[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4771475B2 - Bone conduction speaker - Google Patents

Bone conduction speaker Download PDF

Info

Publication number
JP4771475B2
JP4771475B2 JP2006168423A JP2006168423A JP4771475B2 JP 4771475 B2 JP4771475 B2 JP 4771475B2 JP 2006168423 A JP2006168423 A JP 2006168423A JP 2006168423 A JP2006168423 A JP 2006168423A JP 4771475 B2 JP4771475 B2 JP 4771475B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
bone conduction
vibration
conduction speaker
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006168423A
Other languages
Japanese (ja)
Other versions
JP2007336418A (en
Inventor
英幸 川瀬
祐二 新渡戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006168423A priority Critical patent/JP4771475B2/en
Publication of JP2007336418A publication Critical patent/JP2007336418A/en
Application granted granted Critical
Publication of JP4771475B2 publication Critical patent/JP4771475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Description

本発明はユニモルフあるいはバイモルフ型の圧電素子を使用した骨伝導スピーカに関し、特に振動エネルギーの有効利用と音漏れの防止が可能な圧電素子の支持構造を有する骨伝導スピーカに関する。   The present invention relates to a bone conduction speaker using a unimorph or bimorph type piezoelectric element, and more particularly to a bone conduction speaker having a piezoelectric element support structure capable of effectively using vibration energy and preventing sound leakage.

ユニモルフあるいはバイモルフ型の圧電素子を使用する骨伝導スピーカとしての従来技術の例は少なく、特許文献1が「骨伝導用スピーカ用音響振動発生素子」として開示されている。しかし、これは振動素子単品としての性能改善の事例であり、情報伝達機器で骨伝導用スピーカの素子として利用するために組み込む場合、音漏れを少なくするために、どのように支持し、取り付けると良いかは示されていない。従来技術の観点から考えた場合、振動時の振動の節となる位置近傍を弾性材で支持し機器に組み込むことが、機器の外装構造体に振動を伝え難く、音漏れの増加を防ぐ方法である。   There are few examples of the prior art as a bone conduction speaker using a unimorph or bimorph type piezoelectric element, and Patent Document 1 is disclosed as “an acoustic vibration generating element for a bone conduction speaker”. However, this is an example of performance improvement as a single vibration element, and when it is incorporated for use as an element of a bone conduction speaker in an information transmission device, how to support and install in order to reduce sound leakage It is not shown whether it is good. Considering from the viewpoint of the prior art, it is difficult to transmit vibration to the exterior structure of the device and to prevent an increase in sound leakage by supporting the vicinity of the position of the vibration node at the time of vibration with an elastic material and incorporating it in the device. is there.

しかし、この場合、バイモルフ型圧電素子の湾曲振動の振幅はその中央部、または両端部で大きく、その振動位相の差は180度ある。したがって、どちらか一方を人体に当ててその振動を伝えることになり、圧電素子の湾曲振動エネルギーの2分の1以下しか利用することは出来ない。そこで湾曲振動を有効利用できる方法が望まれている。   However, in this case, the amplitude of the bending vibration of the bimorph piezoelectric element is large at the center or both ends, and the difference in vibration phase is 180 degrees. Therefore, either one is applied to the human body to transmit the vibration, and only one half or less of the bending vibration energy of the piezoelectric element can be used. Therefore, a method that can effectively use the bending vibration is desired.

一方、圧電素子を利用した振動駆動体の支持構造に着目した場合、空気伝播を利用する一般のスピーカでの従来事例は多々ある。たとえば特許文献2や、特許文献3に見られる支持方法である。これらにおける振動体の圧電素子の支持構造は、圧電素子が円盤形状であること矩形形状であることにかかわらず、円盤の外周あるいは矩形の相対する両辺を質量の大きな剛体に弾性材を介して直接取り付け、中央部の振動動作を直接気導の発音に利用するか、他の部材を加振する方式のものである。また、特許文献4に見られるような、その中央を被加振部材に接合し、他は自由にして圧電素子の振動動作の反力で被加振部材を振動する方式のものもあり、これらが一般的な事例である。   On the other hand, when paying attention to the support structure of the vibration driving body using a piezoelectric element, there are many conventional cases of general speakers using air propagation. For example, it is a supporting method found in Patent Document 2 and Patent Document 3. The support structure of the piezoelectric element of the vibrating body in these cases is such that the outer periphery of the disk or both opposing sides of the rectangle are directly connected to a rigid body having a large mass via an elastic material, regardless of whether the piezoelectric element has a disk shape or a rectangular shape. The vibration of the central part is used for direct sounding or the other members are vibrated. In addition, as shown in Patent Document 4, there is a type in which the center is joined to the vibration member, and the others are free to vibrate the vibration member with the reaction force of the vibration operation of the piezoelectric element. Is a common case.

後者は圧電素子が大きな力を出し得る能力に比して、その加振力は小さく、加振力を増加させるために圧電素子に錘を接合し、加振力を増大する手法も開示されているが、付加できる錘の量は比較的小さく、人体を振動させる骨伝導スピーカには尚不足し、非効率で不向きである。   The latter has a small excitation force compared to the ability of the piezoelectric element to generate a large force, and a technique for increasing the excitation force by joining a weight to the piezoelectric element to increase the excitation force is also disclosed. However, the amount of weight that can be added is relatively small, still insufficient for bone conduction speakers that vibrate the human body, and are inefficient and unsuitable.

一方、前者(特許文献2、3)はベースの質量を大きくすることにより圧電素子の中央部から得られる力は大きく、圧電素子の持つ小さなサイズの割に大きな力を出し得る能力を活用できる方式であるが、ベース部材に弾性材を介して取り付けることにより、圧電素子の振動変形時の拘束力によるロスを減らしている一方、振動方向にも弾性変位する自由度があるために、利用できる中央部の振動振幅を減じている。   On the other hand, the former (Patent Documents 2 and 3) has a large force obtained from the central portion of the piezoelectric element by increasing the mass of the base, and can utilize the ability to generate a large force for the small size of the piezoelectric element. However, by attaching it to the base member via an elastic material, the loss due to the restraining force during vibration deformation of the piezoelectric element is reduced, while there is a degree of freedom of elastic displacement in the vibration direction, so that it can be used in the center. The vibration amplitude of the part is reduced.

この点を改善する方法として、特許文献5に見られるような弾性接着材の中にコロの役目を成す高剛性の球体を混合する方法が提案されている。この方法は、単に弾性接着剤で保持する場合より振動方向の拘束力を強め、かつ振動直角方向(圧電素子の平面方向)の拘束力は弱めることで、発生する振幅や力のロスを低減する考えに基づくものである。   As a method for improving this point, there has been proposed a method in which a high-rigid sphere functioning as a roller is mixed in an elastic adhesive as shown in Patent Document 5. This method reduces the generated amplitude and force loss by strengthening the restraining force in the vibration direction and weakening the restraining force in the direction perpendicular to the vibration (the plane direction of the piezoelectric element) than when simply holding with an elastic adhesive. It is based on ideas.

しかし、この方法で小型のものを構成しようとする場合には、弾性接着材の中に混合する高剛性の球体の径も小さくする必要が出てくる。球体の径を小さくした場合、プラスチックに粒状のガラスを分散させたものが、あらゆる方向に剛性が高くなるという現象に似たところがあり、圧電素子の平面方向の拘束力を弱めずに強くする傾向があり、ロス低減の効果はまだ十分とはいえない。   However, when it is intended to construct a small size by this method, it is necessary to reduce the diameter of the high-rigid sphere mixed in the elastic adhesive. When the diameter of the sphere is reduced, the dispersion of granular glass in plastic resembles the phenomenon that the rigidity increases in all directions, and tends to increase the restraint force in the planar direction of the piezoelectric element without weakening it. However, the effect of reducing loss is not yet sufficient.

特開2005−175985号公報JP 2005-175985 A 特開2000−201398号公報JP 2000-201398 A 特開2000−305573号公報JP 2000-305573 A 特開2004−104327号公報JP 2004-104327 A 特許第3202169号公報Japanese Patent No. 3202169

骨伝導スピーカに要求される特性は、イヤホンに使用される気導のスピーカと比べた場合、出力しなければならない振動力は桁違いに大きく必要なことである。また、差別化の点で、気導音を発生させない、あるいは小さい(音漏れが少ない)ことが要求され、かつ大きさは、気導スピーカに近いものが要求されている。   The characteristic required for a bone conduction speaker is that the vibration force that must be output is remarkably larger than that of an air conduction speaker used for an earphone. Further, in terms of differentiation, it is required that air conduction sound is not generated or is small (small sound leakage), and that the size is close to that of the air conduction speaker.

こうした中で、大きな力が出せ、エネルギー効率もよい圧電素子が注目されているが、気導スピーカ用が主用途で開発が進んできているために、大出力化が大きさの増加になり、ひいては音漏れの増大傾向が強く、小型で、骨伝導に必要な力を出せてかつ、携帯電話などの小型で軽量なプラスチック外装構造体の機器に組み込んでも、音漏れが少ない骨伝導スピーカの構造が要求されている。   Under such circumstances, piezoelectric elements that can produce a large force and have high energy efficiency are attracting attention. However, because the development of air-conducting loudspeakers is the main application, the increase in output has increased in size. As a result, the structure of a bone conduction speaker that has a strong tendency to increase sound leakage, is small in size, can produce the force necessary for bone conduction, and has little sound leakage even when incorporated into a small and lightweight plastic exterior structure device such as a mobile phone. Is required.

この状況にあって、本発明の課題は、ユニモルフまたはバイモルフ型の圧電素子を用い、骨伝導で要求される大出力を、機器に組み込んだ場合の音漏れの増加を防止しながら実現し、小型で量産性の優れた骨伝導スピーカを提供することにある。   In this situation, the object of the present invention is to achieve a large output required for bone conduction using a unimorph or bimorph type piezoelectric element while preventing an increase in sound leakage when incorporated in a device. An object of the present invention is to provide a bone conduction speaker having excellent mass productivity.

課題解決のための構造として、短冊形のバイモルフ型圧電素子の湾曲振動を、理想的な両端自由支持に近い構造(圧電素子の振動方向には高剛性で、圧電素子の長手平面方向には低剛性の弾性特性であること)として、交流電圧印加時の圧電素子の湾曲率を最大化する。また圧電素子の両端を支持するベース側に大きな質量を持たせて、ベース側に掛かる反力によるその振動振幅を小さくし、ベースを支持する機器の外装構造体に伝わる振動をより少なくし、外装構造体が振動することにより起こる音漏れを低減する。あわせて圧電素子の湾曲振動の振動の節位置をその両端近傍に寄せて、中央部の振幅を最大化する。   As a structure to solve the problem, the bending vibration of a strip-shaped bimorph piezoelectric element is close to the ideal free support at both ends (high rigidity in the vibration direction of the piezoelectric element and low in the longitudinal plane direction of the piezoelectric element). The rigidity of the piezoelectric element is maximized when an AC voltage is applied. In addition, the base side supporting both ends of the piezoelectric element has a large mass, the vibration amplitude due to the reaction force applied to the base side is reduced, the vibration transmitted to the exterior structure of the equipment supporting the base is reduced, and the exterior Sound leakage caused by vibration of the structure is reduced. At the same time, the vibration node position of the bending vibration of the piezoelectric element is brought close to both ends to maximize the amplitude of the central portion.

本発明によれば、量産性の高い部品構成で、骨伝導スピーカに要求される振動エネルギーの大きな出力振動を、より小さなサイズで得ることが出来る上に、利用機器に組み込んだ場合の出力アップについてまわる音漏れの増加を防止することが出来る。   According to the present invention, it is possible to obtain a large output vibration of a vibration energy required for a bone conduction speaker in a smaller size with a high-productivity component structure, and to increase output when incorporated in a use device. An increase in sound leakage can be prevented.

次に本発明の一実施の形態について図2を参照しながら説明する。この骨伝導スピーカでは、(1)幅寸法を1とするとき長さ寸法が2以上の矩形のバイモルフまたはユニモルフ型の圧電素子1およびこれを保護する絶縁被覆材4からなる圧電素子部と、(2)ベース錘5とそれを保持するフレーム3からなり、前記圧電素子部の質量よりも大きな質量を持つベース部と、(3)圧電素子1の長手方向の両端にそれぞれ接合されると共にフレーム3の立ち上がり部3a、3bの上端部に接合され、圧電素子1の板厚方向に対しては剛性が高く、これとは直角方向の長手方向に対しては剛性が低い支持特性を持つように形成された2つの絶縁支持部材2a、2bとが設けられ、前記圧電素子部の中央での交流電圧印加時の振動振幅を1とするとき、ベース部(ベース錘5およびフレーム3)の振動振幅が1/2以下である。   Next, an embodiment of the present invention will be described with reference to FIG. In this bone conduction speaker, (1) a piezoelectric element portion comprising a rectangular bimorph or unimorph type piezoelectric element 1 having a length dimension of 2 or more when the width dimension is 1, and an insulating coating material 4 protecting the same, ( 2) a base weight 5 and a frame 3 that holds the base weight 5; a base portion having a mass larger than the mass of the piezoelectric element portion; and (3) a frame 3 that is joined to both ends of the piezoelectric element 1 in the longitudinal direction. Joined to the upper ends of the rising portions 3a and 3b of the piezoelectric element 1, the piezoelectric element 1 is formed so as to have a high rigidity in the plate thickness direction and low rigidity in the longitudinal direction perpendicular thereto. The two insulating support members 2a and 2b are provided, and when the vibration amplitude when the AC voltage is applied at the center of the piezoelectric element portion is 1, the vibration amplitude of the base portion (base weight 5 and frame 3) is 1/2 It is below.

このようにユニモルフまたはバイモルフ型の矩形平面形状の圧電素子1を使用し、これを振動エネルギーのロスの少ない両端支持構造とし、かつ支持体(ベース部)の質量を大きくすることにより、機器での支持体の振動を低減して、機器に振動が伝わり音漏れの増加になる現象を低減する。   In this way, the unimorph or bimorph type rectangular planar piezoelectric element 1 is used, and this is used as a both-end support structure with little loss of vibration energy, and the mass of the support (base part) is increased. By reducing the vibration of the support, the phenomenon that the vibration is transmitted to the equipment and the sound leakage increases is reduced.

このとき、圧電素子1の矩形形状の幅寸法1に対して長さ寸法が2未満であると、駆動時の湾曲形状が皿状になり、必要以上の面積の湾曲振動が発生し、音漏れが大きくなる。他方、幅寸法1に対して長さ寸法が10を越えると使い勝手が低下することなどにより、使用できる応用範囲が狭くなる。   At this time, if the length dimension is less than 2 with respect to the width dimension 1 of the rectangular shape of the piezoelectric element 1, the curved shape at the time of driving becomes a dish shape, and a curved vibration of an area more than necessary occurs, resulting in sound leakage. Becomes larger. On the other hand, when the length dimension exceeds 10 with respect to the width dimension 1, the usable range is narrowed due to the decrease in usability.

また、圧電素子部中央の交流電圧印加時の振動振幅に対して、ベース部の振動振幅を1/2以下に抑える必要がある。1/2を越えると、実用的に許容できない音漏れが発生するからである。理想的にはベース部は出来る限り質量が大きいほうが、ベース部の振動が少なく圧電素子中央部の振動が大きくなる。しかし、全体の大きさなどの制限からベース部の質量増加には制限があり、小型化の条件を満たすためにはベース部の振動振幅を圧電素子部中央の振動振幅の1/10未満にするのは容易ではない。   Further, it is necessary to suppress the vibration amplitude of the base portion to ½ or less with respect to the vibration amplitude when the AC voltage is applied at the center of the piezoelectric element portion. This is because if the ratio exceeds 1/2, sound leakage that is practically unacceptable occurs. Ideally, the larger the mass of the base portion, the less the vibration of the base portion and the greater the vibration of the central portion of the piezoelectric element. However, the increase in the mass of the base part is limited due to restrictions on the overall size and the like, and the vibration amplitude of the base part is made less than 1/10 of the vibration amplitude at the center of the piezoelectric element part in order to satisfy the miniaturization condition. It's not easy.

更に、絶縁被覆材4は、振動減衰特性を持つ弾性部材からなり、前記絶縁支持部材2a、2bと圧電素子1が接合される部分の近傍で絶縁支持部材2a、2bと接続されている。こうして、共振の振動減衰特性が高められる。   Further, the insulating covering material 4 is made of an elastic member having vibration damping characteristics, and is connected to the insulating support members 2a and 2b in the vicinity of the portion where the insulating support members 2a and 2b and the piezoelectric element 1 are joined. Thus, the vibration damping characteristic of resonance is enhanced.

また、図2のように、圧電素子1は平板状であり、絶縁被覆材4は圧電素子1のベース部(ベース錘5およびフレーム3)とは反対側の主面上で長手方向端部よりも中央部で厚く形成され凸状の表面形状(凸面4a)を持つようにすることで、振動出力の人体頭部への伝達を容易にすることが出来る。   Further, as shown in FIG. 2, the piezoelectric element 1 has a flat plate shape, and the insulating coating material 4 is formed on the main surface opposite to the base portion (base weight 5 and frame 3) of the piezoelectric element 1 from the end portion in the longitudinal direction. Further, by forming a thick surface at the center and having a convex surface shape (convex surface 4a), transmission of vibration output to the human head can be facilitated.

なお、圧電素子は、平板状のものでなく、交流電圧が印加されないときにも長手方向に湾曲しておりベース錘5とは反対側の主面で凸形状を持つようにすることできる。   The piezoelectric element is not a flat plate, but can be curved in the longitudinal direction even when no AC voltage is applied, and can have a convex shape on the main surface opposite to the base weight 5.

また、図2の支持構造のように、絶縁支持部材2a、2bは絶縁材料からなり、圧電素子厚さ方向の支持剛性は高く、圧電素子長手方向の支持剛性は低くなるように、圧電素子厚さ方向には変形または変位し難く、圧電素子長手方向には変形または変位し易い形状にするとよい。   In addition, as in the support structure of FIG. 2, the insulating support members 2a and 2b are made of an insulating material, and the piezoelectric element thickness is such that the support rigidity in the piezoelectric element thickness direction is high and the support rigidity in the piezoelectric element longitudinal direction is low. It is preferable that the shape is not easily deformed or displaced in the vertical direction and is easily deformed or displaced in the longitudinal direction of the piezoelectric element.

更に、図2の支持構造を説明すると、支持部は絶縁材部(絶縁支持部材2a、2b)とその底部につながる金属板材部(フレーム3の立ち上がり部3a、3b)とからなり、その絶縁材部で圧電素子1と接合され、その金属板材部でベース部と接合されているが、その金属板材部はベース部と一体に形成されている。すなわち、絶縁支持部材2a、2bと立ち上がり部3a、3bとを統合したものを支持部として捉え、この支持部に、ベース錘5とフレーム3の底面部とからなるベース部が接続されている形態である。   Further, the supporting structure of FIG. 2 will be described. The supporting portion is composed of an insulating material portion (insulating supporting members 2a and 2b) and a metal plate material portion (the rising portions 3a and 3b of the frame 3) connected to the bottom portion thereof. The portion is joined to the piezoelectric element 1 and the metal plate material portion is joined to the base portion, but the metal plate material portion is formed integrally with the base portion. That is, a configuration in which the insulating support members 2a and 2b and the rising portions 3a and 3b are integrated is regarded as a support portion, and a base portion including the base weight 5 and the bottom surface portion of the frame 3 is connected to the support portion. It is.

本発明の一実施例を図面に基づいて説明する。図1は本発明の一実施例での骨伝導スピーカの外観を示し、図1(a)は平面図、図1(b)は正面図、図1(c)は右側面図である。図1におけるA−A線の断面図が図2である。図3は個別部品状態を示す分解斜視図である。図4は圧電素子1の斜視図であり、1aは圧電素子配線である。図5は圧電素子1の両端に絶縁支持部材2a、2bを挿入固着した斜視図である。図6は更に圧電素子1と絶縁支持部材2a、2bの上半分部を弾性的な絶縁被覆材4でモールディング成形し覆った状態を示す斜視図である。図7は更にフレーム3を取り付け、ベース錘5をねじにて取り付けた状態の骨伝導スピーカの完成状態を示す斜視図である。図8は振動状態を模式的に示した正面図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the appearance of a bone conduction speaker according to an embodiment of the present invention. FIG. 1 (a) is a plan view, FIG. 1 (b) is a front view, and FIG. 1 (c) is a right side view. FIG. 2 is a sectional view taken along line AA in FIG. FIG. 3 is an exploded perspective view showing an individual component state. FIG. 4 is a perspective view of the piezoelectric element 1, and 1a is a piezoelectric element wiring. FIG. 5 is a perspective view in which insulating support members 2 a and 2 b are inserted and fixed to both ends of the piezoelectric element 1. FIG. 6 is a perspective view showing a state where the piezoelectric element 1 and the upper half portions of the insulating support members 2a and 2b are molded and covered with an elastic insulating covering material 4. FIG. 7 is a perspective view showing a completed state of the bone conduction speaker with the frame 3 attached and the base weight 5 attached with screws. FIG. 8 is a front view schematically showing a vibration state.

その構造を説明する。主に図4に示すように、金属性薄板上に圧電材板と電極を重ねたユニモルフ型あるいは金属薄板の両面に圧電材板と電極を重ねたバイモルフ型の圧電素子1、または、金属性薄板の片面あるいは両面に圧電材と電極を複数層重ねて形成した積層バイモルフ型の圧電素子1は、幅寸法が約4.4mmに対して長さが約15mmの矩形平面で総厚さが約0.6mmの形状で質量が約0.28gである。   The structure will be described. As shown mainly in FIG. 4, a unimorph type piezoelectric element 1 in which a piezoelectric material plate and an electrode are stacked on a metallic thin plate, or a bimorph type piezoelectric element 1 in which a piezoelectric material plate and an electrode are stacked on both sides of a metal thin plate, or a metallic thin plate A laminated bimorph type piezoelectric element 1 formed by stacking a plurality of piezoelectric materials and electrodes on one side or both sides of a rectangular plane having a width of about 4.4 mm and a length of about 15 mm and a total thickness of about 0. .6mm shape with a mass of about 0.28g.

図5などに示すように、圧電素子1の両端は、量産に適したプラスチック成形にて作製できる電気絶縁性の絶縁支持部材2a、2bの溝部に挿入され、合わせて絶縁支持部材の材料と同程度以上のヤング率の絶縁性接着剤で接合されている。   As shown in FIG. 5 and the like, both ends of the piezoelectric element 1 are inserted into the grooves of electrically insulating insulating support members 2a and 2b that can be manufactured by plastic molding suitable for mass production, and the same material as the insulating support member is used. It is joined with an insulating adhesive having a Young's modulus of a degree or more.

図2などに示すように、厚さ0.3mmの金属製板材で量産性の高いプレス成形にて作製できるフレーム3は、幅5mm、長手方向16mmの大きさで、両端部の約2.5mmの立ち上がり部3a、3bは絶縁支持部材2a、2bの下面に形成されている細長い角穴(図示省略)に圧入接合されている。この接合は圧入ではなく、穴に接着剤と共に挿入した接着接合でも良く、この場合の接着剤のヤング率は絶縁支持部材の材質のヤング率と同等以上の特性のものが好ましい。   As shown in FIG. 2 and the like, the frame 3 that can be produced by press molding with high productivity of a metal plate material having a thickness of 0.3 mm has a width of 5 mm, a length of 16 mm, and approximately 2.5 mm at both ends. The rising portions 3a and 3b are press-fitted and joined to elongated rectangular holes (not shown) formed on the lower surfaces of the insulating support members 2a and 2b. This bonding may not be press fit, but may be adhesive bonding inserted into the hole together with an adhesive. In this case, the Young's modulus of the adhesive is preferably equal to or higher than the Young's modulus of the material of the insulating support member.

こうして、絶縁支持部材2a、2bの下部に形成された細長い角穴に、フレーム3の立ち上がり部3a、3b(金属板材)が圧入される構造をとることで、圧電素子厚さ方向の支持剛性を高くし、圧電素子長手方向の支持剛性を低くすることが出来る。すなわち、絶縁支持部材2a、2bに着目すると圧電素子厚さ方向には変形または変位し難く圧電素子長手方向には変形または変位し易い形状および構造になっている。   In this way, by adopting a structure in which the rising portions 3a, 3b (metal plate material) of the frame 3 are press-fitted into elongated rectangular holes formed in the lower portions of the insulating support members 2a, 2b, the support rigidity in the piezoelectric element thickness direction can be increased. The support rigidity in the longitudinal direction of the piezoelectric element can be increased and the support rigidity can be decreased. That is, when attention is paid to the insulating support members 2a and 2b, it has a shape and structure that is difficult to be deformed or displaced in the piezoelectric element thickness direction and is easily deformed or displaced in the longitudinal direction of the piezoelectric element.

図2、図3のように、フレーム3には比重の比較的大きな金属板製のベース錘5がねじ6a、6bにて取り付けられていて、フレーム3とねじ6a、6bとベース錘5との総合質量は約1.5gである。   As shown in FIGS. 2 and 3, a base weight 5 made of a metal plate having a relatively large specific gravity is attached to the frame 3 with screws 6 a and 6 b, and the frame 3, the screws 6 a and 6 b, and the base weight 5 are connected to each other. The total mass is about 1.5 g.

図2などに示された圧電素子1の外周と絶縁支持部材2a、2bの圧電素子1を支持する部分は、絶縁性で振動ダンピング(減衰)特性の良い硬度60度から80度(Hs60〜80 JIS A)のゴムからなる絶縁被覆材4にて真空注形の製法により覆われている。人体との接触部になるその上面の中央部は、周辺部より上方に1mm程度突出した湾曲形状の凸面4aを成して、人体への当たりの中心が圧電素子部10(図8)の中央部になるようにしている。また、この部分の総合質量は約0.35gである。   The outer periphery of the piezoelectric element 1 shown in FIG. 2 and the portion of the insulating support members 2a and 2b that support the piezoelectric element 1 are insulative and have a hardness of 60 degrees to 80 degrees (Hs 60 to 80 degrees) with good vibration damping (damping) characteristics. It is covered with an insulating coating material 4 made of JIS A) rubber by a vacuum casting method. The central portion of the upper surface that becomes the contact portion with the human body forms a curved convex surface 4a that protrudes about 1 mm above the peripheral portion, and the center of contact with the human body is the center of the piezoelectric element portion 10 (FIG. 8). I try to become a part. The total mass of this part is about 0.35 g.

人体への当たりを良くするための湾曲面は絶縁被覆材4の中央部が厚くなる湾曲形状で達成しているが、圧電素子1を含む振動部の質量を軽減するために圧電素子1そのものが、非動作時に既に湾曲形状をしていて、すなわち湾曲形状の金属製薄板の片面または両面に圧電材が形成され、絶縁被覆の層が一定厚さで薄く形成されていても良い。   The curved surface for improving the contact with the human body is achieved by a curved shape in which the central portion of the insulating coating material 4 is thickened. However, in order to reduce the mass of the vibration part including the piezoelectric element 1, the piezoelectric element 1 itself is When not in operation, it may be already curved, that is, a piezoelectric material may be formed on one or both sides of a curved metal thin plate, and the insulating coating layer may be thin with a constant thickness.

絶縁被覆材4は圧電素子1の機械的な被覆保護のみではなく、圧電素子に比較的良く使われる銀の電極が高温高湿環境下での電圧付加によるマイグレーション現象で起きるショート障害を防止するための防湿のための覆いの役目も成し、かつ、圧電素子の共振現象の程度を緩和する減衰材の役目も成している。特に被覆の厚さとゴムの硬度や材質は、振動出力のロスの軽減と相反する減衰特性によるロスの増加を適度なレベルで折衷する上で重要な決定要素である。   The insulating coating 4 is not only for mechanical covering protection of the piezoelectric element 1, but also for preventing a short-circuit failure caused by a migration phenomenon due to voltage application in a high temperature and high humidity environment in a silver electrode that is relatively often used for the piezoelectric element. It also serves as a cover for moisture prevention, and also serves as a damping material that reduces the degree of resonance phenomenon of the piezoelectric element. In particular, the thickness of the coating, the hardness of the rubber, and the material are important determinants in compromising the increase in loss due to the damping characteristics that contradict the reduction in vibration output loss at an appropriate level.

次に動作特性を説明する。厳密には機器の支持構造や人体伝達部の弾性や質量が、絶対位置での振動状態に影響する。しかし、そこまで含めて論ずると複雑になり過ぎることと、定性的には大きく異ならないことを含めて、ここでは全体を十分に柔らかな発泡体シートの上に置いて自由に動作させた場合の振動状態を説明する。   Next, operation characteristics will be described. Strictly speaking, the support structure of the device and the elasticity and mass of the human body transmission part affect the vibration state at the absolute position. However, including the fact that it is too complicated to discuss and that it does not differ greatly qualitatively, here is the case where the whole is placed on a sufficiently soft foam sheet and freely operated The vibration state will be described.

圧電素子1に交流電圧を印加すると、これが印加電圧に比例して湾曲振動し、その影響が全体に作用する。振動の状態を模式的に示すと図8のようになる。圧電素子1を含む圧電素子部10は印加電圧に沿った湾曲変形動作である。これを支持する絶縁支持部材2a、2bとフレーム3の左右の立ち上がり部3a、3bとで構成される支持部20a、20bはY軸方向の剛性が高く、X軸方向の剛性は低いために、圧電素子部10の左右端のY軸方向変位はそのままベース錘5とフレーム3の平坦部(底面部)とで成すベース部30の両端のY軸方向変位となる。支持部20a、20bのX軸方向変位は左右バランスし運動エネルギー的には釣り合って他には影響しない。ベース部30の両端のY軸方向変位はベース部30の剛性が高いためにベース部30の平行変位となる。なおZ軸方向の動きは理論上ない。実際にも極僅かであり考慮しなくても良い。   When an alternating voltage is applied to the piezoelectric element 1, it bends and vibrates in proportion to the applied voltage, and the effect acts on the whole. FIG. 8 schematically shows the state of vibration. The piezoelectric element portion 10 including the piezoelectric element 1 performs a bending deformation operation along the applied voltage. Since the support portions 20a and 20b constituted by the insulating support members 2a and 2b and the left and right rising portions 3a and 3b of the frame 3 supporting this are high in the Y-axis direction and low in the X-axis direction, The displacement in the Y-axis direction at the left and right ends of the piezoelectric element portion 10 becomes the displacement in the Y-axis direction at both ends of the base portion 30 formed by the base weight 5 and the flat portion (bottom surface portion) of the frame 3 as it is. The displacements in the X-axis direction of the support portions 20a and 20b are balanced left and right and are balanced in terms of kinetic energy and do not affect others. The displacement in the Y-axis direction at both ends of the base portion 30 becomes parallel displacement of the base portion 30 because the rigidity of the base portion 30 is high. There is no theoretical movement in the Z-axis direction. Actually, it is negligible and need not be considered.

ここで圧電素子部10の質量よりもベース部30の質量が大きいので、圧電素子部10の振動の節は両端支持をしない場合より左右端寄りなる。理論上、ベース側が無限大質量の場合はその節は両端になる。圧電素子部10の中央の振幅に対して、左右両端の振幅(すなわちベース部30の振幅と等価)を比較した場合、圧電素子部10とベース部30の質量差は、実数として0.35gに対して1.5gであるので約4倍あり、振幅差は単純には4分の1となるが、運動エネルギー的に比較する場合、ベース部30の振動は全体一様であり、圧電素子部10の振動は場所により変化するので、それ以上の差があると考えられる。効果確認のための試作品は既製圧電素子での試作のため長さが異なるが、これでの実測値は5分の1から8分の1である。   Here, since the mass of the base portion 30 is larger than the mass of the piezoelectric element portion 10, the vibration node of the piezoelectric element portion 10 is closer to the left and right ends than when both ends are not supported. Theoretically, if the base side has an infinite mass, the node will be at both ends. When comparing the amplitude of the left and right ends (that is, equivalent to the amplitude of the base portion 30) with respect to the central amplitude of the piezoelectric element portion 10, the mass difference between the piezoelectric element portion 10 and the base portion 30 is 0.35 g as a real number. On the other hand, since it is 1.5 g, there are about four times, and the amplitude difference is simply a quarter, but when compared in terms of kinetic energy, the vibration of the base part 30 is uniform throughout, and the piezoelectric element part Since 10 vibrations change depending on the location, it is considered that there is a further difference. Prototypes for confirming the effect are different in length because of trial manufacture with an off-the-shelf piezoelectric element, but the actual measurement value is 1/5 to 1/8.

図9は試作品での実測の振幅特性を示したもの(縦軸の振動レベルは振幅10μmを基準に表示した)である。すなわち、ベース部30と圧電素子部10の無負荷時における振動特性の差を示した図である。図10は機器への組込と人体への押圧を想定した支持と押圧負荷を付加して、同じように振幅特性を比較したものである。すなわち、ベース部30と圧電素子部10の負荷時における振動特性の差を示した図である。これを見ると判るように、実質の使用状態を想定した特性は、音漏れにはなりにくい600Hz以下ではベース側の質量効果が見られないが、音漏れが出やすい1kHz以上ではベース部30の質量効果が効き、15dB以上の振幅差が見られる。   FIG. 9 shows the actually measured amplitude characteristics of the prototype (the vibration level on the vertical axis is displayed with an amplitude of 10 μm as a reference). That is, it is a diagram illustrating a difference in vibration characteristics between the base unit 30 and the piezoelectric element unit 10 when there is no load. FIG. 10 shows a comparison of amplitude characteristics in the same manner by adding support and pressing load assuming installation into equipment and pressing on the human body. That is, it is a diagram illustrating a difference in vibration characteristics when the base portion 30 and the piezoelectric element portion 10 are loaded. As can be seen from this, the characteristics assuming the actual use state are that the mass effect on the base side is not seen at 600 Hz or less, which is unlikely to cause sound leakage, but at 1 kHz or more where sound leakage is likely to occur, The mass effect works and an amplitude difference of 15 dB or more is observed.

本発明の一実施例での骨伝導スピーカの外観図、図1(a)は平面図、図1(b)は正面図、図1(c)は右側面図。FIG. 1A is a plan view, FIG. 1B is a front view, and FIG. 1C is a right side view of a bone conduction speaker according to an embodiment of the present invention. 図1のA−A線での断面図。Sectional drawing in the AA of FIG. 本発明の一実施例での個別部品状態を示す分解斜視図。The disassembled perspective view which shows the individual component state in one Example of this invention. 本発明の一実施例での圧電素子の外観斜視図。1 is an external perspective view of a piezoelectric element in one embodiment of the present invention. 本発明の一実施例での圧電素子の両端に絶縁支持部材を挿入固着した斜視図。The perspective view which inserted and fixed the insulating support member to the both ends of the piezoelectric element in one Example of this invention. 本発明の一実施例での圧電素子と絶縁支持部材の上半分部を弾性絶縁被覆材でモールディング成形し覆った状態を示す斜視図。The perspective view which shows the state which carried out the molding shaping | molding and covered the upper half part of the piezoelectric element and the insulation support member in one Example of this invention with the elastic insulation coating material. 本発明の一実施例での骨伝導スピーカの完成状態の外観を示す斜視図。The perspective view which shows the external appearance of the completion state of the bone conduction speaker in one Example of this invention. 本発明の一実施例での振動状態を模式的に示す正面図。The front view which shows typically the vibration state in one Example of this invention. 本発明の一実施例の試作品でのベース部と圧電素子部の無負荷時における振動特性の差を示す図。The figure which shows the difference of the vibration characteristic at the time of the no load of the base part and piezoelectric element part in the prototype of one Example of this invention. 本発明の一実施例の試作品でのベース部と圧電素子部の負荷時における振動特性の差を示す図。The figure which shows the difference of the vibration characteristic at the time of the load of the base part and piezoelectric element part in the prototype of one Example of this invention.

符号の説明Explanation of symbols

1 圧電素子
1a 圧電素子配線
2a、2b 絶縁支持部材
3 フレーム
3a、3b 立ち上がり部
4 絶縁被覆材
4a 凸面
5 ベース錘
6a、6b ねじ
10 圧電素子部
20a、20b 支持部
30 ベース部
DESCRIPTION OF SYMBOLS 1 Piezoelectric element 1a Piezoelectric element wiring 2a, 2b Insulation support member 3 Frame 3a, 3b Standing part 4 Insulation coating material 4a Convex surface 5 Base weight 6a, 6b Screw 10 Piezoelectric element part 20a, 20b Support part 30 Base part

Claims (7)

振動を人体頭部に伝えて音情報を伝達する振動駆動体である骨伝導スピーカであって、幅寸法を1とするとき長さ寸法が2以上の矩形のバイモルフまたはユニモルフ型の圧電素子およびこれを保護する被覆材からなる圧電素子部と、
この圧電素子部の質量よりも大きな質量を持つベース部と、
前記圧電素子の長手方向の両端にそれぞれ接合されると共に前記ベース部に接合され、前記圧電素子の板厚方向に対しては剛性が高く、これとは直角方向の前記長手方向に対しては剛性が低い支持特性を持つ2つの支持部とが設けられ、
前記圧電素子部の中央での交流電圧印加時の振動振幅を1とするとき、前記ベース部の振動振幅が1/2以下であることを特徴とする骨伝導スピーカ。
A bone conduction speaker that is a vibration driving body that transmits vibration to a human head and transmits sound information, and a rectangular bimorph or unimorph type piezoelectric element having a length dimension of 2 or more when the width dimension is 1, and the same A piezoelectric element portion made of a covering material for protecting
A base portion having a mass larger than the mass of the piezoelectric element portion;
Bonded to both ends of the piezoelectric element in the longitudinal direction and bonded to the base portion, the rigidity is high in the plate thickness direction of the piezoelectric element, and rigid in the longitudinal direction perpendicular thereto. Are provided with two support parts having low support characteristics,
The bone conduction speaker according to claim 1, wherein the vibration amplitude of the base portion is ½ or less when the vibration amplitude at the time of applying an alternating voltage at the center of the piezoelectric element portion is 1.
前記被覆材は、振動減衰特性を持つ弾性部材からなり、前記支持部と前記圧電素子が接合される部分の近傍で前記支持部と接続されたことを特徴とする請求項1記載の骨伝導スピーカ。   2. The bone conduction speaker according to claim 1, wherein the covering material is made of an elastic member having vibration damping characteristics, and is connected to the support portion in the vicinity of a portion where the support portion and the piezoelectric element are joined. . 前記圧電素子は平板状であり、前記被覆材は前記圧電素子の前記ベース部とは反対側の主面上で長手方向端部よりも中央部で厚く形成され凸状の表面形状を持つことを特徴とする請求項2記載の骨伝導スピーカ。   The piezoelectric element has a flat plate shape, and the covering material has a convex surface shape formed on the main surface opposite to the base portion of the piezoelectric element so as to be thicker at the center than at the longitudinal end. The bone conduction speaker according to claim 2, wherein 前記圧電素子は交流電圧が印加されないとき長手方向に湾曲しており前記ベース部とは反対側の主面で凸形状を持つことを特徴とする請求項1または2記載の骨伝導スピーカ。   3. The bone conduction speaker according to claim 1, wherein the piezoelectric element is curved in a longitudinal direction when no AC voltage is applied, and has a convex shape on a main surface opposite to the base portion. 前記支持部は絶縁支持部材を含んでなり、圧電素子厚さ方向の支持剛性は高く圧電素子長手方向の支持剛性は低くなるように、圧電素子厚さ方向には変形または変位し難く圧電素子長手方向には変形または変位し易い形状にしたことを特徴とする請求項1から4のいずれか1項に記載の骨伝導スピーカ。   The support portion includes an insulating support member, and is not easily deformed or displaced in the piezoelectric element thickness direction so that the support rigidity in the piezoelectric element thickness direction is high and the support rigidity in the piezoelectric element longitudinal direction is low. The bone conduction speaker according to any one of claims 1 to 4, wherein the bone conduction speaker is shaped to be easily deformed or displaced in a direction. 前記支持部は絶縁材部とその底部につながる金属板材部とからなり、前記絶縁材部で前記圧電素子と接合され、前記金属板材部で前記ベース部と接合されたことを特徴とする請求項1から4のいずれか1項に記載の骨伝導スピーカ。   The support portion includes an insulating material portion and a metal plate material portion connected to a bottom portion thereof, the insulating material portion being joined to the piezoelectric element, and the metal plate material portion being joined to the base portion. The bone conduction speaker according to any one of 1 to 4. 前記金属板材部はベース部と一体に形成されたことを特徴とする請求項6記載の骨伝導スピーカ。   The bone conduction speaker according to claim 6, wherein the metal plate member is formed integrally with the base.
JP2006168423A 2006-06-19 2006-06-19 Bone conduction speaker Active JP4771475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006168423A JP4771475B2 (en) 2006-06-19 2006-06-19 Bone conduction speaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168423A JP4771475B2 (en) 2006-06-19 2006-06-19 Bone conduction speaker

Publications (2)

Publication Number Publication Date
JP2007336418A JP2007336418A (en) 2007-12-27
JP4771475B2 true JP4771475B2 (en) 2011-09-14

Family

ID=38935437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168423A Active JP4771475B2 (en) 2006-06-19 2006-06-19 Bone conduction speaker

Country Status (1)

Country Link
JP (1) JP4771475B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123867B1 (en) 2010-12-13 2012-03-16 최성식 Piezoelectric element type bone conduction earphone supported by surround
JP5926948B2 (en) * 2011-12-16 2016-05-25 株式会社ファインウェル mobile phone
US9313306B2 (en) 2010-12-27 2016-04-12 Rohm Co., Ltd. Mobile telephone cartilage conduction unit for making contact with the ear cartilage
CN104902037B (en) 2010-12-27 2018-08-28 罗姆股份有限公司 Mobile phone
JP5783352B2 (en) 2011-02-25 2015-09-24 株式会社ファインウェル Conversation system, conversation system ring, mobile phone ring, ring-type mobile phone, and voice listening method
CN103621112B (en) * 2011-06-27 2016-10-12 北陆电气工业株式会社 Piezoelectric vibration element
JP5901374B2 (en) * 2012-03-22 2016-04-06 株式会社ファインウェル mobile phone
KR101863831B1 (en) 2012-01-20 2018-06-01 로무 가부시키가이샤 Portable telephone having cartilage conduction section
CN103891313B (en) 2012-03-30 2016-12-28 京瓷株式会社 Portable terminal
TWI645722B (en) 2012-06-29 2018-12-21 日商精良股份有限公司 Mobile phone
CN108551507A (en) 2013-08-23 2018-09-18 罗姆股份有限公司 Exhalation/incoming call communication, receiver, earphone, business card, non-contact IC card, mobile phone and its application method
KR102079893B1 (en) 2013-10-24 2020-02-20 파인웰 씨오., 엘티디 Wristband-type handset and wristband-type alerting device
JP6551919B2 (en) 2014-08-20 2019-07-31 株式会社ファインウェル Watch system, watch detection device and watch notification device
KR102110094B1 (en) 2014-12-18 2020-05-12 파인웰 씨오., 엘티디 Hearing device for bicycle riding and bicycle system
WO2017010547A1 (en) 2015-07-15 2017-01-19 ローム株式会社 Robot and robot system
JP6551929B2 (en) 2015-09-16 2019-07-31 株式会社ファインウェル Watch with earpiece function
EP3393109B1 (en) 2016-01-19 2020-08-05 FINEWELL Co., Ltd. Pen-type transceiver device
JP6262797B2 (en) * 2016-04-25 2018-01-17 株式会社ファインウェル mobile phone
JP2020053948A (en) 2018-09-28 2020-04-02 株式会社ファインウェル Hearing device
JP2021071294A (en) * 2019-10-29 2021-05-06 セイコーエプソン株式会社 Vibration device, electronic device, and moving body

Also Published As

Publication number Publication date
JP2007336418A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4771475B2 (en) Bone conduction speaker
JP5257454B2 (en) Piezoelectric generator
CN102460938B (en) Piezoelectric actuator and audio components
JP5795117B2 (en) Electronic equipment, panel unit, electronic equipment unit
US20140270192A1 (en) Acoustic transducers
JP4662072B2 (en) Piezoelectric acoustic element, acoustic device, and portable terminal device
JP2011091719A (en) Flexural oscillating actuator
WO2007083497A1 (en) Piezoelectric actuator and electronic device
US10834508B2 (en) Reinforced actuators for distributed mode loudspeakers
KR101539044B1 (en) Sound generator
JP5677639B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
KR101119495B1 (en) Magnet plate and base frame structure of flat type speaker
KR20130127342A (en) Piezoelectric speaker having weight and method of producing the same
JP6657376B2 (en) Vibration presentation device
JP2023123528A (en) Enhanced actuator for distributed mode speaker
JP5237412B2 (en) Speaker structure
CN110957415B (en) Composite piezoelectric actuator
JP4688687B2 (en) Piezoelectric vibration unit and panel speaker
JP4701054B2 (en) Piezoelectric sounding body
JP4160042B2 (en) Flat panel speaker
JP2020061660A (en) Piezoelectric speaker
US20050279566A1 (en) Loudspeaker
KR200404140Y1 (en) Piezo speaker
JP2021027580A (en) Piezoelectric loudspeaker
JPH11298997A (en) Portable communication terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250