JP4770316B2 - Blast furnace tuyere and blast furnace bottom situation evaluation method - Google Patents
Blast furnace tuyere and blast furnace bottom situation evaluation method Download PDFInfo
- Publication number
- JP4770316B2 JP4770316B2 JP2005220433A JP2005220433A JP4770316B2 JP 4770316 B2 JP4770316 B2 JP 4770316B2 JP 2005220433 A JP2005220433 A JP 2005220433A JP 2005220433 A JP2005220433 A JP 2005220433A JP 4770316 B2 JP4770316 B2 JP 4770316B2
- Authority
- JP
- Japan
- Prior art keywords
- tuyere
- furnace
- blast furnace
- pressure
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011156 evaluation Methods 0.000 title claims description 12
- 239000007789 gas Substances 0.000 claims description 15
- 239000011261 inert gas Substances 0.000 claims description 8
- 238000007664 blowing Methods 0.000 claims description 7
- 238000009529 body temperature measurement Methods 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000001514 detection method Methods 0.000 description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 240000001549 Ipomoea eriocarpa Species 0.000 description 5
- 235000005146 Ipomoea eriocarpa Nutrition 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 239000003245 coal Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Blast Furnaces (AREA)
Description
本発明は高炉下部状況の評価方法と、高炉下部状況の評価に用いる羽口に関する。 The present invention relates to a method for evaluating a blast furnace lower state and a tuyere used for evaluating a blast furnace lower state.
高炉における生産性向上は、コスト削減だけでなく二酸化炭素削減からも重要な課題である。高炉は巨大な向流充填層反応容器であり、下部から高温酸素を吹き込んで還元ガス(主にCO)を生成すると共に、上部から装入物である酸化鉄(主に鉄鉱石:Fe2O3)と炭材(コークス:C)を投入する。消費された炭材と、生成銑鉄の量に対応した酸化鉄に対応して、装入物の降下が継続的に行われる。生産性を上昇させるには還元ガス量の増加が不可欠であるが、上昇還元ガス量の増加は、その抵抗(圧力損失)による原料降下の不均一性と不安定性を引き起こすため生産性の上昇には限界があり、圧力損失は上限値を有する。よって高生産性を維持するためには、操業者が継続的に圧力損失を監視して、原料性状に対応して変動する圧力損失が上限値に近くなるように送風量を管理する必要がある。 Improving productivity in the blast furnace is an important issue not only from cost reduction but also from carbon dioxide reduction. The blast furnace is a huge counter-current packed bed reaction vessel that blows high-temperature oxygen from the lower part to generate reducing gas (mainly CO), and iron oxide (mainly iron ore: mainly Fe 2 O) from the upper part. 3 ) and charcoal (coke: C). In accordance with the consumed carbon material and the iron oxide corresponding to the amount of pig iron produced, the charge is continuously lowered. Increasing the amount of reducing gas is indispensable for increasing productivity. However, increasing the amount of reducing gas causes non-uniformity and instability of the material drop due to its resistance (pressure loss), which increases productivity. Has a limit, and pressure loss has an upper limit. Therefore, in order to maintain high productivity, it is necessary for the operator to continuously monitor the pressure loss and manage the air flow rate so that the pressure loss that varies according to the raw material properties approaches the upper limit value. .
高炉の炉体には高さ方向に数メートル間隔で孔が開けられ炉内圧力が測定されているが、装入物降下状況を総合的に判断するには、炉頂〜羽口間での装入物荷重と圧力低下(圧力損失)を監視するのが最も迅速かつ確実である。装入物の荷重変動を無視できると仮定するならば、高炉において炉頂圧は一定に保たれるため、最下部の圧力が重要な指標となる。最下部の圧力検出孔(導圧管)は朝顔と呼ばれる炉体で漏斗状になっている場所に設置されることが多い。しかしこれでも羽口に十分近いとはいえない上、朝顔内面は溶融物が伝い落ちるため、固着による圧力検出孔の閉塞が避けられず、検出停止が発生する。したがって、測定を確実に行なうことができないという点で、圧力検出孔を用いて測定する炉下部の圧力は操業管理指標とするには不適であり、実操業では確実に測定可能な送風圧(環状管圧)が指標として用いられている。しかし、環状管圧と炉内圧は下記(a)、(b)の理由により、明らかに異なったものとなる。 The furnace body of the blast furnace is perforated at intervals of several meters in the height direction, and the pressure inside the furnace is measured. It is the quickest and most reliable to monitor charge and pressure drop (pressure loss). Assuming that load fluctuations in the charge can be ignored, the top pressure is kept constant in the blast furnace, so the bottom pressure is an important indicator. The lowermost pressure detection hole (pressure guiding tube) is often installed in a funnel-shaped place called a morning glory. However, even this cannot be said to be sufficiently close to the tuyere, and since the melt flows down on the inner surface of the morning glory, it is inevitable that the pressure detection hole is blocked due to sticking, and detection stops. Therefore, the pressure at the bottom of the furnace that is measured using the pressure detection hole is unsuitable for use as an operation management index in that the measurement cannot be performed reliably. Tube pressure) is used as an indicator. However, the annular tube pressure and the furnace pressure are clearly different for the following reasons (a) and (b).
(a)設備圧力損失
環状管と炉内の間には、羽口、補助燃料吹きこみ管、熱風制御弁などの構造物が存在する。送風圧はこれらの構造物の変化により変動する。たとえば羽口径は炉体保護のため、一部が縮小、閉止されることがあり、炉内容物により自然に閉塞する場合もある。補助燃料吹きこみ管も炉体新設時に無かったものが追加されたり、その太さや挿入深さが変えられたりする。熱風制御弁に至っては、追加設備であるだけでなく弁の開度調整自体が圧力損失を変動させる。
(A) Facility pressure loss Structures such as tuyere, auxiliary fuel blow-in tubes, hot air control valves, etc. exist between the annular tube and the furnace. The air blowing pressure fluctuates due to changes in these structures. For example, the tuyere diameter may be partially reduced or closed to protect the furnace body, and may be naturally blocked by the furnace contents. Auxiliary fuel blow-in tubes that were not present when the furnace body was newly installed were added, and their thickness and insertion depth could be changed. In the hot air control valve, not only is the additional equipment, but also the valve opening adjustment itself fluctuates the pressure loss.
(b)羽口内燃焼圧力
現在、国内のすべての高炉は羽口への微粉炭吹きこみを行っている。微粉炭は羽口内で燃焼を開始するため、羽口を通過するガス量は、微粉炭の燃焼率、成分、量、粒径などの影響を受けて変動する。結果として送風圧(環状管圧)は上昇するが、その上昇量の推定は非常に困難である。
(B) Combustion pressure in tuyere Currently, all blast furnaces in the country are injecting pulverized coal into tuyere. Since the pulverized coal starts burning in the tuyere, the amount of gas passing through the tuyere varies depending on the combustion rate, component, amount, particle size, etc. of the pulverized coal. As a result, the blowing pressure (annular tube pressure) increases, but the amount of increase is very difficult to estimate.
このように多くの外乱があるにもかかわらず、これまで送風圧から送風圧力変動と送風量の影響を控除した通気抵抗指数が、操業安定指標として永らく使用されてきた。羽口付近の炉内側の圧力を推定する方法としては、何らかの検出端をレースウェイを含めた炉内に挿入する方法がある(例えば、特許文献1参照。)。また、朝顔部に設置した圧力計から外挿推定する方法もある(例えば、特許文献2参照。)。 Despite such many disturbances, the airflow resistance index obtained by subtracting the influence of the airflow pressure variation and the airflow amount from the airflow pressure has long been used as an operation stability index. As a method of estimating the pressure inside the furnace near the tuyere, there is a method of inserting some detection end into the furnace including the raceway (for example, see Patent Document 1). There is also a method of extrapolating from a pressure gauge installed in the morning glory (see, for example, Patent Document 2).
高炉操業の管理指標として、圧力損失と共に重要であるのが、炉下部の温度レベルである。酸化鉄の還元と溶融に必要な熱量に対して十分な炉内発生熱量がなければ、炉内のいたるところに凝固物が生成し操業不能の状態(冷え込み)に至ることさえある。そのため操業者は溶銑温度を継続的に監視すると共に、より早期に異常を検知するために、羽口眼鏡と呼ばれる覗き孔からレースウェイ内の輝度の目視による監視を行っている。 As a management index for blast furnace operation, the temperature level at the bottom of the furnace is important along with pressure loss. If there is not enough heat generated in the furnace relative to the heat required to reduce and melt the iron oxide, solidified material can be produced everywhere in the furnace, leading to an inoperable state (cooling). For this reason, the operator continuously monitors the hot metal temperature and visually monitors the luminance in the raceway through a peephole called tuyere glasses in order to detect an abnormality earlier.
近年は目視に加えて、光学センサーを用いて測定した炉内コークス温度が熱レベルの操業指標として採用されている(例えば、特許文献3参照。)。
しかし、上記の炉内下部の圧力、温度の推定方法には、以下のような問題がある。 However, the method for estimating the pressure and temperature in the lower part of the furnace has the following problems.
特許文献1に記載の検出端を炉内に挿入して羽口付近の炉内側の圧力を推定する方法は、検出端の耐久性から短時間の測定しかできないため、操業管理に使用できない。
The method of estimating the pressure inside the furnace near the tuyere by inserting the detection end described in
特許文献2に記載の朝顔部に設置した圧力計から外挿推定する方法は、あくまで外挿推定値であるうえ、前記のように朝顔内面の溶融物の伝い落ちに起因する圧力検出停止が発生するため、操業指標には使用できない。
The method of extrapolating from the pressure gauge installed in the morning glory part described in
特許文献3に記載の方法や、羽口眼鏡を用いた目視により得られる光学情報は、あくまで羽口先端のコークス燃焼域(レースウェイ)の状態であり、その奥に存在する炉下部の熱レベルを直接示すものではない。
The optical information obtained by the method described in
以上のように、高炉内下部の圧力や温度を精度良く推定して、操業管理指標として用いることは困難である。 As described above, it is difficult to accurately estimate the pressure and temperature in the lower part of the blast furnace and use it as an operation management index.
したがって本発明の目的は、このような従来技術の課題を解決し高炉下部の圧力や温度を測定して、操業管理指標として用いることができる高炉下部状況評価方法を提供することにある。また本発明の目的は、高炉下部の圧力や温度を測定可能とする羽口を提供することにある。 Accordingly, it is an object of the present invention to provide a blast furnace lower part state evaluation method that can solve the problems of the prior art, measure the pressure and temperature of the blast furnace lower part, and can be used as an operation management index. Moreover, the objective of this invention is providing the tuyere which can measure the pressure and temperature of a blast furnace lower part.
このような課題を解決するための本発明の特徴は以下の通りである。
(1)、羽口本体下部に炉内側と炉外側間を貫通し、炉内側の端部が羽口外周部に開口した孔部を有する高炉送風羽口を用い、該羽口の孔部を経由して、炉内の圧力、輝度、温度、画像情報の中の1種以上を測定することを特徴とする高炉下部状況評価方法。
(2)、前記羽口が炉内側の端部が羽口外周部の下部に開口した孔部を有することを特徴とする(1)に記載の高炉下部状況評価方法。
(3)、羽口の孔部から不活性ガスを炉内に吹込み、該吹込みガスの圧力を測定することで、高炉下部の圧力を測定することを特徴とする(1)または(2)に記載の高炉下部状況評価方法。
(4)、羽口の孔部に温度測定用端子を挿入し、高炉下部の温度を測定することを特徴とする(1)または(2)に記載の高炉下部状況評価方法。
The features of the present invention for solving such problems are as follows.
(1), between the furnace interior and Rosotogawa through the bottom tuyere body, using blast furnace blast tuyere that having a hole in which the end portion of the furnace interior is open to the tuyere outer periphery of該羽port A method for evaluating the state of a blast furnace lower part, wherein one or more of pressure, brightness, temperature, and image information in the furnace are measured via a hole .
(2) The blast furnace lower part situation evaluation method according to (1), characterized in that the tuyere has a hole whose inner end is opened at the lower part of the outer part of the tuyere.
(3), by measuring the blowing, the pressure of該吹included gas into the furnace an inert gas from the hole of the tuyere, and measuring the pressure of the blast furnace bottom (1) or (2 ) Blast furnace lower part situation evaluation method.
( 4 ) The blast furnace lower part situation evaluation method according to ( 1) or (2 ), wherein a temperature measurement terminal is inserted into the hole of the tuyere and the temperature of the lower part of the blast furnace is measured.
本発明によれば、炉内の圧力損失(炉内通気)と炉下部温度レベルを正確かつ連続的に検知可能となる。これらを操業指標とすることにより、限界に近い高出銑比、低還元材比操業が可能となる。 According to the present invention, it is possible to accurately and continuously detect the pressure loss (furnace ventilation) and the furnace lower temperature level in the furnace. By using these as operation indexes, it is possible to operate at a high output ratio and low reducing material ratio close to the limits.
本発明者等は高炉下部における圧力と温度を測定する方法について検討した。そして、羽口本体に炉内側と炉外側間とを貫通する孔部を形成し、該孔部を通じて炉内の圧力や温度を測定することで、圧力や温度の直接測定が可能であることを見出して、本発明を完成した。 The present inventors examined a method for measuring pressure and temperature in the lower part of the blast furnace. And it is possible to directly measure the pressure and temperature by forming a hole that penetrates between the inside and outside of the furnace in the tuyere body and measuring the pressure and temperature in the furnace through the hole. As a result, the present invention has been completed.
まず、本発明の高炉下部状況評価方法に用いる羽口について説明する。 First, the tuyere used in the blast furnace lower part state evaluation method of the present invention will be described.
本発明の一実施形態である、羽口の縦断面図を図1に示す。図面に向かって右側が炉内側になるように高炉下部に設置する。羽口1の材質は通常の羽口と同じく銅製で、高速循環水冷である。羽口本体下部に炉内側と炉外側間を貫通する孔部2が形成されている。孔部2の直径は、任意に設定可能であるが、例えば、5〜20mm程度とすることができる。孔部2の羽口設置時に炉内に露出する側の出口である端部2aは、羽口外周部に開口している。端部2aは上方からの溶融物滴下や固体の降下の影響を回避するために、羽口外周部の下部に開口していることが好ましい。反対側の孔部2の端部である端部2bは、羽口設置時の炉外側に開口している。炉内温度測定用には、孔部2に光ファイバ、熱電対、内視鏡等の温度測定用端子3を挿入する。
FIG. 1 shows a longitudinal sectional view of a tuyere, which is an embodiment of the present invention. Installed at the bottom of the blast furnace, with the right side facing the inside of the furnace. The material of the
なお、端部2aの好ましい開口部位置である羽口の下部とは、羽口外周部の下半分であり、特に望ましくは、羽口外周部の下部のうち、熱風吹き込み部分の垂直下部である。
The lower part of the tuyere, which is a preferred opening position of the
羽口は、炉外側から孔部に対して不活性ガスを吹込むためのガス供給手段を備えることが望ましい。不活性ガスの吹込みにより、炉内ガスの流出を防ぐと共に孔部2の詰まりを防止しつつ、炉内の圧力を測定することも可能となる。
The tuyere is preferably provided with gas supply means for injecting an inert gas into the hole from the outside of the furnace. By blowing the inert gas, it is possible to measure the pressure in the furnace while preventing the outflow of the gas in the furnace and preventing the clogging of the
次に、上記の羽口を用いた高炉下部状況評価方法を説明する。本発明では、羽口の孔部を経由して、炉内の圧力、輝度、温度、画像情報の中の1種以上を測定する。これらの情報を用いて、高炉内下部の状況を正確に把握することができる。 Next, the blast furnace lower part situation evaluation method using the tuyere described above will be described. In the present invention, one or more of pressure, brightness, temperature, and image information in the furnace are measured via the hole of the tuyere. Using these pieces of information, the situation in the lower part of the blast furnace can be accurately grasped.
圧力の測定に際しては、羽口の孔部から不活性ガスを炉内に吹込み、吹込みガスの圧力を測定することで、高炉下部の圧力を正確に測定できる。上記の羽口を高炉に設置し、孔部2から一定量の窒素などの不活性ガスを常時炉内に流入させる。不活性ガスにより孔部2の詰まりを防止すると同時に、このガスの圧力を測定することで炉内圧力を計測する。不活性ガスとしては、窒素ガスの他に、ヘリウムガス、アルゴンガス等を用いることも可能である。孔部での圧力損失の影響を避けるためには流量は極力少ないことが望ましいが、流量を変化させてその圧力測定結果から流量0の圧力を推定しても良い。
In measuring the pressure, the pressure in the lower part of the blast furnace can be accurately measured by blowing an inert gas into the furnace through the hole of the tuyere and measuring the pressure of the blown gas. The tuyere is installed in a blast furnace, and a constant amount of inert gas such as nitrogen is constantly flowed into the furnace from the
また、羽口の孔部に温度測定用端子を挿入し、高炉下部の温度を直接測定できる。測温用の光ファイバーか熱電対を孔部2に挿入することにより、コークスや炉内ガスの温度を直接測定可能である。熱電対が損傷した場合は休風の羽口交換を待つ必要があるが、光ファイバー損耗時は送りこむことにより継続して測定可能である。羽口下に開けられ常時ガスが流出している孔部2aが閉塞されることは非常に稀であるが、閉塞が発生した場合でも、若干の閉塞であれば光ファイバーの送り込みにより解除可能である。万一完全に固着した閉塞が発生した場合でも羽口を交換すれば復帰するため、炉体そのものに設けられた導圧管より信頼性が高い。羽口の交換は高炉の休風時に数時間の作業を行なうことで可能であり、従来の羽口と交換して本発明の羽口を高炉に設置することも容易である。本発明の羽口を複数の羽口に設置することにより、バックアップによる測定の信頼性向上と共に、炉内状況の円周方向偏差の検知も可能となる。
In addition, a temperature measurement terminal can be inserted into the hole of the tuyere to directly measure the temperature at the bottom of the blast furnace. By inserting a temperature measuring optical fiber or a thermocouple into the
以上の高炉下部状況評価方法を用いることで、高炉内下部の圧力や温度を正確に評価することができる。従って、これらの評価結果を高炉操業の管理指標として用いることで、炉内圧力(圧力損失)や温度を所定の値に維持して、希望の操業形態を安定して継続することが可能となる。 By using the above blast furnace lower part state evaluation method, the pressure and temperature in the lower part of the blast furnace can be accurately evaluated. Therefore, by using these evaluation results as a management index for blast furnace operation, it is possible to maintain the furnace pressure (pressure loss) and temperature at a predetermined value and stably continue the desired operation mode. .
本発明を内容積4000m3級の高炉において実施した。当該高炉において高出銑比操業を行うにあたり、従来行なわれている方法である送風圧力と出銑温度に基づく送風量と還元材比制御により出銑量を増加させることを目標とする操業を行なったところ、原料降下不調と溶銑温度変動を十分に抑えることができず操業が安定しなかった。そこで図1に示す本発明の羽口を用いて、孔部から1000cm3/分の窒素ガスを炉内に流入させながら、窒素ガスの圧力を測定して炉内圧力を求め、同時に熱電対により炉内温度を測定した。羽口の孔部の径は10mmとし、孔部の炉内側の端部は羽口外周部の最下部となるように設置した。上記のようにして求めた炉内圧力に基づき送風量を調整する制御を、また、上記のようにして求めた炉内温度に基づき送風ガスの温度と還元材比とを調整する制御を行った。その結果、原料降下と溶銑温度とは共に安定し、結果として平均の出銑量増と還元材比減が可能となった。生産量と還元材比の変化を図2に示す。本発明の操業方法を8月から実施したことにより、500kg/t以上であった還元材比は500kg/t以下に、生産量は8960t/日程度に高位安定した。 The present invention was carried out in a blast furnace having an internal volume of 4000 m 3 . In the high blast furnace ratio operation in the blast furnace, the operation is performed with the goal of increasing the brew amount by controlling the blast volume and reducing material ratio based on the blast pressure and brew temperature, which is a conventional method. As a result, it was not possible to sufficiently suppress raw material lowering and hot metal temperature fluctuation, and the operation was not stable. Therefore, using the tuyere of the present invention shown in FIG. 1, the pressure in the furnace is obtained by measuring the pressure of the nitrogen gas while flowing 1000 cm 3 / min from the hole into the furnace. The furnace temperature was measured. The diameter of the hole part of the tuyere was 10 mm, and the end part inside the furnace of the hole part was installed so as to be the lowest part of the outer part of the tuyere. Control for adjusting the blast volume based on the furnace pressure determined as described above, and control for adjusting the temperature of the blast gas and the reducing material ratio based on the furnace temperature determined as described above were performed. . As a result, both the raw material drop and the hot metal temperature became stable, and as a result, it became possible to increase the average amount of molten iron and reduce the ratio of the reducing material. Changes in production volume and reducing material ratio are shown in FIG. By carrying out the operation method of the present invention from August, the ratio of reducing material, which was 500 kg / t or more, was stabilized to 500 kg / t or less, and the production amount was stabilized to about 8960 t / day.
1 羽口
2 孔部
2a 孔部の端部
2b 孔部の端部
3 温度測定用端子
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005220433A JP4770316B2 (en) | 2005-07-29 | 2005-07-29 | Blast furnace tuyere and blast furnace bottom situation evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005220433A JP4770316B2 (en) | 2005-07-29 | 2005-07-29 | Blast furnace tuyere and blast furnace bottom situation evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007031811A JP2007031811A (en) | 2007-02-08 |
JP4770316B2 true JP4770316B2 (en) | 2011-09-14 |
Family
ID=37791416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005220433A Active JP4770316B2 (en) | 2005-07-29 | 2005-07-29 | Blast furnace tuyere and blast furnace bottom situation evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4770316B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3642370B1 (en) * | 2017-06-22 | 2022-08-03 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Process fluid injection into shaft furnace with injector status test |
EP3418402A1 (en) * | 2017-06-22 | 2018-12-26 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process fluid injection into shaft furnace with injector status test |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10121117A (en) * | 1996-10-21 | 1998-05-12 | Nkk Corp | Operation of blast furnace |
-
2005
- 2005-07-29 JP JP2005220433A patent/JP4770316B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007031811A (en) | 2007-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3190194B1 (en) | Method for detecting air flow distribution in blast furnace | |
CN115516113A (en) | Blast furnace operation method | |
JP5971165B2 (en) | Blast furnace operation method | |
JP4770316B2 (en) | Blast furnace tuyere and blast furnace bottom situation evaluation method | |
JP4743332B2 (en) | Blast furnace operation method | |
KR101412403B1 (en) | Dropping judgment method of charging material into blast furnace | |
JP6977704B2 (en) | Oxygen blast furnace equipment and operation method of oxygen blast furnace | |
JP4855002B2 (en) | Blast furnace operation method with pulverized coal injection | |
EP3642370B1 (en) | Process fluid injection into shaft furnace with injector status test | |
KR101277973B1 (en) | Method for controlling blow energy of blast furnace | |
JP2021181613A (en) | Method for starting blast furnace after resting blowing | |
JP2012087375A (en) | Method for operating blast furnace | |
JP2009162430A (en) | Operation method of vertical furnace | |
TWI481722B (en) | Method for determining permeability of lower part of a blast furnace and system using the same | |
CN111664957B (en) | Temperature detection system and method for detecting temperature of material column in blast furnace body | |
JP4161526B2 (en) | Operation method of smelting reduction furnace | |
JP4497004B2 (en) | Monitoring and pressure control method for converter bottom blowing tuyere | |
JPH0570814A (en) | Method for operating blast furnace | |
KR20020051630A (en) | Apparatus for monitoring obstruction of tuyere of blast furnace | |
WO2007099941A1 (en) | Melting furnace and process for producing molten metal therewith | |
KR200291551Y1 (en) | Ventilation temperature control device of blast furnace | |
JP4181075B2 (en) | Early detection method for blast furnace hearth temperature level | |
JP2006342382A (en) | Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method | |
KR101277237B1 (en) | Method for discriminating center gas flow in blast furnace and apparatus thereof | |
JPH09227911A (en) | Operation of blast furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110606 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140701 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4770316 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |