[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4779832B2 - Railway vehicle body tilt control device and control method - Google Patents

Railway vehicle body tilt control device and control method Download PDF

Info

Publication number
JP4779832B2
JP4779832B2 JP2006181792A JP2006181792A JP4779832B2 JP 4779832 B2 JP4779832 B2 JP 4779832B2 JP 2006181792 A JP2006181792 A JP 2006181792A JP 2006181792 A JP2006181792 A JP 2006181792A JP 4779832 B2 JP4779832 B2 JP 4779832B2
Authority
JP
Japan
Prior art keywords
valve
control
vehicle body
solenoid valve
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006181792A
Other languages
Japanese (ja)
Other versions
JP2008007041A (en
Inventor
大輔 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006181792A priority Critical patent/JP4779832B2/en
Publication of JP2008007041A publication Critical patent/JP2008007041A/en
Application granted granted Critical
Publication of JP4779832B2 publication Critical patent/JP4779832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Vehicle Body Suspensions (AREA)

Description

本発明は、例えば空気ばねを利用して、運転走行中の、特に曲線区間通過時における車体の傾斜制御を行う装置、及びこの傾斜制御装置を用いた傾斜制御方法に関するものである。   The present invention relates to a device that performs lean control of a vehicle body during driving, particularly when passing through a curved section, using an air spring, and a tilt control method using the tilt control device.

鉄道車両は、曲線区間の通過時、超過遠心力によって乗心地が悪くなる場合がある。特に曲線区間の通過速度が高速の場合には、超過遠心力が増大してさらなる乗心地の悪化を招く。そこで、曲線区間の通過時、車体を内軌側に傾斜させることにより超過遠心力を抑制して乗心地の悪化を防ぐ車体の傾斜制御が実施されている。   A railway vehicle may become uncomfortable due to excessive centrifugal force when passing through a curved section. In particular, when the passing speed of the curved section is high, the excess centrifugal force increases to cause further deterioration in riding comfort. Therefore, when the vehicle passes through the curved section, the vehicle body is controlled to be tilted toward the inner track so as to suppress excess centrifugal force and prevent deterioration in riding comfort.

この車体の傾斜方法として、車体を支持する左右の空気ばねに空気を給排気してこれを伸縮させて傾斜させる方法がある。このとき、給排気の制御には、空気流れの開放と遮断のみが可能な電磁弁が使われることが多いが、とくに車体傾斜のように大量の空気の流れを扱う場合は、1秒間の開閉回数は数回程度のものが一般的である。なお、ここで電磁弁とは、電磁石で弁を駆動させるものであり、一定の弁口径を有し、弁の開閉により空気流れの開放や遮断を行うものを指すものとする。   As a method for inclining the vehicle body, there is a method in which air is supplied to and exhausted from left and right air springs that support the vehicle body, and the air spring is expanded and contracted to be inclined. At this time, a solenoid valve that can only open and shut off the air flow is often used for air supply / exhaust control. However, especially when handling a large amount of air flow such as a vehicle body tilt, it opens and closes for 1 second. The number of times is generally several times. Here, the electromagnetic valve is a valve that is driven by an electromagnet, has a constant valve diameter, and refers to a valve that opens and closes an air flow by opening and closing the valve.

一方で、近年の鉄道車両は、車体の軽量化・低剛性化に伴い、10Hz以上の振動を吸収するため、空気ばねの上下剛性は低く設計されることが多い。その影響でレールの継ぎ目や偏摩耗などの軌道外乱からの衝撃、上り又は下り勾配部の垂直方向の曲線(縦曲線)の遠心力などによる空気ばねの固有振動数付近(1Hz程度)の空気ばね振動が乗り心地に影響を与えるようになってきた。   On the other hand, in recent years, railway cars absorb vibrations of 10 Hz or more as the vehicle body becomes lighter and lower in rigidity, so that the vertical stiffness of the air spring is often designed to be low. As a result, air springs near the natural frequency (about 1 Hz) of the air spring due to impacts from track disturbances such as rail joints and uneven wear, and centrifugal force in the vertical curve (vertical curve) of the ascending or descending slope. Vibration has been affecting the ride comfort.

このようなことから、車体の傾斜制御において、前記のような振動も抑制したいという要求が顕在化してきた。
ところで、空気ばねへの給排気によって高さを制御する場合、空気ばねに加える流量は0から最大値の間の任意の値をとり得ることが望ましい。しかしながら、電磁弁の場合、とり得る流量は0か最大値であり、その中間段階を任意に実現することはできない。このため、加えることができる流量は望みの流量に対し過小か過大のいずれかとなり、高さ制御の性能が劣化するか、最悪の場合、振動発散的応答を引き起こすこともある。
For this reason, in the vehicle body tilt control, a demand for suppressing such vibrations has become apparent.
By the way, when the height is controlled by supply / exhaust to the air spring, it is desirable that the flow rate applied to the air spring can take any value between 0 and the maximum value. However, in the case of a solenoid valve, the flow rate that can be taken is 0 or the maximum value, and the intermediate stage cannot be realized arbitrarily. For this reason, the flow rate that can be applied is either too small or too large with respect to the desired flow rate, and the performance of the height control may deteriorate, or in the worst case, it may cause a vibration divergent response.

0か最大値しかとり得ない信号を利用して擬似的に中間段階の値を実現する方法として、高速で0と最大値の切換を行い、0の時間と最大値の時間の比率を変化させるPWM制御が知られているが、一般にPWM制御では、希望の周波数を実現するためにはその100倍以上の切換え周期が必要となる。空気ばねの1Hzの振動を抑制するためには同程度で流量を変化させる必要があるが、PWM制御によりこのような流量変化を実現させるには1秒に数回程度しか開閉できない電磁弁では困難である。   As a method of realizing a pseudo intermediate value using a signal that can only take 0 or the maximum value, switching between 0 and the maximum value at high speed and changing the ratio of the time of 0 to the maximum value is performed. PWM control is known, but in general, PWM control requires a switching period of 100 times or more to realize a desired frequency. In order to suppress the 1 Hz vibration of the air spring, it is necessary to change the flow rate at the same level, but it is difficult to achieve such a flow rate change by PWM control with an electromagnetic valve that can be opened and closed only several times per second. It is.

このような問題に対処する方法として、弁口径の異なる電磁弁を複数組み合わせて傾斜制御する方法が特許文献1で開示されている。
特公昭48−205号公報
As a method for coping with such a problem, Patent Document 1 discloses a method of controlling the inclination by combining a plurality of solenoid valves having different valve diameters.
Japanese Patent Publication No. 48-205

しかしながら、特許文献1に記載の傾斜制御のように、弁口径の異なる電磁弁を複数組み合わせる方法は、装置重量や大きさの制約から組み合わせることのできる電磁弁の数に限界があり、任意の流量を実現できるほどの数の電磁弁を組み合わせることは難しい。   However, the method of combining a plurality of solenoid valves having different valve diameters as in the tilt control described in Patent Document 1 has a limit in the number of solenoid valves that can be combined due to restrictions on the weight and size of the device, and an arbitrary flow rate. It is difficult to combine as many solenoid valves as possible.

解決しようとする問題点は、電磁弁を用いて空気ばねに空気を給排気することで行なう従来の車体傾斜制御では、軌道外乱や縦曲線などで発生する1Hz程度の振動を吸収することができないという点である。   The problem to be solved is that conventional vehicle body tilt control, which is performed by supplying and exhausting air to and from an air spring using a solenoid valve, cannot absorb vibration of about 1 Hz generated due to orbital disturbance or vertical curve. That is the point.

本発明の鉄道車両の車体傾斜制御装置は、
車体傾斜制御と、軌道外乱や縦曲線などで発生する1Hz程度の振動吸収を可能にするため、
車体と台車間の左右それぞれに設けた気体式ばねを用いて鉄道車両の車体傾斜制御を行う装置において、
前記それぞれの気体式ばねと、これら気体式ばねに供給する気体を溜める元圧だめとを接続する配管の途中に、
非傾斜制御時、気体式ばねの高さを中立位置に保つ高さ調整弁と、
この高さ調整弁と直列に設けられ、車体傾斜制御時に閉じて高さ調整弁を無効にする切換え弁と、
前記気体式ばねからの排気を制御する排気制御電磁弁と、
前記気体式ばねへの給気を制御する給気制御電磁弁と、
この給気制御電磁弁と並列に流量比例制御弁を設けると共に、
曲線情報および前記気体式ばねの変位情報から気体式ばねを目標高さに制御するための制御信号を算出し、前記の各弁を制御する制御器を備えたことを最も主要な特徴としている。
The vehicle body tilt control device for a railway vehicle according to the present invention includes:
In order to enable vehicle body tilt control and vibration absorption of about 1Hz generated by orbital disturbances and vertical curves,
In a device for controlling the vehicle body tilt of a railway vehicle using gas springs provided on the left and right sides between the vehicle body and the carriage,
In the middle of the pipe connecting the respective gas springs and the source pressure reservoir for storing the gas supplied to these gas springs,
A height adjustment valve that maintains the height of the gas spring in a neutral position during non-tilt control;
A switching valve that is provided in series with the height adjustment valve, and is closed during vehicle body tilt control to disable the height adjustment valve;
An exhaust control solenoid valve for controlling exhaust from the gas spring;
An air supply control solenoid valve for controlling air supply to the gas spring;
While providing a flow rate proportional control valve in parallel with this air supply control solenoid valve,
The main feature is that a control signal for controlling the valve is calculated by calculating a control signal for controlling the gas spring to a target height from curve information and displacement information of the gas spring.

また、前記本発明の鉄道車両の車体傾斜制御装置を用いて実施する本発明の鉄道車両の車体傾斜制御方法は、
車体と台車間の左右それぞれに設けた気体式ばねを用いて鉄道車両の車体傾斜制御を行う方法において、
前記それぞれの気体式ばねと、これら気体式ばねに供給する気体を溜める元圧だめとを接続する配管の途中に、
非傾斜制御時、気体式ばねの高さを中立位置に保つ高さ調整弁と、
この高さ調整弁と直列に設けられ、車体傾斜制御時に閉じて高さ調整弁を無効にする切換え弁と、
前記気体式ばねからの排気を制御する排気制御電磁弁と、
前記気体式ばねへの給気を制御する給気制御電磁弁と、
この給気制御電磁弁と並列に流量比例制御弁を設けると共に、
曲線情報および前記気体式ばねの変位情報から気体式ばねを目標高さに制御するための制御信号を算出し、前記の各弁を制御する制御器を備え、
前記制御器は、取り込まれた前記情報中に曲線情報が存在する時には、前記切換え弁を閉じて前記高さ調整弁を無効化した後に前記制御信号を算出して、前記排気制御電磁弁および給気制御電磁弁を制御して車体傾斜制御を行う一方、前記流量比例制御弁を制御して軌道外乱や縦曲線に起因する振動を吸収することを最も主要な特徴としている。
Further, the vehicle body tilt control method for a railway vehicle according to the present invention, which is carried out using the vehicle body tilt control device for a railway vehicle according to the present invention,
In the method of performing the vehicle body tilt control of the railway vehicle using the gas springs provided on the left and right between the vehicle body and the carriage,
In the middle of the pipe connecting the respective gas springs and the source pressure reservoir for storing the gas supplied to these gas springs,
A height adjustment valve that maintains the height of the gas spring in a neutral position during non-tilt control;
A switching valve that is provided in series with the height adjustment valve, and is closed during vehicle body tilt control to disable the height adjustment valve;
An exhaust control solenoid valve for controlling exhaust from the gas spring;
An air supply control solenoid valve for controlling air supply to the gas spring;
While providing a flow rate proportional control valve in parallel with this air supply control solenoid valve,
A control signal for controlling the valve is calculated by calculating a control signal for controlling the gas spring to a target height from curve information and displacement information of the gas spring,
When there is curve information in the acquired information, the controller calculates the control signal after closing the switching valve and invalidating the height adjustment valve, and the exhaust control electromagnetic valve and the supply valve. The main feature is to control the air-flow control solenoid valve to control the vehicle body tilt and to control the flow rate proportional control valve to absorb the vibration caused by the orbital disturbance and the vertical curve.

本発明において、車体と台車間の左右とは、車両進行方向に対して同一水平面内における直角方向の左右を言う。   In the present invention, the left and right between the vehicle body and the carriage refer to the right and left in the direction perpendicular to the traveling direction of the vehicle.

本発明によれば、曲線区間通過時の車体傾斜制御に加え、軌道外乱や縦曲線などで発生する1Hz程度の空気ばねの振動も吸収でき、より良い乗り心地を実現することができる。   According to the present invention, in addition to vehicle body tilt control when passing through a curved section, vibration of an air spring of about 1 Hz generated due to a track disturbance or a vertical curve can be absorbed, and a better riding comfort can be realized.

以下、本発明の着想から課題解決に至るまでの過程と共に本発明を実施するための最良の形態について、図1及び図2を用いて説明する。
図1は本発明の鉄道車両の車体傾斜制御装置の一例を示す概略図、図2は本発明の鉄道車両の車体傾斜制御方法における制御の要部を示すフロー図である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS. 1 and 2 together with the process from the idea of the present invention to the solution of the problem.
FIG. 1 is a schematic diagram illustrating an example of a vehicle body tilt control apparatus for a railway vehicle according to the present invention, and FIG. 2 is a flowchart illustrating a main part of control in the vehicle body tilt control method for a rail vehicle according to the present invention.

軌道外乱や縦曲線などで発生する1Hz程度の振動を吸収するためには、1Hz程度の振動抑制に対応できるように流量を変化させることができ、しかもその流量が0から最大値までの間の任意の値を実現できるように流量制御する手段が必要である。   In order to absorb vibrations of about 1 Hz generated by orbital disturbances and vertical curves, the flow rate can be changed so that vibration suppression of about 1 Hz can be supported, and the flow rate is between 0 and the maximum value. A means for controlling the flow rate so as to realize an arbitrary value is required.

このような特性をもつ空圧機器には流量比例制御弁がある。これは弁の開度が入力電流に比例する弁であり、弁の開度と流量の関係を調べておけば任意の流量をも得ることができる。従って、1Hz程度の振動抑制に対応できる応答性を得ることも可能である。   Pneumatic equipment having such characteristics includes a flow rate proportional control valve. This is a valve in which the opening degree of the valve is proportional to the input current, and an arbitrary flow rate can be obtained by examining the relationship between the opening degree of the valve and the flow rate. Therefore, it is possible to obtain responsiveness that can cope with vibration suppression of about 1 Hz.

但し、流量比例制御弁が扱うことができる流量は、一般的に100〜500Nリットル/min程度で、最大流量に限界がある。従って、外乱を抑制することは可能であるが、車体を傾斜制御する際に必要な数千Nリットル/minのオーダーの大流量全てを供給することは難しい。なお、Nリットル/minとは、基準状態(圧力0.1013MPa、温度0℃、湿度0%)の空気に換算した毎分の流量を言う。   However, the flow rate that can be handled by the flow rate proportional control valve is generally about 100 to 500 Nl / min, and the maximum flow rate is limited. Therefore, it is possible to suppress disturbance, but it is difficult to supply all the large flow rates of the order of several thousand N liters / min that are necessary for tilt control of the vehicle body. N liter / min refers to the flow rate per minute converted to air in a standard state (pressure 0.1013 MPa, temperature 0 ° C., humidity 0%).

つまり、鉄道車両の車体傾斜制御において、曲線区間の出入口における空気ばねに給排気する空気は大量であるため、大口径の電磁弁が必要となる。一方、軌道外乱や縦曲線などで発生する空気ばね振動の抑制は、比較的少量の給排気で十分であり、電磁弁よりも流量比例制御弁の使用が望ましい。よって、両者を適切に組み合わせれば、車体の傾斜制御を行いつつ空気ばね振動も抑制でき、良好な乗り心地が期待できると考えられる。   That is, in the vehicle body tilt control of a railway vehicle, since a large amount of air is supplied to and exhausted from the air spring at the entrance / exit of the curved section, a large-diameter solenoid valve is required. On the other hand, a relatively small amount of air supply / exhaust is sufficient to suppress air spring vibration generated due to orbital disturbance or vertical curve, and the use of a flow rate proportional control valve is preferable to an electromagnetic valve. Therefore, if both are combined appropriately, it is considered that air spring vibration can be suppressed while controlling the tilt of the vehicle body, and a good riding comfort can be expected.

そこで、電磁弁と流量比例制御弁を使い分ける方法として、発明者は、周波数に着目する方法と、位置に着目する方法の2種類を考えた。   In view of this, the inventors have considered two types of methods for selectively using the electromagnetic valve and the flow rate proportional control valve: a method focusing on frequency and a method focusing on position.

A)周波数に着目する方法
空気ばねを伸縮させるために必要な空気流量の変化は、2〜5秒程度をかけて変化する比較的ゆっくりしたものである。一方、外乱抑制に必要な空気流量は空気ばねの固有振動数(1Hz程度)以上と、前者に比べて急峻な変化をする。従って、両者の周波数の違いに着目すれば両者を分離することが可能である。
A) Method focusing on frequency The change in the air flow rate required to expand and contract the air spring is a relatively slow change that takes about 2 to 5 seconds. On the other hand, the air flow rate required for disturbance suppression changes more rapidly than the natural frequency (about 1 Hz) of the air spring, compared to the former. Therefore, it is possible to separate the two by paying attention to the difference in frequency between the two.

B)位置に着目する方法
一般に、曲線区間の外軌側の空気ばねは、車体傾斜制御時に伸縮させる必要があるため、外軌側の空気ばねに給排気する必要がある空気の量は多い。これに対して、曲線区間の内軌側の空気ばねは、車両の構造上動く範囲が小さく、給排気が必要な空気の量は少ない。さらに、空気ばねは伸びると上下剛性が上昇するという特性を有しており、伸ばされた曲線区間外軌側の空気ばねは外乱による振動が発生しにくいことが分かっている。
B) Method of paying attention to the position Generally, the air spring on the outer gauge side of the curved section needs to be expanded and contracted during vehicle body tilt control. In contrast, the air spring on the inner track side of the curved section has a small range of movement due to the structure of the vehicle, and the amount of air that needs to be supplied and exhausted is small. Further, it has been found that the air spring has a characteristic that the vertical rigidity increases when it is extended, and the extended air spring on the outer side of the curved section is less likely to generate vibration due to disturbance.

従って、曲線区間内軌側の空気ばねの制御は、連続的に流量制御ができる流量比例制御弁のみを使用して行ない、外軌側の空気ばねの制御は、大流量を扱える電磁弁を主に使用、すなわち電磁弁のみを使用するか、電磁弁と流量比例制御弁を組み合わせて使用することで行なう。   Therefore, the control of the air spring on the track side in the curved section is performed using only a flow rate proportional control valve capable of continuous flow control, and the control of the air spring on the outer track side is mainly an electromagnetic valve capable of handling a large flow rate. This is done by using only a solenoid valve, or by combining a solenoid valve and a flow rate proportional control valve.

なお、この位置に着目する方法は、周波数に着目する方法に比べてフィルタなどの処理が少ないので、簡便に実現できるという長所を有している。しかしながら、曲線区間の外軌側については、外乱抑制効果が周波数に着目する方法より劣る。   Note that the method focusing on this position has the advantage that it can be easily realized because it requires less processing such as filtering than the method focusing on frequency. However, on the outer track side of the curved section, the disturbance suppression effect is inferior to the method of paying attention to the frequency.

本発明の鉄道車両の車体傾斜制御装置は、発明者の上記考え方に基づいてなされたものであり、図1に示したような構成である。
図1において、1は車体、2は台車であり、これら車体1と台車2間の左右それぞれに空気ばね3が設けられ、これらの空気ばね3を用いて車体傾斜制御が行われる。
The vehicle body tilt control apparatus for a railway vehicle according to the present invention is made based on the above-mentioned concept of the inventor and has a configuration as shown in FIG.
In FIG. 1, reference numeral 1 denotes a vehicle body, and 2 a carriage. Air springs 3 are provided on the left and right sides of the carriage 1 and the carriage 2, respectively, and vehicle body tilt control is performed using these air springs 3.

4は前記それぞれの空気ばね3に供給する空気を溜める元圧だめであり、この元圧だめ4と前記空気ばね3を接続する配管5の途中に、高さ調整弁6、排気制御電磁弁(以下、排気弁という。)7、給気制御電磁弁(以下、給気弁という。)8が設置されている。   Reference numeral 4 denotes an original pressure reservoir for accumulating air to be supplied to each of the air springs 3. A height adjusting valve 6, an exhaust control solenoid valve () is provided in the middle of a pipe 5 connecting the original pressure reservoir 4 and the air spring 3. Hereinafter, an exhaust valve) 7 and an air supply control solenoid valve (hereinafter referred to as an air supply valve) 8 are provided.

このうち、前記高さ調整弁6は、回転レバーの角度によって空気ばね3に給排気を行い、空気ばね3の高さを中立位置に保つ機構を備えている。この高さ調整弁6は車体傾斜を妨げる働きをするため、車体傾斜制御中は高さ調整弁6と直列に設けた切換え弁9を閉じることで高さ調整弁6を無効にする。   Among these, the height adjusting valve 6 is provided with a mechanism for supplying and exhausting air to the air spring 3 according to the angle of the rotary lever and maintaining the height of the air spring 3 at a neutral position. Since the height adjustment valve 6 functions to prevent the vehicle body inclination, the height adjustment valve 6 is invalidated by closing the switching valve 9 provided in series with the height adjustment valve 6 during the vehicle body inclination control.

本発明では、前記給気弁8と並列に、入力電流に比例した弁の開度を実現する流量比例制御弁10を設けている。
そして、演算装置と記憶装置を有する制御器11では、データデポ地上子やヨーレートジャイロセンサなどを介して得られる曲線情報と空気ばね3の変位情報から空気ばね3を目標高さに制御するための制御信号を算出し、前記の各弁7,8,9,10を制御する。
In the present invention, a flow rate proportional control valve 10 is provided in parallel with the air supply valve 8 to realize a valve opening degree proportional to the input current.
Then, in the controller 11 having the arithmetic unit and the storage device, the control for controlling the air spring 3 to the target height from the curve information obtained through the data depot ground element, the yaw rate gyro sensor, and the displacement information of the air spring 3. A signal is calculated, and the valves 7, 8, 9, and 10 are controlled.

例えば、曲線区間での車体傾斜制御に際しては、前記排気弁7や給気弁8を制御する一方、軌道外乱や縦曲線に起因する振動吸収に際しては、前記流量比例制御弁10を制御するのである。
これが、本発明の鉄道車両の車体傾斜制御装置である。
For example, the exhaust valve 7 and the air supply valve 8 are controlled when the vehicle body tilt is controlled in a curved section, while the flow rate proportional control valve 10 is controlled when absorbing vibration caused by orbital disturbance and a vertical curve. .
This is the vehicle body tilt control device for a railway vehicle of the present invention.

図1の例では、空気ばね3の変位情報は、車体1の上下と連動して回転する回転レバーの角度を読み取ることで空気ばね3の高さを計測し、電気信号に変換する高さセンサ12から得るものを示している。なお、図1中の13は空気ばね3から大気へ空気を排気する排気ポートである。   In the example of FIG. 1, the displacement information of the air spring 3 is a height sensor that measures the height of the air spring 3 by reading the angle of a rotating lever that rotates in conjunction with the top and bottom of the vehicle body 1 and converts it into an electrical signal. The one obtained from 12 is shown. Note that reference numeral 13 in FIG. 1 denotes an exhaust port for exhausting air from the air spring 3 to the atmosphere.

次に、前記の本発明の鉄道車両の車体傾斜制御装置を用いた本発明の車体傾斜制御方法を、信号周波数に着目して弁を使い分ける方法と、空気ばねの位置に着目した方法について、詳細に説明する。   Next, the vehicle body tilt control method of the present invention using the above-described railway vehicle body tilt control device of the present invention will be described in detail with respect to a method of using different valves by focusing on the signal frequency and a method of focusing on the position of the air spring. Explained.

A1)信号周波数に着目して弁を使い分ける方法
1) 例えばデータデポ地上子などとの通信によって制御器11が曲線区間を認識すると、切換え弁9を閉じて高さ調整弁6を無効化する。
2) 前記通信によって得た曲線情報を元に、制御器11は車体1の目標傾斜角度を計算する。
A1) A method of using different valves focusing on signal frequency
1) For example, when the controller 11 recognizes a curve section by communication with a data depot ground unit or the like, the switching valve 9 is closed and the height adjusting valve 6 is invalidated.
2) Based on the curve information obtained by the communication, the controller 11 calculates the target inclination angle of the vehicle body 1.

3) 制御器11は計算した目標傾斜角度から各空気ばね3の目標高さを計算する。
4) 高さセンサ12を用いて空気ばね3の変位を電気信号に変換する。
5) 制御器11は変換した電気信号を取り込み、PID、LQG、H∞などの一般的な制御演算から空気ばね3を目標の高さに制御するための制御信号を計算する。ここで、外乱が存在しない場合には、制御信号が特定の周波数以上の成分を持たないように、制御パラメータを調整しておく。これは、適切な制御則設計手法を適用することで可能である。
3) The controller 11 calculates the target height of each air spring 3 from the calculated target inclination angle.
4) The displacement of the air spring 3 is converted into an electric signal using the height sensor 12.
5) The controller 11 takes in the converted electric signal and calculates a control signal for controlling the air spring 3 to a target height from general control calculations such as PID, LQG, and H∞. Here, when there is no disturbance, the control parameter is adjusted so that the control signal does not have a component having a specific frequency or higher. This is possible by applying an appropriate control law design method.

6) 計算した制御信号を各種フィルタで処理し、制御信号を低周波信号と高周波信号に分離する。たとえば0.5Hzのローパスフィルタ処理にて低周波信号を得、元の信号とこの低周波信号の差から高周波信号を計算する。 6) The calculated control signal is processed by various filters, and the control signal is separated into a low frequency signal and a high frequency signal. For example, a low frequency signal is obtained by a low-pass filter process of 0.5 Hz, and a high frequency signal is calculated from a difference between the original signal and the low frequency signal.

このローパスフィルタのカットオフ周波数は車両の空気ばね3の固有振動数により変化するが、あまり小さくすると信号遅れが問題となり、反対に大きくすると周波数的に分離できない。曲線区間の走行速度、車両諸元、外乱周波数などでも変わってくるが、おおむね0.1〜0.5Hz程度が適当と考えられる。   The cut-off frequency of the low-pass filter varies depending on the natural frequency of the air spring 3 of the vehicle. However, if the frequency is too small, signal delay becomes a problem. Although it varies depending on the traveling speed of the curved section, vehicle specifications, disturbance frequency, etc., it is considered that about 0.1 to 0.5 Hz is appropriate.

7) 低周波信号が給気しきい値を上回った場合には、給気弁8を開いて空気ばね2に給気し、また低周波信号が排気しきい値を下回った場合には、排気弁7を開いて排気し、車体1を傾斜させる低周波・大流量を実現する。なお、前記のしきい値は、必要な車体傾斜速度、給気弁8、排気弁7の口径などを考慮し、適宜設定する。 7) When the low-frequency signal exceeds the supply threshold, the supply valve 8 is opened to supply air to the air spring 2, and when the low-frequency signal falls below the exhaust threshold, exhaust The valve 7 is opened and exhausted to achieve a low frequency and large flow rate that tilts the vehicle body 1. The threshold value is appropriately set in consideration of the required vehicle body tilt speed, the diameter of the air supply valve 8, the exhaust valve 7, and the like.

8) 一方、高周波信号は流量比例制御弁10に出力され、外乱による空気ばね3の振動を抑制する高周波・小流量を実現する。なお、流量比例制御弁10は、排気機能を併せて有するものを用いてもよいが、排気機能を有しない流量比例制御弁を用い、並列に排気機能を有し、給気機能を有しない流量比例制御弁を設けてもよい。この場合、必要な給排気の速さ、流量を考慮し適宜選択すればよい。
図2に5)〜8)の流れを示す。
8) On the other hand, the high frequency signal is output to the flow rate proportional control valve 10 to realize a high frequency and small flow rate that suppresses vibration of the air spring 3 due to disturbance. The flow rate proportional control valve 10 may have an exhaust function, but a flow rate proportional control valve that does not have an exhaust function is used, and a flow rate that has an exhaust function in parallel and does not have an air supply function. A proportional control valve may be provided. In this case, it may be selected as appropriate in consideration of the necessary supply / exhaust speed and flow rate.
Fig. 2 shows the flow from 5) to 8).

B1)空気ばねの位置に着目する方法(曲線区間外軌側の制御を排気弁7と給気弁8のみで行なう場合)
1)〜4)は、信号周波数に着目して弁を使い分けるA1)の方法と同じである。
5) 制御器11は変換した電気信号を取り込み、PID、LQG、H∞などの一般的な制御演算から空気ばね3を目標の高さに制御するための制御信号を計算する。
B1) A method of paying attention to the position of the air spring (when the control on the outside of the curved section is performed only by the exhaust valve 7 and the supply valve 8)
1) to 4) are the same as the method of A1) that uses the valve by paying attention to the signal frequency.
5) The controller 11 takes in the converted electric signal and calculates a control signal for controlling the air spring 3 to a target height from general control calculations such as PID, LQG, and H∞.

6) 制御器11の記憶装置から現在の曲線区間に関するデータを読み込み、曲線区間の方向から各空気ばね3が曲線区間の外軌側、内軌側のどちらにあたるかを判定する。
7) 曲線区間の外軌側にある空気ばね3に対する制御信号は、給気しきい値を信号が上回った場合に給気弁8を開いて空気ばね3に給気し、また排気しきい値を信号が下回った場合に排気弁7を開いて排気し、車体1を傾斜させる低周波・大流量を実現する。
6) Data relating to the current curve section is read from the storage device of the controller 11, and it is determined from the direction of the curve section whether each air spring 3 is on the outer track side or the inner track side of the curve section.
7) The control signal for the air spring 3 on the outer track side of the curved section opens the air supply valve 8 to supply air to the air spring 3 when the signal exceeds the air supply threshold, and the exhaust threshold When the signal falls below, the exhaust valve 7 is opened and exhausted to achieve a low frequency and large flow rate that tilts the vehicle body 1.

8) 曲線区間の内軌側にある空気ばね3に対する制御信号は、流量比例制御弁10に出力して外乱による空気ばね3の振動を抑制する高周波・小流量を実現する。
なお、給気しきい値や排気しきい値の設定は、信号周波数に着目して弁を使い分ける方法で説明した場合と同じである。また、流量比例制御弁10の排気機能についても信号周波数に着目して弁を使い分ける方法で説明した場合と同じである。
8) A control signal for the air spring 3 on the inner track side of the curved section is output to the flow proportional control valve 10 to realize a high frequency and small flow rate that suppresses vibration of the air spring 3 due to disturbance.
The setting of the air supply threshold value and the exhaust gas threshold value is the same as the case described with the method of using different valves by paying attention to the signal frequency. Further, the exhaust function of the flow rate proportional control valve 10 is the same as that described in the method of using different valves by paying attention to the signal frequency.

B2)空気ばねの位置に着目する方法(曲線区間外軌側の制御を排気弁7、給気弁8と流量比例制御弁10を用いて行なう場合)
1)〜5)は、信号周波数に着目して弁を使い分けるA1)の方法と同じである。
6) は空気ばねの位置に着目するB1)の方法と同じである。
B2) A method of paying attention to the position of the air spring (when the control on the curve section outer track side is performed using the exhaust valve 7, the air supply valve 8 and the flow proportional control valve 10)
1) to 5) are the same as the method of A1), which uses different valves by paying attention to the signal frequency.
6) is the same as the method B1) focusing on the position of the air spring.

7) 外軌側空気ばねに対して計算された制御信号を各種フィルタで処理し、制御信号を低周波信号と高周波信号に分離する。たとえば0.5Hzのローパスフィルタ処理にて低周波信号を得、元の信号とこの低周波信号の差から高周波信号を計算する。そして前記A1)の方法における7)〜8)と同様の方法で排気弁7、給気弁8と流量比例制御弁10を制御する。 7) The control signal calculated for the air spring on the outer track side is processed by various filters, and the control signal is separated into a low frequency signal and a high frequency signal. For example, a low frequency signal is obtained by a low-pass filter process of 0.5 Hz, and a high frequency signal is calculated from a difference between the original signal and the low frequency signal. Then, the exhaust valve 7, the air supply valve 8, and the flow rate proportional control valve 10 are controlled by the same method as 7) to 8) in the method A1).

8) 一方、内軌側空気ばねに対して計算された制御信号を用いて、前記B1)の方法における8)と同様に流量比例制御弁10を制御する。 8) On the other hand, the flow proportional control valve 10 is controlled in the same manner as 8) in the method B1) using the control signal calculated for the inner-rail air spring.

このB−2)の方法では、内軌側に対するフィルタ処理を施す必要が無いため、A1)の方法よりも簡便に実施でき、また外軌側についても流量比例制御弁10による外乱抑制制御が実施されるためB1)の方法よりも高い外乱抑制効果が期待される。   In the method B-2), since it is not necessary to perform the filtering process on the inner gauge side, it can be performed more simply than the method A1), and the disturbance suppression control by the flow proportional control valve 10 is also performed on the outer gauge side. Therefore, a higher disturbance suppression effect than the method B1) is expected.

本発明は上記の例に限らず、本発明の各請求項に記載された技術的思想の範疇内で、適宜実施の形態を変更しても良いことは、言うまでもない。   It goes without saying that the present invention is not limited to the above-described example, and the embodiments may be appropriately changed within the scope of the technical idea described in each claim of the present invention.

たとえば、本発明方法において、フィルタ処理を行う場合は、低周波信号と高周波信号に分離できるものであれば、ローパスフィルタ処理に限らない。   For example, in the method of the present invention, the filtering process is not limited to the low-pass filtering process as long as it can be separated into a low-frequency signal and a high-frequency signal.

以上の本発明は、気体式ばねの高さを制御させることで、車体を傾斜させるものであれば、ボルスタレス台車に限らずボルスタ台車にも適用できる。   The present invention described above can be applied not only to a bolsterless bogie but also to a bolster bogie as long as the vehicle body is tilted by controlling the height of the gas spring.

本発明の鉄道車両の車体傾斜制御装置の一例を示す概略図である。It is the schematic which shows an example of the vehicle body tilt control apparatus of the railway vehicle of this invention. 本発明の鉄道車両の車体傾斜制御方法における制御の要部を示すフロー図である。It is a flowchart which shows the principal part of the control in the vehicle body tilt control method of the railway vehicle of this invention.

符号の説明Explanation of symbols

1 車体
2 台車
3 空気ばね
4 元圧だめ
5 配管
6 高さ調整弁
7 排気弁
8 給気弁
9 切換え弁
10 流量比例制御弁
11 制御器
DESCRIPTION OF SYMBOLS 1 Car body 2 Bogie 3 Air spring 4 Source pressure reservoir 5 Piping 6 Height adjustment valve 7 Exhaust valve 8 Supply valve 9 Switching valve 10 Flow proportional control valve 11 Controller

Claims (6)

車体と台車間の左右それぞれに設けた気体式ばねを用いて鉄道車両の車体傾斜制御を行う装置において、
前記それぞれの気体式ばねと、これら気体式ばねに供給する気体を溜める元圧だめとを接続する配管の途中に、
非傾斜制御時、気体式ばねの高さを中立位置に保つ高さ調整弁と、
この高さ調整弁と直列に設けられ、車体傾斜制御時に閉じて高さ調整弁を無効にする切換え弁と、
前記気体式ばねからの排気を制御する排気制御電磁弁と、
前記気体式ばねへの給気を制御する給気制御電磁弁と、
この給気制御電磁弁と並列に流量比例制御弁を設けると共に、
曲線情報および前記気体式ばねの変位情報から気体式ばねを目標高さに制御するための制御信号を算出し、前記の各弁を制御する制御器を備えたことを特徴とする鉄道車両の車体傾斜制御装置。
In a device for controlling the vehicle body tilt of a railway vehicle using gas springs provided on the left and right sides between the vehicle body and the carriage,
In the middle of the pipe connecting the respective gas springs and the source pressure reservoir for storing the gas supplied to these gas springs,
A height adjustment valve that maintains the height of the gas spring in a neutral position during non-tilt control;
A switching valve that is provided in series with the height adjustment valve, and is closed during vehicle body tilt control to disable the height adjustment valve;
An exhaust control solenoid valve for controlling exhaust from the gas spring;
An air supply control solenoid valve for controlling air supply to the gas spring;
While providing a flow rate proportional control valve in parallel with this air supply control solenoid valve,
A vehicle body of a railway vehicle comprising a controller for calculating a control signal for controlling the gas spring to a target height from curve information and displacement information of the gas spring and controlling each of the valves. Tilt control device.
前記制御器は、
曲線区間における車体傾斜に際しては前記排気制御電磁弁および給気制御電磁弁を制御し、
軌道外乱や縦曲線に起因する振動吸収に際しては前記流量比例制御弁を制御することを特徴とする請求項1に記載の鉄道車両の車体傾斜制御装置。
The controller is
When the vehicle body tilts in a curved section, the exhaust control solenoid valve and the air supply control solenoid valve are controlled,
2. The vehicle body tilt control device according to claim 1, wherein the flow proportional control valve is controlled when absorbing vibration caused by a track disturbance or a vertical curve.
車体と台車間の左右それぞれに設けた気体式ばねを用いて鉄道車両の車体傾斜制御を行う方法において、
前記それぞれの気体式ばねと、これら気体式ばねに供給する気体を溜める元圧だめとを接続する配管の途中に、
非傾斜制御時、気体式ばねの高さを中立位置に保つ高さ調整弁と、
この高さ調整弁と直列に設けられ、車体傾斜制御時に閉じて高さ調整弁を無効にする切換え弁と、
前記気体式ばねからの排気を制御する排気制御電磁弁と、
前記気体式ばねへの給気を制御する給気制御電磁弁と、
この給気制御電磁弁と並列に流量比例制御弁を設けると共に、
曲線情報および前記気体式ばねの変位情報から気体式ばねを目標高さに制御するための制御信号を算出し、前記の各弁を制御する制御器を備え、
前記制御器は、取り込まれた前記情報中に曲線情報が存在する時には、前記切換え弁を閉じて前記高さ調整弁を無効化した後に前記制御信号を算出して、前記排気制御電磁弁および給気制御電磁弁を制御して車体傾斜制御を行う一方、前記流量比例制御弁を制御して軌道外乱や縦曲線に起因する振動を吸収することを特徴とする鉄道車両の車体傾斜制御方法。
In the method of performing the vehicle body tilt control of the railway vehicle using the gas springs provided on the left and right between the vehicle body and the carriage,
In the middle of the pipe connecting the respective gas springs and the source pressure reservoir for storing the gas supplied to these gas springs,
A height adjustment valve that maintains the height of the gas spring in a neutral position during non-tilt control;
A switching valve that is provided in series with the height adjustment valve, and is closed during vehicle body tilt control to disable the height adjustment valve;
An exhaust control solenoid valve for controlling exhaust from the gas spring;
An air supply control solenoid valve for controlling air supply to the gas spring;
While providing a flow rate proportional control valve in parallel with this air supply control solenoid valve,
A control signal for controlling the valve is calculated by calculating a control signal for controlling the gas spring to a target height from curve information and displacement information of the gas spring,
When there is curve information in the acquired information, the controller calculates the control signal after closing the switching valve and invalidating the height adjustment valve, and the exhaust control electromagnetic valve and the supply valve. A vehicle body tilt control method for a railway vehicle, wherein a vehicle body tilt control is performed by controlling an air control solenoid valve, and a vibration caused by a track disturbance or a vertical curve is absorbed by controlling the flow rate proportional control valve.
前記制御器では、前記制御信号をさらにフィルタ処理して低周波信号と高周波信号に分離し、
前記低周波信号により、前記排気制御電磁弁および前記給気制御電磁弁を制御して車体傾斜を行い、
前記高周波信号により、前記流量比例制御弁を制御して軌道外乱や縦曲線に起因する振動を吸収することを特徴とする請求項3に記載の鉄道車両の車体傾斜制御方法。
In the controller, the control signal is further filtered to separate a low frequency signal and a high frequency signal,
By the low frequency signal, the exhaust control solenoid valve and the air supply control solenoid valve are controlled to incline the vehicle body,
4. The vehicle body tilt control method according to claim 3, wherein the flow proportional control valve is controlled by the high-frequency signal to absorb vibration caused by a track disturbance or a vertical curve.
前記制御器では、前記曲線情報より前記それぞれの気体式ばねが曲線区間の外軌側又は内軌側のいずれにあるのかを判断し、
前記制御信号により、
前記外軌側の気体式ばねを給排気すべく前記排気制御電磁弁および前記給気制御電磁弁を制御して車体傾斜制御を行い、
前記内軌側の気体式ばねを給排気すべく前記流量比例制御弁を制御して軌道外乱や縦曲線に起因する振動を吸収することを特徴とする請求項3に記載の鉄道車両の車体傾斜制御方法。
In the controller, it is determined from the curve information whether each of the gas springs is on the outer track side or the inner track side of the curve section,
By the control signal,
Car body tilt control is performed by controlling the exhaust control solenoid valve and the air supply control solenoid valve to supply and exhaust the gas spring on the outer gauge side,
4. The vehicle body inclination of a railway vehicle according to claim 3, wherein the flow proportional control valve is controlled so as to supply and exhaust the gas spring on the inner rail side to absorb vibration caused by a track disturbance or a vertical curve. Control method.
前記制御器では、前記曲線情報より前記それぞれの気体式ばねが曲線区間の外軌側又は内軌側のいずれにあるのかを判断し、
前記外軌側の気体式ばねに対しては、
前記制御信号をさらにフィルタ処理して低周波信号と高周波信号に分離し、前記低周波信号により、前記排気制御電磁弁および前記給気制御電磁弁を制御して車体傾斜を行う一方、前記高周波信号により、前記流量比例制御弁を制御して軌道外乱や縦曲線に起因する振動を吸収し、
前記内軌側の気体式ばねに対しては、
前記制御信号により前記流量比例制御弁を制御して軌道外乱や縦曲線に起因する振動を吸収することを特徴とする請求項3に記載の鉄道車両の車体傾斜制御方法。
In the controller, it is determined from the curve information whether each of the gas springs is on the outer track side or the inner track side of the curve section,
For the gas spring on the outer gauge side,
The control signal is further filtered to separate a low frequency signal and a high frequency signal, and the exhaust control solenoid valve and the air supply control solenoid valve are controlled by the low frequency signal to incline the vehicle body, while the high frequency signal To control the flow proportional control valve to absorb vibrations caused by orbital disturbance and vertical curve,
For the gas spring on the inner rail side,
4. The vehicle body tilt control method according to claim 3, wherein the flow proportional control valve is controlled by the control signal to absorb vibration caused by a track disturbance or a vertical curve.
JP2006181792A 2006-06-30 2006-06-30 Railway vehicle body tilt control device and control method Expired - Fee Related JP4779832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181792A JP4779832B2 (en) 2006-06-30 2006-06-30 Railway vehicle body tilt control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181792A JP4779832B2 (en) 2006-06-30 2006-06-30 Railway vehicle body tilt control device and control method

Publications (2)

Publication Number Publication Date
JP2008007041A JP2008007041A (en) 2008-01-17
JP4779832B2 true JP4779832B2 (en) 2011-09-28

Family

ID=39065620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181792A Expired - Fee Related JP4779832B2 (en) 2006-06-30 2006-06-30 Railway vehicle body tilt control device and control method

Country Status (1)

Country Link
JP (1) JP4779832B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182239B2 (en) * 2009-07-08 2013-04-17 新日鐵住金株式会社 Railway vehicle body tilt control device
JP5168264B2 (en) * 2009-11-02 2013-03-21 新日鐵住金株式会社 Railway vehicle body tilt control method
JP5267490B2 (en) * 2010-03-11 2013-08-21 新日鐵住金株式会社 Railway vehicle body tilt control method

Also Published As

Publication number Publication date
JP2008007041A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP5182239B2 (en) Railway vehicle body tilt control device
JP5921223B2 (en) Suspension control device
JP2008254577A (en) Method and apparatus for vehicle body tilt control
JP5160127B2 (en) Railway vehicle body tilt actuator
JP2008247333A (en) Vibration control device for railway vehicle
JP4779832B2 (en) Railway vehicle body tilt control device and control method
JP6833477B2 (en) Railroad vehicle height adjustment device
JP4979360B2 (en) Railway vehicle
JP2010137794A (en) Damping device for railway vehicle
JP2008100614A (en) Device and method for inclining railroad vehicle body
JP5497333B2 (en) Railway vehicle vibration control device
JP2007176400A (en) Vertical vibration control device for railway vehicle
JP2004291897A (en) Body inclining device and railway rolling stock
JP2011184018A (en) Vibration damping device for railroad vehicle
JP6794244B2 (en) Vibration control device for railway vehicles
JP5662033B2 (en) Air pressure actuator system
JP2009137422A (en) Actuator
JPH1024844A (en) Vibration control device for vehicle
JP2005096724A (en) Method and device for controlling inclination of car body
JP2008239043A (en) Method and device for controlling inclination of vehicle body
JP6673073B2 (en) Yaw damper device for railway vehicles
JP2012179970A (en) Suspension control device
JPH09193794A (en) Vibration control device for railway vehicle
JP2010137795A (en) Damping device for railway vehicle
JP4501380B2 (en) Railway vehicle vibration control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4779832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees