JP4774961B2 - Uninterruptible power system - Google Patents
Uninterruptible power system Download PDFInfo
- Publication number
- JP4774961B2 JP4774961B2 JP2005349372A JP2005349372A JP4774961B2 JP 4774961 B2 JP4774961 B2 JP 4774961B2 JP 2005349372 A JP2005349372 A JP 2005349372A JP 2005349372 A JP2005349372 A JP 2005349372A JP 4774961 B2 JP4774961 B2 JP 4774961B2
- Authority
- JP
- Japan
- Prior art keywords
- capacitor unit
- voltage
- bidirectional converter
- power supply
- control state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims description 57
- 230000002457 bidirectional effect Effects 0.000 claims description 31
- 230000005856 abnormality Effects 0.000 claims description 7
- 230000005284 excitation Effects 0.000 claims description 6
- 230000001172 regenerating effect Effects 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Landscapes
- Stand-By Power Supply Arrangements (AREA)
- Inverter Devices (AREA)
Description
この発明は、商用電源異常時に負荷に電力を供給する無停電電源装置に関するものである。 The present invention relates to an uninterruptible power supply that supplies power to a load when a commercial power supply is abnormal.
従来の無停電電源装置においては、交流電源から、直流出力端間に大容量コンデンサを接続したコンバータ、および個々のアームに逆並列ダイオードを接続した電圧型インバータを介して、負荷に交流電力を供給する無停電電源装置において、大容量コンデンサの初期充電時に、大容量コンデンサの充電電流が過大にならないように電流の位相制御を行う初期充電制御手段と、装置運転停止に伴う大容量コンデンサの完全放電時に、大容量コンデンサの放電電流が過大にならないように電流制御を行う完全放電制御手段とを備えたものがある(例えば、特許文献1参照)。
バックアップ電源用の大容量コンデンサを完全放電する際には、次の内のどちらか一方または両方同時を選択する。その一方は、一方のスイッチをONしてコンバータで電流制御し、交流電源に回生電流を流す。その他方は、他のスイッチをONし、インバータを電流制御型インバータとして電流制御し、交流電源に回生電流を流す。そして、大容量コンデンサの放電がほぼ完了した後は、他のスイッチをオフし、トランスの励磁インピーダンスを用いて完全放電させる。
In conventional uninterruptible power supplies, AC power is supplied to the load from an AC power source through a converter with a large-capacity capacitor connected between the DC output terminals and a voltage-type inverter with an antiparallel diode connected to each arm. In the uninterruptible power supply, the initial charge control means that controls the phase of the current so that the charge current of the large-capacity capacitor does not become excessive during the initial charge of the large-capacitance capacitor, and the complete discharge of the large-capacitance capacitor when the device stops Sometimes, there is provided a complete discharge control means for performing current control so that the discharge current of the large-capacity capacitor does not become excessive (see, for example, Patent Document 1).
When fully discharging the large-capacitance capacitor for the backup power supply, one or both of the following is selected. One of them turns on one of the switches, controls the current with a converter, and flows a regenerative current to the AC power supply. In the other case, the other switch is turned on, the inverter is controlled as a current control type inverter, and a regenerative current is supplied to the AC power supply. Then, after the large-capacitance capacitor is almost completely discharged, the other switches are turned off to completely discharge using the exciting impedance of the transformer.
キャパシタユニットのメンテナンスなどの際に、キャパシタユニットを完全放電させる必要があり、そのために最終的にはPNを短絡することになる。キャパシタ容量C[F]と短絡する直前のキャパシタ電圧V[V]の間には、次の関係が満足されている必要がある。(UL1778 31.7)
0.5×C×V^2≦20[J] ・・・(1)
例えば、C=50[F]とすると、
V≦0.89[V] までキャパシタを放電させる必要がある。
従来の無停電電源装置では、上記の方法でキャパシタユニットを放電させていたため、キャパシタ電圧が低くなると、スイッチのオフ時間が長くなる。また、他のスイッチをオフし、トランスの励磁インピーダンスを用いて完全放電させる場合も、キャパシタ電圧が低くなると放電電流が小さくなる。したがって、上記(1)式を満足する電圧まで放電させるのに時間がかかるという問題点があった。
When the capacitor unit is maintained, it is necessary to completely discharge the capacitor unit. For this reason, the PN is eventually short-circuited. The following relationship needs to be satisfied between the capacitor capacitance C [F] and the capacitor voltage V [V] immediately before the short circuit. (UL1778 31.7)
0.5 × C × V ^ 2 ≦ 20 [J] (1)
For example, if C = 50 [F],
It is necessary to discharge the capacitor until V ≦ 0.89 [V].
In the conventional uninterruptible power supply, since the capacitor unit is discharged by the above method, when the capacitor voltage becomes low, the switch off time becomes long. In addition, when other switches are turned off and complete discharge is performed using the excitation impedance of the transformer, the discharge current decreases as the capacitor voltage decreases. Therefore, there is a problem that it takes time to discharge to a voltage satisfying the above expression (1).
この発明は上記のような課題を解決するためになされたものであり、短時間でキャパシタユニットを完全放電できる無停電電源装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an uninterruptible power supply device that can completely discharge a capacitor unit in a short time.
この発明に係る無停電電源装置においては、常時は商用電源が負荷に半導体スイッチを介して電力を供給しているものであって、バックアップ電源用のキャパシタユニットと、一端が前記キャパシタユニットに接続され、他端が変圧器と他のスイッチを介して電力系統に接続された双方向変換器とを備え、双方向変換器は直流電圧制御状態でキャパシタユニットを充電し、商用電源に異常が発生すると、それを検出して双方向変換器を直流電圧制御状態から交流電圧制御状態に切り換え、半導体スイッチを遮断するものにおいて、キャパシタユニットを完全放電する際に、双方向変換器を電流制御状態に切り換え、商用電源に回生電流を流し、キャパシタユニットの電圧が変圧器の双方向変換器側の電圧の設定電圧1以下になった時点で、他のスイッチを開放して電力系統からキャパシタユニットが充電されることが無いようにし、変圧器の励磁インピーダンスにより放電させ、キャパシタユニットの電圧がさらに下がって、設定電圧1よりも低い設定電圧2以下になると、双方向変換器のP側素子とN側素子の全てを同時にONさせる短絡制御状態に切り換え、キャパシタユニットのPNを短絡することにより、キャパシタユニットを完全放電するものである。
In the uninterruptible power supply according to the present invention, the commercial power supply normally supplies power to the load via the semiconductor switch, and the capacitor unit for backup power supply and one end are connected to the capacitor unit. The other end includes a transformer and a bidirectional converter connected to the power system via another switch, and the bidirectional converter charges the capacitor unit in a DC voltage controlled state, and an abnormality occurs in the commercial power supply. Detecting it, switching the bidirectional converter from the DC voltage control state to the AC voltage control state, and shutting off the semiconductor switch, when the capacitor unit is completely discharged, the bidirectional converter is switched to the current control state. When the regenerative current is supplied to the commercial power supply and the voltage of the capacitor unit falls below the set voltage 1 of the voltage on the bidirectional converter side of the transformer, When the switch is opened so that the capacitor unit is not charged from the power system, and is discharged by the excitation impedance of the transformer. When the voltage of the capacitor unit further decreases and becomes lower than the set
この発明によれば、キャパシタユニット放電時に、双方向変換器を電流制御状態に切り換え、商用電源に回生電流を流し、キャパシタユニットの電圧が変圧器の双方向変換器側の電圧の設定電圧1以下になった時点で、他のスイッチを開放して電力系統からキャパシタユニットが充電されることが無いようにし、変圧器の励磁インピーダンスにより放電させ、キャパシタユニットの電圧がさらに下がって、設定電圧1よりも低い設定電圧2以下になると、双方向変換器のP側素子とN側素子の全てを同時にONさせる短絡制御状態に切り換え、キャパシタユニットのPNを短絡することにより、キャパシタユニットを完全放電するようにしたので、キャパシタユニットの完全放電時間を短縮することができる。
According to the present invention, when the capacitor unit is discharged, the bidirectional converter is switched to the current control state , the regenerative current is supplied to the commercial power source, and the voltage of the capacitor unit is equal to or lower than the set voltage 1 of the voltage on the bidirectional converter side of the transformer. At that time, the other switch is opened so that the capacitor unit is not charged from the power system, and is discharged by the excitation impedance of the transformer. If the set voltage is lower than 2, the capacitor unit is completely discharged by switching to the short-circuit control state in which all of the P-side element and N-side element of the bidirectional converter are simultaneously turned ON, and shorting the PN of the capacitor unit. As a result, the complete discharge time of the capacitor unit can be shortened.
実施の形態1.
以下、この発明の実施の形態1を図1に基づいて説明する。常時は商用電源1が負荷2に半導体スイッチ3を介して電力を供給している。また、双方向変換器4は直流電圧制御状態にあり、キャパシタユニット5を充電している。
商用電源1に異常が発生すると、VT6で測定した入力電圧が異常であることを電圧異常検出回路7で検出する。電圧異常検出回路7で異常を検出すると双方向変換器4に直流電圧制御状態から交流電圧制御状態に切り換える信号を出す。それと同時にスイッチ3に遮断信号を出す。
キャパシタユニット5を放電する際は、双方向変換器4を電流制御状態に切り換え、商用電源1に回生電流を流す。キャパシタユニット5の電圧が、設定電圧1まで下がるとスイッチ9を開放し、変圧器8の励磁インピーダンスにより放電させる。このときも双方向変換器4は電流制御状態で動作する。キャパシタユニット5の電圧がさらに下がって、設定電圧2以下になると、双方向変換器4をP側素子とN側素子を同時にONさせる短絡制御状態に切り換え、キャパシタユニット5のPNを短絡させることにより完全放電させる。
Embodiment 1 FIG.
A first embodiment of the present invention will be described below with reference to FIG. At all times, the commercial power supply 1 supplies power to the
When an abnormality occurs in the commercial power source 1, the voltage
When discharging the capacitor unit 5, the bidirectional converter 4 is switched to the current control state, and a regenerative current is supplied to the commercial power source 1. When the voltage of the capacitor unit 5 drops to the set voltage 1, the
次に、双方向変換器4の短絡制御状態の動作を図2に基づいて説明する。キャパシタユニット5の電圧が設定電圧2以下になると、双方向変換器4の各変換器素子11、12、21、22、31、32に同時にON指令を出し、キャパシタユニット5のPNを短絡させることにより完全放電させる。
例として、キャパシタユニット5の容量を50[F]、内部抵抗を20[mΩ]、変圧器8の双方向変換器側の定格線間電圧を300[V]、双方向変換器4の各変換器素子11、12、21、22、31、32の定格電流を1000[A]の場合の動作について説明する。
設定電圧は、
設定電圧1=√2×300=424[V]
設定電圧2=1000×20/1000×3=60[V]・・・(2)
に設定される。変圧器8の双方向変換器側の電圧がキャパシタユニット5の電圧より高いと、双方向変換器4のダイオード13、14、23、24、33、34を通ってキャパシタユニット5が充電されてしまう。したがって、キャパシタユニット5の電圧が変圧器8の双方向変換器側の電圧の最大値424V以下になった時点で、スイッチ9を開放して系統からキャパシタユニット5が充電されることが無いようにし、変圧器8の励磁インピーダンスにより放電させる。
キャパシタユニット5の電圧が高い状態で、双方向変換器4のP側素子とN側素子を同時にONさせると、過電流により変換器素子が破損する。キャパシタユニット5の内部抵抗と変換器素子の定格電流から、双方向変換器4のP側素子とN側素子を同時にONさせることができるキャパシタユニット5の電圧が求められる。上記(2)式で3倍されているのは、3相分同時にONするためである。双方向変換器4の各変換器素子11、12、21、22、31、32を同時にONすることにより、60Vから瞬時にキャパシタユニット5を完全放電することができる。
Next, the operation of the bidirectional converter 4 in the short-circuit control state will be described with reference to FIG. When the voltage of the capacitor unit 5 becomes equal to or lower than the
As an example, the capacitance of the capacitor unit 5 is 50 [F], the internal resistance is 20 [mΩ], the rated line voltage on the bidirectional converter side of the
The set voltage is
Setting voltage 1 = √2 × 300 = 424 [V]
Setting
Set to If the voltage on the bidirectional converter side of the
If the P-side element and the N-side element of the bidirectional converter 4 are simultaneously turned on while the voltage of the capacitor unit 5 is high, the converter element is damaged due to overcurrent. From the internal resistance of the capacitor unit 5 and the rated current of the converter element, the voltage of the capacitor unit 5 that can simultaneously turn on the P-side element and the N-side element of the bidirectional converter 4 is obtained. The reason why it is multiplied by 3 in the above equation (2) is to turn on simultaneously for three phases. By simultaneously turning on the
1 商用電源
2 負荷
3 半導体スイッチ
4 双方向変換器
5 キャパシタユニット
6 VT
7 電圧異常検出回路
8 変圧器
9 スイッチ
11、12、21、22、31、32 変換器素子
13、14、23、24、33、34 ダイオード
1
7 Voltage
Claims (1)
前記キャパシタユニットを完全放電する際に、前記双方向変換器を電流制御状態に切り換え、前記商用電源に回生電流を流し、キャパシタユニットの電圧が前記変圧器の双方向変換器側の電圧の設定電圧1以下になった時点で、前記他のスイッチを開放して前記電力系統からキャパシタユニットが充電されることが無いようにし、変圧器の励磁インピーダンスにより放電させ、キャパシタユニットの電圧がさらに下がって、前記設定電圧1よりも低い設定電圧2以下になると、前記双方向変換器のP側素子とN側素子の全てを同時にONさせる短絡制御状態に切り換え、前記キャパシタユニットのPNを短絡することにより、前記キャパシタユニットを完全放電することを特徴とする無停電電源装置。 Normally, the commercial power supply supplies power to the load via a semiconductor switch. The capacitor unit for the backup power source, one end is connected to the capacitor unit, and the other end is connected to the transformer and other switches. A bidirectional converter connected to a power system via the bidirectional converter, the bidirectional converter charging the capacitor unit in a DC voltage controlled state, and detecting an abnormality in the commercial power supply to detect both In the uninterruptible power supply that switches the direction converter from the DC voltage control state to the AC voltage control state and shuts off the semiconductor switch,
When fully discharging the capacitor unit, the bidirectional converter is switched to a current control state, a regenerative current is supplied to the commercial power source, and the voltage of the capacitor unit is set to the voltage on the bidirectional converter side of the transformer. When it becomes 1 or less, the other switch is opened so that the capacitor unit is not charged from the electric power system, discharged by the excitation impedance of the transformer, and the voltage of the capacitor unit further decreases. By switching to a short-circuit control state in which all of the P-side element and N-side element of the bidirectional converter are simultaneously turned ON when the set voltage 2 is lower than the set voltage 1, and short-circuiting the PN of the capacitor unit, An uninterruptible power supply, wherein the capacitor unit is completely discharged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005349372A JP4774961B2 (en) | 2005-12-02 | 2005-12-02 | Uninterruptible power system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005349372A JP4774961B2 (en) | 2005-12-02 | 2005-12-02 | Uninterruptible power system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007159234A JP2007159234A (en) | 2007-06-21 |
JP4774961B2 true JP4774961B2 (en) | 2011-09-21 |
Family
ID=38242878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005349372A Active JP4774961B2 (en) | 2005-12-02 | 2005-12-02 | Uninterruptible power system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4774961B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5985972B2 (en) * | 2012-12-07 | 2016-09-06 | 東芝三菱電機産業システム株式会社 | Bidirectional converter and uninterruptible power supply using the same |
US20140361624A1 (en) * | 2013-06-10 | 2014-12-11 | Active Power, Inc. | Apparatus and methods for control of load power quality in uninterruptible power systems |
JP2015136213A (en) * | 2014-01-16 | 2015-07-27 | トヨタ自動車株式会社 | Power converter of electric vehicle |
US9876354B2 (en) * | 2014-05-21 | 2018-01-23 | Eaton Corporation | UPS systems and methods using coordinated static switch and inverter operation for generator walk-in |
JP6247189B2 (en) * | 2014-10-02 | 2017-12-13 | ファナック株式会社 | Motor controller having a function of discharging DC link residual energy |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0823672A (en) * | 1989-05-18 | 1996-01-23 | Hirotami Nakano | Switching power unit and its insulating method |
JPH05292679A (en) * | 1992-04-10 | 1993-11-05 | Meidensha Corp | Power converter |
JPH07241084A (en) * | 1994-02-25 | 1995-09-12 | Toshiba Corp | Uninterruptible power supply |
JP3572058B2 (en) * | 2002-05-28 | 2004-09-29 | 三菱電機株式会社 | Power supply |
-
2005
- 2005-12-02 JP JP2005349372A patent/JP4774961B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007159234A (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6417043B2 (en) | Power converter | |
US9042146B2 (en) | DC pre-charge circuit | |
JP5414818B2 (en) | Electric vehicle power converter | |
JP5875214B2 (en) | Power conversion system | |
TWI608686B (en) | Uninterruptible power supply device | |
KR101684840B1 (en) | Converter unit system and converter unit | |
CN107359688B (en) | Fault processing method and device for power supply equipment | |
TWI467913B (en) | Ac motor driving device | |
JP2010081703A (en) | Power supply control system for vehicle | |
JP2014110666A (en) | Discharge control system, and discharge device | |
JP4037380B2 (en) | Voltage compensator | |
JP4859932B2 (en) | Control device and control method for power conversion system having instantaneous voltage drop / power failure countermeasure function | |
JP5611300B2 (en) | Power converter and control method thereof | |
JP4774961B2 (en) | Uninterruptible power system | |
JP4845821B2 (en) | Instantaneous voltage drop compensation device | |
JP2004112929A (en) | Ac-dc converter | |
JP2010041805A (en) | Power supply device for electric rolling stock | |
JP2015136213A (en) | Power converter of electric vehicle | |
JP2000175458A (en) | Auxiliary power source unit for rolling stock | |
JP2008035573A (en) | Electricity accumulation device employing electric double layer capacitor | |
JP2002218674A (en) | Uninterruptible power supply system and its operating method | |
JP4751306B2 (en) | Electric vehicle power supply | |
WO2006016438A1 (en) | Electric vehicle controller | |
KR101786597B1 (en) | Apparatus for determining switch error in power converting system and method thereof | |
JP2017050999A (en) | Power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080919 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090703 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110531 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110613 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4774961 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |