[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4759898B2 - Diving suit - Google Patents

Diving suit Download PDF

Info

Publication number
JP4759898B2
JP4759898B2 JP2001297657A JP2001297657A JP4759898B2 JP 4759898 B2 JP4759898 B2 JP 4759898B2 JP 2001297657 A JP2001297657 A JP 2001297657A JP 2001297657 A JP2001297657 A JP 2001297657A JP 4759898 B2 JP4759898 B2 JP 4759898B2
Authority
JP
Japan
Prior art keywords
water
hygroscopic
fine particles
absorbing
diving suit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001297657A
Other languages
Japanese (ja)
Other versions
JP2003105672A (en
Inventor
清秀 林
清一 越智
明久 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001297657A priority Critical patent/JP4759898B2/en
Publication of JP2003105672A publication Critical patent/JP2003105672A/en
Application granted granted Critical
Publication of JP4759898B2 publication Critical patent/JP4759898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Description

【0001】
【発明が属する技術分野】
本発明はドライスーツやウェットスーツなど遊泳、競泳、サーフィン、釣りなど海中や水中で使用されるダイビングスーツ全般において、とくに寒冷時において効果を発揮するダイビングスーツに関するものである。
【0002】
【従来の技術】
従来、遊泳や競泳に用いられる水着やサーフィン、釣りにおけるウェットスーツなどは、海水中での運動動作が円滑にできることが重要な要求品質である。こうした観点から、ツーウェイトリコットに代表される伸縮性の優れた編地を単体で用いるか、これらの編地とクロロプレンゴムなどなどにボンディングして用いられてきた。また、寒冷時での使用においては保温対策としてゴムの厚みや布地の積層などで対応してきたのが実状であり、厚みが大きくなりかさばるため、動きやすさが低下する傾向があった。
こうした不具合を解消する目的で積層構造や布帛中に機能性粒子を添加して保温効果を増大させる方法などが提案されているが、十分な性能を得るに至っていない。
【0003】
【発明が解決しようとする課題】
本発明は上記の様な従来のダイビングスーツの問題点を解消し、海水中に入った際の身体の急激な温度低下による影響を少なくし、運動性を低下させないダイビングスーツを提供するものである。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決するための技術構成は次のとおりである。すなわち、
1.透湿性、防水性を有する単層又は複層から構成されるダイビングスーツの肌側の少なくとも一部または全面に、高吸湿性微粒子が付着されて吸湿及び/又は吸水時の最大温度上昇が3℃以上である吸湿/吸水発熱性構造体を有するダイビングスーツ。
【0005】
2.吸湿/吸水発熱性構造体の吸湿時の発熱が30分以上及び/又は吸水時の発熱が1分以上保持される吸湿/吸水発熱性構造体を有する1項に記載のダイビングスーツ。
【0006】
3.吸湿/吸水発熱性構造体の吸水時の最大温度上昇が8℃以上である吸湿/吸水発熱性構造体を有する1項または2項に記載のダイビングスーツ。
【0007】
4.吸湿/吸水発熱性構造体に付与される高吸湿性微粒子が有機微粒子である1〜3項のいずれかに記載のダイビングスーツ。
【0008】
5.吸湿/吸水発熱性構造体に付与される高吸湿性有機微粒子がポリスチレン系、ポリアクリロニトリル系、ポリアクリル酸エステル系、ポリメタクリル酸エステル系のいずれかのビニル系重合体で、スルホン酸基、カルボン酸基、リン酸基あるいは、それらの金属塩の少なくとも1種の親水基を有し、かつジビニルベンゼン、トリアリルイソシアネートまたはヒドラジンのいずれかで架橋された架橋重合体である4項記載のダイビングスーツ。
【0009】
6.吸湿/吸水発熱性構造体に使用する高吸湿性微粒子の平均粒子径が2μm未満であることを特徴とする1〜5項のいずれかに記載のダイビングスーツ。
【0010】
7.吸湿/吸水発熱性構造体に使用する高吸湿性微粒子が親水性樹脂を介して構造体に固定化されている1〜6項のいずれかに記載のダイビングスーツ。
【0011】
8.吸湿/吸水発熱性構造体に使用する高吸湿性微粒子と親水性樹脂の質量比が1/1〜19/1である1〜7項のいずれかに記載のダイビングスーツ。
【0012】
9.吸湿/吸水発熱性構造体が天然繊維、化合繊もしくはこれらの混用繊維で構成される編物、織物、不織布、フリース、紐状体またはフィルムまたは樹脂成形体である1〜8項のいずれかに記載のダイビングスーツ。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0014】
本発明におけるダイビングスーツは、防水性を有する外層部を備えることが望ましい。また外層部は単層であってもよく、その内側にフィルムをラミネートしたり、編地を接着したものであってもよいが、海水中での動作を妨げない範囲であれば良い。
【0015】
外層部を非限定的に例示すれば、ポリウレタン湿式コーティングやポリウレタン・アクリル湿式コーティング等を施した織編物、あるいは前記防水性フィルムとしてテトラフルオロエチレンフィルムやポリウレタンフィルム等をラミネート又は貼着した織編物等があげられる。なお、更に防水機能を十分なものとする目的で外層部に撥水加工を施すこともできる。
【0016】
なお、本発明のダイビングスーツは内層部に吸湿/吸水発熱機能を有する構造体を配置したものである。海水中に入ったときに、特に寒冷時においては熱伝導により急激に身体の温度低下が始まる。本発明の吸湿/吸水発熱機能を有する構造体を備えたダイビングスーツでは、内層部の構造体が身体からでる水分により発熱するため、温度低下を抑制することができ身体温度の低下を防ぐことができる。また、スエットスーツにおいては皮膚と該スーツの間に存在する微空間に入り込む水分により発熱することで、身体の温度低下を防ぐことが可能となる。
【0017】
本発明のダイビングスーツは複数層の場合、外層部と内層部を一体化して縫製しても良く、それぞれを単独で縫製した、重ね合わせて一体化しても良い。
【0018】
本発明に用いる構造体とは、ポリエステル系、ポリアミド系、ポリアクリルニトリル系、ポリエチレン系、ポリプロピレン系、ポリウレタン系、ポリフェニレンサルファイド系等の合成繊維、レーヨン、アセテート等の化学繊維、木綿、麻、シルク、ウール、羽毛などの天然繊維もしくはこれらの混用素材からなる編物、織物、不織布、フリース、紐状体またはフィルムまたは樹脂成形体などで構成される構造体である。
【0019】
本発明の高吸湿性微粒子(高吸湿/吸水発熱性微粒子とも表記する。)とは、吸湿又は吸水時に発熱性を示す微粒子であれば、特に化学構造的に限定されるものではない。例えば、吸湿性シリカなどの無機系、もしくは吸湿性ポリウレタン系、ポリアミド系、ポリエステル系およびポリアクリレート系などの種々の有機系微粒子の適用が可能であるが、特に、高吸湿/吸水発熱性有機微粒子が好ましく、例えば、ポリスチレン系、ポリアクリロニトリル系、ポリアクリル酸エステル系、ポリメタクリル酸エステル系のいずれかのビニル系重合体で、スルホン酸基、カルボン酸基、リン酸基あるいは、それらの金属塩の少なくとも1種の親水基を有し、かつジビニルベンゼン、トリアリルイソシアネートまたはヒドラジンのいずれかで架橋された架橋重合体微粒子である。
【0020】
高吸湿性微粒子の粒度は、吸湿/吸水発熱速度/発熱効率、均一付着性、風合い及び耐磨耗性の点から細かいほど望ましく、平均粒子径2μm未満がより好ましい。
【0021】
本発明の高吸湿/吸水発熱性微粒子の付与方法は、繊維、フィルムもしくは樹脂層に直接練り込む方法や編物、織物、不織布、フリース、紐状物、フィルム及び樹脂成形品などの表層にバインダー樹脂を介して付着させる方法が挙げられるが、吸湿/吸水発熱速度/発熱効率の点から後者のバインダー樹脂を介する付着方法が好ましい。
【0022】
バインダー樹脂としては、通常の含浸法、パディング法、コーティング法、スプレー法に適用できるシリコン系、ウレタン系、アクリル系、ポリエステル系、ポリアミド系、ポリエチレンオキサイド系などの樹脂が挙げられ、特に限定されないが、親水性、すなわち、吸湿性、吸水性、透湿性に優れ、高吸湿/吸水発熱性微粒子の優れた吸湿性、吸水性を阻害せず、しかも高吸湿/吸水発熱性微粒子と構造体を効果的に接着固定化できるバインダー機能に優れるタイプが望ましい。特に好ましい親水性樹脂バインダーとしては、親水性セグメントとして、ポリアルキレンオキサイド付加型、スルホン酸塩、カルボン酸塩等の極性親水基型、アミド変成型などを導入した親水性シリコーン系樹脂、親水性ウレタン系樹脂、親水性ポリアミド系樹脂、親水性ポリエチレンオキサイド系樹脂で、樹脂自身の吸湿性、透湿性が高く、吸水性を阻害しないものがあげられる。ここで言う樹脂の透湿性とは無孔膜状態での透湿性を意味する。微多孔膜で発現する透湿性が高い樹脂でも、樹脂自身の吸湿性、吸水性が低いバインダー樹脂では、高吸湿/吸水発熱性微粒子の優れた吸湿発熱もしくは吸水発熱性をマスキングし、低下させる。また、これら高吸湿/吸水発熱性微粒子と親水性樹脂バインダーの系に耐久性向上のために、イソシアネート系、メチロール系、エチレンイミン系、多官能アジリジニル系、金属塩系など各種架橋剤を、併用微粒子本来の吸湿/吸水性を低下させない範囲で併用しても良い。
【0023】
本発明における高吸湿/吸水発熱性微粒子と親水性樹脂の配合比及びこれらの付着量は、吸湿/吸水発熱性に大きく影響する。親水性樹脂の親水レベルにより高吸湿/吸水発熱性微粒子と親水性樹脂の配合比は多少異なるが、通常1/1〜19/1の配合使用が望ましく、好ましくは、10/1〜19/1の配合比が、さらに好ましくは、15/1〜19/1の配合比などの、特に親水性樹脂の配合比率の小さいものほど、優れた吸湿/吸水発熱性を発現させることができる。但し、親水性樹脂が極端に少ない場合、もしくは併用しない場合は構造物表面に付着した高吸湿/吸水発熱性微粒子の磨耗耐久性が低下し、脱落し易くなる。逆に、親水性樹脂の配合比が多い場合は、親水性樹脂といえども、高吸湿/吸水発熱性微粒子本来の保有する吸湿/吸水性を阻害するケースが多いため、マスキング効果により吸湿/吸水発熱速度及び発熱量が極端に低下する。もちろん、親水性樹脂の吸湿/吸水性が高吸湿/吸水発熱性微粒子と同等以上の場合は、親水性樹脂の配合比を増加することができる。
【0024】
本発明の吸湿/吸水発熱性構造体の発熱性は、物質の吸湿もしくは吸水時に産出する吸着反応熱に基づくもので、構造体に含まれる高吸湿/吸水性微粒子及び併用親水性樹脂バインダーの吸湿性能力及び又は吸水性能力及び付着量に依存する。すなわち、高吸湿/吸水性微粒子で、しかも細かいほど、吸湿もしくは吸水レベルの高い親水性樹脂バインダーほど、吸着水分による産熱は大きく、発熱速度も早く、発熱保持時間も長くなる。もちろん、かかる吸湿/吸水性は構造体基材単独でも保有するため、より効果的な吸湿/吸水発熱性を実現させるためには適用吸湿/吸水発熱性微粒子の吸湿率(20℃、65%RH)は25%以上が望ましく、さらに好ましくは40%以上である。また、併用親水性樹脂はかかる吸湿/吸水発熱性微粒子の吸湿性/吸水性をできるだけ阻害しない少なくとも吸湿率(20℃、65%RH)3〜50%のものが好ましい。
【0025】
気相状態の吸湿発熱性が適度な速度で発熱し、比較的長く発熱性を維持するのに対して、液相の吸水発熱性は急速な発熱性が得られる反面、付着水の量が多すぎると顕著な発熱効果が得られない場合もあるので、スエットスーツなど積極的に取り入れる水分を利用する場合は、吸湿/吸水発熱性構造体と外層部の設計を工夫することで可能となる。
【0026】
本発明によれば、高吸湿/吸水発熱性微粒子の種類及び付着量を最適化し、適正な親水性樹脂バインダーを介して付着させた構造体は、吸湿及び又は吸水時の最大温度上昇が3℃以上、好ましくは4℃以上、より好ましくは4℃以上であり、さらには吸水時の最大温度上昇が8℃以上であり、しかも吸湿時の発熱保持時間が30分以上、吸水時の発熱保持時間が30秒以上、より好ましくは1分以上保持される等、吸湿/吸水発熱速度、発熱量、発熱保持時間の総合発熱性能面で、従来にない優れた吸湿/吸水発熱性が得られる。
【0027】
本発明の構造体は、これらの優れた高吸湿/吸水発熱性に加えて、抗菌防臭性、制菌性、消臭性、ノネナール消臭性、pH緩衝性、制電性、SR防汚性、耐酸性雨性の多機能性を発現させることもできる。したがってダイビングスーツの内層部としては、快適な環境を維持することが可能となる。
【0028】
【実施例】
以下に実施例により本発明を詳細に説明するが、本発明は、何らこれらに限定するものではない。以下で、単に部、%と記載したものは、質量基準を意味する。また、本実施例における構造体の測定、評価は次の方法で行った。
【0029】
<絶乾質量>
構造体サンプルを110℃×6時間乾燥後、シリカゲル入りデシケータに入れ、20℃、65%RH環境下で調温後、質量測定を行った。
<吸湿性>
20℃、65%RH環境下で24時間調温調湿後の質量測定を行い、下記式から算出した。
吸湿率(%)={(吸湿質量−絶乾質量)/絶乾質量}×100
【0030】
<吸湿発熱性>
110℃×6時間乾燥後、シリカゲル入りデシケータに入れ、絶乾状態とした5cm×5cmの測定サンプルに温度センサー(例えば安立計器(株)製;540K MD−5型)を装着後、20℃、95%RH環境下(例えば硫酸カリウム飽和水溶液入りデシケータ)での吸湿発熱性を温度記録計(例えば安立計器(株)製;DATA COLLECTOR AM−7052型)で計測した。
<吸水発熱性>
前記絶乾状態の5cm×5cmの測定サンプルに温度センサーを装着後、20℃、65%RH環境下で、サンプル質量の50%相当量のイオン交換水を3〜5秒の間に均一に噴霧後、吸水発熱性を温度記録計にて計測した。最大吸水発熱温度及び吸水前サンプル温度以上の吸水発熱保持時間(分)で評価した。
【0031】
<結露性>
10〜15リットルの内体積を有するデシケーターに5cm×5cmのサンプルを投入し、ふたを開けた状態で20℃、80%の室内に放置し、調温・調湿した。24時間後、デシケーターのふたを閉めて10℃に保たれた環境下に5分以内に移動させる。その1時間後にふたを開けサンプルの結露状態を確認した。
【0032】
<着用性>
試作したダイビングスーツを被験者が着用して、10℃のプールに入り被験者の体感に基づいて判定した。判定は、かなり温かい(+2点)―やや温かい(+1点)―どちらでもない(0点)―やや冷たい(−1点)―かなり冷たい(−2点)である。
【0033】
[実施例1]
ポリエチレンテレフタレート系ポリエステル長繊維加工糸(165dtex/48f)からなるダブルニット(目付200g/m2)を通常リラックス精練、分散染色、乾燥後、本発明の高吸湿/吸水発熱性構造体の基布として用いた。
【0034】
次に高吸湿/吸水発熱性有機微粒子の製造を次の方法で行った。
メタクリル酸/p−スチレンスルホン酸ソーダ=70/30の水溶性重合体350部及び硫酸ナトリウム35部を6500部の水に溶解し、櫂型攪拌機付きの重合槽に仕込んだ。次に、アクリル酸メチル2750部及びジビニルベンゼン330部に2,2'−アゾビス−(2,4−ジメチルバレロニトリル)15部を溶解して重合槽に仕込み、400rpmの攪拌下、60℃で2時間重合し、重合率88%の共重合体を得た。該重合体100部を水900部中に分散し、これに110部の苛性ソーダを添加し、90℃、2.5時間反応を行い、アクリル酸メチルのメチルエステル部を加水分解することによりカルボキシル基4.6ミリ当量/gを有した架橋重合体を得た。得られた重合体を水中に分散し、洗浄、脱水後、粉砕、分級もしくはろ過し、高吸湿/吸水発熱性微粒子を得た。得られた高吸湿/吸水発熱性有機微粒子の20℃、65%RH下での吸湿率は50%、平均粒子径は0.8μmであった。
【0035】
かかる高吸湿/吸水発熱性微粒子20%を含む水分散体95部に親水性樹脂バインダーとして、TF−3500(花王社製親水性シリコン系バインダー;固形分40%)4部およびアクアプレンWS105(明成化学工業社製親水性ウレタン系バインダー;固形分40%)1部を加えた加工パディング液に基布を浸漬し、マングルにて加工液ウエットピックアップ率100%になるよう絞った後、120℃で乾燥後、180℃で1分間乾熱セットして構造体を得た。得られた構造体の吸湿/吸水発熱性の特性を表1に示す。未加工品に比べ発熱速度、発熱温度、発熱保持時間の優れた吸湿発熱性/吸水発熱性が得られた。
【0036】
ダイビングスーツの外層部は伸縮性を有する編地にクロロプレンゴムを接着して構成し、内層部に本発明の高吸湿/吸水発熱性構造体を用いて縫製し、得られたダイビングスーツを用いて被験者による実着試験を行なった。その結果、未加工に比べて温かさを感じるものであった。
【0037】
[実施例2]
実施例2で用いる基布は、前記実施例1と同じものを用いた。
【0038】
実施例2で用いる高吸湿/吸水発熱性有機微粒子の製造を次の方法で行った。
アクリロニトリル450部、アクリル酸メチル40部、p−スチレンスルホン酸ソーダ16部及び水1180部をオートクレーブに仕込み、重合開始剤としてジ−tert−ブチルパーオキサイドを単量体全体に対して0.5%添加した後、密閉し、次いで攪拌下において150℃で20分間重合反応後、攪拌しながら約90℃まで冷却し、平均粒子径1.4μm(光散乱光度計測定)の原料微粒子の水分散体を得た。この水分散体に浴中濃度が35%になるようヒドラジンを加え、102℃で2時間架橋処理を行い、続いて浴中濃度が10%になるよう苛性ソーダを加えて、102℃で5時間加水分解処理を行った後、pH調整、分級もしくはろ過後、高吸湿/吸水発熱性有機微粒子分散体を得た。得られた高吸湿/吸水発熱性有機微粒子の20℃、65%RH下での吸湿性は51%、平均粒子径は0.5μmであった。
【0039】
かかる高吸湿/吸水発熱性微粒子20%を含む水分散体95部に親水性樹脂バインダーとして、TF−3500(花王社製アルキレングリコール変成親水性シリコン系バインダー;固形分40%)5部を加えた加工パディング液に基布を浸漬し、マングルにて加工液ウエットピックアップ率120%になるよう絞った後、120℃で乾燥後、170℃で1分間乾熱セットして構造体を得た。得られた構造体の吸湿/吸水発熱性の特性を表1に示す。未加工品に比べ発熱速度、発熱温度/発熱保持時間の優れた吸湿発熱性/吸水発熱性が得られた。
【0040】
得られた構造体を実施例1と同様にダイビングスーツを作成し、着用性を試験したところ、未加工に比べ、被験者の申告でも温かさを感じるものであった。
【0041】
[比較例1]
実施例1に記載のポリエステル長繊維加工糸使いのダブルニットを用いて未加工のまま実施例1と同様の構成でダイビングスーツを作成し実験に供した。結果を表1に示すが実施例1、2に比べ吸湿/吸水発熱効果は見られなかった。
【0042】
【表1】

Figure 0004759898
【0043】
【発明の効果】
本発明によれば、海水中に入ったときに、高吸湿発熱性微粒子の効果により、人体からの湿気(水蒸気)や海水の水分(液体)を吸収して迅速かつ安定に発熱するので、身体の温度低下を抑制することができ、また、海水中での動作を妨げることのないダイビングスーツを提供することができる。[0001]
[Technical field to which the invention belongs]
The present invention relates to a diving suit that is effective in the sea and underwater, such as swimming, swimming, surfing, fishing and the like, such as a dry suit and a wet suit, particularly in cold weather.
[0002]
[Prior art]
Conventionally, swimsuits used for swimming and swimming, surfing, wet suits for fishing, and the like are important required qualities for smooth movement in seawater. From such a viewpoint, a knitted fabric excellent in stretchability represented by a two-weight ricot has been used alone or bonded to these knitted fabrics and chloroprene rubber. In cold use, the actual situation is to cope with the thickness of the rubber and the lamination of the cloth as a heat retaining measure, and the thickness becomes large and the mobility tends to decrease.
For the purpose of eliminating such problems, there have been proposed a laminated structure and a method of adding functional particles in the fabric to increase the heat retention effect, but sufficient performance has not been achieved.
[0003]
[Problems to be solved by the invention]
The present invention eliminates the problems of the conventional diving suits as described above, and provides a diving suit that reduces the influence of a rapid temperature drop of the body when entering the seawater and does not lower the mobility. .
[0004]
[Means for Solving the Problems]
The technical configuration of the present invention for solving the above-described problems is as follows. That is,
1. Highly hygroscopic fine particles are attached to at least a part or the entire surface of a diving suit composed of a single layer or multiple layers having moisture permeability and waterproofness, and the maximum temperature rise during moisture absorption and / or water absorption is 3 ° C. A diving suit having a moisture absorption / water absorption exothermic structure as described above.
[0005]
2. 2. The diving suit according to 1, wherein the moisture absorption / water absorption exothermic structure has a moisture absorption / water absorption exothermic structure in which heat generation during moisture absorption is maintained for 30 minutes or more and / or heat generation during water absorption is maintained for 1 minute or more.
[0006]
3. Item 3. The diving suit according to item 1 or 2, wherein the moisture absorption / water absorption exothermic structure has a moisture absorption / water absorption exothermic structure in which the maximum temperature rise during water absorption is 8 ° C or more.
[0007]
4). The diving suit according to any one of 1 to 3, wherein the highly hygroscopic fine particles imparted to the hygroscopic / water-absorbing exothermic structure are organic fine particles.
[0008]
5. Highly hygroscopic organic fine particles imparted to the hygroscopic / water-absorbing exothermic structure are polystyrene-based, polyacrylonitrile-based, polyacrylic ester-based, or polymethacrylic ester-based vinyl polymers. 5. A diving suit according to 4, wherein the diving suit is a crosslinked polymer having at least one hydrophilic group of an acid group, a phosphoric acid group, or a metal salt thereof, and crosslinked with divinylbenzene, triallyl isocyanate, or hydrazine. .
[0009]
6). The diving suit according to any one of 1 to 5, wherein the average particle size of the highly hygroscopic fine particles used in the hygroscopic / water-absorbing exothermic structure is less than 2 μm.
[0010]
7). The diving suit according to any one of 1 to 6, wherein the highly hygroscopic fine particles used in the hygroscopic / water-absorbing exothermic structure are fixed to the structure via a hydrophilic resin.
[0011]
8). The diving suit according to any one of 1 to 7, wherein a mass ratio of the highly hygroscopic fine particles and the hydrophilic resin used in the hygroscopic / water-absorbing exothermic structure is 1/1 to 19/1.
[0012]
9. The hygroscopic / water-absorbing exothermic structure is a knitted fabric, a woven fabric, a nonwoven fabric, a fleece, a string-like body, a film, or a resin molded body composed of natural fibers, synthetic fibers, or mixed fibers thereof. Diving suit.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0014]
The diving suit in the present invention preferably includes an outer layer portion having waterproofness. The outer layer portion may be a single layer, and may be laminated with a film or bonded with a knitted fabric, but may be in a range that does not hinder operation in seawater.
[0015]
Non-limiting examples of the outer layer portion include a woven or knitted fabric having a polyurethane wet coating or a polyurethane / acrylic wet coating, or a woven or knitted fabric having a tetrafluoroethylene film or a polyurethane film laminated or adhered as the waterproof film. Can be given. It should be noted that the outer layer portion can be subjected to water repellent treatment for the purpose of further providing a waterproof function.
[0016]
In the diving suit of the present invention, a structure having a moisture absorption / water absorption heat generation function is arranged in the inner layer portion. When entering seawater, especially when it is cold, the body's temperature begins to drop sharply due to heat conduction. In the diving suit provided with the structure having a moisture absorption / water absorption heat generation function of the present invention, the structure of the inner layer part generates heat due to moisture from the body, so that the temperature decrease can be suppressed and the body temperature decrease can be prevented. it can. Moreover, in a sweat suit, it becomes possible to prevent a body temperature fall by generating heat | fever with the water | moisture content which enters into the fine space which exists between skin and this suit.
[0017]
When the diving suit of the present invention has a plurality of layers, the outer layer portion and the inner layer portion may be integrated and sewn, or each may be sewn independently and may be integrated by overlapping.
[0018]
Structures used in the present invention include polyester-based, polyamide-based, polyacrylonitrile-based, polyethylene-based, polypropylene-based, polyurethane-based, polyphenylene sulfide-based synthetic fibers, rayon, acetate and other chemical fibers, cotton, hemp, silk , A knitted fabric, a woven fabric, a nonwoven fabric, a fleece, a string-like body, a film, or a resin molded body made of natural fibers such as wool and feathers or mixed materials thereof.
[0019]
The highly hygroscopic fine particles of the present invention (also referred to as highly hygroscopic / water-absorbing exothermic fine particles) are not particularly limited in terms of chemical structure as long as they are fine particles that exhibit exothermic properties during moisture absorption or water absorption. For example, various organic fine particles such as inorganic type such as hygroscopic silica, or hygroscopic polyurethane type, polyamide type, polyester type and polyacrylate type can be applied. Particularly, highly hygroscopic / absorbing exothermic organic fine particles. Preferably, for example, any vinyl polymer of polystyrene, polyacrylonitrile, polyacrylate, polymethacrylate, sulfonic acid group, carboxylic acid group, phosphoric acid group, or a metal salt thereof The crosslinked polymer fine particles having at least one kind of hydrophilic group and crosslinked with either divinylbenzene, triallyl isocyanate or hydrazine.
[0020]
The particle size of the highly hygroscopic fine particles is preferably as fine as possible from the viewpoint of moisture absorption / water absorption heat generation rate / heat generation efficiency, uniform adhesion, texture and wear resistance, and more preferably an average particle diameter of less than 2 μm.
[0021]
The method for applying the highly hygroscopic / water-absorbing exothermic fine particles of the present invention is a method of kneading directly into a fiber, film or resin layer or a binder resin on the surface layer of a knitted fabric, woven fabric, non-woven fabric, fleece, string-like product, film and resin molded product However, the latter attachment method using a binder resin is preferable from the viewpoint of moisture absorption / water absorption heat generation rate / heat generation efficiency.
[0022]
Examples of the binder resin include resins such as silicon-based, urethane-based, acrylic-based, polyester-based, polyamide-based, and polyethylene oxide-based resins that can be applied to a normal impregnation method, padding method, coating method, and spray method. Excellent hydrophilicity, that is, hygroscopicity, water absorption, moisture permeability, high moisture absorption / water absorption exothermic fine particles, excellent hygroscopicity, water absorption, and high absorption / water absorption exothermic fine particles and structure are effective It is desirable to use a type that has an excellent binder function that can be adhesively fixed. Particularly preferred hydrophilic resin binders include hydrophilic silicone-based resins, hydrophilic urethane resins in which a polyalkylene oxide addition type, polar hydrophilic group type such as sulfonate and carboxylate, amide modification, etc. are introduced as hydrophilic segments. Resin, hydrophilic polyamide resin, and hydrophilic polyethylene oxide resin, which have high moisture absorption and moisture permeability and do not inhibit water absorption. Here, the moisture permeability of the resin means the moisture permeability in a non-porous film state. Even in a resin having high moisture permeability expressed in a microporous film, a binder resin having low hygroscopicity and water absorption of the resin itself masks and reduces the excellent hygroscopic heat generation or water absorption exothermic property of the high moisture absorption / water absorption exothermic fine particles. In order to improve the durability of these highly hygroscopic / water-absorbing exothermic fine particles and hydrophilic resin binders, various crosslinking agents such as isocyanate, methylol, ethyleneimine, polyfunctional aziridinyl, and metal salt are used in combination. You may use together in the range which does not reduce the original moisture absorption / water absorption of microparticles | fine-particles.
[0023]
In the present invention, the mixing ratio of the highly hygroscopic / water-absorbing exothermic fine particles and the hydrophilic resin and the amount of adhesion thereof greatly affect the hygroscopic / absorbing exothermic property. Although the blending ratio of the highly hygroscopic / water-absorbing exothermic fine particles and the hydrophilic resin is somewhat different depending on the hydrophilic level of the hydrophilic resin, it is usually desirable to use a blending ratio of 1/1 to 19/1, preferably 10/1 to 19/1. More preferably, the smaller the blending ratio of the hydrophilic resin, such as the blending ratio of 15/1 to 19/1, the more excellent moisture absorption / water absorption exothermicity can be expressed. However, if the amount of hydrophilic resin is extremely small or not used in combination, the wear durability of the highly hygroscopic / water absorbing exothermic fine particles adhering to the surface of the structure is lowered, and it tends to fall off. On the other hand, when the blending ratio of the hydrophilic resin is large, even if the hydrophilic resin is used, the high moisture absorption / water absorption exothermic fine particles often inhibit the inherent moisture absorption / water absorption. The heat generation rate and the heat generation amount are extremely reduced. Of course, when the moisture absorption / water absorption of the hydrophilic resin is equal to or higher than the high moisture absorption / water absorption exothermic fine particles, the blending ratio of the hydrophilic resin can be increased.
[0024]
The exothermic property of the hygroscopic / water-absorbing exothermic structure of the present invention is based on the heat of adsorption reaction generated when the material absorbs or absorbs water, and the hygroscopicity of the highly hygroscopic / absorbent fine particles contained in the structure and the combined hydrophilic resin binder. Depends on sexual ability and / or water absorption ability and adhesion amount. That is, the higher the hygroscopic / water-absorbing fine particles, the finer the hydrophilic resin binder with higher moisture absorption or water absorption level, the greater the heat generated by the adsorbed moisture, the faster the heat generation rate, and the longer the heat generation holding time. Of course, since such moisture absorption / water absorption is retained even by the structure base material alone, in order to realize more effective moisture absorption / water absorption exothermic property, the moisture absorption rate of applied moisture absorption / water absorption exothermic fine particles (20 ° C., 65% RH). ) Is preferably 25% or more, more preferably 40% or more. Further, the combined hydrophilic resin preferably has at least a hygroscopic rate (20 ° C., 65% RH) of 3 to 50% which does not inhibit the hygroscopicity / water absorption of the hygroscopic / water-absorbing exothermic fine particles as much as possible.
[0025]
While the moisture absorption exotherm in the gas phase generates heat at an appropriate rate and maintains the exotherm for a relatively long time, the water absorption exotherm in the liquid phase provides rapid exotherm, but the amount of adhering water is large. If it is too large, a remarkable heat generation effect may not be obtained. Therefore, when moisture that is actively taken in such as a sweat suit is used, it becomes possible by devising the design of the moisture absorption / water absorption heat generating structure and the outer layer portion.
[0026]
According to the present invention, the structure and the amount of the highly hygroscopic / water-absorbing exothermic fine particles are optimized and adhered via an appropriate hydrophilic resin binder, and the maximum temperature rise upon moisture absorption and / or water absorption is 3 ° C. Or more, preferably 4 ° C. or more, more preferably 4 ° C. or more, and further the maximum temperature rise during water absorption is 8 ° C. or more, and the heat generation retention time during moisture absorption is 30 minutes or more, and the heat generation retention time during water absorption. Is maintained for 30 seconds or more, more preferably for 1 minute or more, etc. In terms of overall heat generation performance in terms of moisture absorption / water absorption heat generation rate, heat generation amount, and heat generation retention time, excellent moisture absorption / water absorption heat generation properties that have never been obtained can be obtained.
[0027]
In addition to these excellent high moisture absorption / water absorption exothermic properties, the structure of the present invention has antibacterial and deodorant properties, antibacterial properties, deodorant properties, nonenal deodorant properties, pH buffer properties, antistatic properties, and SR antifouling properties. Moreover, acid rain resistant multi-functionality can be expressed. Therefore, a comfortable environment can be maintained as the inner layer of the diving suit.
[0028]
【Example】
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. Below, what was described as a part and% means a mass reference | standard. In addition, the measurement and evaluation of the structure in this example were performed by the following methods.
[0029]
<Absolute mass>
The structure sample was dried at 110 ° C. for 6 hours, then placed in a desiccator containing silica gel, temperature-controlled in an environment of 20 ° C. and 65% RH, and mass measurement was performed.
<Hygroscopicity>
Mass measurement after temperature control and humidity control at 20 ° C. and 65% RH for 24 hours was performed and calculated from the following formula.
Moisture absorption rate (%) = {(hygroscopic mass−absolute dry mass) / absolute dry mass} × 100
[0030]
<Hygroscopic heat generation>
After drying at 110 ° C. for 6 hours, put in a desiccator containing silica gel, and attach a temperature sensor (for example, manufactured by Anri Keiki Co., Ltd .; 540K MD-5) to a completely dried 5 cm × 5 cm measurement sample, then 20 ° C. The hygroscopic exothermic property in a 95% RH environment (for example, a desiccator containing a saturated aqueous solution of potassium sulfate) was measured with a temperature recorder (for example, manufactured by Anritsu Keiki Co., Ltd .; DATA COLLECTOR AM-7052).
<Water absorption exothermic property>
After attaching a temperature sensor to the 5 cm × 5 cm measurement sample in the dry state, ion exchange water equivalent to 50% of the sample mass is sprayed uniformly in 3 to 5 seconds in an environment of 20 ° C. and 65% RH. Thereafter, the water absorption exotherm was measured with a temperature recorder. Evaluation was made based on the maximum water absorption exothermic temperature and the water absorption exothermic holding time (min) above the sample temperature before water absorption.
[0031]
<Condensation>
A sample of 5 cm × 5 cm was put into a desiccator having an internal volume of 10 to 15 liters, left in a room at 20 ° C. and 80% with the lid opened, and temperature and humidity were adjusted. After 24 hours, the lid of the desiccator is closed and moved to an environment kept at 10 ° C. within 5 minutes. One hour later, the lid was opened and the condensation state of the sample was confirmed.
[0032]
<Wearability>
The subject wore a prototype diving suit, entered the 10 ° C pool, and judged based on the subject's experience. The judgment is fairly warm (+2 points) -slightly warm (+1 point) -neither (0 point) -slightly cold (-1 point) -pretty cold (-2 point).
[0033]
[Example 1]
As a base fabric for the highly hygroscopic / water absorbing exothermic structure of the present invention, a double knit (weight per unit area: 200 g / m 2 ) made of polyethylene terephthalate-based polyester long-fiber processed yarn (165 dtex / 48f) is usually subjected to relaxing scouring, disperse dyeing and drying. Using.
[0034]
Next, high moisture absorption / water absorption exothermic organic fine particles were produced by the following method.
350 parts of a water-soluble polymer of methacrylic acid / p-sodium styrenesulfonate = 70/30 and 35 parts of sodium sulfate were dissolved in 6500 parts of water and charged into a polymerization tank equipped with a vertical stirrer. Next, 15 parts of 2,2′-azobis- (2,4-dimethylvaleronitrile) was dissolved in 2750 parts of methyl acrylate and 330 parts of divinylbenzene and charged into the polymerization tank. Polymerization was performed for a time to obtain a copolymer having a polymerization rate of 88%. Disperse 100 parts of the polymer in 900 parts of water, add 110 parts of caustic soda to this, react at 90 ° C. for 2.5 hours, and hydrolyze the methyl ester part of methyl acrylate. A crosslinked polymer having 4.6 meq / g was obtained. The obtained polymer was dispersed in water, washed, dehydrated, pulverized, classified or filtered to obtain highly hygroscopic / water absorbing exothermic fine particles. The resulting highly hygroscopic / water-absorbing exothermic organic fine particles had a moisture absorption rate of 50% and an average particle size of 0.8 μm at 20 ° C. and 65% RH.
[0035]
As a hydrophilic resin binder, 95 parts of an aqueous dispersion containing 20% of such highly hygroscopic / absorbent exothermic fine particles, 4 parts of TF-3500 (Kao hydrophilic hydrophilic silicon binder; solid content 40%) and Aquaprene WS105 (Meisei Chemical) Immerse the base fabric in a processing padding solution to which 1 part of a hydrophilic urethane-based binder (manufactured by Kogyo Co., Ltd .; solid content 40%) is added, squeeze it with a mangle to a processing solution wet pickup rate of 100%, and then dry at 120 ° C. Thereafter, dry heat setting was performed at 180 ° C. for 1 minute to obtain a structure. Table 1 shows the moisture absorption / water absorption exothermic characteristics of the obtained structure. The moisture absorption exothermic property / water absorption exothermic property with excellent exothermic rate, exothermic temperature, and exothermic retention time was obtained as compared with the unprocessed product.
[0036]
The outer layer part of the diving suit is constructed by adhering chloroprene rubber to a knitted fabric having elasticity, and the inner layer part is sewn using the highly hygroscopic / water-absorbing exothermic structure of the present invention, and the obtained diving suit is used. A subject wearing test was conducted. As a result, it felt warmer than the raw material.
[0037]
[Example 2]
The same base fabric as used in Example 1 was used as the base fabric used in Example 2.
[0038]
Production of highly hygroscopic / water-absorbing exothermic organic fine particles used in Example 2 was carried out by the following method.
450 parts of acrylonitrile, 40 parts of methyl acrylate, 16 parts of p-styrene sulfonic acid soda and 1180 parts of water were charged into an autoclave, and di-tert-butyl peroxide as a polymerization initiator was 0.5% based on the whole monomer. After the addition, the mixture is sealed, and after a polymerization reaction at 150 ° C. for 20 minutes under stirring, the mixture is cooled to about 90 ° C. with stirring, and an aqueous dispersion of raw material fine particles having an average particle size of 1.4 μm (measured by a light scattering photometer) Got. To this aqueous dispersion, hydrazine was added so that the concentration in the bath was 35%, and a crosslinking treatment was performed at 102 ° C. for 2 hours. Subsequently, caustic soda was added so that the concentration in the bath was 10%, and water was added at 102 ° C. for 5 hours. After the decomposition treatment, a highly hygroscopic / water-absorbing exothermic organic fine particle dispersion was obtained after pH adjustment, classification or filtration. The obtained highly hygroscopic / water-absorbing exothermic organic fine particles had a hygroscopic property of 51% at 20 ° C. and 65% RH, and an average particle size of 0.5 μm.
[0039]
As a hydrophilic resin binder, 5 parts of TF-3500 (alkylene glycol modified hydrophilic silicon binder; solid content 40%) 5 parts was added as a hydrophilic resin binder to 95 parts of an aqueous dispersion containing 20% of such highly hygroscopic / absorbent exothermic fine particles. The base fabric was dipped in the processing padding solution, squeezed with a mangle so that the processing solution wet pick-up rate was 120%, dried at 120 ° C., and then set at 170 ° C. for 1 minute to obtain a structure. Table 1 shows the moisture absorption / water absorption exothermic characteristics of the obtained structure. The moisture absorption exothermic property / water absorption exothermic property, excelling in heat generation rate, exothermic temperature / exothermic holding time as compared with the unprocessed product, was obtained.
[0040]
A diving suit was created from the obtained structure in the same manner as in Example 1 and tested for wearability. As a result, the test subject's report felt warmer than unprocessed.
[0041]
[Comparative Example 1]
A diving suit having the same configuration as that of Example 1 was prepared and used for the experiment using the double knit using the polyester long fiber processed yarn described in Example 1 as it was unprocessed. The results are shown in Table 1, but no moisture absorption / water absorption heat generation effect was seen compared to Examples 1 and 2.
[0042]
[Table 1]
Figure 0004759898
[0043]
【The invention's effect】
According to the present invention, when entering the seawater, the effect of the highly hygroscopic exothermic fine particles absorbs moisture (water vapor) from the human body and seawater moisture (liquid) and generates heat quickly and stably. It is possible to provide a diving suit that can suppress a decrease in temperature of the water and does not hinder the operation in seawater.

Claims (9)

透湿性、防水性を有する単層又は複層から構成されるダイビングスーツの少なくとも一部が編組織としてダブルニットである編物であり、肌側の少なくとも一部または全面に、バインダー樹脂として、ポリアルキレンオキサイド付加型、スルホン酸塩、カルボン酸塩等の極性親水基型、及び/又はアミド変成型セグメントを有する親水性樹脂により高吸湿性微粒子が付着されており、吸湿及び/又は吸水時の最大温度上昇が3℃以上である吸湿/吸水発熱性構造体を有することを特徴とするダイビングスーツ。A knitted fabric in which at least a part of a diving suit composed of a single layer or multiple layers having moisture permeability and waterproofness is a double knit as a knitted structure, and a polyalkylene as a binder resin on at least a part or the entire surface of the skin Highly hygroscopic fine particles are attached by hydrophilic resin having polar hydrophilic group type such as oxide addition type, sulfonate, carboxylate and / or amide modified segment , and maximum temperature at the time of moisture absorption and / or water absorption A diving suit comprising a hygroscopic / water-absorbing exothermic structure whose rise is 3 ° C or higher. 吸湿/吸水発熱性構造体の吸湿時の発熱が30分以上及び/又は吸水時の発熱が1分以上保持される吸湿/吸水発熱性構造体を有することを特徴とする請求項1記載のダイビングスーツ。  The diving according to claim 1, further comprising a hygroscopic / water-absorbing exothermic structure capable of maintaining a heat-absorbing / water-absorbing exothermic structure for 30 minutes or more and / or a heat-absorbing structure for 1 minute or more. suit. 吸湿/吸水発熱性構造体の吸水時の最大温度上昇が8℃以上である吸湿/吸水発熱性構造体を有することを特徴とする請求項1又は2に記載のダイビングスーツ。  The diving suit according to claim 1, wherein the moisture absorption / water absorption exothermic structure has a moisture absorption / water absorption exothermic structure in which the maximum temperature rise during water absorption is 8 ° C. or more. 吸湿/吸水発熱性構造体に付与される高吸湿性微粒子が有機微粒子であることを特徴とする請求項1〜3のいずれかに記載のダイビングスーツ。  The diving suit according to any one of claims 1 to 3, wherein the highly hygroscopic fine particles applied to the hygroscopic / water-absorbing exothermic structure are organic fine particles. 吸湿/吸水発熱性構造体に付与される高吸湿性有機微粒子がポリスチレン系、ポリアクリロニトリル系、ポリアクリル酸エステル系、ポリメタクリル酸エステル系のいずれかのビニル系重合体で、スルホン酸基、カルボン酸基、リン酸基あるいは、それらの金属塩の少なくとも1種の親水基を有し、かつジビニルベンゼン、トリアリルイソシアネートまたはヒドラジンのいずれかで架橋された架橋重合体である請求項4に記載のダイビングスーツ。  Highly hygroscopic organic fine particles imparted to the hygroscopic / water-absorbing exothermic structure are polystyrene-based, polyacrylonitrile-based, polyacrylic ester-based, or polymethacrylic ester-based vinyl polymers. 5. The crosslinked polymer having at least one hydrophilic group of an acid group, a phosphoric acid group, or a metal salt thereof, and crosslinked with any of divinylbenzene, triallyl isocyanate, or hydrazine. Diving suit. 吸湿/吸水発熱性構造体に使用する高吸湿性微粒子の平均粒子径が2μm未満であることを特徴とする請求項1〜5のいずれかに記載のダイビングスーツ。  The diving suit according to any one of claims 1 to 5, wherein an average particle diameter of the highly hygroscopic fine particles used in the hygroscopic / water-absorbing exothermic structure is less than 2 µm. 吸湿/吸水発熱性構造体に使用する高吸湿性微粒子が親水性樹脂を介して構造体に固定化されていることを特徴とする請求項1〜6のいずれかに記載のダイビングスーツ。  The diving suit according to any one of claims 1 to 6, wherein the highly hygroscopic fine particles used in the hygroscopic / water-absorbing exothermic structure are fixed to the structure through a hydrophilic resin. 吸湿/吸水発熱性構造体に使用する高吸湿性微粒子と親水性樹脂の質量比が1/1〜19/1であることを特徴とする請求項1〜7のいずれかに記載のダイビングスーツ。  The diving suit according to any one of claims 1 to 7, wherein a mass ratio of the highly hygroscopic fine particles and the hydrophilic resin used in the hygroscopic / water-absorbing exothermic structure is 1/1 to 19/1. 吸湿/吸水発熱性構造体が天然繊維、化合繊もしくはこれらの混用繊維で構成される編物、織物、不織布、フリース、紐状体またはフィルムまたは樹脂成形体であることを特徴とする請求項1〜8のいずれかに記載のダイビングスーツ。  The moisture-absorbing / water-absorbing exothermic structure is a knitted fabric, a woven fabric, a nonwoven fabric, a fleece, a string-like body, a film, or a resin molded body composed of natural fibers, synthetic fibers, or mixed fibers thereof. The diving suit according to any one of 8.
JP2001297657A 2001-09-27 2001-09-27 Diving suit Expired - Lifetime JP4759898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001297657A JP4759898B2 (en) 2001-09-27 2001-09-27 Diving suit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001297657A JP4759898B2 (en) 2001-09-27 2001-09-27 Diving suit

Publications (2)

Publication Number Publication Date
JP2003105672A JP2003105672A (en) 2003-04-09
JP4759898B2 true JP4759898B2 (en) 2011-08-31

Family

ID=19118693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001297657A Expired - Lifetime JP4759898B2 (en) 2001-09-27 2001-09-27 Diving suit

Country Status (1)

Country Link
JP (1) JP4759898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105606A (en) * 2001-09-27 2003-04-09 Toyobo Co Ltd Swimming suit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2368059B1 (en) * 2009-05-18 2012-12-12 Save-Dummy, S.L. INSULATING AND HEATING SAFETY DEVICE APPLICABLE TO WATER CLOTHING AND WORK CLOTHING.
KR101228715B1 (en) 2010-04-15 2013-02-01 윤삼걸 Fixing the water heating device is connected to the underwater aquatic Workwear
JP3176675U (en) * 2012-04-17 2012-06-28 聚紡股▲ふん▼有限公司 Breathable waterproof fabric
JP5480991B1 (en) * 2013-04-02 2014-04-23 美津濃株式会社 Fluorescent whitening highly cross-linked polyacrylate fiber, method for producing the same, and fiber structure including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759762B2 (en) * 1993-04-05 1995-06-28 美津濃株式会社 Moisture absorption / desorption Water absorption Heat retention product
JP4967213B2 (en) * 2001-09-27 2012-07-04 東洋紡績株式会社 Swimsuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105606A (en) * 2001-09-27 2003-04-09 Toyobo Co Ltd Swimming suit

Also Published As

Publication number Publication date
JP2003105672A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
EP0260841A1 (en) Protective composite materials, their production and articles of protective clothing made therefrom
JPS6047954B2 (en) Coating fabric and its manufacturing method
JP4759898B2 (en) Diving suit
JP4264800B2 (en) Moisture absorption / water absorption exothermic structure
JPH0373670B2 (en)
JP4967213B2 (en) Swimsuit
JP2003171814A (en) Windbreaker
JP2002180308A (en) Thermal insulating wear
JP2004169240A (en) Fiber structure
JP3912578B2 (en) Moisture absorption / water absorption exothermic structure for interlining
JP2003155609A (en) Emergency human body warming garment for prevention from death by drowning
JPH0754277A (en) Production of moisture-permeable water-proofing coated cloth
JP2003102784A (en) Moisture/water absorbing exothermic diaper
JP2003105657A (en) Internal material of shoe having hygroscopic and pyrogenic property
JP2003129312A (en) Ski suit
JP3906971B2 (en) Package
JP2003102594A (en) Vapor/liquid water absorption heat-generating bedding
JP2003119606A (en) Sportswear
JP2003095194A (en) Winterized flying jacket
JP2003093154A (en) Emergency equipment for outdoor action
JP2003089976A (en) Skin-touching cloth material
JPH05222679A (en) Moisture-permeable waterproof cloth
JP2003143976A (en) Dew condensation-preventive material
JP2003147679A (en) Emergent body-heating structure for preventing freezing death in winter season
JP2003116711A (en) Curtain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4759898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3