[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4765049B2 - Method for recovering useful substances from wastewater - Google Patents

Method for recovering useful substances from wastewater Download PDF

Info

Publication number
JP4765049B2
JP4765049B2 JP2007329932A JP2007329932A JP4765049B2 JP 4765049 B2 JP4765049 B2 JP 4765049B2 JP 2007329932 A JP2007329932 A JP 2007329932A JP 2007329932 A JP2007329932 A JP 2007329932A JP 4765049 B2 JP4765049 B2 JP 4765049B2
Authority
JP
Japan
Prior art keywords
plate
electrolytic
wastewater
electrode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007329932A
Other languages
Japanese (ja)
Other versions
JP2009148719A (en
Inventor
恒夫 田中
範幸 小池
孝志 佐藤
正和 黒田
哲雄 荒井
忠男 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Co Ltd
Original Assignee
Yamato Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Co Ltd filed Critical Yamato Co Ltd
Priority to JP2007329932A priority Critical patent/JP4765049B2/en
Publication of JP2009148719A publication Critical patent/JP2009148719A/en
Application granted granted Critical
Publication of JP4765049B2 publication Critical patent/JP4765049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、排水からの有用物質の回収方法に関し、特に、リン、窒素、カルシウム、カリウム、マグネシウム等を含む種々の排水から、これらの有用物質を効率よく回収する方法に関する。   The present invention relates to a method for recovering useful substances from wastewater, and more particularly to a method for efficiently recovering these useful substances from various wastewaters containing phosphorus, nitrogen, calcium, potassium, magnesium and the like.

家畜類の飼育場や処理場等から生ずる畜産排水、肥料や食品、化学製品等の種々の製造工場等から生ずる産業排水、一般家庭からの家庭排水等の各種の排水には、リン、窒素、マグネシウム、カルシウム、カリウム等の種々の元素の栄養塩類や、さらには鉄、銅、亜鉛、珪素などの各種の金属類が含まれている。従来から、排水の処理設備においては、これらの栄養塩類や金属類を排水中の汚濁物質として除去し、きれいな水を得ることを目的として、さまざまな排水の処理方法が実施されている。従って、このような処理施設で字除去される栄養塩類や金属類及びそれらを含む排水処理残渣は、不要物として埋め立てなどの廃棄処分とされている。   Various wastewater such as livestock wastewater from livestock breeding and treatment plants, industrial wastewater from various manufacturing plants such as fertilizers, foods and chemical products, and household wastewater from general households include phosphorus, nitrogen, Nutrient salts of various elements such as magnesium, calcium, and potassium, and various metals such as iron, copper, zinc, and silicon are included. Conventionally, in wastewater treatment facilities, various wastewater treatment methods have been implemented for the purpose of obtaining clean water by removing these nutrient salts and metals as pollutants in the wastewater. Therefore, nutrient salts and metals that are removed at such treatment facilities and wastewater treatment residues containing them are disposed of as wastes such as landfills.

一方、近年、リン資源の枯渇化問題もいろいろなところで指摘されてきており、また、わが国はリン資源の全量を海外に依存していることも相俟って、リンのリサイクル技術に関して積極的な検討がなされるようになっている。輸入されたリン鉱石の多くはリン系肥料として使用されているが、その他に工業原料や飼料等に用いられている。肥料として使用されたリン肥料の15〜20%は植物に吸収されると言われているが、大部分は土壌の中に固定されるか、排水等を経由して最終的に環境中に放流される。その量は実に輸入量の25〜30%に達すると見積られている。その結果、今日至る所で湖沼における富栄養化等が深刻な問題となっている。このように、リンは枯渇性の資源であるとともに、富栄養化の原因物質でもあるため、種々の排水中に含まれるリンを除去・回収して再利用することは極めて有意義である。   On the other hand, in recent years, the problem of depletion of phosphorus resources has been pointed out in various places, and in addition to the fact that Japan depends on foreign countries for the total amount of phosphorus resources, it is proactive about phosphorus recycling technology. Consideration is being made. Most of the imported ore is used as phosphorus fertilizer, but is also used for industrial raw materials and feed. It is said that 15-20% of phosphorus fertilizer used as fertilizer is absorbed by plants, but most of it is fixed in the soil or finally discharged into the environment via drainage etc. Is done. The amount is actually estimated to reach 25-30% of imports. As a result, eutrophication in lakes has become a serious problem everywhere today. Thus, since phosphorus is a depleting resource and a causative substance of eutrophication, it is extremely meaningful to remove and recover phosphorus contained in various wastewaters and reuse it.

このような排水等からリンを回収する方法としては、好気状態で微生物に摂取させたリンを嫌気状態で放出させ消石灰等により沈殿させて脱リンを行う「フォストリップ法」、リン鉱石あるいは類似物質の種晶に水酸化アパタイトの結晶を生成させる「晶析法」、アンモニア性窒素とリンを含む排水にマグネシウム塩を添加してアルカリ下にリン酸マグネシウムアンモニウム(MgNHPO:MAP)を形成させる「MAP法」等がある。この中でもMAP法はカリウムを加えれば、そのまま3要素を含む肥料として利用が可能なことから、リンの回収・再利用に適した方法として注目されている。MAP法はリンを高濃度に含む排水に使用するのに適していることから、リンを高濃度に含む畜産排水や汚泥施設処理排水に使用した場合に容易にリンを除去することができると考えられる。 As a method for recovering phosphorus from such waste water, the “fostrip method” in which phosphorus taken by microorganisms in an aerobic state is released in an anaerobic state and precipitated by slaked lime, etc., is removed, ore or similar “Crystallization method” for generating hydroxyapatite crystals in the seed crystal of the substance, adding magnesium salt to waste water containing ammonia nitrogen and phosphorus and adding magnesium ammonium phosphate (MgNH 4 PO 4 : MAP) under alkali There is a “MAP method” to be formed. Among these, the MAP method is attracting attention as a method suitable for the recovery and reuse of phosphorus because it can be used as a fertilizer containing three elements if potassium is added. Since the MAP method is suitable for use in wastewater containing high concentrations of phosphorus, it can be easily removed when used in livestock wastewater containing high concentrations of phosphorus or wastewater from sludge facilities. It is done.

このようなMAP法に関しては、例えば、特許文献1や特許文献2には、アンモニウムイオン及びリン酸イオンを含む排水にマグネシウム化合物を添加するとともに、アルカリ物質のpH調整剤を加えてpHを8以上に調整し、通気によって排水を攪拌することによりこれらを反応させてリン酸マグネシウムアンモニウムの微結晶を生成成長させ、排水中の浮遊物質と生成したリン酸マグネシウムアンモニウムの結晶とを分離し、アンモニウムイオン及びリン酸イオンをリン酸マグネシウムアンモニウムの固体粒子として除去回収する方法を記載している。また、MAP法において、より効率的にMAPを除去・回収する方法として、例えば、特許文献3では微細結晶を成長させる種結晶成長槽とアンモニウムイオンとリン酸イオンを除去する脱リン槽とを備えた処理装置を、特許文献4ではリンに対してモル比で3倍以上のマグネシウム塩とアンモニウム塩を共存させる方法を記載している。   Regarding such a MAP method, for example, in Patent Document 1 and Patent Document 2, a magnesium compound is added to waste water containing ammonium ions and phosphate ions, and an alkaline substance pH adjuster is added to adjust the pH to 8 or more. The waste water is agitated by aeration, and these are reacted to form and grow magnesium ammonium phosphate microcrystals. The suspended solids in the waste water and the produced magnesium ammonium phosphate crystals are separated to form ammonium ions. And a method of removing and recovering phosphate ions as magnesium ammonium phosphate solid particles. In addition, in the MAP method, as a method for removing and collecting MAP more efficiently, for example, Patent Document 3 includes a seed crystal growth tank for growing fine crystals and a dephosphorization tank for removing ammonium ions and phosphate ions. Patent Document 4 describes a method of coexisting a magnesium salt and an ammonium salt at a molar ratio of 3 times or more with respect to phosphorus.

しかしながら、MAP法や晶析法などは、アルカリ剤、種晶及びマグネシウムなどの添加が必要であり、それらの添加量のコントロールとそのための設備が必要となる。その結果,プロセスが複雑となり,処理装置の操作性も良好とは言えなかった。   However, the MAP method, the crystallization method, and the like require addition of an alkali agent, seed crystals, magnesium, and the like, and control of the amount of addition and facilities for the addition are required. As a result, the process became complicated and the operability of the processing equipment was not good.

かかる現状に鑑み、本発明者らは、このような排水等を電気分解の操作に付することによって、アルカリ剤や種晶の添加やその量のコントロールを必要としない簡便な方法でリン酸マグネシウムアンモニウムや水酸アパタイトなどの結晶性物質を形成させ、分離・除去する方法を見出し、特許出願を行っている(特許文献5)。   In view of the present situation, the present inventors have applied magnesium phosphine to electrolysis, thereby providing magnesium phosphate in a simple manner that does not require the addition of an alkali agent or seed crystal or the control of the amount thereof. A method for forming, separating and removing crystalline substances such as ammonium and hydroxyapatite has been found and a patent application has been filed (Patent Document 5).

本発明者らは、この技術をベースとしてこれを更に改良し、単にリン分を除去するだけでなく効率よく回収するとともに、排水中に含まれる窒素やカルシウム、マグネシウム、カリウム等をも回収することができる方法を検討し本発明を完成した。   Based on this technology, the inventors have further improved this, not only removing phosphorus, but also recovering efficiently, and also recovering nitrogen, calcium, magnesium, potassium, etc. contained in wastewater. The present invention has been completed by examining a method capable of achieving the above.

特開平1−119392号公報JP-A-1-119392 特開平8−99091号公報JP-A-8-99091 特開平10−323677号公報Japanese Patent Laid-Open No. 10-323677 特開平11−277071号公報JP-A-11-277071 特開2003−236563号公報JP 2003-236563 A

本発明は、以上のような従来の排水処理方法の問題点に鑑み提案するものであり、従来の排水処理方法の問題点を解決して、排水中から効率よく窒素、リンなどの栄養塩類やその他の金属類を回収する方法を提供することを目的とするものである。   The present invention is proposed in view of the problems of the conventional wastewater treatment method as described above, solves the problems of the conventional wastewater treatment method, and efficiently supplies nutrient salts such as nitrogen and phosphorus from the wastewater. It aims at providing the method of collect | recovering other metals.

即ち、本発明は、以下の内容をその要旨とする発明である。
(1)本発明は、リン、窒素、カルシウム、カリウム及びマグネシウムを含む栄養塩類並びに/若しくは金属イオンを含有する排水からの栄養塩類及び金属の回収方法であって、表面に細かい凹凸処理を施した板状の陰極板と板状又は網状の陽極板のそれぞれ2枚以上を一定の配列で配置した電極ユニットを備えた電解反応槽に、前記栄養塩類及び金属イオンを含む排水を満たし、又は通水し、電極ユニットの両電極間に直流電流を通電して排水の電解処理を行なうことを特徴とする、排水からの栄養塩類及び金属の回収方法である。
That is, the present invention has the following contents.
(1) The present invention is a method for recovering nutrients and metals from wastewater containing phosphorus, nitrogen, calcium, potassium and magnesium and / or wastewater containing metal ions, and the surface is subjected to fine unevenness treatment. An electrolytic reaction tank equipped with an electrode unit in which two or more of a plate-like cathode plate and a plate-like or net-like anode plate are arranged in a fixed arrangement is filled with water containing the nutrient salts and metal ions, or water is passed. And a method for recovering nutrients and metals from the waste water, wherein a direct current is passed between both electrodes of the electrode unit to perform the electrolytic treatment of the waste water.

(2)また、本発明は、電極ユニットの両端部と各電極板の間、及び/又は陰極板と陽極板の間の一部または全部に整流板を設けることを特徴とする、前記(1)に記載の排水からの栄養塩類及び金属の回収方法である。 (2) Moreover, this invention provides a baffle plate between the both ends of an electrode unit and each electrode plate, and / or a part or all between a cathode plate and an anode plate, The said (1) characterized by the above-mentioned. A method for recovering nutrients and metals from wastewater.

(3)また、本発明は、陰極板の細かい凹凸処理が、サンドブラスト処理又はヘアライン処理を施すことにより、その表面に1〜100μmの凹凸を設けたものであることを特徴とする、前記(1)又は(2)に記載の排水からの栄養塩類及び金属の回収方法である。   (3) Further, the present invention is characterized in that the fine unevenness treatment of the cathode plate is provided with unevenness of 1 to 100 μm on the surface by performing a sandblasting treatment or a hairline treatment. ) Or (2) is a method for recovering nutrients and metals from wastewater.

(4)また、本発明は、電極ユニットの電極板の配列が、それぞれ1枚又は2枚一組の陰極板と1枚又は2枚一組の陽極板を交互に配列することを特徴とする、前記(1)ないし(3)のいずれかに記載の排水からの栄養塩類及び金属の回収方法である。 (4) Moreover, the present invention is characterized in that the electrode plates of the electrode unit are arranged such that one or two cathode plates and one or two anode plates are alternately arranged. The method for recovering nutrient salts and metals from waste water according to any one of (1) to (3).

(5)また、本発明は、一定期間の排水の電解処理を行った後、直流電源の陰極と陽極を、逆にそれぞれ電解反応槽の陽極板と陰極板に接続して直流電流を通電し、陰極板に形成した結晶性物質を剥離させることを特徴とする、前記(1)ないし(4)のいずれかに記載の栄養塩類及び金属の回収方法である。 (5) Further, in the present invention, after the electrolytic treatment of the drainage for a certain period, the direct current is applied by connecting the cathode and the anode of the DC power source to the anode plate and the cathode plate of the electrolytic reaction tank, respectively. The method for recovering nutrients and metals according to any one of (1) to (4) above, wherein the crystalline material formed on the cathode plate is peeled off.

(6)前記(1)ないし(4)のいずれかに規定する電極ユニットを備えた電解結晶化槽の後に、さらに前記(1)ないし(4)のいずれかに規定する電極ユニットを備えた電解金属回収槽を設け、電解結晶化槽で排水の電解処理を行うことにより栄養塩類を結晶性物質として分離し、次いで電解金属回収槽において電解結晶化槽で処理した排水の電解処理を行うことにより金属を分離・回収することを特徴とする、排水からの栄養塩類及び金属の回収方法。 (6) Electrolysis provided with an electrode unit defined in any one of (1) to (4) after an electrolytic crystallization tank provided with the electrode unit defined in any one of (1) to (4) By providing a metal recovery tank, separating the nutrients as crystalline substances by performing electrolytic treatment of the wastewater in the electrolytic crystallization tank, and then performing electrolytic treatment of the wastewater treated in the electrolytic crystallization tank in the electrolytic metal recovery tank A method for recovering nutrient salts and metals from waste water, characterized by separating and recovering metals.

本発明の方法により排水を処理することによって、排水中に含まれるリン、窒素、カルシウム、マグネシウムおよびカリウムなどの栄養塩類が電解反応槽内の表面凹凸処理を施した陰極板の表面に結晶性物質として蓄積し、これを回収することによって、これらの排水中に含まれる栄養塩類を効率的に回収することができる。また、畜産排水や工場排水などの場合には、銅、亜鉛、鉄などの金属イオンも含んでいるが、リン濃度の低い低リン負荷条件で、本発明の方法によりこのような排水を処理することによって、このような有用な金属類をも回収することができる。   By treating the wastewater by the method of the present invention, nutrients such as phosphorus, nitrogen, calcium, magnesium and potassium contained in the wastewater are crystalline substances on the surface of the cathode plate subjected to surface unevenness treatment in the electrolytic reaction tank. As a result, it is possible to efficiently recover the nutrients contained in the waste water. In addition, in the case of livestock wastewater or factory wastewater, metal ions such as copper, zinc and iron are also contained, but such wastewater is treated by the method of the present invention under low phosphorus load conditions with low phosphorus concentration. Thus, such useful metals can also be recovered.

次に、本発明をさらに詳しく説明する。
本発明の方法を実施するための装置の全体構成を示す概略図の一例を図1に示す。
Next, the present invention will be described in more detail.
FIG. 1 shows an example of a schematic diagram showing the overall configuration of an apparatus for carrying out the method of the present invention.

図1において、排水を処理する電解反応槽1は、その内部に電極ユニット2を備え、その下部に生成した結晶性物質を回収するための固液分離貯留部3を備え、被処理液の出口に電解処理によって発生する気泡を処理するための消泡部4を備えている。電極ユニット2は、それぞれ2枚以上の複数の陰極板7と陽極板8から構成されており、陰極板7はリバース電解が可能な直流電源6の陰極に、陽極板8は直流電源6の陽極にそれぞれ直列に接続されている。   In FIG. 1, an electrolytic reaction tank 1 for treating wastewater includes an electrode unit 2 therein, a solid-liquid separation storage unit 3 for recovering a crystalline substance generated at a lower portion thereof, and an outlet of a liquid to be processed. Is provided with a defoaming portion 4 for treating bubbles generated by electrolytic treatment. The electrode unit 2 is composed of two or more cathode plates 7 and anode plates 8 each. The cathode plate 7 is a cathode of a DC power source 6 capable of reverse electrolysis, and the anode plate 8 is an anode of the DC power source 6. Are connected in series.

被処理水である各種の排水は、被処理水流入口11から電解反応槽1内に導入され、電解反応槽1内で電極ユニット2によって電解処理された後、被処理水流出口13から流出する。電解処理に必要な処理時間を得るために、被処理水は、電解処理中は液循環ライン14を通って循環される。電解反応の進行とともに電極ユニット2の陰極板7の表面に排水中に含まれる栄養塩類の結晶が結晶性物質として徐々に蓄積する。また、比較的短いサイクルで普通電解とリバース電解を繰返す電解操作である、いわゆる擬交流電解の場合においても、結晶性物質は貯留部3に徐々に蓄積する。電解処理中に発生するガスはガス出口17から排出される。また、通電によって被処理液からガスが発生し、気泡が生成するため、これらの気泡は消泡部4で消泡される。   Various types of wastewater, which is treated water, is introduced into the electrolytic reaction tank 1 from the treated water inlet 11, subjected to electrolytic treatment by the electrode unit 2 in the electrolytic reaction tank 1, and then flows out from the treated water outlet 13. In order to obtain a treatment time required for the electrolytic treatment, the water to be treated is circulated through the liquid circulation line 14 during the electrolytic treatment. As the electrolytic reaction proceeds, the nutrient salt crystals contained in the waste water gradually accumulate as crystalline substances on the surface of the cathode plate 7 of the electrode unit 2. Further, even in the case of so-called pseudo-AC electrolysis, which is an electrolysis operation in which ordinary electrolysis and reverse electrolysis are repeated in a relatively short cycle, the crystalline substance gradually accumulates in the storage unit 3. Gas generated during the electrolytic treatment is discharged from the gas outlet 17. Moreover, since gas is generated from the liquid to be treated by energization and bubbles are generated, these bubbles are defoamed by the defoaming unit 4.

一定時間連続して電解処理を行うことによって、陰極板7の表面に排水中に含まれる栄養塩類の固体状の結晶性物質が形成され、時間とともに徐々に成長し、蓄積する。この結晶性物質を陰極板7から剥がして、栄養塩類として回収する。剥離した結晶性物質は電解反応槽1の下部の固液分離貯留部3に貯留される。   By performing electrolytic treatment continuously for a certain period of time, a solid crystalline substance of nutrient salts contained in the waste water is formed on the surface of the cathode plate 7, and gradually grows and accumulates with time. This crystalline substance is peeled off from the cathode plate 7 and recovered as nutrient salts. The peeled crystalline substance is stored in the solid-liquid separation storage section 3 below the electrolytic reaction tank 1.

結晶性物質の陰極板7からの剥離・回収は、直流通電の場合には、電極板と直流電源6の接続を変えて、電極ユニット2の陰極板7を直流電源6の陽極に、陽極板8を直流電源6の陰極にそれぞれ接続して、直流電流を通電して逆方向の電解処理(リバース電解)を行い、さらに空気導入管15から電解反応槽1内の逆洗曝気システム5に加圧空気を導入し、気泡によって陰極板7に蓄積している結晶性物質を剥がして回収する方法がある。擬交流電解の場合においても、固液分離貯留部3に徐々も蓄積する。
固液分離貯留部3に貯留された結晶性物質は、適宜結晶性物質取出し口12から回収する。
The separation and recovery of the crystalline substance from the cathode plate 7 can be performed by changing the connection between the electrode plate and the DC power source 6 when the DC current is applied, and using the cathode plate 7 of the electrode unit 2 as the anode of the DC power source 6. 8 is connected to the cathode of the DC power source 6, DC current is applied to perform reverse electrolysis (reverse electrolysis), and the air is introduced from the air introduction pipe 15 to the backwash aeration system 5 in the electrolytic reaction tank 1. There is a method in which compressed air is introduced and the crystalline substance accumulated in the cathode plate 7 is peeled off by bubbles to recover. Even in the case of quasi-AC electrolysis, the solid-liquid separation and storage unit 3 gradually accumulates.
The crystalline substance stored in the solid-liquid separation storage unit 3 is appropriately collected from the crystalline substance outlet 12.

本発明の方法において、電解反応槽1内の電極ユニット2は、2枚以上の複数の陰極板と2枚以上の複数の陽極板から構成されて一定の配列で配置されており、かつ陰極板として細かい凹凸処理を施した板状の電極を、陽極板として板状又は網状の電極を用いることが必要である。   In the method of the present invention, the electrode unit 2 in the electrolytic reaction tank 1 is composed of two or more cathode plates and two or more anode plates, arranged in a fixed arrangement, and the cathode plates It is necessary to use a plate-like electrode that has been subjected to a fine unevenness treatment and a plate-like or net-like electrode as the anode plate.

陰極板7の細かい凹凸処理とは、電極板の表面にサンドブラスト処理やヘアライン処理などの方法によって表面研磨処理を施し、深さが1〜100μm程度の細かい溝状の凹凸をつける加工のことを言い、電極表面に深さが1〜100μm程度の細かい凹凸をつけることによって電極表面の付着面積を大きくするとともに、この陰極板表面の凹凸によって結晶性物質の形成されるきっかけを与えるものである。
ここでサンドブラスト処理とは、金剛砂やアルミナなどの研磨剤の微粒子を圧縮空気とともに材料表面に吹き付けて、その表面に微細な凹凸を形成させるものである。また、ヘアライン処理とは、紙やすりや砥粒研磨ベルトなどで金属表面に一方向の傷をつけたものである。
The fine uneven treatment of the cathode plate 7 refers to a process in which the surface of the electrode plate is subjected to surface polishing treatment by a method such as sand blast treatment or hairline treatment to form fine groove-like unevenness having a depth of about 1 to 100 μm. The surface area of the electrode is increased by providing fine irregularities with a depth of about 1 to 100 μm on the electrode surface, and the irregularities on the surface of the cathode plate provide an opportunity to form a crystalline substance.
Here, the sand blasting treatment is a method in which fine particles of an abrasive such as gold sand and alumina are sprayed on the material surface together with compressed air to form fine irregularities on the surface. The hairline treatment is a method in which a metal surface is scratched in one direction with a sandpaper or an abrasive polishing belt.

陰極板7の材質は、白金、白金めっきステンレス、ステンレス、チタン、白金めっきチタン等が使用できるが、白金、白金めっきチタンが好ましい。
陽極板8は板状の電極板又は網状の電極板を用いる。陽極板8の材質は、白金、白金めっきチタン等が使用できる。網状電極は、これらの材料を用いて、網目サイズが数mmから十数mmの大きさの網状に加工したものである。
The material of the cathode plate 7 can be platinum, platinum-plated stainless steel, stainless steel, titanium, platinum-plated titanium, etc., with platinum and platinum-plated titanium being preferred.
The anode plate 8 is a plate-like electrode plate or a net-like electrode plate. The anode plate 8 can be made of platinum, platinum-plated titanium, or the like. The mesh electrode is formed by using these materials into a mesh having a mesh size of several mm to several tens of mm.

本発明の方法では、電極ユニット2の陰極板7と陽極板8は、それぞれ2枚以上の複数枚の電極板を用い、比表面積(電解反応槽有効容積に対する陰極総面積)が十分に大きくなるように電極板を選択し、これらを直流電源と直列につないで使用する。電極板の枚数は処理する被処理液の量や栄養塩類の濃度などによって適宜選択すればよい。陰極板7と陽極板8の間隔は、比較的低電圧(数ボルト以下)の通電による電解処理が可能となる範囲を選択し,両者を一定の順序で配置することが好ましい。電極板の配列の順序は、陽極板8と陰極板7を1枚ずつ交互に{+、−、+、−、・・・・}と配列するか、或いはそれぞれ2枚づつを一組として交互に{++、−−、++、−−、・・・・}と配列する方法が好ましい。   In the method of the present invention, each of the cathode plate 7 and the anode plate 8 of the electrode unit 2 uses two or more electrode plates, and the specific surface area (the total area of the cathode with respect to the effective volume of the electrolytic reaction tank) becomes sufficiently large. The electrode plates are selected so that they are connected in series with a DC power source. The number of electrode plates may be appropriately selected depending on the amount of liquid to be processed and the concentration of nutrients. The distance between the cathode plate 7 and the anode plate 8 is preferably selected within a range in which electrolysis can be performed by energization with a relatively low voltage (several volts or less), and both are arranged in a certain order. The order of arrangement of the electrode plates is such that the anode plate 8 and the cathode plate 7 are alternately arranged one by one {+, −, +, −,... Are preferably arranged as {++, −−, ++, −−,...}.

本発明の方法では、さらに電極ユニット2の両端部と各電極板の間、又は陰極板7と陽極板8の間の一部又は全部に、被処理液の電極近傍での流れを整えるために整流板を設けることが好ましい。図2に電極ユニット2に整流板9を取り付けた場合の一例を示す。整流板9は電極板とほぼ同じ大きさの板であり、これを電極ユニット2の両端部と各電極板の間、又は陰極板7と陽極板8の間の一部又は全部に適宜挿入して固定する。整流板9の材質は、塩化ビニル樹脂、アクリル樹脂、FRPなどで、耐食性がありかつ流れによって変形しない程度の強度を有するものであればよい。
このような整流板9を取り付けることによって、電極板の間に排水を一定の流速の上向流または下降流として流入させることができ、電極板の表面近傍での被処理液の流れが整えられ、電極表面での結晶性物質の形成が促進される。電極表面近傍での被処理液の流れが大きな乱流であったり、渦を発生する状態では結晶性物質の形成が阻害されるため、このような整流板9によって液の流れを整えることが好ましい。また、効率よく結晶性物質を形成させるためには電極表面近傍での液の流速が0.01〜5cm/秒程度であることが好ましく、この点も考慮して整流板9を設置する。
In the method of the present invention, a rectifying plate is further provided between the both ends of the electrode unit 2 and each electrode plate, or a part or all between the cathode plate 7 and the anode plate 8 in order to regulate the flow of the liquid to be processed in the vicinity of the electrodes. Is preferably provided. FIG. 2 shows an example when the rectifying plate 9 is attached to the electrode unit 2. The rectifying plate 9 is a plate having almost the same size as the electrode plate, and is inserted and fixed appropriately between both ends of the electrode unit 2 and each electrode plate or a part or all between the cathode plate 7 and the anode plate 8. To do. The material of the rectifying plate 9 may be vinyl chloride resin, acrylic resin, FRP, etc., as long as it has corrosion resistance and has a strength that does not deform due to flow.
By attaching such a rectifying plate 9, the drainage can flow between the electrode plates as an upward flow or a downward flow at a constant flow rate, and the flow of the liquid to be treated in the vicinity of the surface of the electrode plate is adjusted. Formation of crystalline material on the surface is promoted. Since the flow of the liquid to be treated in the vicinity of the electrode surface is a large turbulent flow or a vortex is generated, the formation of the crystalline substance is hindered. Therefore, the flow of the liquid is preferably adjusted by such a rectifying plate 9. . Further, in order to efficiently form a crystalline substance, the flow rate of the liquid in the vicinity of the electrode surface is preferably about 0.01 to 5 cm / second, and the rectifying plate 9 is installed in consideration of this point.

電解反応槽1での被処理液の電解処理は、被処理液を流入口11から少しずつ導入し、電解反応槽1内の液を循環ライン14を通して循環させつつ、直流電源6より直流電流を通電して電解反応を行う。電解処理の条件は、被処理液の処理量と栄養塩類の濃度によって変わるが、消費電力の観点から電圧は数ボルト以下が好ましい。この状態で被処理液を少量ずつ流入させながら電解反応を行うことによって、陰極板7の表面に栄養塩類から得られる結晶性物質が蓄積する。擬交流電解の場合においても,結晶性物質は貯留部3に沈殿する。   In the electrolytic treatment of the liquid to be treated in the electrolytic reaction tank 1, the liquid to be treated is introduced little by little from the inlet 11, and the direct current is supplied from the direct current power source 6 while circulating the liquid in the electrolytic reaction tank 1 through the circulation line 14. Energize to conduct an electrolytic reaction. Although the conditions for the electrolytic treatment vary depending on the treatment amount of the liquid to be treated and the concentration of nutrients, the voltage is preferably several volts or less from the viewpoint of power consumption. In this state, by carrying out an electrolytic reaction while flowing the liquid to be treated little by little, a crystalline substance obtained from nutrient salts accumulates on the surface of the cathode plate 7. Even in the case of pseudo alternating current electrolysis, the crystalline substance precipitates in the reservoir 3.

このようにして得られる結晶性物質は、リン、窒素、カルシウム、マグネシウム、カリウムなどを含有する固形のもの(結晶性の物質)である。これらの結晶性物質は、排水中に含まれるリン、窒素、マグネシウムが電解反応によるpH変化によってリン酸マグネシウムアンモニウム(MAP)の結晶性物質、リンとカルシウムから水酸アパタイト(HAP)の結晶性物質、またはこれらの混合物として形成されたものである。これはこのような種々の排水中に含まれる栄養塩類を、電解反応槽内で上記のような状態で電極に通電し、電気分解反応を行うことにより、陰極板7が形成基盤となると同時に、陰極がアルカリ(水酸イオン)の供給源となって、結晶化の反応が陰極近傍で進行することにより形成されるものである。このような排水の電解処理によって得られる結晶性物質には、リン、窒素、カルシウム、マグネシウムのほかにカリウムも含まれており、排水中に含まれるカリウムも同時に回収できる。   The crystalline substance thus obtained is a solid substance (crystalline substance) containing phosphorus, nitrogen, calcium, magnesium, potassium and the like. These crystalline substances include phosphorous, nitrogen, and magnesium contained in the wastewater, a crystalline substance of magnesium ammonium phosphate (MAP) due to pH change due to an electrolytic reaction, and a crystalline substance of hydroxyapatite (HAP) from phosphorus and calcium. , Or a mixture thereof. This is because the nutrients contained in such various wastewaters are energized to the electrodes in the above-described state in the electrolytic reaction tank, and by performing an electrolysis reaction, the cathode plate 7 becomes the formation base, The cathode is formed by the alkali (hydroxide ion) supply source and the crystallization reaction proceeds in the vicinity of the cathode. In addition to phosphorus, nitrogen, calcium, and magnesium, the crystalline material obtained by the electrolytic treatment of waste water contains potassium, and the potassium contained in the waste water can be recovered at the same time.

さらに、本発明の方法においては、流入する排水中のリン濃度が低く、かつ排水中に銅や亜鉛、鉄などの金属イオンをある程度以上の濃度で含む場合には、このような排水を上記したような方法で電解処理することによって、陰極板にこれらの金属も金属塩の形で析出させることができる。効率よくこれらの金属を回収するためには、排水中に含まれる金属イオン濃度が0.1mg/L以上であることが好ましい。   Furthermore, in the method of the present invention, when the concentration of phosphorus in the inflowing waste water is low and the waste water contains metal ions such as copper, zinc, iron, etc. at a certain level or more, such waste water is described above. By performing electrolytic treatment by such a method, these metals can also be deposited on the cathode plate in the form of a metal salt. In order to recover these metals efficiently, the concentration of metal ions contained in the waste water is preferably 0.1 mg / L or more.

本発明の方法を利用してこの排水中の金属イオンを回収する方法として、次の2段階回収法がより好ましい。即ち、栄養塩類と金属イオンとを含む排水を処理する場合、栄養塩類を除去・回収するための電解結晶化槽と金属イオンを回収するための電解金属回収槽を設け、この電解結晶化槽と電解金属回収槽の中には、2枚以上の複数枚の陰極板と陽極板を交互に一定の配列順序で配置し、かつ陰極板として細かい凹凸処理を施した板状電極を、陽極板として板状又は網状の電極を用いた電極ユニットを設ける。まず、栄養塩類と金属イオンとを含む排水を電解結晶化槽に通し、ここで本発明の方法に従って電解処理を行い、リン、窒素、カリウム等の栄養塩類を結晶性物質として回収・除去する。次に、電解結晶化槽から流出した排水を電解金属回収槽に通して、ここでも本発明の方法に従って電解処理を行う。このような2段階回収法を採用することによって、電解結晶化槽で栄養塩類を効率よく回収すると同時に、電解金属回収槽では、処理する排水がリン等の塩類が除去された低リン負荷の状態となっているため、銅、亜鉛等の金属イオンを効率よく回収することができる。   The following two-stage recovery method is more preferable as a method for recovering metal ions in the waste water by using the method of the present invention. That is, when treating wastewater containing nutrients and metal ions, an electrolytic crystallization tank for removing and collecting nutrient salts and an electrolytic metal recovery tank for collecting metal ions are provided. In the electrolytic metal recovery tank, two or more cathode plates and anode plates are alternately arranged in a fixed arrangement order, and a plate-like electrode subjected to fine unevenness processing as a cathode plate is used as an anode plate. An electrode unit using plate-like or net-like electrodes is provided. First, wastewater containing nutrient salts and metal ions is passed through an electrolytic crystallization tank, where electrolytic treatment is performed according to the method of the present invention, and nutrient salts such as phosphorus, nitrogen and potassium are recovered and removed as crystalline substances. Next, the waste water flowing out from the electrolytic crystallization tank is passed through an electrolytic metal recovery tank, and here again, an electrolytic treatment is performed according to the method of the present invention. By adopting such a two-stage recovery method, nutrient salts are efficiently recovered in the electrolytic crystallization tank, and at the same time, in the electrolytic metal recovery tank, the wastewater to be treated is in a low phosphorus load state in which salts such as phosphorus are removed. Therefore, metal ions such as copper and zinc can be efficiently recovered.

また、本発明の方法においては、陰極板に形成され、蓄積する結晶性物質を剥離して回収するために、リバース電解法を用いることが好ましい。即ち、電解反応槽1に被処理液の排水を通水して、電極ユニット2に直流電流を通電して一定時間電解処理を行うと、陰極板7の表面に栄養塩類などの結晶性物質が形成される。この段階で、例えば転極制御装置を用いて、電極ユニット2と直流電源6との接続を変えて、陰極板7に直流電源6の陽極を、陽極板8に直流電源6の陰極を接続して、再び電極ユニット2に通電する。この操作によって、電解処理時にアルカリ雰囲気であった陰極板7近傍が酸性雰囲気となり、そのpHの変化により結晶性物質の電極付着面に近い部分が溶解し、結晶性物質を電極面から容易に剥離することができる。剥離した結晶性物質は電解反応槽1の下に沈降し、固液分離貯留部3に貯留される。ここに集められた結晶性物質を固液分離して回収する。このリバース電解の間隔を適切に制御することによって、電解反応槽1における結晶性物質の量も制御することができる。   Further, in the method of the present invention, it is preferable to use a reverse electrolysis method in order to peel off and collect the crystalline substance formed and accumulated on the cathode plate. That is, when the treatment liquid is drained through the electrolytic reaction tank 1 and a direct current is applied to the electrode unit 2 to perform electrolytic treatment for a certain period of time, crystalline substances such as nutrient salts are formed on the surface of the cathode plate 7. It is formed. At this stage, the connection between the electrode unit 2 and the DC power source 6 is changed using, for example, a polarization control device, and the anode of the DC power source 6 is connected to the cathode plate 7 and the cathode of the DC power source 6 is connected to the anode plate 8. Then, the electrode unit 2 is energized again. By this operation, the vicinity of the cathode plate 7 which was an alkaline atmosphere at the time of the electrolytic treatment becomes an acidic atmosphere, and the portion near the electrode adhesion surface of the crystalline substance is dissolved by the change in pH, and the crystalline substance is easily peeled off from the electrode surface. can do. The peeled crystalline substance settles under the electrolytic reaction tank 1 and is stored in the solid-liquid separation storage section 3. The crystalline substance collected here is recovered by solid-liquid separation. By appropriately controlling the interval of this reverse electrolysis, the amount of the crystalline substance in the electrolytic reaction tank 1 can also be controlled.

このようにして本発明の方法によって結晶性物質として排水から回収した栄養塩類は、窒素、リンに加えてカリウムという肥料の三要素となる成分をすべて含んでおり、肥料あるいは肥料原料として直接的に利用することができる。また、得られた結晶性物質は生成する段階で精製されるので、これを水などで洗浄して、そのまま家畜飼料などの添加剤としても利用することができる。   Thus, the nutrients recovered from the wastewater as a crystalline substance by the method of the present invention contain all the three components of fertilizer, potassium, in addition to nitrogen and phosphorus, and directly as fertilizer or fertilizer raw material. Can be used. Further, since the obtained crystalline substance is purified at the stage of production, it can be washed with water or the like and used as an additive for livestock feed as it is.

次に、本発明を実施例によって更に詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention in more detail, this invention is not limited at all by these Examples.

実施例1:
縦0.7m、横0.5m、深さ1m(有効内容量:約350L)の図1に示す電解反応槽を用いて、表2に示す種々の電極板の組み合わせからなる電極ユニットを電解反応槽に設置して、被処理液(原水)として表1に示す組成の実畜産排水二次処理水を用いて、栄養塩類の回収実験を行った。なお、ここで用いた電極ユニットは、図2に示すようにそれぞれ4枚の陽極板と陰極板を交互に設置したものであり、整流板を設けたものはこの両電極板の間にFRP製の整流板を設置したものである。また、表面凹凸板状ステンレスの陰極板はヘアライン処理によってステンレス板を研磨処理して、その表面の粗さが1〜100μm程度の凹凸状としたものである。
Example 1:
Using the electrolytic reaction tank shown in FIG. 1 having a length of 0.7 m, a width of 0.5 m, and a depth of 1 m (effective internal capacity: about 350 L), an electrode unit comprising various electrode plate combinations shown in Table 2 is subjected to an electrolytic reaction. It installed in the tank and the collection experiment of nutrient salt was done using the real livestock waste water secondary treated water of the composition shown in Table 1 as a liquid to be processed (raw water). The electrode unit used here has four anode plates and cathode plates alternately arranged as shown in FIG. 2, and the one provided with a rectifying plate is a rectifier made of FRP between the two electrode plates. A board is installed. Further, the stainless steel cathode plate of the surface uneven plate-like stainless steel is obtained by polishing the stainless steel plate by a hairline treatment to make the surface roughness unevenness of about 1 to 100 μm.

まず、この電解反応槽に表1の組成の原水を注入し、直流電源から10〜40アンペアの電流を通電した。ここでの有効電極面積(電解反応槽有効容量に対する陰極総面積の比、比表面積)は2m/mであった。この電解反応槽の電極ユニットに直流電流を通電しつつ、原水を蠕動ポンプを用いて1m/日の流量で供給し、約100日間にわたって電解処理を行なった。電解処理中は、定期的に陰極板に付着および貯留部に沈殿した結晶性物質を回収した。各実験条件での陰極板で得られた乾燥結晶性物質の量を、1日当り、電極単位面積当たりに換算したものを表2に示す。 First, raw water having the composition shown in Table 1 was poured into this electrolytic reaction tank, and a current of 10 to 40 amperes was supplied from a DC power source. The effective electrode area (ratio of total area of cathode to effective capacity of electrolytic reaction tank, specific surface area) was 2 m 2 / m 3 . While direct current was applied to the electrode unit of the electrolytic reaction tank, raw water was supplied at a flow rate of 1 m 3 / day using a peristaltic pump, and electrolysis was performed for about 100 days. During the electrolytic treatment, the crystalline material that adhered to the cathode plate and precipitated in the reservoir was collected periodically. Table 2 shows the amount of the dry crystalline material obtained in the cathode plate under each experimental condition, converted into per electrode unit area per day.

Figure 0004765049
Figure 0004765049

Figure 0004765049
Figure 0004765049

この結果から、同じ材質の電極板を用い、同じ条件で電解処理を行なった場合には、整流板を設置することにより結晶性物質の生成量が大幅に増加することがわかった(実験1、実験2)。また、陰極板の材質によって結晶性物質の生成量が変化し、ステンレスに比べて白金とチタンの電極板で比較的よく結晶性物質が付着する(実験2、実験3、実験4)。また、陰極板の表面に研磨処理によって凹凸処理を施した場合は、このような凹凸処理を施さないものに比べて大幅に結晶性物質の生成量が増加し、ステンレス板の場合には凹凸処理電極を用いることによって白金やチタンを用いた電極板に匹敵する結晶性物質が付着することがわかった(実験4、実験5)。   From this result, it was found that when an electrode plate made of the same material was used and electrolytic treatment was performed under the same conditions, the amount of crystalline material produced was greatly increased by installing a rectifying plate (Experiment 1, Experiment 2). In addition, the amount of the crystalline substance produced varies depending on the material of the cathode plate, and the crystalline substance adheres relatively well on the platinum and titanium electrode plates compared to stainless steel (Experiment 2, Experiment 3, Experiment 4). In addition, when the surface of the cathode plate is roughened by polishing, the amount of crystalline material generated is greatly increased compared to the case where the surface of the cathode plate is not subjected to such unevenness processing. It was found that by using the electrode, a crystalline substance comparable to an electrode plate using platinum or titanium adhered (Experiment 4 and Experiment 5).

実施例2:
被処理水として、次の表3に示す高リン負荷条件試料と低リン負荷条件試料を用いて、実施例1と同様にして、実施例1の実験1の条件で電解処理を行った。この電解処理によって得られた結晶性物質中に存在するリンと各種金属の組成(質量%)を表4に示す。
Example 2:
Using the high phosphorus load condition sample and the low phosphorus load condition sample shown in the following Table 3 as the water to be treated, the electrolytic treatment was performed in the same manner as in Example 1 under the conditions of Experiment 1 of Example 1. Table 4 shows the composition (mass%) of phosphorus and various metals present in the crystalline material obtained by this electrolytic treatment.

Figure 0004765049
Figure 0004765049

Figure 0004765049
Figure 0004765049

表4に示すように、高リン負荷条件の場合に比べて、低リン負荷条件の排水を用いて、本発明の方法による電解処理を行なうと、得られる結晶性物質の中にリンとともに比較的高濃度で鉄、銅、亜鉛などの金属類が含まれており、これらの金属類が効率よく回収できることがわかった。   As shown in Table 4, when the electrolytic treatment according to the method of the present invention is performed using wastewater under low phosphorus load conditions as compared with the case of high phosphorus load conditions, the crystalline material obtained is relatively It was found that metals such as iron, copper, and zinc were contained at high concentrations, and these metals could be recovered efficiently.

実施例3:
同様に、図1に示す電解反応槽を用いて、ここに表5に示す種々の電極板配列の電極ユニットを設置して、被処理液として表1に示す組成の実畜産排水二次処理水を用いて、栄養塩類の回収を行った。
Example 3:
Similarly, using the electrolytic reaction tank shown in FIG. 1, electrode units having various electrode plate arrangements shown in Table 5 are installed here, and real livestock wastewater secondary treatment water having the composition shown in Table 1 as a liquid to be treated is used. Was used to recover nutrients.

Figure 0004765049
Figure 0004765049

表5に示す結果からわかるように、結晶性物質の付着量は陰極板の配列の仕方によって変化することがわかった。具体的には、実験6及び実験7に示すように、それぞれ1枚又は2枚の陰極板と陽極板を交互に設置して構成した電極ユニットを用いた場合に、実験8に示すようなそれ以外の電極板配列の場合にくらべてより多くの結晶性物質を付着させることができる。   As can be seen from the results shown in Table 5, it was found that the adhesion amount of the crystalline substance varies depending on the arrangement of the cathode plates. Specifically, as shown in Experiment 6 and Experiment 7, when using an electrode unit configured by alternately installing one or two cathode plates and anode plates, respectively, as shown in Experiment 8 More crystalline substances can be deposited as compared with electrode plate arrangements other than the above.

本発明の方法により畜産排水や産業排水、家庭排水等の種々の排水を処理することによって、排水から、リン、窒素、マグネシウム、カルシウム、カリウム等の栄養塩類や、さらには鉄、銅、亜鉛などの各種の金属類を回収することができ、これらの排水処理分の水処理において有用である。また、結晶性物質として回収したリン,窒素,カルシウム,マグネシウム,カリウムなどの栄養塩類の純度が比較的高いことから,高品位な肥料等として直接的に利用でき,肥料としての商品価値も高い。   By treating various wastewaters such as livestock wastewater, industrial wastewater, and domestic wastewater by the method of the present invention, nutrient salts such as phosphorus, nitrogen, magnesium, calcium, potassium, and further iron, copper, zinc, etc. These various metals can be recovered and are useful in water treatment of these wastewater treatments. In addition, since the purity of nutrients such as phosphorus, nitrogen, calcium, magnesium, and potassium recovered as a crystalline substance is relatively high, it can be directly used as a high-grade fertilizer, and the commercial value as a fertilizer is high.

本発明に用いる排水処理装置全体の概略構成図である。It is a schematic block diagram of the whole waste water treatment equipment used for this invention. 整流板を設けた電極ユニットの一例を示す説明図である。It is explanatory drawing which shows an example of the electrode unit which provided the baffle plate.

符号の説明Explanation of symbols

1.電解反応槽
2.電極ユニット
3.固液分離貯留部
4.消泡部
5.逆洗曝気システム
6.直流電源
7.陰極板
8.陽極板
9.整流板
11.被処理水流入口
12.結晶性物質取出し口
13.被処理水流出口
14.循環ライン
15.空気導入管
16.残渣取出し口
17.ガス出口
1. 1. Electrolytic reaction tank 2. Electrode unit 3. Solid-liquid separation and storage unit Defoaming part 5. 5. Backwash aeration system DC power supply 7. Cathode plate 8. Anode plate 9. Current plate 11. Processed water inlet 12. Crystalline substance outlet 13. Untreated water outlet 14. Circulation line 15. Air introduction pipe 16. Residue outlet 17. Gas outlet

Claims (3)

リン、窒素、カルシウム、カリウム及びマグネシウムを含む栄養塩類及び金属イオンを含有する排水からの栄養塩類及び金属の回収方法であって、サンドブラスト処理又はヘアライン処理を施すことによりその表面に1〜100μmの細かい凹凸を設けた板状の陰極板と板状又は網状の陽極板のそれぞれ2枚以上を一定の配列で配置した電極ユニットを備え、電極ユニットの両端部と各電極板の間及び/又は陰極板と陽極板の間の一部または全部に整流板を設け、更に、電極ユニットの電極板をそれぞれ1枚又は2枚一組の陰極板と1枚又は2枚一組の陽極板を交互に配列してなる電解反応槽に、前記栄養塩類並びに、鉄、銅、亜鉛及び/又はケイ素から選ばれる金属イオンを含む排水を満たし、又は通水し、電極ユニットの両電極間に直流電流を通電して排水の電解処理を行なうことを特徴とする、排水からの栄養塩類及び鉄、銅、亜鉛及び/又はケイ素から選ばれる金属の回収方法。 A method for recovering nutrients and metals from wastewater containing phosphorus, nitrogen, calcium, potassium and magnesium and wastewater containing metal ions , and having a surface of 1-100 μm fine by applying sandblasting or hairline treatment Provided with an electrode unit in which two or more of a plate-like cathode plate and a plate-like or mesh-like anode plate provided with irregularities are arranged in a fixed arrangement, and between the both ends of the electrode unit and each electrode plate and / or the cathode plate and the anode Electrolytic structure in which a rectifying plate is provided in part or all between the plates, and the electrode plates of the electrode unit are arranged by alternately arranging one or two cathode plates and one or two anode plates. DC in the reaction vessel, the nutrients as well as iron, copper, meets the waste water containing metal ions selected from zinc and / or silicon, or passed through, between the electrodes of the electrode units Characterized in that by energizing the flow performs electrolytic treatment of waste water, nutrients and iron from waste water, copper, a method of recovering a metal selected from zinc and / or silicon. 一定期間の排水の電解処理を行った後、直流電源の陰極と陽極を、逆にそれぞれ電解反応槽の陽極板と陰極板に接続して直流電流を通電し、陰極板に形成した結晶性物質を剥離させることを特徴とする、請求項1に記載の栄養塩類及び金属の回収方法。 Crystalline material formed on the cathode plate after electrolytic treatment of the drainage for a certain period, and then connecting the cathode and anode of the DC power source to the anode plate and cathode plate of the electrolytic reaction tank respectively, and passing DC current The method for recovering nutrient salts and metals according to claim 1, wherein the nutrient salts and metals are separated. 請求項1に規定する電極ユニットを備えた電解結晶化槽の後に、さらに請求項1に規定する電極ユニットを備えた電解金属回収槽を設け、電解結晶化槽で排水の電解処理を行うことにより栄養塩類を結晶性物質として分離し、次いで電解金属回収槽において電解結晶化槽で処理した排水の電解処理を行うことにより金属を分離・回収することを特徴とする、排水からの栄養塩類及び金属の回収方法。

After the electrolytic crystallization vessel equipped with an electrode unit as defined in claim 1, further claim 1 an electrolytic metal recovery cell having an electrode unit that defines provided, by performing the electrolytic treatment of waste water in the electrolytic crystallization vessel Nutrient salts and metals from wastewater characterized by separating and recovering metals by separating the nutrient salts as crystalline substances and then performing electrolytic treatment of the wastewater treated in the electrolytic crystallization tank in the electrolytic metal recovery tank Recovery method.

JP2007329932A 2007-12-21 2007-12-21 Method for recovering useful substances from wastewater Expired - Fee Related JP4765049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329932A JP4765049B2 (en) 2007-12-21 2007-12-21 Method for recovering useful substances from wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329932A JP4765049B2 (en) 2007-12-21 2007-12-21 Method for recovering useful substances from wastewater

Publications (2)

Publication Number Publication Date
JP2009148719A JP2009148719A (en) 2009-07-09
JP4765049B2 true JP4765049B2 (en) 2011-09-07

Family

ID=40918545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329932A Expired - Fee Related JP4765049B2 (en) 2007-12-21 2007-12-21 Method for recovering useful substances from wastewater

Country Status (1)

Country Link
JP (1) JP4765049B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105016537A (en) * 2014-04-30 2015-11-04 荣诚环境工程集团有限公司 Plug flow type dual-electrode electrolysis air floater
CN105540754A (en) * 2016-02-03 2016-05-04 江门市海达水净化工程有限公司 Microelectrolysis water purifier
CN110357219B (en) * 2019-06-28 2021-08-20 湖北美辰环保股份有限公司 Electrochemical reaction system is retrieved to high-efficient nitrogen phosphorus
CN111533330A (en) * 2020-06-05 2020-08-14 北京朗新明环保科技有限公司 Industrial circulating water coupling softening crystallization treatment system and treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140849A (en) * 1998-11-09 2000-05-23 Shikishima Kiki Kk Electrochemical water treating device and method
JP2003236563A (en) * 2002-02-20 2003-08-26 Yamato:Kk Method and device for treating phosphorus containing waste water
JP5235276B2 (en) * 2006-02-10 2013-07-10 水ing株式会社 Purification equipment for contaminated materials including heavy metals

Also Published As

Publication number Publication date
JP2009148719A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
CN104261526B (en) The processing method of heavy metal wastewater thereby
US9328006B2 (en) Removal and recovery of phosphate from liquid streams
JP2009541036A (en) Cooling towers requiring silica removal from water and methods and integrated systems for water treatment in various processes
CN110357219B (en) Electrochemical reaction system is retrieved to high-efficient nitrogen phosphorus
JP4765049B2 (en) Method for recovering useful substances from wastewater
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
CN110240353A (en) A kind of sea-farming tail water treatment system
CN113248060A (en) Rare earth high-ammonium wastewater treatment system and method
JP2003236563A (en) Method and device for treating phosphorus containing waste water
CN110240354A (en) A kind of intensive style modular combination aquaculture tail water treatment system
CN113856254A (en) Inclined tube sedimentation tank capable of being cleaned on line
JP4417056B2 (en) Crystal recovery and transfer equipment
CN1119292C (en) Method and apparatus for treating wastewater contg. phosphoric acid radical
JP3268385B2 (en) Phosphorus-containing organic wastewater treatment equipment
JP2004066037A (en) Method of treating waste water of car washing and the like, and recycling method
CN218435280U (en) High ammonium effluent disposal system of tombarthite
JP5283831B2 (en) Sewage treatment facility and sewage treatment method
KR100327545B1 (en) Municipal wastewater treatment system
JP4313647B2 (en) Wastewater treatment equipment
JP2001276849A (en) Method and device for cleaning phosphorus-containing drain
KR101141928B1 (en) A sewage or wastewater treatment apparatus and method using phosphorus collection and recycling coagulant
JP2003039081A (en) Phosphorus recovery apparatus
CN105621725B (en) Heavy metal-polluted acid waste water treatment system
Shimamura et al. Research on MAP recovery conditions using a fluidized-bed crystallized phosphorous removal system
JP3994405B2 (en) Method and apparatus for removing heavy metals in sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees