[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4775700B2 - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
JP4775700B2
JP4775700B2 JP2005256426A JP2005256426A JP4775700B2 JP 4775700 B2 JP4775700 B2 JP 4775700B2 JP 2005256426 A JP2005256426 A JP 2005256426A JP 2005256426 A JP2005256426 A JP 2005256426A JP 4775700 B2 JP4775700 B2 JP 4775700B2
Authority
JP
Japan
Prior art keywords
image
images
image processing
amount
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005256426A
Other languages
English (en)
Other versions
JP2007072573A (ja
Inventor
玲 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2005256426A priority Critical patent/JP4775700B2/ja
Publication of JP2007072573A publication Critical patent/JP2007072573A/ja
Application granted granted Critical
Publication of JP4775700B2 publication Critical patent/JP4775700B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Facsimile Image Signal Circuits (AREA)
  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)

Description

本発明は、画像処理装置及び画像処理方法に関し、詳しくは、複数画像の合成処理に適用する画像処理装置及び画像処理方法に関する。
デジタルカメラ等の撮像装置を用いて夜景等の暗い被写体を撮影する場合、絞りの開放やシャッター速度を遅くすることに加え、撮影感度、つまり、CCDやCMOSなどの撮像デバイスの信号増幅度を高めることが効果的であるが、撮影感度を上げ過ぎると、撮像デバイスの内部雑音等のノイズが増えてしまい、見苦しい画像になる。
そこで、例えば、特許文献1には、同一の被写体を連続して撮影した複数の画像を重ね合わせて合成すると、その合成画像内の被写体部分は画像枚数分だけ倍加されるのに対して、ランダムなノイズ成分は平均化されるという知見の元、連続して撮影された複数の画像を合成することによってノイズリダクションを図るようにした技術(以下、従来技術という)が記載されている。
ところで、暗い被写体を撮影する際のシャッター速度は一般的に遅いため、手ブレや被写体ブレの可能性があるし、また、同一の被写体を連続して撮影する際には、各々の撮影時点で構図(フレーミング)の微妙なズレが生じる可能性もある。
このため、実用上は、画像各部の重ね合わせの精度向上が不可欠であり、例えば、画像合成の対象となる各画像のうち基準となる画像(基準画像)内の特徴(点又は領域)を抽出するとともに、他の画像(被追跡画像)内の前記特徴の対応座標を追跡(オプティカルフロー推定)し、それらの対応関係を元に座標変換の方程式を解き、得られた座標変換式用いて、基準画像と被追跡画像の位置合わせを行っている。
特開2004−357040号公報
しかしながら、上記の座標変換式は、様々な要因、例えば、特徴の誤追跡、各画像の視差、オクルージョン、光学レンズの歪曲収差、被写体の動き、ボケなどによる誤差(さらに、合成の座標計算が整数座標に丸められる場合は丸め誤差も)が含まれているため、多くの場合、上記のように得られた座標変換式を用いても、各画像の位置合わせを画素単位に正確に行うことは困難である。
したがって、そのようにして合成された画像は、子細に観察すれば、画像内の各部において微妙なズレを持った画像であり、すなわち、空間的に少しずれた画像を合成したものになるから、高域成分を喪失し、且つ、低域成分を強調した低画質の画像になるという問題点がある。
そこで、本発明の目的は、画像合成によって失われる高域成分を補償し、画質の改善を図ることができる画像処理装置及び画像処理方法を提供することにある。
請求項1記載の発明は、同一の被写体を連続して撮影た複数画像を画素加算することにより合成画像を生成する画像処理装置であって、前記複数画像の一の画像の特徴を抽出する特徴抽出手段と、前記特徴抽出手段により抽出された一つの画像の特徴と当該特徴に対応する前記複数の画像の他の画像に含まれる特徴との誤差ベクトルを算出する算出手段と、前記算出手段により算出された誤差ベクトルをなくすように前記複数の画像の重ね合わせ処理を行うことで前記複数の画像について画素加算するよう制御する画素加算制御手段と、前記画素加算制御手段により画素加算されるべき画像の化見積もり量を算出する劣化見積もり量算出手段と、前記画素加算制御手段により画素加算がされた画像に対し、前記劣化見積もり量算出手段により算出された劣化見積もり量に基づいて、鮮鋭度を変化させて鮮鋭化処理す鮮鋭化手段とを備えたことを特徴とする画像処理装置である。
請求項2記載の発明は、前記劣化見積もり量は、前記誤差ベクトルの大きさであることを特徴とする請求項1記載の画像処理装置である。
請求項3記載の発明は、前記劣化見積もり量は、前記誤差ベクトルの分散であることを特徴とする請求項1記載の画像処理装置である。
請求項4記載の発明は、前記劣化見積もり量は、前記特徴の追跡時の座標と位置合わせ変換後の座標の差であることを特徴とする請求項1記載の画像処理装置である。
請求項5記載の発明は、前記劣化見積もり量は、前記複数画像を撮影した際の撮影レンズの周辺収差情報と前記画像の特徴の位置情報であることを特徴とする請求項1記載の画像処理装置である。
請求項6記載の発明は、前記劣化見積もり量は、前記複数画像を撮影した際の露出時間であることを特徴とする請求項1記載の画像処理装置である。
請求項7記載の発明は、前記劣化見積もり量は、前記複数画像の明るさの差であることを特徴とする請求項1記載の画像処理装置である。
請求項8記載の発明は、同一の被写体を連続して撮影した複数画像の合成画像を生成する画像処理方法であって、前記複数画像の一の画像の特徴を抽出する特徴抽出工程と、前記特徴と前記複数画像の他の画像に含まれる前記特徴に対応する特徴との誤差ベクトルを求め該誤差ベクトルをなくすように前記複数画像の重ね合わせ処理を行って前記合成画像を生成する合成画像生成工程とを含む画像処理方法において、前記重ね合わせ処理による画像の劣化に対する劣化見積もり量を算出する劣化見積もり量算出工程と、前記複数画像に対して鮮鋭化フィルタを適用することが可能なフィルタ適用工程とをさらに含み、前記劣化見積もり量の大きさに応じて前記鮮鋭化フィルタの鮮鋭度を変化させることを特徴とする画像処理方法である。
請求項9記載の発明は、前記劣化見積もり量は、前記誤差ベクトルの大きさであることを特徴とする請求項8記載の画像処理方法である。
請求項10記載の発明は、前記劣化見積もり量は、前記誤差ベクトルの分散であることを特徴とする請求項8記載の画像処理方法である。
請求項11記載の発明は、前記劣化見積もり量は、前記特徴の追跡時の座標と位置合わせ変換後の座標の差であることを特徴とする請求項8記載の画像処理方法である。
請求項12記載の発明は、前記劣化見積もり量は、前記複数画像を撮影した際の撮影レンズの周辺収差情報と前記画像の特徴の位置情報であることを特徴とする請求項8記載の画像処理方法である。
請求項13記載の発明は、前記劣化見積もり量は、前記複数画像を撮影した際の露出時間であることを特徴とする請求項8記載の画像処理方法である。
請求項14記載の発明は、前記劣化見積もり量は、前記複数画像の明るさの差であることを特徴とする請求項8記載の画像処理方法である。
発明によれば、画像の重ね合わせ処理を行う際の画像の微妙なズレに伴う画像のボケ緩和することができる。
以下、本発明の実施形態を、図面を参照しながら説明する。なお、以下の説明における様々な細部の特定ないし実例および数値や文字列その他の記号の例示は、本発明の思想を明瞭にするための、あくまでも参考であって、それらのすべてまたは一部によって本発明の思想が限定されないことは明らかである。また、周知の手法、周知の手順、周知のアーキテクチャおよび周知の回路構成等(以下「周知事項」)についてはその細部にわたる説明を避けるが、これも説明を簡潔にするためであって、これら周知事項のすべてまたは一部を意図的に排除するものではない。かかる周知事項は本発明の出願時点で当業者の知り得るところであるので、以下の説明に当然含まれている。
図1は、本実施形態の画像処理装置の概略構成図である。この図において、基準画像10及び被追跡画像11は、同一の被写体を連続して撮影した複数の画像である。なお、ここでは2枚の画像(基準画像10及び被追跡画像11)を例にするが、この枚数は画像合成に必要な最低の数を意味する。また、“同一の被写体を連続して撮影した複数の画像”とは、同一の被写体に対して通常のシャッター操作を複数回行い、それぞれのシャッター操作毎に撮影された各画像のことをいい、または、一度のシャッター操作で複数枚の画像を連続的に撮影する連写撮影画像のことをいい、あるいは、動画(ムービー)撮影の各フレーム画像のことをいう。
画像処理装置12は、オプティカルフロー検出部13、RANSAC部14及び画像合成部15を含み、さらに、オプティカルフロー検出部13は、ピラミッド化部13a、特徴点抽出部13b及び特徴点追跡部13cを含み、RANSAC部14は、ランダム選択部14a、H計算部14b及びサポート計算部14cを含み、画像合成部15は、対応位置計算部15b、加算部15a、鮮鋭化部15c及び除算部15dを含む。
オプティカルフロー検出部13のピラミッド化部13aは、基準画像10と被追跡画像11とを取り込み、それらの解像度を段階的に落として粗い画像から精細な画像へと順次に階層化(ピラミッド化)した画像を生成する。オプティカルフロー検出部13の特徴点抽出部13bは、「特徴点」、すなわち、いずれの方向に動かしても画素値の変化が大きい点を抽出する。
特徴点の一例は、ウィンドウに収まる小物体、大きな物体の角(コーナー)、いずれの方向に動かしても変化する特定の模様などである。
オプティカルフロー検出部13の特徴点追跡部13cは、特徴点抽出部13bで抽出した特徴点の追跡処理を行い、その追跡結果をRANSAC部14に出力する。
RANSAC部14のランダム選択部14aは、追跡済み特徴点の組を無作為に選択し、H計算部14bは、その選択された特徴点の組に対応した座標変換式の候補を算出し、サポート計算部14cは、その式に従って全ての特徴点を座標変換したときに追跡結果とどれだけ一致するかを評価〔たとえば、差が一定距離内に収まる特徴(適合点)の個数=サポート数〕する。また、サポート計算部14cは、同時にオプティカルフロー検出部13の特徴点追跡部13cで求められた誤差ベクトルeを、グローバル変数Geを介して受け取り、その誤差ベクトルeの大きさを積算して、合成による画質の劣化見積もり量(後述の誤差評価値E)を計算する。RANSAC部14は、こうした動作を繰り返し、最もよい評価値を得たときの座標変換式を最終結果として、画像合成部15に出力する。
画像合成部15の対応位置計算部15bは、RANSAC部14からの座標変換式に従って、基準画像10と被追跡画像11の位置合わせに必要な対応位置計算を行い、画像合成部15の加算部15aは、その対応位置計算の結果に従って基準画像10と基準画像10に合わせて変形した被追跡画像11の画素毎の加算を行った画像(以下、加算画像16)を生成出力する。画像合成部15の除算部15dは、加算によって加算画像16の全体の輝度値が大きくなりすぎたときに、これを補正するためのものであり、加算画像16に対し、加算枚数及びその他の画像取得条件に応じた除算を行い、その除算結果の画像を合成画像17として出力する。
画像合成部15の鮮鋭化部15cは、サポート計算部14cで求められた劣化見積もり量を受け取り、その大きさを判定して、劣化見積もり量の大きさが所定値を越えない場合には、両画像間のズレが少なく、高域成分の喪失度合いが低いものと判断して、加算画像16の鮮鋭度(シャープネス)をそのままにし、あるいはごく僅かに高める一方、誤差ベクトルeの大きさが所定値を越えて大きい場合には、両画像間のズレが相当大きく、高域成分の喪失度合いが高いものと判断して、加算画像16の鮮鋭度を高めるという処理を行う。
特徴点の抽出(検出)について説明する。
図2は、特徴点抽出部13bの動作フローチャートを示す図である。このフローチャートは、順次に実行される二つのループを含む。最初のループ(以下、ループAという)は、特徴の評価点(一定間隔の座標)毎に繰り返し行われるループであり、このループAを行うたびに、勾配共分散行列G(以下、単に行列Gという)の2つの固有値を計算する(ステップS1)。
ここで、行列Gの二つの固有値について説明する。特徴の候補点(評価点)を中心とする画素値のウィンドウをとり、そのウィンドウ内の各点が同じ動き(フロー)を持つという条件(局所拘束条件)を満たすとすると、ウィンドウ内の点pijについて、
Figure 0004775700
Figure 0004775700
が成り立ち、式1を移項して、
Figure 0004775700
となる。式3のf(pij)は基準画像10を表し、
Figure 0004775700
は被追跡画像11を表す。このスカラー方程式が、同じフロー(dxyT について、ウィンドウ内の全ての点pijで近似的に成立すると考える。ウィンドウサイズをN×N画素とすれば、未知数は(dxyT の2次元に対して、方程式の数はN2 個ある(過剰条件)ので、最小二乗解を求める。一般に誤差(残差)||Ax−b||を最小化するxは、正規方程式AT Ax=AT bの解である。AT Aは、ここではN×2行列と2×N行列の積であるが、
Figure 0004775700
とおき、変形すると、以下のように直接に2×2行列の和の形にすることができる。
Figure 0004775700
pにおける画素残差値をe(p)とすると、この式の右辺は、
Figure 0004775700
と書くことができ、
Figure 0004775700
が得られる。式8において、eは二つの画像(基準画像10と被追跡画像11)の同一評価点の画素値の差の大きさ(誤差ベクトル)を表し、未知ベクトルdは同評価点の動き(追跡ベクトル)を表している。
行列Gの固有値の性質として、以下のことが言える。まず、2つの固有値はいずれも非負の値を持つ。また、明らかに行列Gの固有値の一つでも0に近ければ、0に近い固有値に対する固有ベクトルの摂動が大きくなるため、式8を安定して解くことができない。実際は、ウィンドウ内の画素値が特定の方向に対してほぼコンスタントに揃うとき、この状態(明らかに行列Gの固有値の一つが0に近くなる状態)になる。このことは開口問題(aperture problem)とも呼ばれ、最小固有値が大きいほど、式8の解は誤差の点で安定に求められることを意味する。さらに、行列Gの固有値は、ウィンドウ内各点の勾配を、固有ベクトル方向に射影した長さの二乗和であり、大きい方の固有値(最大固有値)に対応する固有ベクトルは、そのような和を最大化する方向になっており、一方、小さい方の固有値(最小固有値)に対応する固有ベクトルは、それに直交する方向(最小化する方向)になっている。
図3及び図4は、ループAの概念図である。まず始めに、図3に示すように、所定の大きさ(たとえば、7×7画素〜31×31画素程度)のウィンドウ18を適用して基準画像10に初期位置の評価点19を設定する。次いで、ループAを繰り返すたびに、ウィンドウ18を所定量(たとえば、1/2ウィンドウ幅)ずつ移動していき、最終的に基準画像10の最終画素に到達するとループAを終了する。
再び、図2において、2番目のループ(以下、ループBという)は、ループAの後に実行されるループであって、固有値一定以上かつ特徴点個数未達(特徴点数が所定の個数に満たない)の間継続するループである。このループBを行うたびに、最小固有値最大の評価点を「特徴点」として選択し(ステップS2)、選択された評価点近傍の他の評価点を評価候補から除外する(ステップS3)。
図5〜図8は、ループBの概念図である。まず、図5に示すように、基準画像10の各評価点の固有値データを順次に比較していき、図6に示すように、最小固有値が最大である評価点を「特徴点」として選択する。ここでは、便宜的に上から3行目、左から7列目の評価点を特徴点20として選択する。次いで、図7に示すように、選択した特徴点20の周囲(特徴評価点間距離の数倍程度)の一定範囲21に入っている評価点(破線の○印;ただし、破線の○印の数は便宜例である。)を除外する。次いで、図8に示すように、残った評価点の中で最小固有値が最大である評価点を「特徴点」として選択する。ここでは、便宜的に上から6行目、右から5列目の評価点を特徴点22として選択する。以下、この動作を繰り返して特徴点をすべて選択する。
次に、特徴点追跡(トラッキング)について説明する。
図9は、特徴点追跡部13cの動作フローチャートを示す図である。このフローチャートは、第一のループ(以下、ループCという)と、このループCの内部でネストする第二のループ(以下、ループD)を含む。
このフローチャートを開始すると、まず、グローバル動き探索を実行し(ステップS11)、その後、ループCを開始する。グローバル動き探索とは、基準画像10と被追跡画像11の双方の縮小画像(例えば、1/4画像)を作り、基準画像10の中心部に設けたウィンドウと、最もウィンドウ残差が小さくなる被追跡画像11内の位置をブロックマッチングで探索し、グローバル動きベクトルを得る処理のことをいう。そのグローバル動きベクトルを以降の初期値ベクトルとしている。これにより、動きが大きい場合であっても、追跡が成功しやすくなる。
2次元正方行列Zは、行列Gの逆行列(G-1)とする。
ループCは、基準画像10の特徴点毎に実行される。このループCでは、前記のグローバル動きベクトルで動きベクトルを初期化し(ステップS12)、2次元正方行列Zに「G-1 」をセットする(ステップS13)。
次いで、ループDを実行する。このループDでは、誤差ベクトルeを算出(ステップS14)するとともに、その誤差ベクトルeを画像合成部15の鮮鋭化部15cで利用するためにグローバル変数Geにセットし(ステップS15)、追跡ベクトルdにZeをセットし(ステップS16)、動きベクトルを更新(d加算)(ステップS17)した後、解の更新距離がしきい値(許容誤差を示す所定の微小な値)以下になるまでループDを反復する。そして、解の更新距離がしきい値以下になると、ループDを抜けて、特徴点ループ終端になるまで、以上の処理を繰り返す。
対応位置計算部15b(図2参照)で用いられる、位置合わせのための座標変換には、射影変換(自由度8)、アフィン変換(自由度6)、ユークリッド相似変換(自由度4)、剛体運動変換(自由度3)、平行移動変換(自由度2)などのモデルがある。自由度の小さい変換は一般に適用範囲が狭くなるが、計算負荷が軽くなる、誤差による不安定性が減少するなどの利点もあり、適宜適切なものを選択する。
一般に、座標変換式は、正方向(基準画像10→被追跡画像11)、逆方向(被追跡画像11→基準画像10)のいずれを求めてもよい(片方からその逆変換を求めることは容易にできる)。よって、これ以後の説明では一般化して、基準画像10、被追跡画像11のいずれか一方を第一の画像I1 と呼び、他方を第二の画像I2 と呼ぶことにする。
本実施形態では、RANSAC(RANdom SAmple Consensus)により座標変換式の係数(パラメータ)を求めている。RANSACとは、パラメータ推定の一手法であり、少数の点から求めたパラメータ推定の候補に対して、多数の点の中からその推定に適合する点の数や適合の正確性の度合い、すなわち、サポート数を算出し、サポート数の多い推定候補を最終の推定結果として採用する方法のことである。
図10は、RANSAC部14の動作フローチャートを示す図である。このフローチャートは、第一のループ(以下、ループEという)と、このループEの内部でネストする第二のループ(以下、ループF)を含む。
このフローチャートを開始すると、まず、ループEを所定回数実行する。このループEでは、まず、ネストされたループFを実行する。ループFでは、ランダムに特徴を選び出し(ステップS21)、条件2個(後述の式10及び式11参照)を作成する(ステップS22)。次いで、8条件が揃うまでループFを反復し、8条件揃うと、方程式を解いて変換式(射影変換行列H)を得る(ステップS23)。そして、後述の「サポート計算」を実行する(ステップS24)とともに、サポート数が最大サポート数を越えているか否かを判定し(ステップS25)、越えている場合には、最大サポート数の更新とH保存を行い(ステップS26)、ループ終端に達したときに、保存されていた最適なHを出力して(ステップS27)、フローチャートを終了する。
ここで、オプティカルフロー検出部13で、特徴点が抽出・追跡されている。射影変換モデルを採用した場合の射影変換行列Hを求める方程式は、H=(hij)の各要素を列ベクトルとして並べて、
Figure 0004775700
とおき、特徴点追跡処理によって、第一の画像I1の座標(x,y)が第二の画像I2の座標(X,Y)に対応している時、特徴1点につき次の式10、式11に示す2個の線形な条件を作り、
Figure 0004775700
Figure 0004775700
そして、条件が8個揃ったら、方程式をガウス消去法等で解き、射影変換行列Hを求める。あるいは、8個以上の方程式から最小二乗解を求めてもよい。すなわち、8個またはそれ以上の条件をベクトルの行に並べた次式12の線形方程式
Figure 0004775700
を解いてHの成分を求める。このようにすると、射影変換行列を求めることが具体的に可能になる。
図11は、サポート計算の動作フローチャートを示す図である。このフローチャートでは、サポート数と誤差評価量E(劣化見積もり量)を初期化(ステップS31)した後、追跡済特徴に対してループ(以下、ループHという)を実行する。このループHでは、まず、座標変換式による変換を実行し(ステップS32)、着目した特徴点について追跡座標と変換後座標の差が一定距離内に収まるかどうかの適合点判定を実行し(ステップS33)、適合特徴点であればサポート数に“1”を加算する(ステップS34)。次いで、グローバル変数Geから誤差ベクトルeを取り出し、その誤差ベクトルeの大きさの絶対値を誤差評価量Eに加算し(ステップS35)、ループ終端に達した場合にサポート数を返して(ステップS36)、フローチャートを終了する。
次に、本実施形態のポイントである画像合成部15の鮮鋭化部15cについて説明する。この鮮鋭化部15cは、先に説明したとおり、サポート計算部14cで求められた誤差評価値E(劣化見積もり量)を受け取り、その誤差評価値Eの大きさを判定して、誤差評価値Eの大きさが所定値を越えない場合には、両画像間のズレが少なく、高域成分の喪失度合いが低いものと判断して、加算画像16の鮮鋭度をそのままにし、あるいはごく僅かに高める一方、誤差評価値Eの大きさが所定値を越えて大きい場合には、両画像間のズレが相当大きく、高域成分の喪失度合いが高いものと判断して、加算画像16の鮮鋭度を高めるという処理を行うものである。
図12は、鮮鋭化部15cで実行される鮮鋭化処理のフローチャートを示す図である。このフローチャートでは、まず、誤差評価量Eを読み出し(ステップS41)、次いで、「E=0」であるか否か、すなわち、何らかの原因で画像の合成が失敗し、基準画像10の一枚だけが出力されたか否かを判定する(ステップS42)。「E=0」の場合は、そのままフローを終了して画像合成部15の加算部15a等に処理を移し、「E=0」でない場合は、次に、誤差評価量Eと所定値SLとを比較する(ステップS43)。
そして、「E>SL」でない場合は、基準画像10と被追跡画像11のズレが少なく、高域成分の喪失度合いが低い(従って合成画像の画質が悪化しない)ものと判断して、加算画像16の鮮鋭度をそのままにし、あるいはごく僅かに高めることができる適切なフィルタ(以下「鮮鋭化小フィルタ」という)を基準画像10と被追跡画像11に適用し(ステップS44)、一方、「E>SL」である場合は、基準画像10と被追跡画像11のズレが相当大きく、高域成分の喪失度合いが高い(従って合成画像の画質が悪化する)ものと判断して、加算画像16の鮮鋭度を高めることができる適切なフィルタ(以下「鮮鋭化大フィルタ」という)を加算画像16に適用し(ステップS45)、いずれの場合も、フローを終了して、合成画像17を出力する。
図13は、鮮鋭化小フィルタ23と鮮鋭化大フィルタ24の一例を示す図である。これらの図において、3×3個の升目の各々は基準画像10と被追跡画像11の画素を表している。ハッチングを付した中央の升目はフィルタ対象の注目画素であり、各々の升目内に記載した数値は、それらの升目の画素値に乗算されるフィルタ係数である。
一般的に、フィルタ処理後の画素値をg(i,j)としたとき、デジタル画像に適用するフィルタは、
Figure 0004775700
によって表される線形フィルタと、それ以外の非線形フィルタに分類される。ここでは、特にそれに限定されないが、線形フィルタを例にして説明する。
例示の鮮鋭化小フィルタ23は、注目画素のフィルタ係数を「8」、水平と垂直方向に隣接する4つの画素のフィルタ係数を「−1」、それ以外の画素のフィルタ係数を「0」とする2次元の畳み込みマトリクスを適用したものである。
また、例示の鮮鋭化大フィルタ24は、注目画素のフィルタ係数を「5」、水平と垂直方向に隣接する4つの画素のフィルタ係数を「−1」、それ以外の画素のフィルタ係数を「0」とする2次元の畳み込みマトリクスを適用したものである。
今、3×3の画素値を同一(便宜的に「10」)、つまり、濃淡差がないものとすると、鮮鋭化小フィルタ23及び鮮鋭化大フィルタ24のいずれを適用しても適用後の画素値は同じ「10」になるが、仮に、注目画素の画素値を「10」よりも若干明るい、例えば、「12」とすると、鮮鋭化小フィルタ23を適用した後の注目画素の画素値が「12」から「14」へと僅かにしか増えないのに対して、鮮鋭化大フィルタ24を適用した後の注目画素の画素値が「12」から「20」へと大きく増大する。このことは、鮮鋭化小フィルタ23を適用した場合に比べて鮮鋭化大フィルタ24を適用した場合の方が画像の鮮鋭度をより高めることができることを意味する。
したがって、上記の鮮鋭化処理(図12)では、誤差評価量Eが所定値SLを越えない場合には加算画像16に鮮鋭化小フィルタ23を適用する一方、誤差評価量Eが所定値SLを越えている場合には加算画像16に鮮鋭化大フィルタ24を適用するので、誤差ベクトルeの大小に応じて加算画像16の鮮鋭化の度合いを切り換えることができる。
誤差評価量Eが大きい場合、前述の座標変換式には、様々な要因、例えば、特徴の誤追跡、各画像の視差、オクルージョン、光学レンズの歪曲収差、被写体の動き、ボケなどによる誤差(さらに、合成の座標計算が整数座標に丸められる場合は丸め誤差も)が含まれているため、多くの場合、その座標変換式を用いても、基準画像10と被追跡画像11を合成する際の位置合わせを画素単位に正確に行うことは困難である。そのため、高域成分を喪失した低画質の合成画像が出力されてしまうおそれがある。
しかしながら、本実施形態のように、誤差評価量Eが所定値SLを越えて大きい場合に加算画像16に鮮鋭化大フィルタ24を適用して、鮮鋭度を高め、高域成分を補償することにより、画像の低画質化を回避することができる。
なお、以上の説明では、鮮鋭化小フィルタ23と鮮鋭化大フィルタ24を選択するにあたり、評価量の基礎として誤差ベクトルeの“大きさ”を用いたが、これに限定されない。誤差ベクトルeの分散を用いてもよい。誤差ベクトルeの分散は、対象画像の全体の動きの一様さを表している。例えば、画像内に移動物体や変形している物体がある場合に画像合成を行うと、その物体に引きずられて合成画像の他の部分(ひいては画像の全体)がボケてしまうことが多いが、誤差ベクトルeの分散を用いれば、そのような物体の存在を把握することができる。誤差ベクトルeの分散に基づいて、ボケの可能性を判断し、可能性有りの場合に加算画像16に鮮鋭化大フィルタ24を適用すればよい。
また、鮮鋭化小フィルタ23と鮮鋭化大フィルタ24の選択に、“変換精度評価値”を用いてもよい。この変換精度評価値は、サポート計算部14cで適合特徴点と判定された特徴点について、特徴追跡の結果求められた座標と、RANSAC部14によって最適と判定された射影変換により特徴点が移される座標との間のズレ量の総和として求められる。適合特徴点について変換後の座標を評価することで、合成後の画質劣化を精度よく推定できる。
また、デジタルカメラで画像を撮影した場合、撮影画像の周辺部分に歪みを生じることがある。歪みの原因は主に撮影レンズの周辺収差であり、レンズの画角が広いほど(広角レンズになるほど)大きな歪みが発生する。このような歪みを含む画像を基準画像10及び被追跡画像11にして前記の特徴抽出、特徴追跡及び画像合成を行った場合、歪みの程度に応じて画像合成の精度が低下する。
この対策としては、使用するレンズの画角と周辺収差の関係から、あらかじめ画像内の歪み発生部分と、各部分毎の歪みの大きさとを調べておくとともに、それらの調査データを内部メモリ等に保持しておき、抽出された特徴が歪み発生部分に位置しているか否かを判定し、歪み発生部分に位置している場合には、加算画像16に対して鮮鋭化大フィルタ24を適用すればよい。また、同時に、抽出された特徴が位置する歪み発生部分の歪みの大きさのデータを読み出し、そのデータに従って鮮鋭化大フィルタ24のフィルタ強度(鮮鋭化の度合い)を変更してもよい。
また、前記の特徴抽出、特徴追跡及び画像合成の精度は、画像の明るさの影響も受ける。夜景等の暗い画像や露出不足の画像の場合、画像内の明暗の差がハッキリしなくなるためである。このような暗い画像や露出不足の画像の場合にも、鮮鋭化大フィルタ24を適用してもよい。なお、暗い画像や露出不足の画像であるか否かは、例えば、露出(絞り値)やシャッター速度、EV値又はストロボ発光の有無などから判定することができる。また、この例においても、画像の暗さや露出の不足程度に応じて鮮鋭化大フィルタ24のフィルタ強度(鮮鋭化の度合い)を変更してもよい。
また、前記の特徴抽出、特徴追跡及び画像合成の精度は、照明変動などによってフレーム間の明るさが大きく異なる場合にも影響を受けるが、このような場合には、前の画像との明るさの差分を取り、しきい値を越えたものの数で鮮鋭化大フィルタ24のフィルタ強度(鮮鋭化の度合い)を変更してもよい。
本発明は、ノイズリダクションへの応用のみに限定されない。例えば、部分的に重なる数枚以上の画像をつなぎ合わせて1枚の大きな範囲の画像を合成するパノラマ合成に応用することも可能である。2枚の画像の重なり領域をブロックマッチング等によって検出し、その後、本発明の手法を用いて、重なり領域内の特徴点を抽出・追跡し、座標変換を求めることができる。なお、合成処理においては単なる画素値の平均ではなく、境界が目立たないようにブレンディング処理等を行うことが望ましい。
また、本発明は、動画における手振れ補正(電子式手振れ補正)にも応用可能である。すなわち、動画撮影あるいは再生において、手振れによる画面全体の動きベクトルを算出しそれを打ち消すように各フレームあるいはフィールドを平行移動することによって手振れを抑えて安定した動画を生成することができる。より具体的には、本発明の手法を用いて、特徴点抽出・追跡に続いて平行移動モデル等による座標変換によって求めると、画面の支配的な動きベクトルを得たことになる。画像を加算合成する代わりに新しいフレームあるいはフィールドを得られた動きベクトルによって平行移動した画像で逐次置換するようにすれば、手振れを抑えた動画を生成することができる。
本実施形態の画像処理装置の概略構成図である。 特徴点抽出部13bの動作フローチャートを示す図である。 ループAの概念図(1/2)である。 ループAの概念図(2/2)である。 ループBの概念図(1/4)である。 ループBの概念図(2/4)である。 ループBの概念図(3/4)である。 ループBの概念図(4/4)である。 特徴点追跡部13cの動作フローチャートを示す図である。 RANSAC部14の動作フローチャートを示す図である。 サポート計算の動作フローチャートを示す図である。 鮮鋭化部15cで実行される鮮鋭化処理のフローチャートを示す図である。 鮮鋭化小フィルタ23と鮮鋭化大フィルタ24の一例を示す図である。
符号の説明
e 誤差ベクトル
E 誤差評価量(劣化見積もり量)
10 基準画像(一の画像)
11 被追跡画像(他の画像)
12 画像処理装置
13 オプティカルフロー検出部(特徴抽出手段)
14c サポート計算部(劣化見積もり量算出手段)
15 画像合成部(合成画像生成手段)
15c 鮮鋭化部(フィルタ適用手段)
17 合成画像
24 鮮鋭化大フィルタ(鮮鋭化フィルタ)

Claims (14)

  1. 同一の被写体を連続して撮影た複数画像を画素加算することにより合成画像を生成する画像処理装置であって、
    前記複数画像の一の画像の特徴を抽出する特徴抽出手段と、
    前記特徴抽出手段により抽出された一つの画像の特徴と当該特徴に対応する前記複数の画像の他の画像に含まれる特徴との誤差ベクトルを算出する算出手段と、
    前記算出手段により算出された誤差ベクトルをなくすように前記複数の画像の重ね合わせ処理を行うことで前記複数の画像について画素加算するよう制御する画素加算制御手段と、
    前記画素加算制御手段により画素加算されるべき画像の化見積もり量を算出する劣化見積もり量算出手段と、
    前記画素加算制御手段により画素加算がされた画像に対し、前記劣化見積もり量算出手段により算出された劣化見積もり量に基づいて、鮮鋭度を変化させて鮮鋭化処理す鮮鋭化手段と
    を備えたことを特徴とする画像処理装置。
  2. 前記劣化見積もり量は、前記誤差ベクトルの大きさであることを特徴とする請求項1記載の画像処理装置。
  3. 前記劣化見積もり量は、前記誤差ベクトルの分散であることを特徴とする請求項1記載の画像処理装置。
  4. 前記劣化見積もり量は、前記特徴の追跡時の座標と位置合わせ変換後の座標の差であることを特徴とする請求項1記載の画像処理装置。
  5. 前記劣化見積もり量は、前記複数画像を撮影した際の撮影レンズの周辺収差情報と前記画像の特徴の位置情報であることを特徴とする請求項1記載の画像処理装置。
  6. 前記劣化見積もり量は、前記複数画像を撮影した際の露出時間であることを特徴とする請求項1記載の画像処理装置。
  7. 前記劣化見積もり量は、前記複数画像の明るさの差であることを特徴とする請求項1記載の画像処理装置。
  8. 同一の被写体を連続して撮影した複数画像の合成画像を生成する画像処理方法であって、
    前記複数画像の一の画像の特徴を抽出する特徴抽出工程と、
    前記特徴と前記複数画像の他の画像に含まれる前記特徴に対応する特徴との誤差ベクトルを求め該誤差ベクトルをなくすように前記複数画像の重ね合わせ処理を行って前記合成画像を生成する合成画像生成工程とを含む画像処理方法において、
    前記重ね合わせ処理による画像の劣化に対する劣化見積もり量を算出する劣化見積もり量算出工程と、
    前記複数画像に対して鮮鋭化フィルタを適用することが可能なフィルタ適用工程とをさらに含み、
    前記劣化見積もり量の大きさに応じて前記鮮鋭化フィルタの鮮鋭度を変化させることを特徴とする画像処理方法。
  9. 前記劣化見積もり量は、前記誤差ベクトルの大きさであることを特徴とする請求項8記載の画像処理方法。
  10. 前記劣化見積もり量は、前記誤差ベクトルの分散であることを特徴とする請求項8記載の画像処理方法。
  11. 前記劣化見積もり量は、前記特徴の追跡時の座標と位置合わせ変換後の座標の差であることを特徴とする請求項8記載の画像処理方法。
  12. 前記劣化見積もり量は、前記複数画像を撮影した際の撮影レンズの周辺収差情報と前記画像の特徴の位置情報であることを特徴とする請求項8記載の画像処理方法。
  13. 前記劣化見積もり量は、前記複数画像を撮影した際の露出時間であることを特徴とする請求項8記載の画像処理方法。
  14. 前記劣化見積もり量は、前記複数画像の明るさの差であることを特徴とする請求項8記載の画像処理方法。
JP2005256426A 2005-09-05 2005-09-05 画像処理装置及び画像処理方法 Expired - Fee Related JP4775700B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256426A JP4775700B2 (ja) 2005-09-05 2005-09-05 画像処理装置及び画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256426A JP4775700B2 (ja) 2005-09-05 2005-09-05 画像処理装置及び画像処理方法

Publications (2)

Publication Number Publication Date
JP2007072573A JP2007072573A (ja) 2007-03-22
JP4775700B2 true JP4775700B2 (ja) 2011-09-21

Family

ID=37933982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256426A Expired - Fee Related JP4775700B2 (ja) 2005-09-05 2005-09-05 画像処理装置及び画像処理方法

Country Status (1)

Country Link
JP (1) JP4775700B2 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8600989B2 (en) 2004-10-01 2013-12-03 Ricoh Co., Ltd. Method and system for image matching in a mixed media environment
US8369655B2 (en) 2006-07-31 2013-02-05 Ricoh Co., Ltd. Mixed media reality recognition using multiple specialized indexes
US8385589B2 (en) 2008-05-15 2013-02-26 Berna Erol Web-based content detection in images, extraction and recognition
US8335789B2 (en) 2004-10-01 2012-12-18 Ricoh Co., Ltd. Method and system for document fingerprint matching in a mixed media environment
US8156116B2 (en) 2006-07-31 2012-04-10 Ricoh Co., Ltd Dynamic presentation of targeted information in a mixed media reality recognition system
US8156115B1 (en) 2007-07-11 2012-04-10 Ricoh Co. Ltd. Document-based networking with mixed media reality
US9405751B2 (en) 2005-08-23 2016-08-02 Ricoh Co., Ltd. Database for mixed media document system
US8825682B2 (en) 2006-07-31 2014-09-02 Ricoh Co., Ltd. Architecture for mixed media reality retrieval of locations and registration of images
US9530050B1 (en) 2007-07-11 2016-12-27 Ricoh Co., Ltd. Document annotation sharing
US8332401B2 (en) 2004-10-01 2012-12-11 Ricoh Co., Ltd Method and system for position-based image matching in a mixed media environment
US8510283B2 (en) 2006-07-31 2013-08-13 Ricoh Co., Ltd. Automatic adaption of an image recognition system to image capture devices
US8868555B2 (en) 2006-07-31 2014-10-21 Ricoh Co., Ltd. Computation of a recongnizability score (quality predictor) for image retrieval
US9171202B2 (en) 2005-08-23 2015-10-27 Ricoh Co., Ltd. Data organization and access for mixed media document system
US8144921B2 (en) * 2007-07-11 2012-03-27 Ricoh Co., Ltd. Information retrieval using invisible junctions and geometric constraints
US9384619B2 (en) 2006-07-31 2016-07-05 Ricoh Co., Ltd. Searching media content for objects specified using identifiers
US8176054B2 (en) 2007-07-12 2012-05-08 Ricoh Co. Ltd Retrieving electronic documents by converting them to synthetic text
US8856108B2 (en) 2006-07-31 2014-10-07 Ricoh Co., Ltd. Combining results of image retrieval processes
US8521737B2 (en) 2004-10-01 2013-08-27 Ricoh Co., Ltd. Method and system for multi-tier image matching in a mixed media environment
US7702673B2 (en) 2004-10-01 2010-04-20 Ricoh Co., Ltd. System and methods for creation and use of a mixed media environment
US9373029B2 (en) 2007-07-11 2016-06-21 Ricoh Co., Ltd. Invisible junction feature recognition for document security or annotation
US8838591B2 (en) 2005-08-23 2014-09-16 Ricoh Co., Ltd. Embedding hot spots in electronic documents
US7812986B2 (en) 2005-08-23 2010-10-12 Ricoh Co. Ltd. System and methods for use of voice mail and email in a mixed media environment
US8949287B2 (en) 2005-08-23 2015-02-03 Ricoh Co., Ltd. Embedding hot spots in imaged documents
US8201076B2 (en) 2006-07-31 2012-06-12 Ricoh Co., Ltd. Capturing symbolic information from documents upon printing
US8676810B2 (en) 2006-07-31 2014-03-18 Ricoh Co., Ltd. Multiple index mixed media reality recognition using unequal priority indexes
US9063952B2 (en) 2006-07-31 2015-06-23 Ricoh Co., Ltd. Mixed media reality recognition with image tracking
US8489987B2 (en) 2006-07-31 2013-07-16 Ricoh Co., Ltd. Monitoring and analyzing creation and usage of visual content using image and hotspot interaction
US9020966B2 (en) 2006-07-31 2015-04-28 Ricoh Co., Ltd. Client device for interacting with a mixed media reality recognition system
US9176984B2 (en) 2006-07-31 2015-11-03 Ricoh Co., Ltd Mixed media reality retrieval of differentially-weighted links
JP2009075825A (ja) * 2007-09-20 2009-04-09 Tokyo Univ Of Science 画像幾何学的歪補正方法、プログラム、及び画像幾何学的歪補正装置
US8385660B2 (en) 2009-06-24 2013-02-26 Ricoh Co., Ltd. Mixed media reality indexing and retrieval for repeated content
US8896715B2 (en) * 2010-02-11 2014-11-25 Microsoft Corporation Generic platform video image stabilization
US9058331B2 (en) 2011-07-27 2015-06-16 Ricoh Co., Ltd. Generating a conversation in a social network based on visual search results
US9824426B2 (en) 2011-08-01 2017-11-21 Microsoft Technology Licensing, Llc Reduced latency video stabilization
JP5413625B2 (ja) * 2012-03-09 2014-02-12 カシオ計算機株式会社 画像合成装置及びプログラム
JP5910613B2 (ja) * 2013-11-01 2016-04-27 カシオ計算機株式会社 画像合成装置及びプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3984346B2 (ja) * 1997-12-26 2007-10-03 コニカミノルタホールディングス株式会社 撮像装置及び画像合成方法

Also Published As

Publication number Publication date
JP2007072573A (ja) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4775700B2 (ja) 画像処理装置及び画像処理方法
JP4487191B2 (ja) 画像処理装置および画像処理プログラム
JP4595733B2 (ja) 画像処理装置
JP5179398B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム
JP4454657B2 (ja) ぶれ補正装置及び方法、並びに撮像装置
JP4377932B2 (ja) パノラマ画像生成装置およびプログラム
KR101241925B1 (ko) 화상 처리장치 및 화상 처리방법
JP5744614B2 (ja) 画像処理装置、画像処理方法、および、画像処理プログラム
WO2011145297A1 (ja) 撮像装置、画像処理装置、画像処理方法、および画像処理プログラム
US9055217B2 (en) Image compositing apparatus, image compositing method and program recording device
US20070222864A1 (en) Image processing apparatus
JP2010166558A (ja) 撮像装置
JP2009207118A (ja) 撮像装置及びぶれ補正方法
WO2008053765A1 (ja) 画像生成装置および画像生成方法
JP2010141653A (ja) 画像処理装置及び撮像装置
JP2009194896A (ja) 画像処理装置及び方法並びに撮像装置
JP5978949B2 (ja) 画像合成装置及び画像合成用コンピュータプログラム
JP5210198B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム
JP4469309B2 (ja) 手ぶれ補正方法、手ぶれ補正装置、及び撮像装置
US8571356B2 (en) Image processing apparatus, image processing method, and image processing program
JP2010232710A (ja) 画像処理装置および画像処理方法
JP2009118434A (ja) ぶれ補正装置及び撮像装置
JP2007329596A (ja) 画像生成装置および画像生成方法
US11803949B2 (en) Image fusion architecture with multimode operations
US11798146B2 (en) Image fusion architecture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Ref document number: 4775700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees