JP4762424B2 - Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon - Google Patents
Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon Download PDFInfo
- Publication number
- JP4762424B2 JP4762424B2 JP2001068378A JP2001068378A JP4762424B2 JP 4762424 B2 JP4762424 B2 JP 4762424B2 JP 2001068378 A JP2001068378 A JP 2001068378A JP 2001068378 A JP2001068378 A JP 2001068378A JP 4762424 B2 JP4762424 B2 JP 4762424B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- electrode
- double layer
- electric double
- band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 232
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000003990 capacitor Substances 0.000 title claims description 43
- 238000001237 Raman spectrum Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000011300 coal pitch Substances 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 10
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 5
- 150000001721 carbon Chemical group 0.000 claims abstract description 4
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 48
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 48
- 239000000571 coke Substances 0.000 claims description 21
- 239000003245 coal Substances 0.000 claims description 17
- 239000007772 electrode material Substances 0.000 claims description 12
- 230000004913 activation Effects 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 10
- 239000003518 caustics Substances 0.000 claims description 8
- 239000008151 electrolyte solution Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 5
- 239000006258 conductive agent Substances 0.000 claims description 5
- 238000004438 BET method Methods 0.000 claims description 3
- 239000011335 coal coke Substances 0.000 claims 1
- 239000003575 carbonaceous material Substances 0.000 abstract description 29
- 230000003213 activating effect Effects 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 208000019901 Anxiety disease Diseases 0.000 abstract 1
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 239000011148 porous material Substances 0.000 description 17
- 235000011118 potassium hydroxide Nutrition 0.000 description 13
- 235000011121 sodium hydroxide Nutrition 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 125000000524 functional group Chemical group 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002006 petroleum coke Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229920001732 Lignosulfonate Polymers 0.000 description 3
- 238000010000 carbonizing Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000003775 Density Functional Theory Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000012916 structural analysis Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は電気二重層キャパシタ(電気二重層コンデンサともいう)として有用な活性炭に関する。更に詳しくは高電気容量で高耐久性のキャパシタ用電極材料として好適に使用できる活性炭、その製造方法及びその活性炭を用いた電気二重層キャパシタ用電極(分極性電極)、その電極を有する電気二重層キャパシタに関する。
【0002】
【従来の技術】
電気二重層キャパシタは急速充放電が可能、過充放電に強い、化学反応を伴わないために長寿命、広い温度範囲で使用可能、重金属を含まないため環境に優しいなどのバッテリーにはない特性を有しており、従来よりメモリーバックアップ電源等に使用されている。さらに近年では、大容量化開発が急激に進み、高性能エネルギーデバイスへの用途開発が進められ、太陽電池や燃料電池と組み合わせた電力貯蔵システム、ハイブリットカーのエンジンアシスト等への活用も検討されている。
【0003】
電気二重層キャパシタは、活性炭等から作られた1対の正極と負極の分極性電極を、電解質イオンを含む、溶液中でセパレータを介して対向させた構造からなっている。電極に直流電圧を印加すると正(+)側に分極した電極には溶液中の陰イオンが、負(−)側に分極した電極には溶液中の陽イオンが引き寄せられ、これにより電極と溶液との界面に形成された電気二重層を電気エネルギーとして利用するものである。
【0004】
従来の電気二重層キャパシタはパワー密度に優れている反面、エネルギー密度が劣っているという欠点があり、エネルギーデバイス用途への活用に際しては、更なる大容量化開発が必要である。電気二重層キャパシタの容量を大きくするには溶液の間で多くの電気二重層を形成する電極材料の開発が不可欠である。活性炭を用いた電極では活性炭の微細構造がキャパシタの電気容量を大きく左右することが知られている。
【0005】
従来、活性炭の比表面積を増加させることで電極に引き寄せられる電解質イオンの量を増加させ、これにより静電容量を向上させる試みがなされてきた。キャパシタの電気容量は電極の体積当たりの電気容量(容積密度)で評価されるが、活性炭の比表面積(m2/g)が増大すると、それに伴って質量当たりの電気容量(質量密度)は増加するが、活性炭の細孔容積が増大するので嵩密度(g/ml)も低下する。電気容積密度は電気質量密度と活性炭の嵩密度との積で表されるから、比表面積が増加しても必ずしも容積密度は増加しない。比表面積があまり大きいと活性炭の密度低下がそれ以上に大きく影響し、結果として前記の積の減少、即ち容積密度の低下を招く(表面技術Vol.45、 No.6、39〜45頁、 1994)。
【0006】
そこで、電気容量への寄与の大きい10〜30オングストローム(Å)の領域の細孔が占める比表面積を全表面積の5%以上20%以下とすることで、活性炭の嵩密度の低下を抑え、電極体積当たりの電気容量(F/ml)の高い活性炭を製造することが提案されている(特開平11−307406号公報)。
【0007】
また、易黒鉛化有機物を熱処理することで比表面積が小さくても電気容量が高くなるような結晶構造の活性炭を製造することが提案されている(特開平11−317333号公報)。
【0008】
しかしながら、これらの例はまた欠点もあり、満足すべきものではなかった。即ち、特開平11−307406号の方法は細孔分布を前記のようにするために触媒を添加しているが、触媒を均一な状態に分散させることは困難であり、製造された活性炭の細孔分布にバラツキを生じ易いという欠点がある。また特開平11−317333号の方法は易黒鉛化有機物を熱処理する場合、黒鉛化温度以下で熱処理を行えば、好適な結晶構造の活性炭が得られる反面、この活性炭は電圧印加時に膨張するため、該特許公報に記載されているように膨張を抑えるために、寸法制限構造体が必要となり、キャパシタの組立操作に大きな問題点がある。
【0009】
【発明が解決しようとする課題】
電極の体積当たりの電気容量(容積密度)、つまり静電容量は活性炭の比表面積や結晶性等の構造にも大きく左右される。しかしこれらの特性を最良にしても、それだけでは限界がある。
本発明は活性炭の比表面積等のみでなく、活性炭の表面積当たりの電気容量を大きくして電極の体積当たりの電気容量をさらに大きくし、また、耐久性にも優れた活性炭を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は上記の目的を達成するためになされたもので以下の構成からなる。
(1)X線回折法により求められるd002が3.86オングストローム以上、BET法による比表面積が700〜2400m2/g、酸素原子/炭素原子の比が0.01〜0.10の範囲にあることを特徴とする活性炭。
(2) 活性炭が、石炭系コークスを原料として製造されたものである上記(1)に記載の活性炭。
(3) 石炭系コークスが、石炭系ピッチを500〜900℃で熱処理したものである上記(2)に記載の活性炭。
(4) 電気二重層キャパシタ用電極材料である上記(1)〜(3)に記載の活性炭。
(5) 石炭系ピッチを500〜900℃で熱処理した炭素材料を賦活することを特徴とする活性炭の製造方法。
(6) ラマンスペクトルにおけるDバンド(1360cm-1)に2個以上のショルダーピークを有し、Gバンド(1580cm-1)のピーク高さに対するDバンドのピーク高さの比が0.6以下である炭素材料を賦活することを特徴とする活性炭の製造方法。
(7) 炭素材料が、石炭系コークスである上記(6)に記載の活性炭の製造方法。
(8) 石炭系コークスが、石炭系ピッチを500〜900℃で熱処理したものである上記(7)に記載の活性炭の製造方法。
(9) 活性炭が、上記(1)〜(4)のいずれかに記載の活性炭である上記(5)〜(8)のいずれかに記載の活性炭の製造方法。
(10) 賦活が苛性アルカリによるものである上記(5)〜(9)のいずれかに記載の活性炭の製造方法。
(11) 苛性アルカリが水酸化カリウムと水酸化ナトリウムの混合物である上記(10)に記載の活性炭の製造方法。
(12) 水酸化カリウムと水酸化ナトリウムの混合物は、水酸化カリウム100質量部に対し、水酸化ナトウム10〜50質量部の範囲であることを特徴とする上記(11)に記載の活性炭の製造方法
(13) 賦活温度が600〜900℃である上記(5)〜(12)のいずれかに記載の活性炭の製造方法。
(14) 活性炭、導電剤および結合剤を含む電気二重層キャパシタ用電極において、上記(4)に記載の活性炭を用いた電気二重層キャパシタ用電極。
(15) 電解液中に電極が浸されてなる電気二重層キャパシタにおいて、上記(14)に記載の電極を有する電気二重層キャパシタ。
【0011】
【発明の実施の形態】
本発明の活性炭の比表面積は700〜2400m2/gである。比表面積が小さくなると、それを電極に使用したキャパシタの電気容量は低下する。また比表面積は大き過ぎても前記したように電極の体積当たりの電気容量(容積密度)が低下する。容積密度を最も大きくするには活性炭の比表面積はBET法(窒素ガス吸着法)で求めた値で700〜2400m2/gが適する。
【0012】
炭素材は一般に結晶化が進むと比表面積が低下し、また化学的な活性も悪くなる。結晶化の程度は通常粉末X線回折法により求められるd002(炭素の層面間隔)の値で評価される。この値が小さいほど結晶化が進んでいることを示す。キャパシタに使用する活性炭としては電気容量を大きくするためには結晶化は低いものの方がよく、d002の値で表すと3.86Å以上であることが好ましい。
【0013】
本発明の活性炭は酸素原子/炭素原子の比(O/C)が0.01〜0.10である。活性炭の表面にはフェノール性水酸基、カルボキシル基等の含酸素官能基が存在することが知られている(炭素材料学会編、新炭素材料 P.69)。しかし電気二重層キャパシタに使用される活性炭として、この官能基に着目したものは従来見当たらない。
【0014】
活性炭の比表面積や結晶構造だけではキャパシタの電気容量には限界があることから、本発明では活性炭表面の化学的性質について研究した結果、活性炭の酸素含有量を測定し、同じ比表面積同士の活性炭を比較したところ、O/C原子比が上記の範囲にある活性炭が電気容量が高く、かつ耐久性も良好であることが見出された。この酸素は上記の文献に記載のように大部分活性炭の表面に官能基として存在していると考えられる。したがって、活性炭の酸素含有量を測定することによって、活性炭表面の官能基の量を表すことができる。この官能基の存在により活性炭表面に引き寄せられるイオンの量が増加し、比表面積当たりのキャパシタの電気容量が増加すると推測される。官能基の量は活性炭中のO/C原子比で表して、0.01未満では電気容量の増加に寄与する程度が低く、また多すぎるとキャパシタの充放電に伴って活性炭表面の官能基がCO2等のガスとなって離脱して電解液を変質してしまい、キャパシタの耐久性を著しく低下させる。そのためO/C原子比は0.01〜0.10の範囲が適し、好ましくは0.01から0.07,さらに好ましくは0.02〜0.05である。O/C原子比は酸素原子および炭素原子を元素分析し、求めることができる。
【0015】
本発明の活性炭は上記の要件を備えたものであり、これによって電気二重層キャパシタに好適に使用できるが、さらにこの活性炭はやし殻、有機樹脂、石炭系コークスなどを原料として使用できるが、石炭系コークスを原料として製造されたものが好ましく、特に石炭系ピッチを比較的低温で熱処理(焼成、炭化など)した石炭系コークスから製造されたものであることが一層好ましい。その好ましい温度範囲は500〜900℃、さらに好ましくは、600〜800℃である。その理由は明らかではないが、石炭系ピッチは種々の芳香族化合物等の様々な分子構造の化合物が混在しており、これを炭化、賦活した活性炭はこの化合物に由来して、種々の複雑な微結晶構造等を形成し、イオンを引き寄せる作用をする点の多い状態が生じているとも考えられる。そしてこの活性炭は結晶性は低く、d002の値は3.86Å以上である。
【0016】
次に本発明の活性炭の製造方法について説明する。
本発明の活性炭の製造方法において、原料としての炭素材料は上記したように石炭系コークスが好ましく、なかでも石炭系ピッチを比較的低温(500〜900℃)で炭化した石炭系コークスが一層好ましい。この温度で熱処理したものには未だかなり揮発分が含まれ、いわゆる生コークスの状態のものもあるが、本発明ではこれらを含めてコークスと呼ぶ。
石炭系コークスは種々の複雑な微結晶構造等が形成されていると考えられるが、その構造解析のためラマンスペクトルを測定し、その解析を行った。
【0017】
ラマンスペクトルの測定は炭素材料の解析法の一つであることは従来から知られている。一般に炭素材料のラマンスペクトルは1580cm-1近傍のGバンドと1360cm-1近傍のDバンドのピークが現れる。炭素材料が結晶相とアモルファス相とからなる場合、それぞれの相にGバンドとDバンドがある。そして結晶相のGバンド、Dバンドはアモルファス相のGバンド、Dバンドよりラマンスペクトルのピーク幅が狭い。ラマンスペクトルの測定波形はこれらのバンドが合成されたものとして現れる。この測定波形はローレンツ関数またはガウス関数を用いて各波形に分離することができ、それによって、炭素材料の構造解析、例えば結晶相とアモルファス相の割合等を知ることができる。
【0018】
石炭系コークスについて、ラマンスペクトルを測定し、その波形を分離すると1360cm-1近傍のDバンドにショルダーピークと称するピークが2個以上現れることがわかった。さらに測定波形のGバンドのピーク高さに対するDバンドのピーク高さの比(D/Gのピークの高さ比)は0.6以下であることも判明した。石油コークスやフェノール樹脂;リグニンスルホン酸塩の炭化物等はD/Gのピークの高さ比は0.6より大きい。
【0019】
次に図を用いてラマンスペクトルのショルダーピーク等について具体的に説明する。
図1は本発明の実施例1の石炭系コークスのラマンスペクトルとその解析図である。図において波形1はラマンスペクトルの実測波形で1580cm-1近傍にGバンド、1360cm-1近傍にDバンドが現れている。図1の波形2はカーブフィッテング曲線である。波形3〜7は実測波形を左右対称のガウス関数を使用し、実測波形とカーブフィッテング曲線との誤差が極力小さくなるように調整して分離したものである。カーブフィッテング曲線はこのようにして分離した波形を合成したものである。
図1において、波形3がDバンドのピーク曲線で、波形4、波形5、波形6がDバンドのショルダーピーク曲線である。波形7はGバンドとDバンドの両者に係わるショルダーピークと思われる。
Gバンド、Dバンドのピーク高さは実測曲線1におけるベースラインからピーク点までの高さとして求められる。このD /Gピーク高さの比は測定条件等によっては殆ど変わらない。
【0020】
上記の石炭系コークスがDバンドにショルダーピークを2個以上有することから、このコークスは種々の微結晶構造のものが混在し、それが活性炭の原料として好ましいものと考えられる。また種々の実験結果から活性炭の原料としての炭素材料はラマンスペクトルのD /Gピーク高さの比が0.6以下のものが良好であることが判明したが、その理由については明らかでない。
本発明において活性炭の原料としての炭素材料は、一つは石炭系コークスであるが、Dバンドのショルダーピーク数、D /Gピーク高さの比が上記の範囲にあるものならば石炭系コークス以外でも使用可能である。例えば有機物を2種以上混合し、それを炭化してDバンドのショルダーピーク数を2以上、D /Gピーク高さの比が0.6以下の炭素材料を用いることができる。
【0021】
炭素材料の賦活方法は、活性炭が本発明の前記要件を備えているものであれば特に制限なく、水蒸気や炭酸ガスを用いたガス賦活、苛性アルカリ、塩化亜鉛等を用いた薬品賦活などいずれも採用可能であるが、本発明においては苛性アルカリ、なかでも苛性カリ(KOH)と苛性ソーダ(NaOH)の混合物が好ましい。苛性アルカリ混合物を用いることでキャパシタの電気容量をより高めることができ、それは活性炭の細孔分布を良好にしているためと考えられる。また苛性アルカリの混合物は活性炭の細孔の大きさ及びO/C原子比を調節するうえでも望ましい。苛性カリと苛性ソーダの混合比は、活性炭の仕様に応じて適正な値を選ぶことができるが、一般的には苛性カリ100質量部に対し苛性ソーダ10〜50質量部の範囲が適する。この範囲において苛性ソーダを多くするにしたがって活性炭の比較的大きい細孔である直径20〜40Åの細孔の比率を増加させることができる。さらに、50Å以上の大きい細孔の比率は増加させない。比較的大きい細孔を持つ活性炭を使用した電極は低温特性に優れるので、これを重視した場合には苛性ソーダの混合量を多くして賦活するとよい。またO/C原子比については、苛性カリはO/C原子比を高くする作用が苛性ソーダより強いので、本発明の活性炭においてO/C原子比を低い側に移行させ、電極材料として耐久性を重視する場合にも苛性ソーダの混合比を高めるとよい。しかし、苛性カリ100質量部に対し、苛性ソーダが50質量部を越えると賦活された活性炭の比表面積が小さくなり電気容量が低下してしまう。
【0022】
賦活温度は、一般的な電気二重層キャパシタの電極に用いる活性炭としては600℃〜900℃の温度が適し、好ましくは750℃〜800℃である。特に電極として耐久性を重視する場合には800℃〜900℃、初期電気容量を重視する場合には600℃〜700℃とするのがよい。
【0023】
上記した方法によって活性炭の比表面積を700〜2400m2/g、O/C原子比を0.01〜0.10とすることができる。なお、O/C原子比については、賦活して活性炭とした後、不活性ガス(例えば窒素ガス、アルゴンガス、ヘリウムガス)中で700〜800℃程度に熱処理することによって、O/C原子比を低い側に調整することができる。これによって賦活後にO/C原子比が0.10を越えるものでも熱処理によって0.10以下にすることができる。
本発明の活性炭から電極及び電気二重層キャパシタを公知の方法にしたがって製造することができる。即ち、電極は活性炭に導電剤および結合剤を加えて混練圧延する方法、活性炭に導電剤、結合剤、必要に応じて溶媒を加えてスラリー状にして導電材に塗布する方法、活性炭に未炭化樹脂類を混合して焼結する方法、等の方法で作製される。例えば平均粒径5〜100μm程度の活性炭の粉末に、必要により導電剤としてカーボンブラック等を加え、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン等の結合剤を加え、厚さ0.1〜0.5mm程度のシートに成形し、100〜200℃程度の温度で真空乾燥する。このシートを所定の形状に打ち抜き電極とする。この電極に集電材である金属板を積層し、セパレータを介し、金属板を外側にして2枚重ね、電解液に浸して電気二重層キャパシタとする。
電気二重層キャパシタの電解液としては公知の非水溶媒電解質溶液、水溶性電解質溶液のいずれにも使用可能である。
【0024】
【実施例】
以下実施例により本発明を具体的に説明する。
本実施例における各特性の測定方法は以下の通りである。
(d002の測定)
CuKα線を用い、粉末X線回折スペクトルからd002を求めた。なおd002の算出にあたっては内部標準物質としてSiを使用し、Si(111)面の回折ピークを用いて補正した。
(ラマンスペクトルの測定)
励起光としてArレーザー514.5nm、検出器としてCCD(Charge Coupled Device)を使用し、スリット500μm、露光60秒で活性炭の原料としての炭素材料のラマンスペクトルを測定した。この測定波形を左右対称のガウス関数により波形分離すると共にカーブフィッテングを行った。波形分離に際してはラマンスペクトルの実測曲線とその分離波形を合成したカーブフィテング曲線ができるだけ合うように調整した。それには例えば両者の差を残差二乗和で表して、この値が3.0以下となるようにする。なお、残差二乗和はピーク強度(Int.)の数値の取り方によって変わるので、ここでは縦軸のGバンドのピークの強度(Int.)を100として、残差二乗和を求める。
【0025】
(酸素及び炭素含有量の測定)
炭素材料を200℃で10時間真空乾燥したものを測定に使用し、LECO社製CHNS−932により炭素含有量(質量%)、同社製VT−900により酸素含有量を測定した。一つの炭素材料について5個サンプリングし、それぞれ測定し、その平均値を用いた。その炭素、酸素の質量%より酸素/炭素の原子比(O/C)を算出する。
(電極の作製)
平均粒径30μmの活性炭80質量部にPTFE(ポリテトラフルオロエチレン)10質量部、カーボンブラック10質量部を添加し、混練して厚さ0.5mmのシート状に圧延した。このシートを直径13mmの円板に打抜き、200℃で一昼夜真空乾燥して分極性電極として使用した。
【0026】
(電気二重層キャパシタの組立)
前記の電極を、高純度アルゴンを循環させているグローブボックス内において、図5のようなセルを組立て、評価用に使用した。図5において、8はアルミニウム製の上蓋、9はフッ素ゴム製Oリング、10はアルミニウムからなる集電体、11はテフロンからなる絶縁材、12はアルミニウム製容器、13はアルミニウム製板バネ、14は分極性電極、15はガラス繊維からなる厚さ1mmのセパレータである。電解液にはPC(プロピレンカーボネート)を溶媒とし、(C2H5)4NBF4を電解質とする富山薬品工業(株)製の商品名LIPASTE−P/EAFIN(1モル/リットル)を使用した。
充放電測定は北斗電工(株)製充放電試験装置HJ−101SM6を使用し、1.59mA/cm2の電流密度で0〜2.5Vで充放電を行い、2回目の定電流放電によって得られた放電曲線から、電気二重層キャパシタの両極活性炭の質量あたりの静電容量(F/g)と体積あたりの静電容量(F/ml)を算出した。
また耐久性は20回の充放電サイクル試験による電気容量の容量保持率(サイクル試験後の電気容量/2回目の充放電後の電気容量)により評価した。
【0027】
(実施例1)
川崎製鉄(株)製石炭系ピッチを窒素雰囲気中、500℃で熱処理し、粒径10〜100μmになるように粉砕して活性炭原料の炭素材料として使用した。そのラマンスペクトル曲線を図1に示す。図1の実測曲線とカーブフィテング曲線との誤差を表す残差二乗和は2.82であった。
この炭素材料に対して質量比で2.5倍量のKOHを混合し、ルツボに充填した。これを窒素気流中で750℃まで3℃/分で昇温した後、750℃で30分保持して賦活し、窒素気流中で冷却した。
賦活した炭素材料は1N塩酸で洗浄した後、蒸留水で洗浄し、残留KOH及び金属不純物を除去した。これを200℃で真空乾燥し、電極材料としての活性炭とした。この活性炭の細孔分布(DFT法)を図4に示す。細孔径20〜40Åの範囲においては、径20〜23Åの細孔分布しか見られない。
【0028】
(実施例2)
実施例1のKOHに代えて、炭素材料に対し、質量比で1.25倍量のKOHと0.9倍量のNaOHを使用した以外は実施例1と同様にして活性炭を製造し、電極材料とした。この活性炭の細孔分布(DFT法)を図4に示す。細孔径20〜40Åの範囲においては、それぞれの分布が見られ、それらの細孔容積が0.002〜0.02ml/gであった。
【0029】
(実施例3)
川崎製鉄(株)製石炭系ピッチを窒素気流中で700℃で熱処理した炭素材料を用いた以外は実施例2と同様にして活性炭を製造し、電極材料とした。
【0030】
(実施例4)
この例は参考例として示す。
川崎製鉄(株)製石炭系ピッチを窒素気流中800℃で熱処理した炭素材料を用いた外は実施例2と同様にして活性炭を製造し、電極材料とした。
【0031】
(比較例1)
活性炭の炭素材料として三鉱エンジニアリング(株)製、石油コークス(商品名MC)を用いた以外は実施例2と同様にして活性炭を製造し、電極材料とした。この石油コークスのラマンスペクトル曲線を図2に示す。
【0032】
(比較例2)
実施例1の石炭系ピッチを1200℃位で熱処理した石炭系コークスを炭素材料として用いた以外は実施例2と同様にして活性炭を製造し、電極材料とした。
【0033】
(比較例3)
炭素材料として、リグニンスルホン酸塩を700℃で熱処理したものを使用した以外は実施例2と同様にして、活性炭を製造し電極材料とした。炭素材料のラマンスペクトル曲線を図3に示す。
【0034】
以上の実施例、比較例の活性炭を用いて前記した方法により電極及び電気二重層キャパシタを製造した。活性炭の原料である炭素材料、電極及び電気二重層キャパシタの特性を表1に示す。
【0035】
【表1】
【0036】
【発明の効果】
本発明の活性炭は電気二重層キャパシタの電極材料として好適であり、その電極を用いた電気二重層キャパシタは、キャパシタとして重要な特性である電極の体積当りの電気容量が高く、また耐久性も良好である。
【図面の簡単な説明】
【図1】本発明の実施例1で使用した石炭系コークスのラマンスペクトル曲線である。
【図2】比較例2の石油コークスのラマンスペクトル曲線である。
【図3】比較例3のリグニンスルホン酸塩を700℃で熱処理したもののラマンスペクトル曲線である。
【図4】実施例1及び2の活性炭の細孔分布図である。
【図5】電気二重層キャパシタの断面図である。
【符号の説明】
1 ラマンスペクトルの実測曲線
2 カーブフィテング曲線
3、4、5、6、7 ラマンスペクトルの分離波形曲線
8 上蓋
9 Oリング
10 集電体
11 絶縁体
12 容器
13 板ばね
14 電極
15 セパレーター[0001]
BACKGROUND OF THE INVENTION
The present invention relates to activated carbon useful as an electric double layer capacitor (also referred to as an electric double layer capacitor). More specifically, activated carbon that can be suitably used as a capacitor electrode material having a high electric capacity and high durability, a method for producing the same, an electrode for an electric double layer capacitor (polarizable electrode) using the activated carbon, and an electric double layer having the electrode It relates to a capacitor.
[0002]
[Prior art]
Electric double layer capacitors are capable of rapid charge / discharge, are resistant to overcharge / discharge, have a long life because they do not involve chemical reactions, can be used in a wide temperature range, and do not contain heavy metals. It has been used for memory backup power supplies. Furthermore, in recent years, the development of large capacity has progressed rapidly, the development of applications for high-performance energy devices has been promoted, and the use for power storage systems combined with solar cells and fuel cells, engine assistance for hybrid cars, etc. has been considered. Yes.
[0003]
The electric double layer capacitor has a structure in which a pair of positive and negative polarizable electrodes made of activated carbon or the like are opposed to each other via a separator in a solution containing electrolyte ions. When a DC voltage is applied to the electrode, the anion in the solution is attracted to the electrode polarized to the positive (+) side, and the cation in the solution is attracted to the electrode polarized to the negative (−) side. The electric double layer formed at the interface is used as electric energy.
[0004]
The conventional electric double layer capacitor is excellent in power density, but has a disadvantage that the energy density is inferior, and further development of larger capacity is required for use in energy device applications. In order to increase the capacity of an electric double layer capacitor, it is indispensable to develop an electrode material that forms many electric double layers between solutions. In electrodes using activated carbon, it is known that the fine structure of activated carbon greatly affects the capacitance of the capacitor.
[0005]
Conventionally, attempts have been made to increase the amount of electrolyte ions attracted to the electrode by increasing the specific surface area of the activated carbon, thereby improving the capacitance. The capacitance of a capacitor is evaluated by the capacitance (volume density) per volume of the electrode, but as the specific surface area (m 2 / g) of activated carbon increases, the capacitance per mass (mass density) increases accordingly. However, since the pore volume of the activated carbon increases, the bulk density (g / ml) also decreases. Since the electric volume density is represented by the product of the electric mass density and the bulk density of the activated carbon, the volume density does not necessarily increase even if the specific surface area increases. If the specific surface area is too large, the density reduction of the activated carbon has a greater influence, resulting in the reduction of the product, that is, the volume density (Surface Technology Vol. 45, No. 6, pages 39 to 45, 1994). ).
[0006]
Therefore, by reducing the specific surface area occupied by pores in the region of 10 to 30 angstroms (Å), which greatly contributes to electric capacity, to 5% or more and 20% or less of the total surface area, it is possible to suppress a decrease in the bulk density of the activated carbon. It has been proposed to produce activated carbon having a high electric capacity per volume (F / ml) (Japanese Patent Laid-Open No. 11-307406).
[0007]
In addition, it has been proposed to produce activated carbon having a crystal structure that increases the electric capacity even when the specific surface area is small by heat-treating easily graphitized organic matter (Japanese Patent Laid-Open No. 11-317333).
[0008]
However, these examples also have drawbacks and are not satisfactory. That is, in the method of JP-A-11-307406, a catalyst is added to make the pore distribution as described above, but it is difficult to disperse the catalyst in a uniform state. There is a drawback that the pore distribution tends to vary. Further, in the method of JP-A-11-317333, when heat treating graphitizable organic matter, if heat treatment is performed at a temperature below the graphitization temperature, activated carbon having a suitable crystal structure can be obtained, but this activated carbon expands when a voltage is applied. As described in the patent publication, in order to suppress the expansion, a dimension limiting structure is required, and there is a big problem in the assembling operation of the capacitor.
[0009]
[Problems to be solved by the invention]
The electric capacity (volume density) per volume of the electrode, that is, the electrostatic capacity, greatly depends on the specific surface area and crystallinity of the activated carbon. However, even if these characteristics are best, there is a limit in itself.
An object of the present invention is to provide not only a specific surface area of activated carbon but also an electric capacity per surface area of the activated carbon to further increase the electric capacity per volume of the electrode, and to provide an activated carbon excellent in durability. And
[0010]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and has the following configuration.
(1) d 002 obtained by X-ray diffraction method is 3.86 Å or more, specific surface area by BET method is 700-2400 m 2 / g, and oxygen atom / carbon atom ratio is 0.01-0.10. Activated carbon characterized by being.
(2) The activated carbon according to (1) above, wherein the activated carbon is produced using coal-based coke as a raw material.
(3) The activated carbon according to (2), wherein the coal-based coke is obtained by heat-treating a coal-based pitch at 500 to 900 ° C.
(4) Activated carbon as described in said (1)-(3) which is an electrode material for electric double layer capacitors.
(5) A method for producing activated carbon, comprising activating a carbon material obtained by heat treating coal-based pitch at 500 to 900 ° C.
(6) The D band (1360 cm −1 ) in the Raman spectrum has two or more shoulder peaks, and the ratio of the peak height of the D band to the peak height of the G band (1580 cm −1 ) is 0.6 or less. A method for producing activated carbon, comprising activating a certain carbon material.
(7) The method for producing activated carbon according to (6), wherein the carbon material is coal-based coke.
(8) The method for producing activated carbon according to (7), wherein the coal-based coke is a heat-treated coal-based pitch at 500 to 900 ° C.
(9) The manufacturing method of the activated carbon in any one of said (5)-(8) whose activated carbon is the activated carbon in any one of said (1)-(4).
(10) The method for producing activated carbon according to any one of (5) to (9), wherein the activation is based on caustic alkali.
(11) The method for producing activated carbon according to (10), wherein the caustic alkali is a mixture of potassium hydroxide and sodium hydroxide.
(12) The production of activated carbon as described in (11) above, wherein the mixture of potassium hydroxide and sodium hydroxide is in the range of 10 to 50 parts by mass of sodium hydroxide with respect to 100 parts by mass of potassium hydroxide. Method (13) The manufacturing method of activated carbon in any one of said (5)-(12) whose activation temperature is 600-900 degreeC.
(14) An electrode for an electric double layer capacitor using the activated carbon described in (4) above in an electrode for an electric double layer capacitor containing activated carbon, a conductive agent and a binder.
(15) An electric double layer capacitor comprising the electrode according to (14) above, wherein the electrode is immersed in an electrolytic solution.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The specific surface area of the activated carbon of the present invention is 700 to 2400 m 2 / g. As the specific surface area decreases, the capacitance of a capacitor using it as an electrode decreases. Even if the specific surface area is too large, the electric capacity (volume density) per volume of the electrode is lowered as described above. In order to maximize the volume density, the specific surface area of the activated carbon is suitably 700-2400 m 2 / g as determined by the BET method (nitrogen gas adsorption method).
[0012]
In general, as the crystallization of the carbon material proceeds, the specific surface area decreases and the chemical activity also deteriorates. The degree of crystallization is evaluated by the value of d 002 (interval between carbon layer surfaces) usually obtained by a powder X-ray diffraction method. It shows that crystallization is progressing, so that this value is small. The activated carbon used in the capacitor in order to increase the electrical capacitance is better crystallization low, it is preferable that 3.86Å or more expressed by the value of d 002.
[0013]
The activated carbon of the present invention has an oxygen atom / carbon atom ratio (O / C) of 0.01 to 0.10. It is known that oxygen-containing functional groups such as phenolic hydroxyl groups and carboxyl groups exist on the surface of activated carbon (edited by Carbon Society of Japan, New Carbon Materials P.69). However, there has been no conventional activated carbon used for electric double layer capacitors that focuses on this functional group.
[0014]
Since the capacitance of the capacitor is limited only by the specific surface area and crystal structure of the activated carbon, in the present invention, as a result of studying the chemical properties of the activated carbon surface, the oxygen content of the activated carbon was measured, and the activated carbon having the same specific surface area was measured. As a result, it was found that activated carbon having an O / C atomic ratio in the above range has high electric capacity and good durability. It is considered that this oxygen is present as a functional group on the surface of the activated carbon mostly as described in the above literature. Therefore, by measuring the oxygen content of the activated carbon, the amount of functional groups on the activated carbon surface can be expressed. It is estimated that the presence of this functional group increases the amount of ions attracted to the activated carbon surface and increases the capacitance of the capacitor per specific surface area. The amount of the functional group is expressed by the O / C atomic ratio in the activated carbon, and if it is less than 0.01, the degree of contribution to the increase in electric capacity is low, and if it is too large, the functional group on the surface of the activated carbon accompanies charging / discharging of the capacitor. It becomes a gas such as CO 2 and is dissociated to alter the electrolytic solution, thereby significantly reducing the durability of the capacitor. Therefore, the O / C atomic ratio is suitably in the range of 0.01 to 0.10, preferably 0.01 to 0.07, more preferably 0.02 to 0.05. The O / C atomic ratio can be obtained by elemental analysis of oxygen atoms and carbon atoms.
[0015]
The activated carbon of the present invention has the above-mentioned requirements and can be suitably used for an electric double layer capacitor. Further, this activated carbon can be used as a raw material such as coconut shell, organic resin, coal-based coke, etc. Those manufactured using coke as a raw material are preferable, and those manufactured from coal-based coke obtained by heat-treating (calcining, carbonizing, etc.) coal-based pitch at a relatively low temperature are even more preferable. The preferable temperature range is 500-900 degreeC, More preferably, it is 600-800 degreeC. The reason for this is not clear, but coal-based pitch contains a mixture of compounds with various molecular structures such as various aromatic compounds. The activated carbon obtained by carbonizing and activating this is derived from this compound and has various complexities. It is considered that a state in which a microcrystal structure or the like is formed and there are many points that act to attract ions is generated. The activated carbon is crystalline is low and the value of d 002 is more than 3.86 Å.
[0016]
Next, the manufacturing method of the activated carbon of this invention is demonstrated.
In the method for producing activated carbon of the present invention, the carbon material as a raw material is preferably coal-based coke as described above, and more preferably coal-based coke obtained by carbonizing a coal-based pitch at a relatively low temperature (500 to 900 ° C.). Those heat-treated at this temperature still contain a considerable amount of volatile matter, and some of them are in the form of so-called raw coke. In the present invention, these are referred to as coke.
Coal-based coke is thought to have various complex crystallite structures, and Raman spectra were measured and analyzed for the structural analysis.
[0017]
It has been conventionally known that measurement of a Raman spectrum is one of analysis methods for a carbon material. Generally Raman spectrum of the carbon material appears peaks of G band and 1360 cm -1 near the D band near 1580 cm -1. When the carbon material is composed of a crystalline phase and an amorphous phase, each phase has a G band and a D band. The G band and D band of the crystal phase have a narrower Raman spectrum peak width than the G band and D band of the amorphous phase. The measured waveform of the Raman spectrum appears as a combination of these bands. This measured waveform can be separated into each waveform using a Lorentz function or a Gaussian function, whereby the structural analysis of the carbon material, for example, the ratio of the crystalline phase to the amorphous phase can be known.
[0018]
For coal-based coke, the Raman spectrum was measured, and when the waveforms were separated, it was found that two or more peaks called shoulder peaks appeared in the D band near 1360 cm −1 . It was also found that the ratio of the peak height of the D band to the peak height of the G band of the measurement waveform (D / G peak height ratio) was 0.6 or less. Petroleum coke, phenol resin, carbide of lignin sulfonate, etc. have a D / G peak height ratio greater than 0.6.
[0019]
Next, the shoulder peak of the Raman spectrum will be specifically described with reference to the drawings.
FIG. 1 is a Raman spectrum of coal-based coke of Example 1 of the present invention and its analysis diagram. Waveform 1 G band 1580 cm -1 vicinity in measured waveform of a Raman spectrum, the D band 1360 cm -1 vicinity appearing in FIG.
In FIG. 1, waveform 3 is a D-band peak curve, and
The peak heights of the G band and the D band are obtained as the height from the base line to the peak point in the actual measurement curve 1. The ratio of the D / G peak height hardly changes depending on the measurement conditions.
[0020]
Since the above-mentioned coal-based coke has two or more shoulder peaks in the D band, this coke contains various microcrystalline structures, which are considered preferable as a raw material for activated carbon. From various experimental results, it was found that a carbon material as a raw material for activated carbon had a Raman spectrum D / G peak height ratio of 0.6 or less, but the reason is not clear.
In the present invention, one of the carbon materials as the raw material of the activated carbon is coal-based coke, but other than coal-based coke as long as the number of D-band shoulder peaks and the ratio of D / G peak height are in the above ranges. But it can be used. For example, it is possible to use a carbon material in which two or more organic substances are mixed and carbonized to have a D band shoulder peak number of 2 or more and a D / G peak height ratio of 0.6 or less.
[0021]
The activation method of the carbon material is not particularly limited as long as the activated carbon has the above-mentioned requirements of the present invention, and any of such as gas activation using water vapor or carbon dioxide gas, chemical activation using caustic alkali, zinc chloride, etc. In the present invention, a caustic alkali, particularly a mixture of caustic potash (KOH) and caustic soda (NaOH) is preferable. By using the caustic mixture, the electric capacity of the capacitor can be further increased, which is considered to be because the pore distribution of the activated carbon is improved. A caustic mixture is also desirable for adjusting the pore size and O / C atomic ratio of the activated carbon. The mixing ratio of caustic potash and caustic soda can be selected appropriately depending on the specifications of the activated carbon, but generally a range of 10 to 50 parts by weight of caustic soda per 100 parts by weight of caustic potash is suitable. In this range, as the amount of caustic soda is increased, the ratio of pores having a diameter of 20 to 40 mm, which are relatively large pores of activated carbon, can be increased. Furthermore, the ratio of large pores of 50 mm or more is not increased. An electrode using activated carbon having relatively large pores is excellent in low-temperature characteristics. Therefore, when importance is attached to this, it is preferable to activate by increasing the amount of caustic soda mixed. As for the O / C atomic ratio, caustic potash has a stronger effect on increasing the O / C atomic ratio than caustic soda, so in the activated carbon of the present invention, the O / C atomic ratio is shifted to the lower side, and durability is emphasized as an electrode material. In this case, it is better to increase the mixing ratio of caustic soda. However, when caustic soda exceeds 50 parts by mass with respect to 100 parts by mass of caustic potash, the specific surface area of the activated activated carbon becomes small and the electric capacity decreases.
[0022]
The activation temperature is suitably 600 ° C. to 900 ° C., and preferably 750 ° C. to 800 ° C. as the activated carbon used for the electrode of a general electric double layer capacitor. In particular, when the durability is important as an electrode, the temperature is preferably 800 ° C to 900 ° C, and when the initial electric capacity is important, the temperature is preferably 600 ° C to 700 ° C.
[0023]
By the above-described method, the specific surface area of the activated carbon can be set to 700 to 2400 m 2 / g, and the O / C atomic ratio can be set to 0.01 to 0.10. In addition, about O / C atomic ratio, after activating and making activated carbon, it heat-processes at about 700-800 degreeC in inert gas (for example, nitrogen gas, argon gas, helium gas), O / C atomic ratio Can be adjusted to the lower side. Thereby, even if the O / C atomic ratio exceeds 0.10 after activation, it can be reduced to 0.10 or less by heat treatment.
An electrode and an electric double layer capacitor can be produced from the activated carbon of the present invention according to a known method. That is, the electrode is a method of kneading and rolling by adding a conductive agent and a binder to activated carbon, a method of adding a conductive agent and a binder to activated carbon, adding a solvent if necessary, and applying the slurry to a conductive material, and uncarbonizing the activated carbon. It is produced by a method such as a method of mixing and sintering resins. For example, carbon black or the like is added to the activated carbon powder having an average particle size of about 5 to 100 μm as a conductive agent if necessary, and a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride is added. It is formed into a sheet of about 5 mm and vacuum dried at a temperature of about 100 to 200 ° C. This sheet is punched into a predetermined shape and used as an electrode. A metal plate as a current collector is laminated on this electrode, and two metal plates are stacked with a separator interposed therebetween, and immersed in an electrolyte solution to form an electric double layer capacitor.
As an electrolytic solution of the electric double layer capacitor, any known non-aqueous solvent electrolyte solution or water-soluble electrolyte solution can be used.
[0024]
【Example】
The present invention will be specifically described below with reference to examples.
The measuring method of each characteristic in a present Example is as follows.
(Measurement of d 002 )
Using CuKα ray was determined d 002 from the powder X-ray diffraction spectrum. In calculating d 002 , Si was used as an internal standard substance and corrected using a diffraction peak on the Si (111) plane.
(Raman spectrum measurement)
Using an Ar laser 514.5 nm as excitation light and a CCD (Charge Coupled Device) as a detector, a Raman spectrum of a carbon material as a raw material of activated carbon was measured with a slit of 500 μm and an exposure time of 60 seconds. The measured waveform was separated by a symmetrical Gaussian function and curve fitting was performed. When separating the waveforms, adjustment was made so that the measured curve of the Raman spectrum and the curve fitting curve obtained by synthesizing the separated waveforms matched as much as possible. For this purpose, for example, the difference between the two is expressed as a residual sum of squares so that this value is 3.0 or less. Since the residual sum of squares varies depending on how the peak intensity (Int.) Is taken, the residual square sum is obtained with the intensity (Int.) Of the peak of the G band on the vertical axis as 100.
[0025]
(Measurement of oxygen and carbon content)
The carbon material was vacuum-dried at 200 ° C. for 10 hours for measurement, and the carbon content (mass%) was measured with LENS CHNS-932, and the oxygen content was measured with VT-900. Five samples of one carbon material were sampled and measured, and the average value was used. The oxygen / carbon atomic ratio (O / C) is calculated from the mass% of the carbon and oxygen.
(Production of electrodes)
10 parts by mass of PTFE (polytetrafluoroethylene) and 10 parts by mass of carbon black were added to 80 parts by mass of activated carbon having an average particle size of 30 μm, kneaded and rolled into a sheet having a thickness of 0.5 mm. This sheet was punched into a disc having a diameter of 13 mm and vacuum-dried at 200 ° C. for a whole day and used as a polarizable electrode.
[0026]
(Assembly of electric double layer capacitor)
A cell as shown in FIG. 5 was assembled and used for evaluation in the glove box in which high purity argon was circulated. In FIG. 5, 8 is an aluminum top cover, 9 is a fluororubber O-ring, 10 is a current collector made of aluminum, 11 is an insulating material made of Teflon, 12 is an aluminum container, 13 is an aluminum leaf spring, 14 Is a polarizable electrode, and 15 is a 1 mm thick separator made of glass fiber. For the electrolytic solution, a product name LIPASTE-P / EAFIN (1 mol / liter) manufactured by Toyama Pharmaceutical Co., Ltd. using PC (propylene carbonate) as a solvent and (C 2 H 5 ) 4 NBF 4 as an electrolyte was used. .
The charge / discharge measurement is performed by using a charge / discharge test apparatus HJ-101SM6 manufactured by Hokuto Denko Co., Ltd., charging / discharging at 0-2.5 V at a current density of 1.59 mA / cm 2 , and obtained by a second constant current discharge. From the obtained discharge curve, the capacitance per mass (F / g) and the capacitance per volume (F / ml) of the bipolar activated carbon of the electric double layer capacitor were calculated.
Durability was evaluated based on the capacity retention rate of electric capacity (electric capacity after cycle test / electric capacity after second charge / discharge) by 20 charge / discharge cycle tests.
[0027]
Example 1
A coal-based pitch manufactured by Kawasaki Steel Co., Ltd. was heat-treated at 500 ° C. in a nitrogen atmosphere and pulverized so as to have a particle size of 10 to 100 μm, and used as a carbon material of activated carbon material. The Raman spectrum curve is shown in FIG. The residual sum of squares representing the error between the actually measured curve and the curve fitting curve in FIG. 1 was 2.82.
The carbon material was mixed with 2.5 times the amount of KOH in a mass ratio and filled in a crucible. This was heated up to 750 ° C. at a rate of 3 ° C./min in a nitrogen stream, then kept at 750 ° C. for 30 minutes for activation, and cooled in a nitrogen stream.
The activated carbon material was washed with 1N hydrochloric acid and then with distilled water to remove residual KOH and metal impurities. This was vacuum dried at 200 ° C. to obtain activated carbon as an electrode material. The pore distribution (DFT method) of this activated carbon is shown in FIG. In the range of the pore diameter of 20 to 40 mm, only a pore distribution with a diameter of 20 to 23 mm can be seen.
[0028]
(Example 2)
Instead of KOH in Example 1, activated carbon was produced in the same manner as in Example 1 except that 1.25 times the amount of KOH and 0.9 times the amount of NaOH were used with respect to the carbon material. Material was used. The pore distribution (DFT method) of this activated carbon is shown in FIG. In the range of pore diameters of 20 to 40 mm, respective distributions were observed, and the pore volumes were 0.002 to 0.02 ml / g.
[0029]
(Example 3)
Activated carbon was produced in the same manner as in Example 2 except that a carbon material obtained by heat-treating a coal-based pitch manufactured by Kawasaki Steel Co., Ltd. in a nitrogen stream at 700 ° C. was used as an electrode material.
[0030]
Example 4
This example is shown as a reference example.
Activated carbon was produced as an electrode material in the same manner as in Example 2 except that a carbon material obtained by heat-treating a coal-based pitch manufactured by Kawasaki Steel Co., Ltd. at 800 ° C. in a nitrogen stream was used.
[0031]
(Comparative Example 1)
Activated carbon was produced in the same manner as in Example 2 except that Sanko Engineering Co., Ltd., petroleum coke (trade name MC) was used as the carbon material for the activated carbon, and used as an electrode material. The Raman spectrum curve of this petroleum coke is shown in FIG.
[0032]
(Comparative Example 2)
Activated carbon was produced in the same manner as in Example 2 except that coal-based coke obtained by heat-treating the coal-based pitch of Example 1 at about 1200 ° C. was used as a carbon material, and used as an electrode material.
[0033]
(Comparative Example 3)
Activated carbon was produced as an electrode material in the same manner as in Example 2 except that a carbon material obtained by heat-treating lignin sulfonate at 700 ° C. was used. A Raman spectrum curve of the carbon material is shown in FIG.
[0034]
Electrodes and electric double layer capacitors were produced by the above-described methods using the activated carbons of the above examples and comparative examples. Table 1 shows the characteristics of the carbon material, the electrode, and the electric double layer capacitor that are the raw materials of the activated carbon.
[0035]
[Table 1]
[0036]
【The invention's effect】
The activated carbon of the present invention is suitable as an electrode material for an electric double layer capacitor, and the electric double layer capacitor using the electrode has a high electric capacity per volume of the electrode, which is an important characteristic as a capacitor, and also has good durability. It is.
[Brief description of the drawings]
FIG. 1 is a Raman spectrum curve of coal-based coke used in Example 1 of the present invention.
2 is a Raman spectrum curve of petroleum coke of Comparative Example 2. FIG.
FIG. 3 is a Raman spectrum curve of the lignin sulfonate of Comparative Example 3 heat-treated at 700 ° C.
4 is a pore distribution diagram of activated carbons of Examples 1 and 2. FIG.
FIG. 5 is a cross-sectional view of an electric double layer capacitor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Measured curve of
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001068378A JP4762424B2 (en) | 2001-03-12 | 2001-03-12 | Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001068378A JP4762424B2 (en) | 2001-03-12 | 2001-03-12 | Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002265215A JP2002265215A (en) | 2002-09-18 |
JP4762424B2 true JP4762424B2 (en) | 2011-08-31 |
Family
ID=18926577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001068378A Expired - Fee Related JP4762424B2 (en) | 2001-03-12 | 2001-03-12 | Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4762424B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170048254A (en) | 2014-09-09 | 2017-05-08 | 가부시키가이샤 토호쿠 테크노 아치 | Method for producing porous graphite, and porous graphite |
WO2017149886A1 (en) | 2016-03-04 | 2017-09-08 | 株式会社東北テクノアーチ | Method for producing porous carbon material, and spherical porous carbon material |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5208160B2 (en) * | 2003-01-14 | 2013-06-12 | 関西熱化学株式会社 | Method for producing porous carbon for electric double layer capacitor, porous carbon for electric double layer capacitor obtained by the production method, and electric double layer capacitor using porous carbon for electric double layer capacitor |
JP4615868B2 (en) * | 2003-01-14 | 2011-01-19 | 関西熱化学株式会社 | Method for producing porous carbon for electric double layer capacitor, porous carbon for electric double layer capacitor obtained by the production method, and electric double layer capacitor using porous carbon for electric double layer capacitor |
JP4838152B2 (en) * | 2007-01-11 | 2011-12-14 | Jfeケミカル株式会社 | Porous carbon material, method for producing the same, and electric double layer capacitor |
KR20100064633A (en) * | 2008-12-05 | 2010-06-15 | 삼성전자주식회사 | Electrode for capacitive deionization, and capacitive deionization device and electric double layer capacitor having same |
KR20110080393A (en) * | 2010-01-05 | 2011-07-13 | 삼성전자주식회사 | Method of preparing electrode for capacitive deionization device, electrode for capacitive deionization device, and capacitive deionization device having the electrode |
US8482900B2 (en) | 2010-11-30 | 2013-07-09 | Corning Incorporated | Porous carbon for electrochemical double layer capacitors |
KR101689479B1 (en) * | 2015-10-15 | 2016-12-23 | 지에스에너지 주식회사 | Active carbon for electrical-double-layer capacitor electrode and method for manufacturing the same |
JP6827699B2 (en) * | 2016-02-17 | 2021-02-10 | 株式会社キャタラー | Carbon materials for capacitors and capacitors |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0986914A (en) * | 1995-09-28 | 1997-03-31 | Osaka Gas Co Ltd | Active carbon, its production and adsorption and removal of acidic component |
JP4113596B2 (en) * | 1997-01-07 | 2008-07-09 | 関西熱化学株式会社 | Manufacturing method of carbon materials for electric double layer capacitors |
-
2001
- 2001-03-12 JP JP2001068378A patent/JP4762424B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170048254A (en) | 2014-09-09 | 2017-05-08 | 가부시키가이샤 토호쿠 테크노 아치 | Method for producing porous graphite, and porous graphite |
US10403900B2 (en) | 2014-09-09 | 2019-09-03 | Tohoku Techno Arch Co., Ltd. | Method for producing porous graphite, and porous graphite |
US10763511B2 (en) | 2014-09-09 | 2020-09-01 | Tohoku Techno Arch Co., Ltd. | Method for producing porous graphite, and porous graphite |
WO2017149886A1 (en) | 2016-03-04 | 2017-09-08 | 株式会社東北テクノアーチ | Method for producing porous carbon material, and spherical porous carbon material |
US11180374B2 (en) | 2016-03-04 | 2021-11-23 | Tohoku Techno Arch Co., Ltd. | Method for producing porous carbon material and spherical porous carbon material |
US11377358B2 (en) | 2016-03-04 | 2022-07-05 | Tohoku Techno Arch Co., Ltd. | Method for producing porous carbon material |
Also Published As
Publication number | Publication date |
---|---|
JP2002265215A (en) | 2002-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7691782B2 (en) | Active carbon, production method thereof and polarizable electrode | |
TWI624975B (en) | Non-aqueous lithium type storage element | |
US8842417B2 (en) | High voltage electro-chemical double layer capacitor | |
JP4035150B2 (en) | Pseudo capacitance capacitor | |
JP2005136397A (en) | Activated carbon, electrode material using it, and electric double layer capacitor | |
EP2172422B1 (en) | Process for producing activated carbon for electric double layer capacitor electrode | |
JP2003051430A (en) | Ingredient composition of carbon material for electric double-layer capacitor and manufacturing method therefor, and electric double-layer capacitor and manufacturing method therefor | |
JP3953502B1 (en) | Power storage system | |
JP4762424B2 (en) | Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon | |
JP4576374B2 (en) | Activated carbon, its production method and its use | |
US6258337B1 (en) | Carbonaceous material for electric double layer capacitor and process for production thereof | |
JP4081125B2 (en) | Positive electrode for electric double layer capacitor and electric double layer capacitor | |
JP3920310B1 (en) | Positive electrode for electric double layer capacitor and electric double layer capacitor | |
JP4045438B2 (en) | Double-layer carbon material for secondary battery and lithium secondary battery using the same | |
JP2006004978A (en) | Electrical double-layer capacitor | |
JP2016042502A (en) | Negative electrode for nonaqueous lithium type power storage device | |
JP2007269518A (en) | Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor | |
JP2016076673A (en) | Carbon material for hybrid capacitor | |
JP2006024747A (en) | Carbon material for electric double-layer capacitor electrode, and its production method | |
JP2000138141A (en) | Manufacture of carbon porous body for electric double layer capacitor polarizable electrode | |
JP3807854B2 (en) | Electric double layer capacitor | |
JP4916632B2 (en) | Vapor grown carbon fiber and its use | |
JP2006004997A (en) | Carbon for electric double layer capacitor electrode, its manufacturing method and electric double layer capacitor | |
JP2005142439A (en) | Manufacturing method of activated carbon for electric double layer capacitor electrode and its carbon raw material | |
JP2000228193A (en) | Carbonaceous negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20050530 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110127 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110607 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110608 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |