[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4774604B2 - Method for producing quaternary ammonium salt - Google Patents

Method for producing quaternary ammonium salt Download PDF

Info

Publication number
JP4774604B2
JP4774604B2 JP2001031883A JP2001031883A JP4774604B2 JP 4774604 B2 JP4774604 B2 JP 4774604B2 JP 2001031883 A JP2001031883 A JP 2001031883A JP 2001031883 A JP2001031883 A JP 2001031883A JP 4774604 B2 JP4774604 B2 JP 4774604B2
Authority
JP
Japan
Prior art keywords
reaction
group
embedded image
lower alkyl
pyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001031883A
Other languages
Japanese (ja)
Other versions
JP2001302634A (en
Inventor
君彦 佐野
洋治 浦野
卓博 木村
淳典 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Fujifilm Wako Pure Chemical Corp filed Critical Wako Pure Chemical Industries Ltd
Priority to JP2001031883A priority Critical patent/JP4774604B2/en
Publication of JP2001302634A publication Critical patent/JP2001302634A/en
Application granted granted Critical
Publication of JP4774604B2 publication Critical patent/JP4774604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Pyridine Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、第4級アンモニウム塩を高収率で短時間に製造する方法に関するものである。
【0002】
【従来の技術】
第4級アンモニウム塩は、例えば医薬品、医薬部外品及び化粧品の原料、相間移動触媒或いはイオン化溶媒等として極めて重要な化合物である。中でも第4級ピリジニウム塩は、近年、主に抗菌剤として注目されつつあり、今後需要が増加すると期待される化合物である。しかしながら、従来の方法では該化合物を短時間で効率よく工業的に製造することは困難であった。例えば、J.Chem.Soc.,682(1938)にはドデシルクロライドとピリジンとを100℃で24時間反応させる方法が、J.Am.Chem.Soc.68,757-759('46)にはハロゲン化アルキルとそれに対して10-30%過剰のピリジンとを60-130℃で8時間から16時間反応させる方法が記載されている。しかしながら、前者は反応時間が長いだけでなく、目的物である第4級ピリジニウム塩の収率も1.7%と極めて低く、後者は95%と比較的高い収率で目的物が得られるが、反応時間が8〜16時間と非常に長いため、どちらの方法も工業的に第4級ピリジニウム塩を製造する方法としては十分なものではなかった。また、ピリジンのメチル基置換体であるピコリンについても同様にハロゲン化アルキルと12時間還流し、4級ピコリニウム塩を得る方法がJ.Heterocycl.Chem.23(1)209-221(1986)に記載されているが、反応時間が長い等の問題があり工業的に第4級ピコリニウム塩を製造する方法としては不十分であった。
【0003】
一方、4級イミダゾリウム塩も第4級ピリジニウム塩と同様今後需要が増加すると期待される化合物である。しかしながら、従来の方法、例えばInorg.Chem.35(5)1168-1178(1996)にはハロゲン化アルキルとメチルイミダゾールを有機溶媒中で還流により4級イミダゾリウム塩を得る方法が記載されているが、有機溶媒を用いるため簡便な方法とはいえず、また収率も低く、工業的に第4級イミダゾリウム塩を製造する方法としては適していなかった。
更に、上記の4級アンモニウム塩の製造反応は従来バッチ生産で行われており、生産性が低く、工業的な生産には適していなかった。
【0004】
【発明が解決しようとする課題】
本発明は、上記した如き状況に鑑みなされたもので、N-低級アルキル置換イミダゾール又はピリジン化合物とハロゲン化アルキルとを反応させて第4級アンモニウム塩を短時間で効率よく工業的に製造する方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明は、ハロゲン化アルキルとそれに対して2当量以上のN-低級アルキル置換イミダゾール又はピリジン化合物とを120〜350℃で反応させることを特徴とする第4級アンモニウム塩の製造方法、並びにハロゲン化アルキルとそれに対して2当量以上のN-低級アルキル置換イミダゾール又はピリジン化合物とを、120〜350℃の加熱下筒状反応容器中の一末端部から連続的に供給して反応させ、当該反応容器の他の末端部から生成した対応する第4級アンモニウム塩を連続的に取り出すことを特徴とする第4級アンモニウム塩の連続的製造方法、の発明である。
【0006】
即ち、本発明者等は、上記目的を達成すべく鋭意研究を重ねた結果、ハロゲン化アルキルとそれに対して2等量以上のN-低級アルキル置換イミダゾール又はピリジン化合物とを120〜350℃で反応させることにより短時間で効率的に第4級アンモニウム塩を製造し得ることを見出し、本発明を完成するに到った。
【0007】
本発明に係るN-低級アルキル置換イミダゾールとしては、例えばN-メチルイミダゾール、N-エチルイミダゾール、N-n-プロピルイミダゾール、N-iso-プロピルイミダゾール、N-n-ブチルイミダゾール、N-iso-ブチルイミダゾール、N-tert-ブチルイミダゾール、N-sec-ブチルイミダゾール等の窒素原子に結合した水素原子が例えばメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、sec-ブチル基等の炭素数1〜4の低級アルキル基で置換されたものが挙げられ、中でもN-メチルイミダゾール等が好ましい。
【0008】
本発明に係るピリジン化合物としては、ピリジン又はピリジン環を構成する炭素原子に結合した水素原子の1〜3個が上記の如き炭素数1〜4の低級アルキル基で置換されたもの等が挙げられ、具体的には例えばピリジン、ピコリン、ジメチルピリジン、トリメチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン等が挙げられ、中でもピリジン、ピコリン等が好ましい。
【0009】
本発明に係るハロゲン化アルキルとしては、例えば下記一般式[1]
【0010】
【化1】

Figure 0004774604
(式中、R1はアルキル基を表し、Yはハロゲン原子を表す。)で示されるものが挙げられる。
【0011】
一般式[1]に於いて、Rで表されるアルキル基としては、直鎖状でも分枝状でもよく、通常炭素数1〜30、好ましくは1〜24、更に好ましくは3〜24のアルキル基が挙げられ、具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、1-エチルブチル基、2-エチルブチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-セチル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基、n-ヘニコシル基、n-ドコシル基、n-トリコシル基、n-テトラコシル基、n-ペンタコシル基、n-ヘキサコシル基、n-オクタコシル基、n-ノナコシル基、n-トリアコンチル基等が挙げられる。
【0012】
Yで示されるハロゲン原子としては、例えばフッ素原子、塩素原子、ヨウ素原子、臭素原子等が挙げられる。
本発明に係るハロゲン化アルキルとN-低級アルキル置換イミダゾールとを反応させることにより得られる第4級アンモニウム塩としては、例えば下記一般式[2]
【0013】
【化2】
Figure 0004774604
(式中、R1はアルキル基を表し、R2は炭素数1〜4の低級アルキル基を表し、Yはハロゲン原子を表す。)で示されるものが挙げられ、その具体例としては例えば、
【0014】
【化3】
Figure 0004774604
【0015】
【化4】
Figure 0004774604
【0016】
【化5】
Figure 0004774604
【0017】
【化6】
Figure 0004774604
【0018】
【化7】
Figure 0004774604
【0019】
【化8】
Figure 0004774604
【0020】
【化9】
Figure 0004774604
【0021】
【化10】
Figure 0004774604
【0022】
【化11】
Figure 0004774604
(上記式中、Xはフッ素原子、塩素原子、ヨウ素原子又は臭素原子を表す。)
【0023】
【化12】
Figure 0004774604
(式中、nは5〜30の正数を表す。)
等が挙げられる。
【0024】
ハロゲン化アルキルとピリジン化合物とを反応させることにより得られる第4級ピリジニウム化合物塩としては、下記一般式[3]
【0025】
【化13】
Figure 0004774604
(式中、R1はアルキル基を表し、R3は水素原子又は炭素数1〜4の低級アルキル基1〜3個を表し、Yはハロゲン原子を表す。)で示されるものが挙げられ、その具体例としては例えば、
【0026】
【化14】
Figure 0004774604
【0027】
【化15】
Figure 0004774604
【0028】
【化16】
Figure 0004774604
【0029】
【化17】
Figure 0004774604
【0030】
【化18】
Figure 0004774604
【0031】
【化19】
Figure 0004774604
【0032】
【化20】
Figure 0004774604
【0033】
【化21】
Figure 0004774604
【0034】
【化22】
Figure 0004774604
【0035】
【化23】
Figure 0004774604
【0036】
【化24】
Figure 0004774604
【0037】
【化25】
Figure 0004774604
【0038】
【化26】
Figure 0004774604
【0039】
【化27】
Figure 0004774604
【0040】
【化28】
Figure 0004774604
【0041】
【化29】
Figure 0004774604
【0042】
【化30】
Figure 0004774604
【0043】
【化31】
Figure 0004774604
【0044】
【化32】
Figure 0004774604
【0045】
【化33】
Figure 0004774604
【0046】
【化34】
Figure 0004774604
【0047】
【化35】
Figure 0004774604
【0048】
【化36】
Figure 0004774604
【0049】
【化37】
Figure 0004774604
【0050】
【化38】
Figure 0004774604
【0051】
【化39】
Figure 0004774604
【0052】
【化40】
Figure 0004774604
【0053】
【化41】
Figure 0004774604
【0054】
【化42】
Figure 0004774604
【0055】
【化43】
Figure 0004774604
【0056】
【化44】
Figure 0004774604
【0057】
【化45】
Figure 0004774604
【0058】
【化46】
Figure 0004774604
【0059】
【化47】
Figure 0004774604
【0060】
【化48】
Figure 0004774604
【0061】
【化49】
Figure 0004774604
【0062】
【化50】
Figure 0004774604
【0063】
【化51】
Figure 0004774604
【0064】
【化52】
Figure 0004774604
【0065】
【化53】
Figure 0004774604
【0066】
【化54】
Figure 0004774604
【0067】
【化55】
Figure 0004774604
【0068】
【化56】
Figure 0004774604
【0069】
【化57】
Figure 0004774604
【0070】
【化58】
Figure 0004774604
【0071】
【化59】
Figure 0004774604
【0072】
【化60】
Figure 0004774604
【0073】
【化61】
Figure 0004774604
【0074】
等が挙げられ、また上記化合物のピリジン環を構成する炭素原子に結合した水素原子の1〜3個が低級アルキル基で置換されたものも同様に挙げられる。
【0075】
本発明により第4級アンモニウム塩を製造するには、例えばハロゲン化アルキルとそれに対して2当量以上のN-低級アルキル置換イミダゾール又はピリジン化合物とを例えばオートクレーブ等の密閉容器に入れ、120〜350℃で反応させればよい。中でも、筒状反応容器を用いて第4級アンモニウム塩を連続的に製造する方法が好ましく、具体的には以下のようにして行えばよい。即ち、120〜350℃の加熱下筒状反応容器中の一末端部からハロゲン化アルキルとそれに対して2反応当量以上のN-低級アルキル置換イミダゾール又はピリジン化合物とを連続的に当該反応容器中に例えばポンプ等により後述の速度で連続的に供給して反応させ、当該反応容器の他の末端部から生成した対応する第4級アンモニウム塩を連続的に取り出せばよい。この際、第4級アンモニウム塩を取り出す側の末端にコントロールバルブ等を取り付けてこれにより筒状反応容器内の圧力を調整してもよい。圧力としては、その値が高すぎても反応効率は上がらないため、通常1〜100kg/cm2、好ましくは2〜20kg/cm2、より好ましくは2〜10kg/cm2に調整すればよい。また、取り出した第4級アンモニウム塩を例えばコンデンサー等により冷却し、スプレードライヤーや薄膜濃縮装置により結晶化する等のこの分野で通常行われる後処理に付してもよい。
【0076】
本発明に係る筒状反応容器としては、両端に開口部が存在し該開口部を封じることにより容器内を密封状態にすることができ、且つ高温下及び高圧力下でも容器の形状が変化しないものであればよく、中でも容器を加熱した場合に容器内まで熱が伝わるものが好ましい。具体的には例えば500℃以下の温度下且つ100kg/cm2以下の圧力下に於いても形状が変化しないように作製されたステンレス製の反応容器等が挙げられる。
【0077】
筒状反応容器に供給される化合物の供給速度は、筒状反応容器の内容量と目的の反応が終了するのに要する時間とを基にして算出すればよく、例えば筒状反応容器の内容量を2倍とした場合には化合物の供給速度もその2倍となるように供給速度と内容量が比例の関係にあることが好ましい。
即ち、化合物の供給速度(式中ではrと表す)は通常以下の式で表され、
(p/q)≦r≦[p/(q×10)]
(式中、pは反応容器の内容量(ml)、qは反応に要する時間(min)、rは化合物の供給速度(ml/min)を表す)
中でも、以下の式で表されることが好ましく、
(p/q)≦r≦[p/(q×2)]
より好ましくは以下の式で表される。
p/q=r
【0078】
上記の式より化合物の供給速度を設定するに当たっては、反応容器の内容量はその用途に応じて必要な容量を設定し、反応に要する時間は各種原料の組み合わせに応じた時間(後述のように通常5分〜6時間で終了する)を設定し、それらを式中に代入して供給速度を求めることが好ましい。尚、ここでいう供給速度とは、ハロゲン化アルキルの供給速度とN-低級アルキル置換イミダゾール又はピリジン化合物の供給速度とを合わせたものであるが、これらの比率は反応容器内にハロゲン化アルキルとそれに対して2当量以上のN-低級アルキル置換イミダゾール又はピリジン化合物が供給されることになるように適宜設定すればよい。また、予めハロゲン化アルキルとそれに対して2当量以上のN-低級アルキル置換イミダゾール又はピリジン化合物を混合し、該混合物を上記の如く設定した供給速度で反応容器内に供給してもよい。具体的には、例えば反応容器の内容量を200ml、反応に要する時間を15分と設定した場合の供給速度は、200ml÷15min≒13.3ml/minの計算結果に基づいて、通常1.3〜13.3ml/min、好ましくは6.7〜13.3ml/min、より好ましくは13.3ml/minとなる。
【0079】
N-低級アルキル置換イミダゾール又はピリジン化合物の使用量は、反応させるハロゲン化アルキルに対して、通常2当量以上であれば、反応温度を120〜350℃とすることにより目的の反応を完結させることができるが、好ましくは2〜20当量、更に好ましくは3〜10当量である。尚、N-低級アルキル置換イミダゾール又はピリジン化合物の使用量がハロゲン化アルキルに対する理論量もしくは若干過剰量の場合は、長時間かけても反応が完結しない。
【0080】
反応温度は、通常120〜350℃、好ましくは140〜300℃、より好まくは150〜250℃である。
本発明の製造方法は、例えばヘリウムガス、窒素ガス、アルゴンガス等の不活性ガス雰囲気下で行ってもよく、その場合は当該不活性ガス等を用いて反応系に圧力を加えることにより、反応温度を上昇させてもよい。その圧力としては、値が高すぎても反応効率は上がらないため、通常1〜100kg/cm2、好ましくは2〜20kg/cm2、より好ましくは2〜10kg/cm2に調整すればよい。
【0081】
反応時間は、通常5分〜6時間、好ましくは5分〜2時間、更に好ましくは5〜30分である。
【0082】
尚、反応後の後処理等は、この分野で通常行われる後処理法に準じて行えばよい。
【0083】
本発明の方法を用いれば、過酷な反応条件を設定することなく、容易に短時間で効率よく第4級アンモニウム塩を製造することが可能となる。また、本発明の方法によって得られた第4級アンモニウム塩は、例えば医薬品、医薬部外品及び化粧品の原料、相間移動触媒、イオン化溶媒或いは抗菌剤として有用である。
【0084】
以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらにより何等限定されるものではない。
【0085】
【実施例】
実施例1
塩化n−セチル115.1g(0.44mol)及びピリジン146.6g(1.85mol)の入ったオートクレーブに窒素ガスを注入し、オートクレーブ内の圧力を2kg/cm2とした後、180℃で15分間撹拌反応させた。反応終了後、反応液を減圧乾燥して粉末結晶を得た。尚、反応終了後の反応液をHPLCにより分析した結果、反応率が100%であることが確認された。得られた粉末結晶にメチルエチルケトン316mlを加え、室温下で撹拌した後結晶を濾取し、再びメチルエチルケトンで洗浄、減圧乾燥して粉末結晶142.5g(収率95%)を得た。得られた化合物はその融点の測定及び1HNMRの分析により塩化n−セチルピリジニウム塩と同定された。
また、得られた塩化n−セチルピリジニウム塩を水で処理すると、容易に塩化n−セチルピリジニウム1水塩とすることができた。
【0086】
実施例2
160℃で30分間撹拌反応させる以外は実施例1と同様にして塩化n−セチルピリジニウム塩を得た。反応終了後に反応液を実施例1と同様にHPLCにより分析した結果、反応率は100%であることが確認された。
【0087】
比較例1
塩化n−セチル115.1g(0.44mol)とピリジン146.6g(1.85mol)をオートクレーブ内で窒素雰囲気下96〜100℃で還流反応させた。反応開始から15分後に反応液をHPLCにより測定した結果、反応率は3%であった。
【0088】
比較例2
塩化n−セチル115.1g(0.44mol)とピリジン38.4g(0.44mol)の入ったオートクレーブに窒素ガスを注入し、オートクレーブ内の圧力を2kg/cm2とした後、160℃で4時間撹拌反応させた。反応終了後、反応液をHPLCにより分析した結果、反応率は80%であった。
【0089】
実施例3
塩化n−ブチル40.8g(0.44mol)とピリジン146.6g(1.85mol)の入ったオートクレーブに窒素ガスを注入し、オートクレーブ内の圧力を2kg/cm2とした後、180℃で15分間撹拌反応させた。反応終了後、反応液をHPLCにより分析した結果、反応率は100%であった。
【0090】
実施例1、2及び3と比較例1及び2との比較から明らかなように、ハロゲン化アルキルに対するピリジンの使用量を2当量以上とし、且つ120℃〜350℃で反応を行うことによって反応率を向上させるだけでなく、反応時間を大幅に短縮でき、効率よく目的とする第4級ピリジニウム塩が得られることが分かる。
【0091】
実施例4
図1に示すような200mlの筒状反応容器を装着した連続反応装置に於いて、反応時間が15分となるようにポンプ▲1▼から塩化n−セチルを6.29ml/minの流速で、ポンプ▲2▼からピリジンを7.04ml/minの流速で同時に送り、筒状反応容器内部の温度が180℃、内圧が5kg/cm2になるように調整した。コンデンサー出口部から反応液を261.7g採取し、スプレードライヤーで減圧乾燥して粉末結晶を150g(収率100%)得た。尚、反応液をHPLCにより分析した結果、反応率が100%であることが確認された。また、得られた粉末結晶を実施例1と同様に処理し、塩化n−セチルピリジニウムの粉末結晶を141.0g(収率94%)得た。
【0092】
実施例5
実施例4に於ける、スプレードライヤーによる減圧乾燥の代わりに薄膜濃縮装置を用い、以下同様にして塩化n−セチルピリジニウムを得た。尚、反応液をHPLCにより分析した結果、反応率が100%であることが確認された。
【0093】
実施例4及び5の結果から明らかなように筒状反応容器を用いた装置(図1)を用いることにより、実施例1〜3と同等の回収率及び同等の反応率の第4級ピリジニウム塩を連続的に製造できることがわかる。
【0094】
実施例6
臭化n−ブタン95.9g(0.7mol)及び1-メチルイミダゾール241.4g(2.94mol)の入ったオートクレーブに窒素ガスを注入し、オートクレーブ内の圧力を2kg/cm2 とした後、160℃で30分間撹拌反応させた。反応終了後、反応液をNMRにより分析した結果、反応率は100%であった。
【0095】
実施例7
塩化n−セチル182.6g(0.7mol)及び1-メチルイミダゾール241.4g(2.94mol)の入ったオートクレーブに窒素ガスを注入し、オートクレーブ内の圧力を2kg/cm2とした後、180℃で30分間撹拌反応させた。反応終了後、反応液をNMRにより分析した結果、反応率は100%であった。
【0096】
実施例8
臭化n−ブタン52.1g(0.38mol)及び4-ピコリン178.4g(1.92mol)の入ったオートクレーブに窒素ガスを注入し、オートクレーブ内の圧力を2kg/cm2 とした後、160℃で15分間撹拌反応させた。反応終了後、反応液をNMRにより分析した結果、反応率は100%であった。
【0097】
実施例9
塩化n−セチル100.0g(0.38mol)及び4-ピコリン178.4g(1.92mol)の入ったオートクレーブに窒素ガスを注入し、オートクレーブ内の圧力を2kg/cm2 とした後、180℃で15分間撹拌反応させた。反応終了後、反応液をNMRにより分析した結果、反応率は94%であった。
【0098】
実施例6〜9の結果から、第4級ピリジニウム塩と同様にメチルイミダゾールやピコリン由来の第4級アンモニウム塩も効率よく短時間で製造することができることがわかる。
【0099】
【発明の効果】
本発明は、ハロゲン化アルキルと、N-低級アルキル置換イミダゾール又はピリジン化合物とを反応させて第4級アンモニウム塩を短時間に効率よく製造する方法を提供するものであり、本発明の方法によれば、従来の方法に於ける問題点、即ち過酷な反応条件や煩雑な反応工程を必要としたり、反応率が悪く反応時間が長いといった問題点を全て解決することができる。また、本発明の筒状反応容器を用いた反応を行うことにより、目的とする第4級アンモニウム塩を連続的に製造できるため、本発明の方法は工業的にも極めて優れた方法である。
【図面の簡単な説明】
【図1】実施例4及び5で用いられた連続反応装置を表した図である。
【符号の説明】
1 原料タンク
2 定量ポンプ
3 筒状反応容器
4 ヒーター
5 圧力計
6 温度計
7 コントロールバルブ
8 コンデンサー
9 反応液タンク
10スプレードライヤーまたは薄膜濃縮装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a quaternary ammonium salt in a high yield in a short time.
[0002]
[Prior art]
Quaternary ammonium salts are extremely important compounds as, for example, raw materials for pharmaceuticals, quasi-drugs and cosmetics, phase transfer catalysts or ionized solvents. Among them, the quaternary pyridinium salt is recently attracting attention mainly as an antibacterial agent, and is a compound expected to increase in demand in the future. However, it has been difficult to industrially produce the compound efficiently in a short time by the conventional method. For example, J. Chem. Soc., 682 (1938) has a method of reacting dodecyl chloride and pyridine at 100 ° C. for 24 hours, and J. Am. Chem. Soc. 68 , 757-759 ('46) A process is described in which an alkyl halide and a 10-30% excess of pyridine are reacted at 60-130 ° C. for 8-16 hours. However, the former has not only a long reaction time, but also the yield of the target quaternary pyridinium salt is as low as 1.7%, while the latter can be obtained at a relatively high yield of 95%. Since the reaction time is as long as 8 to 16 hours, neither method is industrially sufficient as a method for producing a quaternary pyridinium salt. Similarly, a method for obtaining a quaternary picolinium salt by refluxing with alkyl halide for 12 hours is also described in J. Heterocycl. Chem. 23 (1) 209-221 (1986). However, there are problems such as a long reaction time, which is insufficient as a method for industrially producing a quaternary picolinium salt.
[0003]
On the other hand, quaternary imidazolium salts are compounds that are expected to increase in demand in the same manner as quaternary pyridinium salts. However, a conventional method, for example, Inorg. Chem. 35 (5) 1168-1178 (1996) describes a method for obtaining a quaternary imidazolium salt by refluxing an alkyl halide and methylimidazole in an organic solvent. However, since an organic solvent is used, it cannot be said that it is a simple method, and the yield is low, which is not suitable as a method for industrially producing a quaternary imidazolium salt.
Furthermore, the production reaction of the quaternary ammonium salt has been conventionally performed by batch production, and the productivity is low, which is not suitable for industrial production.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and a method for efficiently and industrially producing a quaternary ammonium salt in a short time by reacting an N-lower alkyl-substituted imidazole or pyridine compound with an alkyl halide. It is an issue to provide.
[0005]
[Means for Solving the Problems]
The present invention relates to a method for producing a quaternary ammonium salt, characterized by reacting an alkyl halide with at least 2 equivalents of an N-lower alkyl-substituted imidazole or pyridine compound at 120 to 350 ° C., and halogenation Alkyl and 2 equivalents or more of N-lower alkyl-substituted imidazole or pyridine compound are continuously fed and reacted from one end in a cylindrical reaction vessel under heating at 120 to 350 ° C., and the reaction vessel It is invention of the continuous manufacturing method of the quaternary ammonium salt characterized by extracting continuously the corresponding quaternary ammonium salt produced | generated from the other terminal part.
[0006]
That is, as a result of intensive studies to achieve the above object, the present inventors have reacted an alkyl halide with an N-lower alkyl-substituted imidazole or pyridine compound of 2 equivalents or more at 120 to 350 ° C. As a result, it was found that a quaternary ammonium salt can be efficiently produced in a short time, and the present invention has been completed.
[0007]
Examples of the N-lower alkyl-substituted imidazole according to the present invention include N-methylimidazole, N-ethylimidazole, Nn-propylimidazole, N-iso-propylimidazole, Nn-butylimidazole, and N-iso-butyl. Hydrogen atoms bonded to nitrogen atoms such as imidazole, N-tert-butylimidazole, N-sec-butylimidazole, etc. are, for example, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl And a group substituted with a lower alkyl group having 1 to 4 carbon atoms such as a tert-butyl group and a sec-butyl group, among which N-methylimidazole and the like are preferable.
[0008]
Examples of the pyridine compound according to the present invention include pyridine or a compound in which 1 to 3 hydrogen atoms bonded to carbon atoms constituting the pyridine ring are substituted with a lower alkyl group having 1 to 4 carbon atoms as described above. Specific examples include pyridine, picoline, dimethylpyridine, trimethylpyridine, ethylpyridine, propylpyridine, butylpyridine and the like, and pyridine, picoline and the like are particularly preferable.
[0009]
Examples of the alkyl halide according to the present invention include the following general formula [1]
[0010]
[Chemical 1]
Figure 0004774604
(Wherein R 1 represents an alkyl group and Y represents a halogen atom).
[0011]
In general formula [1], the alkyl group represented by R may be linear or branched, and is usually an alkyl having 1 to 30, preferably 1 to 24, more preferably 3 to 24 carbon atoms. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group Sec-pentyl group, tert-pentyl group, neopentyl group, n-hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, 1-ethylbutyl group, 2-ethylbutyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group , N-tetradecyl group, n-pentadecyl group N-cetyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group, n-henicosyl group, n-docosyl group, n-tricosyl group, n-tetracosyl group, n-pentacosyl group N-hexacosyl group, n-octacosyl group, n-nonacosyl group, n-triacontyl group and the like.
[0012]
Examples of the halogen atom represented by Y include a fluorine atom, a chlorine atom, an iodine atom, and a bromine atom.
As a quaternary ammonium salt obtained by reacting an alkyl halide according to the present invention with an N-lower alkyl-substituted imidazole, for example, the following general formula [2]
[0013]
[Chemical 2]
Figure 0004774604
(Wherein, R 1 represents an alkyl group, R 2 represents a lower alkyl group having 1 to 4 carbon atoms, and Y represents a halogen atom). Specific examples thereof include, for example,
[0014]
[Chemical 3]
Figure 0004774604
[0015]
[Formula 4]
Figure 0004774604
[0016]
[Chemical formula 5]
Figure 0004774604
[0017]
[Chemical 6]
Figure 0004774604
[0018]
[Chemical 7]
Figure 0004774604
[0019]
[Chemical 8]
Figure 0004774604
[0020]
[Chemical 9]
Figure 0004774604
[0021]
[Chemical Formula 10]
Figure 0004774604
[0022]
Embedded image
Figure 0004774604
(In the above formula, X represents a fluorine atom, a chlorine atom, an iodine atom or a bromine atom.)
[0023]
Embedded image
Figure 0004774604
(In the formula, n represents a positive number of 5 to 30.)
Etc.
[0024]
As a quaternary pyridinium compound salt obtained by reacting an alkyl halide with a pyridine compound, the following general formula [3]
[0025]
Embedded image
Figure 0004774604
In the formula, R 1 represents an alkyl group, R 3 represents a hydrogen atom or 1 to 3 lower alkyl groups having 1 to 4 carbon atoms, and Y represents a halogen atom. For example,
[0026]
Embedded image
Figure 0004774604
[0027]
Embedded image
Figure 0004774604
[0028]
Embedded image
Figure 0004774604
[0029]
Embedded image
Figure 0004774604
[0030]
Embedded image
Figure 0004774604
[0031]
Embedded image
Figure 0004774604
[0032]
Embedded image
Figure 0004774604
[0033]
Embedded image
Figure 0004774604
[0034]
Embedded image
Figure 0004774604
[0035]
Embedded image
Figure 0004774604
[0036]
Embedded image
Figure 0004774604
[0037]
Embedded image
Figure 0004774604
[0038]
Embedded image
Figure 0004774604
[0039]
Embedded image
Figure 0004774604
[0040]
Embedded image
Figure 0004774604
[0041]
Embedded image
Figure 0004774604
[0042]
Embedded image
Figure 0004774604
[0043]
Embedded image
Figure 0004774604
[0044]
Embedded image
Figure 0004774604
[0045]
Embedded image
Figure 0004774604
[0046]
Embedded image
Figure 0004774604
[0047]
Embedded image
Figure 0004774604
[0048]
Embedded image
Figure 0004774604
[0049]
Embedded image
Figure 0004774604
[0050]
Embedded image
Figure 0004774604
[0051]
Embedded image
Figure 0004774604
[0052]
Embedded image
Figure 0004774604
[0053]
Embedded image
Figure 0004774604
[0054]
Embedded image
Figure 0004774604
[0055]
Embedded image
Figure 0004774604
[0056]
Embedded image
Figure 0004774604
[0057]
Embedded image
Figure 0004774604
[0058]
Embedded image
Figure 0004774604
[0059]
Embedded image
Figure 0004774604
[0060]
Embedded image
Figure 0004774604
[0061]
Embedded image
Figure 0004774604
[0062]
Embedded image
Figure 0004774604
[0063]
Embedded image
Figure 0004774604
[0064]
Embedded image
Figure 0004774604
[0065]
Embedded image
Figure 0004774604
[0066]
Embedded image
Figure 0004774604
[0067]
Embedded image
Figure 0004774604
[0068]
Embedded image
Figure 0004774604
[0069]
Embedded image
Figure 0004774604
[0070]
Embedded image
Figure 0004774604
[0071]
Embedded image
Figure 0004774604
[0072]
Embedded image
Figure 0004774604
[0073]
Embedded image
Figure 0004774604
[0074]
In addition, those in which 1 to 3 hydrogen atoms bonded to carbon atoms constituting the pyridine ring of the above compound are substituted with a lower alkyl group are also exemplified.
[0075]
In order to produce a quaternary ammonium salt according to the present invention, for example, an alkyl halide and 2 equivalents or more of an N-lower alkyl-substituted imidazole or pyridine compound are placed in a closed container such as an autoclave, and 120 to 350 ° C. You can make it react. Among them, a method of continuously producing a quaternary ammonium salt using a cylindrical reaction vessel is preferable, and specifically, it may be performed as follows. That is, an alkyl halide and an N-lower alkyl-substituted imidazole or pyridine compound having two or more reaction equivalents are continuously introduced into the reaction vessel from one end in a cylindrical reaction vessel under heating at 120 to 350 ° C. For example, the reaction may be continuously performed by a pump or the like at a rate described later, and the corresponding quaternary ammonium salt generated from the other end of the reaction vessel may be continuously taken out. At this time, a control valve or the like may be attached to the end on the side from which the quaternary ammonium salt is taken out, thereby adjusting the pressure in the cylindrical reaction vessel. Since the reaction efficiency does not increase even if the pressure is too high, the pressure is usually adjusted to 1 to 100 kg / cm 2 , preferably 2 to 20 kg / cm 2 , more preferably 2 to 10 kg / cm 2 . Further, the quaternary ammonium salt that has been taken out may be subjected to a post-treatment usually performed in this field, such as cooling with a condenser or the like and crystallizing with a spray dryer or a thin film concentrator.
[0076]
The cylindrical reaction vessel according to the present invention has an opening at both ends, and the inside of the vessel can be sealed by sealing the opening, and the shape of the vessel does not change even under high temperature and high pressure. What is necessary is just a thing, and when a container is heated, the thing in which heat is transmitted to the inside of a container is preferable. Specifically, for example, a stainless steel reaction vessel prepared so that its shape does not change even at a temperature of 500 ° C. or less and a pressure of 100 kg / cm 2 or less.
[0077]
The supply rate of the compound supplied to the cylindrical reaction vessel may be calculated based on the internal volume of the cylindrical reaction vessel and the time required for completion of the target reaction. For example, the internal volume of the cylindrical reaction vessel When the ratio is doubled, it is preferable that the supply rate and the internal volume have a proportional relationship so that the supply rate of the compound is also doubled.
That is, the feed rate of the compound (represented as r in the formula) is usually represented by the following formula:
(p / q) ≦ r ≦ [p / (q × 10)]
(In the formula, p represents the internal volume (ml) of the reaction vessel, q represents the time required for the reaction (min), and r represents the compound feed rate (ml / min)).
Among these, the following formula is preferable,
(p / q) ≦ r ≦ [p / (q × 2)]
More preferably, it is represented by the following formula.
p / q = r
[0078]
In setting the supply rate of the compound from the above formula, the internal volume of the reaction vessel is set according to its use, and the time required for the reaction is set according to the combination of various raw materials (as described later). It is preferable to determine the supply rate by setting them normally in 5 minutes to 6 hours and substituting them into the formula. The feed rate referred to here is the sum of the feed rate of the alkyl halide and the feed rate of the N-lower alkyl-substituted imidazole or pyridine compound. On the other hand, it may be appropriately set so that 2 equivalents or more of N-lower alkyl-substituted imidazole or pyridine compound is supplied. Alternatively, an alkyl halide and 2 equivalents or more of an N-lower alkyl-substituted imidazole or pyridine compound may be mixed in advance, and the mixture may be supplied into the reaction vessel at a supply rate set as described above. Specifically, for example, when the internal volume of the reaction vessel is set to 200 ml and the time required for the reaction is set to 15 minutes, the supply rate is usually 1.3 based on the calculation result of 200 ml ÷ 15 min≈13.3 ml / min. ˜13.3 ml / min, preferably 6.7 to 13.3 ml / min, more preferably 13.3 ml / min.
[0079]
If the amount of the N-lower alkyl-substituted imidazole or pyridine compound used is usually 2 equivalents or more with respect to the alkyl halide to be reacted, the target reaction can be completed by setting the reaction temperature to 120 to 350 ° C. However, it is preferably 2 to 20 equivalents, more preferably 3 to 10 equivalents. When the amount of N-lower alkyl-substituted imidazole or pyridine compound used is a theoretical amount or a slight excess with respect to the alkyl halide, the reaction is not completed even if it takes a long time.
[0080]
The reaction temperature is usually 120 to 350 ° C, preferably 140 to 300 ° C, more preferably 150 to 250 ° C.
The production method of the present invention may be performed in an inert gas atmosphere such as helium gas, nitrogen gas, argon gas, for example, and in that case, the reaction is performed by applying pressure to the reaction system using the inert gas. The temperature may be increased. The pressure may be adjusted to 1 to 100 kg / cm 2 , preferably 2 to 20 kg / cm 2 , more preferably 2 to 10 kg / cm 2 , because the reaction efficiency does not increase even if the value is too high.
[0081]
The reaction time is usually 5 minutes to 6 hours, preferably 5 minutes to 2 hours, and more preferably 5 to 30 minutes.
[0082]
In addition, the post-treatment after the reaction may be performed according to a post-treatment method usually performed in this field.
[0083]
If the method of this invention is used, it will become possible to manufacture a quaternary ammonium salt easily and efficiently in a short time, without setting severe reaction conditions. Further, the quaternary ammonium salt obtained by the method of the present invention is useful, for example, as a raw material for pharmaceuticals, quasi drugs and cosmetics, a phase transfer catalyst, an ionization solvent or an antibacterial agent.
[0084]
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
[0085]
【Example】
Example 1
Nitrogen gas was injected into an autoclave containing 115.1 g (0.44 mol) of n-cetyl chloride and 146.6 g (1.85 mol) of pyridine, the pressure in the autoclave was adjusted to 2 kg / cm 2, and the mixture was allowed to react at 180 ° C. for 15 minutes. It was. After completion of the reaction, the reaction solution was dried under reduced pressure to obtain powder crystals. In addition, as a result of analyzing the reaction liquid after completion | finish of reaction by HPLC, it was confirmed that the reaction rate is 100%. To the obtained powder crystals, 316 ml of methyl ethyl ketone was added and stirred at room temperature, and then the crystals were collected by filtration, washed again with methyl ethyl ketone, and dried under reduced pressure to obtain 142.5 g of powder crystals (yield 95%). The obtained compound was identified as an n-cetylpyridinium chloride salt by measuring its melting point and analyzing by 1 HNMR.
Further, when the obtained n-cetylpyridinium chloride salt was treated with water, it could be easily converted to n-cetylpyridinium chloride monohydrate.
[0086]
Example 2
An n-cetylpyridinium chloride salt was obtained in the same manner as in Example 1 except that the reaction was stirred at 160 ° C. for 30 minutes. After completion of the reaction, the reaction solution was analyzed by HPLC in the same manner as in Example 1. As a result, it was confirmed that the reaction rate was 100%.
[0087]
Comparative Example 1
115.1 g (0.44 mol) of n-cetyl chloride and 146.6 g (1.85 mol) of pyridine were refluxed at 96 to 100 ° C. in a nitrogen atmosphere in an autoclave. As a result of measuring the reaction solution by HPLC 15 minutes after the start of the reaction, the reaction rate was 3%.
[0088]
Comparative Example 2
Nitrogen gas was injected into an autoclave containing 115.1 g (0.44 mol) of n-cetyl chloride and 38.4 g (0.44 mol) of pyridine, the pressure in the autoclave was adjusted to 2 kg / cm 2, and the reaction was stirred at 160 ° C. for 4 hours. It was. After completion of the reaction, the reaction mixture was analyzed by HPLC. As a result, the reaction rate was 80%.
[0089]
Example 3
Nitrogen gas was injected into an autoclave containing 40.8 g (0.44 mol) of n-butyl chloride and 146.6 g (1.85 mol) of pyridine, the pressure in the autoclave was adjusted to 2 kg / cm 2, and the mixture was allowed to react at 180 ° C. for 15 minutes. It was. After completion of the reaction, the reaction mixture was analyzed by HPLC. As a result, the reaction rate was 100%.
[0090]
As is clear from the comparison between Examples 1, 2, and 3 and Comparative Examples 1 and 2, the reaction rate was obtained by carrying out the reaction at 120 ° C. to 350 ° C. with the amount of pyridine used relative to the alkyl halide being 2 equivalents or more. It can be seen that the desired quaternary pyridinium salt can be obtained efficiently, as well as improving the reaction time.
[0091]
Example 4
In a continuous reaction apparatus equipped with a 200 ml cylindrical reaction vessel as shown in FIG. 1, n-cetyl chloride is pumped at a flow rate of 6.29 ml / min from pump (1) so that the reaction time is 15 minutes. From (2), pyridine was simultaneously fed at a flow rate of 7.04 ml / min, and the temperature inside the cylindrical reaction vessel was adjusted to 180 ° C. and the internal pressure to 5 kg / cm 2 . 261.7 g of the reaction liquid was collected from the outlet of the condenser and dried under reduced pressure with a spray dryer to obtain 150 g of powder crystals (yield 100%). As a result of analyzing the reaction solution by HPLC, it was confirmed that the reaction rate was 100%. The obtained powder crystals were treated in the same manner as in Example 1 to obtain 141.0 g (yield 94%) of powder crystals of n-cetylpyridinium chloride.
[0092]
Example 5
In Example 4, n-cetylpyridinium chloride was obtained in the same manner using a thin film concentrator instead of vacuum drying with a spray dryer. As a result of analyzing the reaction solution by HPLC, it was confirmed that the reaction rate was 100%.
[0093]
As is apparent from the results of Examples 4 and 5, a quaternary pyridinium salt having a recovery rate equivalent to that of Examples 1 to 3 and a reaction rate equivalent to that of Examples 1 to 3 was obtained by using an apparatus using a cylindrical reaction vessel (FIG. 1). It can be seen that can be produced continuously.
[0094]
Example 6
Nitrogen gas was injected into an autoclave containing 95.9 g (0.7 mol) of n-butane bromide and 241.4 g (2.94 mol) of 1-methylimidazole, the pressure in the autoclave was adjusted to 2 kg / cm 2, and then at 160 ° C. for 30 minutes. The reaction was stirred. After completion of the reaction, the reaction solution was analyzed by NMR. As a result, the reaction rate was 100%.
[0095]
Example 7
Nitrogen gas was injected into the autoclave containing 182.6 g (0.7 mol) of n-cetyl chloride and 241.4 g (2.94 mol) of 1-methylimidazole, the pressure in the autoclave was adjusted to 2 kg / cm2, and the mixture was stirred at 180 ° C. for 30 minutes. Reacted. After completion of the reaction, the reaction solution was analyzed by NMR. As a result, the reaction rate was 100%.
[0096]
Example 8
Nitrogen gas was injected into an autoclave containing 52.1 g (0.38 mol) of n-butane bromide and 178.4 g (1.92 mol) of 4-picoline, the pressure in the autoclave was adjusted to 2 kg / cm 2, and the mixture was stirred at 160 ° C. for 15 minutes. Reacted. After completion of the reaction, the reaction solution was analyzed by NMR. As a result, the reaction rate was 100%.
[0097]
Example 9
Nitrogen gas was injected into the autoclave containing 100.0 g (0.38 mol) of n-cetyl chloride and 178.4 g (1.92 mol) of 4-picoline, the pressure in the autoclave was adjusted to 2 kg / cm2, and the reaction was stirred at 180 ° C for 15 minutes. I let you. After completion of the reaction, the reaction mixture was analyzed by NMR. As a result, the reaction rate was 94%.
[0098]
From the results of Examples 6 to 9, it can be seen that quaternary ammonium salts derived from methylimidazole and picoline can be produced efficiently and in a short time as well as quaternary pyridinium salts.
[0099]
【The invention's effect】
The present invention provides a method for efficiently producing a quaternary ammonium salt in a short time by reacting an alkyl halide with an N-lower alkyl-substituted imidazole or pyridine compound. For example, it is possible to solve all of the problems in the conventional methods, that is, severe reaction conditions and complicated reaction steps are required, and the reaction rate is poor and the reaction time is long. Moreover, since the target quaternary ammonium salt can be continuously produced by carrying out the reaction using the cylindrical reaction vessel of the present invention, the method of the present invention is an industrially excellent method.
[Brief description of the drawings]
FIG. 1 is a diagram showing a continuous reaction apparatus used in Examples 4 and 5. FIG.
[Explanation of symbols]
1 Raw material tank 2 Metering pump 3 Tubular reaction vessel 4 Heater 5 Pressure gauge 6 Thermometer 7 Control valve 8 Condenser 9 Reaction liquid tank 10 Spray dryer or thin film concentrator

Claims (7)

ハロゲン化アルキルとそれに対して2当量以上のN-炭素数1〜4の低級アルキル置換イミダゾール又はピリジン化合物とを140〜300℃で反応させることを特徴とする対応の第4級アンモニウム塩の製造方法。A process for producing a corresponding quaternary ammonium salt, comprising reacting an alkyl halide with a lower alkyl- substituted imidazole or pyridine compound having 1 to 4 equivalents of an N- carbon having 1 to 4 equivalents at 140 to 300 ° C. . ハロゲン化アルキルとそれに対して2当量以上のN-炭素数1〜4の低級アルキル置換イミダゾール又はピリジン化合物とを、140〜300℃の加熱下筒状反応容器中の一末端部から連続的に供給して反応させ、当該反応容器の他の末端部から生成した対応する第4級アンモニウム塩を連続的に取り出すことを特徴とする第4級アンモニウム塩の連続的製造方法。Alkyl halide and N- C1-4 lower alkyl substituted imidazole or pyridine compound of 2 equivalents or more relative to it are continuously fed from one end in a tubular reaction vessel under heating at 140 to 300 ° C. And continuously removing the corresponding quaternary ammonium salt produced from the other end of the reaction vessel. 筒状反応容器の一末端部から連続的に供給されるハロゲン化アルキルとN-炭素数1〜4の低級アルキル置換イミダゾール又はピリジン化合物との反応が当該筒状反応容器の他の末端部付近で終了するように、供給される化合物の供給速度と上記筒状反応容器の容量が設定されている請求項2に記載の方法。The reaction between the alkyl halide continuously supplied from one end of the cylindrical reaction vessel and the lower alkyl- substituted imidazole or pyridine compound having 1 to 4 carbon atoms in the vicinity of the other end of the cylindrical reaction vessel The method according to claim 2 , wherein the supply rate of the compound to be supplied and the capacity of the cylindrical reaction vessel are set so as to be completed. ピリジン化合物がピリジン又はピリジン環を構成する炭素原子に結合した水素原子の1〜3個が低級アルキル基で置換されたものである請求項1〜3の何れかに記載の方法。The method according to any one of claims 1 to 3 , wherein 1 to 3 hydrogen atoms bonded to carbon atoms constituting the pyridine or pyridine ring in the pyridine compound are substituted with a lower alkyl group. N-炭素数1〜4の低級アルキル置換イミダゾールがN-メチルイミダゾールである請求項1〜3の何れかに記載の方法。The method according to any one of claims 1 to 3 , wherein the lower alkyl substituted imidazole having 1 to 4 carbon atoms is N-methylimidazole. ハロゲン化アルキルがハロゲン化セチルである請求項1〜5の何れかに記載の方法。6. The method according to any one of claims 1 to 5 , wherein the alkyl halide is cetyl halide. ハロゲン化アルキルが塩化セチルである請求項1〜5の何れかに記載の方法。The method according to any one of claims 1 to 5 , wherein the alkyl halide is cetyl chloride.
JP2001031883A 2000-02-14 2001-02-08 Method for producing quaternary ammonium salt Expired - Lifetime JP4774604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031883A JP4774604B2 (en) 2000-02-14 2001-02-08 Method for producing quaternary ammonium salt

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000034564 2000-02-14
JP2000-34564 2000-02-14
JP2000034564 2000-02-14
JP2001031883A JP4774604B2 (en) 2000-02-14 2001-02-08 Method for producing quaternary ammonium salt

Publications (2)

Publication Number Publication Date
JP2001302634A JP2001302634A (en) 2001-10-31
JP4774604B2 true JP4774604B2 (en) 2011-09-14

Family

ID=26585265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031883A Expired - Lifetime JP4774604B2 (en) 2000-02-14 2001-02-08 Method for producing quaternary ammonium salt

Country Status (1)

Country Link
JP (1) JP4774604B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617687B2 (en) * 2004-03-12 2011-01-26 和光純薬工業株式会社 Method for crystallizing halogenated alkylpyridinium salts
FR2884822B1 (en) * 2005-04-22 2007-06-29 Aventis Pharma Sa TRIAZINE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
EP2607351B1 (en) * 2011-12-22 2017-03-15 Cerbios-Pharma S.A. Continuous process for the alkylation of cyclic tertiary amines

Also Published As

Publication number Publication date
JP2001302634A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP2005511666A (en) Production of ionic liquid
EP3133061A1 (en) Florfenicol synthesizing method
JP4774604B2 (en) Method for producing quaternary ammonium salt
US6414159B2 (en) Method for preparation of a quaternary ammonium salt
CN109160897A (en) A kind of synthetic method of 6- trifluoromethyl nicotinic acid
JPH0466237B2 (en)
CN110483429B (en) Preparation method of 3, 5-disubstituted-4, 5-dihydroisoxazole
JP5859807B2 (en) Copper-catalyzed process for preparing substituted or unsubstituted trifluoromethylated aryl and heteroaryl compounds
WO2005063661A1 (en) Fluorinating agent and method for producing fluorine-containing compound using same
CN115093373A (en) 1, 5-disubstituted-3-fluoroalkyl-1, 2, 4-triazole compound and preparation method and application thereof
EP1399402B1 (en) Intermediate halophenyl derivatives and their use in a process for preparing azole derivatives
Borodkin et al. Electrophilic fluorination of 6-methyl-and 1, 3, 6-trimethyluracils in water
CN112174949A (en) Quinolizinone compound and preparation method thereof
CN106892807A (en) A kind of preparation method of isophorone
Campaigne et al. 3a, 4, 5, 6-Tetrahydrosuccinimido [3, 4-b] acenaphten-10-one. A potent anticonvulsant
CN113929569A (en) Monofluoro iodoacetone compound and preparation method and application thereof
US4211875A (en) Preparation of 4-methyl-5-chloromethyl-imidazole
JPH0579672B2 (en)
CN118621328A (en) Synthesis and application of 4-heterocyclic amine substituted oxazoline compound
CN106146417B (en) A method of 4- aryl-NH-1,2,3- triazole is prepared using aldehyde sodium bisulfite adduct
CN110694692A (en) Air stable catalyst, preparation thereof and application of catalyst in catalytic generation of N1-substituted pyrazole derivatives
CN111592486B (en) Method for constructing 3,5-disubstituted pyridine by cyclization reaction of aryl ethylene and N, N-dimethylformamide
JPS6140228B2 (en)
JPS5827788B2 (en) Production method of substituted pyridine
CN104557747B (en) Preparation method of fluconazol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Ref document number: 4774604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term