cell and manufacturing method thereof | |
JP5491682B2 (en) | Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell | |
JP2008098607A (en) | Connection lead wire for solar cell, method for manufacturing the same, and solar cell | |
JP2008182171A (en) | Solder-plated wire for solar cell and manufacturing method thereof, and solar cell | |
KR101223697B1 (en) | Metal tape material, and interconnector for solar cell collector | |
JP5036545B2 (en) | Method for producing electrode wire for solar cell | |
JP5073386B2 (en) | ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE | |
JP5038765B2 (en) | Solder-plated wire for solar cell and manufacturing method thereof | |
JP2008140787A (en) | Solder plating wire for solar cell and its manufacturing method | |
JP2010141050A (en) | Lead wire for solar cell and method of manufacturing the same | |
JP5446188B2 (en) | Interconnector for semiconductor wire mounting and interconnector for solar cell | |
JP2008182170A (en) | Solder-plated wire for solar cell and manufacturing method thereof, and solar cell | |
JP4656100B2 (en) | Solder-plated wire for solar cell and manufacturing method thereof | |
JP2008098315A (en) | Solder plating wire for solar cell and its production process | |
CN101145586A (en) | Connecting lead wire for solar cell, its manufacturing method, and solar cell | |
KR101110915B1 (en) | Ribbon wire for solar cell module | |
JP4701716B2 (en) | Flat rectangular conductor for solar cell and lead wire for solar cell | |
JP2005353549A (en) | Lead wire, its manufacturing method, and solar cell assembly | |
JP5565519B1 (en) | Solar cell module | |
JP2011210868A (en) | Composite flat wire for connecting solar cell and method for manufacturing the same | |
JP4617884B2 (en) | Connecting lead wire and manufacturing method thereof | |
JP5569642B2 (en) | Flat conductor for solar cell, manufacturing method thereof, lead wire for solar cell, and solar cell module | |
JP4951856B2 (en) | Manufacturing method of flat conductor | |
JP5261579B2 (en) | Solar cell interconnector material, manufacturing method thereof, and solar cell interconnector | |
JP2016169414A (en) | Metal wire for solar cell wire and solar cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090417 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100921 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101119 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110428 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110607 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110620 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140715 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4780008 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |