JP4757022B2 - High strength and toughness aluminum alloy extruded material and forged material excellent in corrosion resistance, and method for producing the extruded material and forged material - Google Patents
High strength and toughness aluminum alloy extruded material and forged material excellent in corrosion resistance, and method for producing the extruded material and forged material Download PDFInfo
- Publication number
- JP4757022B2 JP4757022B2 JP2005379133A JP2005379133A JP4757022B2 JP 4757022 B2 JP4757022 B2 JP 4757022B2 JP 2005379133 A JP2005379133 A JP 2005379133A JP 2005379133 A JP2005379133 A JP 2005379133A JP 4757022 B2 JP4757022 B2 JP 4757022B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- corrosion resistance
- strength
- extruded material
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Extrusion Of Metal (AREA)
Description
本発明は耐食性に優れた高強度、高靭性アルミニウム合金押出材および鍛造材、該押出材および鍛造材の製造方法に関する。 The present invention relates to a high-strength, high-toughness aluminum alloy extruded material and forged material excellent in corrosion resistance, and a method for producing the extruded material and forged material.
近年、とくに輸送機器の分野において、排ガス規制や二酸化炭素の排出抑制の要求が高まっており、この要求を満たすために、軽量化による燃費向上が注目され、その手段として従来の鉄系材料に替えてアルミニウム材料の適用が検討されている。 In recent years, especially in the field of transportation equipment, there has been an increasing demand for exhaust gas regulations and carbon dioxide emission suppression. To meet these demands, improvements in fuel efficiency due to weight reduction have attracted attention, and as a means to replace conventional iron-based materials. Application of aluminum materials is being studied.
輸送機器用アルミニウム材料としては、耐食性のみが要求される場合には1000系や3000系アルミニウム合金が多く使用されているが、腐食環境で使用され、高強度、高靭性が要求される場合には、耐食性、高強度、高靭性の3つの特性のバランスが良く、かつ生産性にも優れた6000系合金、とくにJIS6061合金が適用される例が多い。 As aluminum materials for transportation equipment, 1000 series and 3000 series aluminum alloys are often used when only corrosion resistance is required, but when used in corrosive environments and high strength and high toughness are required. In many cases, a 6000 series alloy, particularly a JIS6061 alloy, having a good balance of the three characteristics of corrosion resistance, high strength, and high toughness and excellent productivity is applied.
しかしながら、JIS6061合金の構造用部材は、鋳塊を熱間鍛造し、または鋳塊を熱間押出加工した後、熱間鍛造し、その後T6調質することにより製造されるが、通常の組成のものを常法に従って処理した場合には、引張強さで270〜320MPa程度の強度特性しか得られず、車両構造の十分な軽量化を達成することが困難である。 However, the structural member of JIS6061 alloy is manufactured by hot forging an ingot, or hot extruding the ingot, then hot forging, and then T6 tempering. When a thing is processed according to a conventional method, only a strength characteristic of about 270 to 320 MPa is obtained in tensile strength, and it is difficult to achieve a sufficient weight reduction of the vehicle structure.
この問題を解決するために、Mn、Cr、Zrを積極的に添加し、Mg、Si量を調整することにより、粗大再結晶粒発生を防止するとともに、焼入れ感受性を高めた押出鍛造用Al−Mg−Si系合金(特許文献1参照)や、主要合金成分のMg、SiおよびCuの含有量を多くして強度増加を図った鍛造用Al−Mg−Si系合金(特許文献2参照)が提案されているが、靭性や耐食性が必ずしも十分でなく、とくにCuの増加は耐食性を低下させる原因となる。 In order to solve this problem, by adding Mn, Cr, Zr positively and adjusting the amount of Mg, Si, the generation of coarse recrystallized grains can be prevented and the quenching sensitivity Al- Mg-Si alloys (see Patent Document 1) and Al-Mg-Si alloys for forging (see Patent Document 2) that increase the strength by increasing the contents of Mg, Si and Cu as main alloy components Although it has been proposed, toughness and corrosion resistance are not necessarily sufficient, and in particular, an increase in Cu causes a decrease in corrosion resistance.
靭性の向上を目的として、Mn、Cr、Zrなどの晶出物粒径や間隔を制御したアルミニウム合金鍛造材も提案されている(特許文献3参照)が、得られるシャルピー衝撃値は高々13J/cm2であり、高強度足回り部品として使用するために十分なものではない。また、亜結晶粒組織の面積率を制御したアルミニウム合金鍛造材も提案されている(特許文献4参照)が、鍛造条件に関係なくシャルピー衝撃値25J/cm2以上を確保するためには、亜結晶比率を90%以上とする必要があり、実操業上困難を伴う。 For the purpose of improving toughness, aluminum alloy forgings in which the grain size and interval of crystallized substances such as Mn, Cr, and Zr are controlled have been proposed (see Patent Document 3), but the Charpy impact value obtained is at most 13 J / It is cm 2 and is not sufficient for use as a high-strength undercarriage part. An aluminum alloy forging material in which the area ratio of the subgrain structure is controlled has also been proposed (see Patent Document 4). In order to ensure a Charpy impact value of 25 J / cm 2 or more regardless of the forging conditions, The crystal ratio needs to be 90% or more, which is difficult in actual operation.
車両用構造部材にアルミニウム合金材料を適用する場合には、コスト低減の観点からリサイクル性が重要な課題であり、既存の規格合金成分範囲を大きく外れた材料の使用は、他の規格合金と識別する必要性が生じるから、一般的には、添加元素の種類や含有量を多くすることはリサイクルの点で好ましくなく、車両構造部材用アルミニウム合金については、この点の配慮も必要である。 When aluminum alloy materials are applied to structural members for vehicles, recyclability is an important issue from the viewpoint of cost reduction. The use of materials that greatly deviate from the range of existing standard alloy components is distinguished from other standard alloys. In general, it is not preferable from the viewpoint of recycling to increase the kind and content of the additive element, and it is necessary to consider this point for the aluminum alloy for vehicle structural members.
先に、出願人らは、上記の観点を考慮して、Si:0.40〜0.8%、Mg:0.8〜1.2%、Cu:0.40%以下、Mn:0.08〜0.15%、Cr:0.10〜0.35%を含有し、残部Alおよび不可避的不純物からなる組成を有するアルミニウム合金の鍛造材で、当該鍛造材の直角断面において表層部は再結晶組織で、表層部以外の部分に直角断面の50〜95%の領域を占める平均結晶粒径10μm以下の亜結晶粒組織が存在することを特徴とするAl−Mg−Si系合金の押出・鍛造材を提案した(特許文献5参照)。
一般的には、耐食性を向上させるためには、材料全体の電位を貴とするとともに、材料内部において電位差を生じさせないこと、すなわち局部電池を生成させないことが必要である。局部電池は、合金元素が結晶粒界に偏析し、粒界近傍に無析出領域が形成されることにより生成される。Al−Mg−Si系合金の場合、強度を高めるためにはMg2SiとCuの含有量を多くすることが必要であるが、組織制御することなく、単にMg2SiとCuの含有量を多くすると局部電池の形成を抑制することができないから、Al−Mg−Si系合金における高強度化と耐食性の維持の両立は困難な課題とされている。 In general, in order to improve the corrosion resistance, it is necessary to make the potential of the entire material noble and not cause a potential difference inside the material, that is, not generate a local battery. The local battery is generated by the segregation of alloy elements at the grain boundaries and the formation of non-precipitation regions in the vicinity of the grain boundaries. In the case of an Al—Mg—Si based alloy, it is necessary to increase the contents of Mg 2 Si and Cu in order to increase the strength. However, without controlling the structure, the contents of Mg 2 Si and Cu are simply increased. If the number is increased, formation of a local battery cannot be suppressed, so that it is difficult to achieve both high strength and corrosion resistance in an Al—Mg—Si alloy.
発明者らは、先に提案された上記Al−Mg−Si系合金の押出・鍛造材における合金成分と強度、耐食性の関係について詳細に検討を重ねた結果、Mg量、Si量およびCu量を特定の関係に調整し、断面組織を制御することにより、Cu量を多くしても耐食性を維持することができることを見出した。 The inventors have studied in detail about the relationship between the alloy component, strength, and corrosion resistance in the previously proposed Al-Mg-Si-based extruded / forged material. As a result, the amount of Mg, amount of Si, and amount of Cu were determined. It has been found that by adjusting to a specific relationship and controlling the cross-sectional structure, corrosion resistance can be maintained even if the amount of Cu is increased.
本発明は、上記の知見に基づいてさらに試験、検討を行った結果としてなされたものであり、その目的は、従来のAl−Mg−Si系合金よりさらに改良された強度と靭性、すなわち耐力で400MPa以上の高強度とシャルピー衝撃値25J/cm2以上の高靭性を得ることができる車両機器部材用として好適な耐食性に優れた高強度、高靭性のAl−Mg−Si系アルミニウム合金押出材および鍛造材、該押出材および鍛造材の製造方法を提供することにある。当該アルミニウム合金材は、強度的に足回り部品としても十分に使用することが可能であり、耐食性の点では過酷な使用環境下においても十分に使用することができる。 The present invention has been made as a result of further testing and examination based on the above knowledge, and its purpose is to further improve the strength and toughness, that is, the proof stress, from the conventional Al-Mg-Si alloy. High strength, high toughness Al—Mg—Si based aluminum alloy extruded material excellent in corrosion resistance suitable for vehicle equipment members capable of obtaining high strength of 400 MPa or more and high toughness of Charpy impact value of 25 J / cm 2 or more, and It is providing the manufacturing method of a forging material, this extrusion material, and a forging material. The aluminum alloy material can be sufficiently used as an undercarriage component in terms of strength, and can be sufficiently used even in a severe use environment in terms of corrosion resistance.
上記の目的を達成するための請求項1による耐食性に優れた高強度、高靭性アルミニウム合金押出材は、Si:0.7〜1.4%(質量%、以下同じ)、Mg:0.55〜0.95%、Cu:0.43%を超え1.0%以下を含有し、さらにMn:0.15〜0.43%、Cr:0.05〜0.23%、およびZr:0.05〜0.24%のうちの1種以上を含有し、残部がAlおよび不純物からなり、かつ[Si%]×1.73−[Mg%]>[Cu%]×1.03を満足する組成を有するアルミニウム合金の熱間押出材を溶体化処理および時効処理したアルミニウム合金押出材であって、該押出材の断面の肉厚中心部は平均結晶粒径10μm以下の亜結晶粒組織をそなえ、該亜結晶粒組織が前記断面に占める割合が70%以上であり、かつ400MPa以上の耐力と25J/cm 2 以上のシャルピー衝撃値を有することを特徴とする。 The high strength and high toughness aluminum alloy extruded material excellent in corrosion resistance according to claim 1 for achieving the above object is Si: 0.7 to 1.4% (mass%, the same applies hereinafter), Mg: 0.55 -0.95%, Cu: more than 0.43% and 1.0% or less, Mn: 0.15-0.43%, Cr: 0.05-0.23%, and Zr: 0 0.05% to 0.24%, the balance being Al and impurities, and satisfying [Si%] × 1.73- [Mg%]> [Cu%] × 1.03 An aluminum alloy extruded material obtained by solution treatment and aging treatment of a hot extruded material of an aluminum alloy having the following composition: the thickness center of the cross section of the extruded material has a subcrystalline structure having an average crystal grain size of 10 μm or less. In addition , the ratio of the subgrain structure to the cross section is 70% or more, and It has a proof stress of 400 MPa or more and a Charpy impact value of 25 J / cm 2 or more .
請求項2による耐食性に優れた高強度、高靭性アルミニウム合金押出材は、請求項1において、前記アルミニウム合金の組成において、Mnが0.17〜0.43%、Crが0.07〜0.23%、Zrが0.10〜0.24%であることを特徴とする。 A high strength and high toughness aluminum alloy extruded material excellent in corrosion resistance according to claim 2 is the composition of the aluminum alloy according to claim 1, wherein Mn is 0.17 to 0.43% and Cr is 0.07 to 0.00. 23% and Zr is 0.10 to 0.24%.
請求項3による耐食性に優れた高強度、高靭性アルミニウム合金押出材の製造方法は、請求項1または2記載のアルミニウム合金押出材を製造する方法であって、請求項1または2記載の組成を有するアルミニウム合金を熱間押出加工した後、510〜570℃で溶体化処理し、150〜200℃で時効処理することを特徴とする。 The method for producing a high-strength, high-toughness aluminum alloy extruded material excellent in corrosion resistance according to claim 3 is a method for producing the aluminum alloy extruded material according to claim 1 or 2 , wherein the composition according to claim 1 or 2 is used. The aluminum alloy is subjected to a hot extrusion process, followed by solution treatment at 510 to 570 ° C. and aging treatment at 150 to 200 ° C.
請求項4による耐食性に優れた高強度、高靭性アルミニウム合金押出材の製造方法は、請求項3において、前記熱間押出加工を、480〜550℃の温度、減面率30%以上で行うことを特徴とする。 The method for producing a high-strength, high-toughness aluminum alloy extrudate excellent in corrosion resistance according to claim 4 is the method according to claim 3 , wherein the hot extrusion is performed at a temperature of 480 to 550 ° C. and a surface reduction rate of 30% or more. It is characterized by.
請求項5による耐食性に優れた高強度、高靭性アルミニウム合金鍛造材は、請求項1または2記載の組成を有する前記アルミニウム合金の熱間押出材を熱間鍛造し、溶体化処理および時効処理したアルミニウム合金鍛造材であって、該鍛造材の断面の肉厚中心部は平均結晶粒径10μm以下の亜結晶粒組織をそなえ、該亜結晶粒組織が前記断面に占める割合が70%以上であり、かつ400MPa以上の耐力と25J/cm 2 以上のシャルピー衝撃値を有することを特徴とする。 A high-strength, high-toughness aluminum alloy forged material excellent in corrosion resistance according to claim 5 is obtained by hot forging the aluminum alloy hot- pressed material having the composition according to claim 1 or 2 and subjecting it to a solution treatment and an aging treatment. The forged aluminum alloy material has a sub-grain structure with an average crystal grain size of 10 μm or less at the thickness center of the cross-section of the forged material, and the proportion of the sub-crystal grain structure in the cross-section is 70% or more. Ah it is, and characterized by having a higher yield strength and 25 J / cm 2 or more Charpy impact value 400 MPa.
請求項6による耐食性に優れた高強度、高靭性アルミニウム合金鍛造材の製造方法は、請求項5記載のアルミニウム合金鍛造材を製造する方法であって、請求項1または2記載の組成を有する前記アルミニウム合金の熱間押出材を熱間鍛造後、510〜570℃で溶体化処理し、150〜200℃で時効処理することを特徴とする。 A method for producing a high-strength, high-toughness aluminum alloy forging material excellent in corrosion resistance according to claim 6 is a method for producing an aluminum alloy forging material according to claim 5 , wherein the forging material has the composition according to claim 1 or 2. A hot extruded material of an aluminum alloy is subjected to solution treatment at 510 to 570 ° C. after hot forging and aging treatment at 150 to 200 ° C.
本発明によれば、従来のAl−Mg−Si系合金よりさらに改良された強度と靭性、すなわち耐力で400MPa以上の高強度とシャルピー衝撃値25J/cm2以上の高靭性を得ることができる車両機器部材用として好適な耐食性に優れた高強度、高靭性のAl−Mg−Si系アルミニウム合金押出材および鍛造材、該押出材および鍛造材の製造方法が提供される。当該アルミニウム合金材は、強度的に足回り部品としても十分に使用することが可能であり、耐食性の点では過酷な使用環境下においても十分に使用することができる。 According to the present invention, a vehicle capable of obtaining strength and toughness further improved from conventional Al-Mg-Si alloys, that is, high strength of 400 MPa or more in proof stress and high toughness of Charpy impact value of 25 J / cm 2 or more. Provided are a high-strength, high-toughness Al—Mg—Si-based aluminum alloy extruded material and forged material excellent in corrosion resistance suitable for equipment members, and a method for producing the extruded material and forged material. The aluminum alloy material can be sufficiently used as an undercarriage component in terms of strength, and can be sufficiently used even in a severe use environment in terms of corrosion resistance.
Al−Mg−Si系合金の押出材および鍛造材における合金成分と強度、耐食性の関係について詳細な検討を行った結果、Mg量、Si量およびCu量を特定の関係に調整し、断面組織を制御することにより、Cu量を多くしても耐食性を維持することができること、ならびに材料の電位を純アルミニウムよりも貴とすることができることを見出した。詳細には、平均結晶粒径10μm以下の亜結晶粒組織を形成させることにより、合金元素の結晶粒界への偏析が抑制され、粒界近傍における無析出領域の形成が抑制されて耐食性の向上が図られる。 As a result of conducting a detailed study on the relationship between the alloy composition, strength, and corrosion resistance in the extruded material and forged material of the Al-Mg-Si alloy, the amount of Mg, the amount of Si and the amount of Cu were adjusted to a specific relationship, and the cross-sectional structure was changed. It has been found that by controlling, the corrosion resistance can be maintained even when the amount of Cu is increased, and that the potential of the material can be made nobler than pure aluminum. Specifically, by forming a subgrain structure with an average crystal grain size of 10 μm or less, segregation of alloying elements to the crystal grain boundary is suppressed, and formation of a non-precipitated region in the vicinity of the grain boundary is suppressed, thereby improving corrosion resistance. Is planned.
本発明における合金成分の意義および限定理由について説明すると、SiはMgと共存してマトリックス中にMg2Si粒子を析出させ強度を向上させる。好ましい含有量は0.7〜1.4%の範囲であり、0.7%未満では十分な強度が得られず、1.4%を超えて含有すると、加工性が低下しかつ伸びが低下する。Siのより好ましい含有範囲は0.8〜1.2%である。 The significance and reasons for limitation of the alloy components in the present invention will be described. Si coexists with Mg and precipitates Mg 2 Si particles in the matrix to improve the strength. The preferred content is in the range of 0.7 to 1.4%. If the content is less than 0.7%, sufficient strength cannot be obtained. If the content exceeds 1.4%, the workability decreases and the elongation decreases. To do. A more preferable content range of Si is 0.8 to 1.2%.
MgはSiと共存してマトリックス中にMg2Si粒子を析出させ、合金の強度を向上させるよう機能する。好ましい含有量は0.55〜0.95%の範囲であり、0.55%未満では十分な強度が得られず、0.95%をを超えて含有すると、加工性、焼入れ性を悪くする。Mgのより好ましい含有範囲は0.6〜0.9%である。 Mg functions together with Si to precipitate Mg 2 Si particles in the matrix and improve the strength of the alloy. The preferred content is in the range of 0.55 to 0.95%, and if it is less than 0.55%, sufficient strength cannot be obtained, and if it exceeds 0.95%, workability and hardenability are deteriorated. . A more preferable content range of Mg is 0.6 to 0.9%.
Cuはマトリックス中に固溶して強度を向上させるよう機能する。好ましい含有量は0.43%を超え1.0%以下の範囲であり、0.43%以下ではその効果が十分でなく1.0%を超えると耐食性が低下する。Cuのより好ましい含有範囲は0.48〜1.0%である。 Cu functions as a solid solution in the matrix to improve the strength. The preferable content is in the range of more than 0.43% and 1.0% or less. If the content is less than 0.43%, the effect is not sufficient, and if it exceeds 1.0%, the corrosion resistance is lowered. A more preferable content range of Cu is 0.48 to 1.0%.
本発明において、0.43%を超える量のCuを含有させ、耐食性を維持しながら強度を向上させるためには、Si量、Mg量、Cu量を以下の関係式を満足するよう制御することが必要である。
[Si重量%]×1.73−[Mg重量%]>[Cu重量%]×1.03
左辺は過剰Si量を規定する式であり、本発明の範囲内の種々の組成のアルミニウム合金押出材を用いて耐食性試験を行った結果、この式の値をCu量の1.03倍以上とすることにより耐食性の確保が可能であることを見出した。最大量のSiを含有させた場合においても、Cu量が1.0%を超えると耐食性低下を抑制することはできない。Cuは、Clイオンを含有する溶液中において、純アルミニウムより電位的に貴な元素であり、上記のようにCu量、Si量、Mg量の関係を調整し、かつ平均結晶粒径が10μm以下の亜結晶粒組織に制御することにより電位を純アルミニウムより貴とし、さらに材料内部における局部電池の生成を防止してClイオンを含有する溶液中での耐食性を向上させることができる。
In the present invention, to contain Cu in an amount exceeding 0.43% and improve strength while maintaining corrosion resistance, the Si amount, Mg amount, and Cu amount are controlled to satisfy the following relational expressions. is required.
[Si wt%] × 1.73- [Mg wt%]> [Cu wt%] × 1.03
The left side is a formula that defines the amount of excess Si. As a result of conducting a corrosion resistance test using aluminum alloy extruded materials having various compositions within the scope of the present invention, the value of this formula is set to 1.03 times the Cu amount or more. It was found that corrosion resistance can be ensured by doing so. Even when the maximum amount of Si is contained, if the amount of Cu exceeds 1.0%, the corrosion resistance cannot be suppressed. Cu is an element which is more noble than pure aluminum in a solution containing Cl ions, and adjusts the relationship among Cu amount, Si amount, and Mg amount as described above, and has an average crystal grain size of 10 μm or less. By controlling to the subgrain structure, it is possible to make the potential nobler than pure aluminum, and further to prevent the formation of local batteries inside the material and improve the corrosion resistance in a solution containing Cl ions.
Mn、Cr、Zrは、合金マトリックス中に平均結晶粒径10μm以下の亜結晶粒組織を得るために効果的に作用する。Mn、Cr、Zrは、それぞれAl−Mn−(Si)系、Al−Cr系、Al−Zr系の微細な化合物をマトリックス中に析出させ、亜結晶粒を形成・維持する役割を果たし、これら3元素を複合的に添加することによりその効果が向上する。好ましい含有量は、Mn:0.15〜0.43%、Cr:0.05〜0.23%、Zr:0.05〜0.24%の範囲であり、Mn、CrおよびZrの全ての含有量が下限未満では亜結晶粒の形成・維持の効果が十分でなく粗大な再結晶組織となり、Mn、CrおよびZrのうちの少なくとも1種の含有量が上限を超えると巨大な金属間化合物が形成され、靭性、延性を低下させる。より好ましい含有範囲は、Mn:0.17〜0.43%、Cr:0.07〜0.23%、Zr:0.10〜0.24%、さらに好ましい成分範囲は、Mn:0.20〜0.40%、Cr:0.10〜0.20%、Zr:0.12〜0.22%である。 Mn, Cr, and Zr effectively act to obtain a subgrain structure with an average crystal grain size of 10 μm or less in the alloy matrix. Mn, Cr, and Zr play the role of precipitating fine compounds of Al-Mn- (Si), Al-Cr, and Al-Zr in the matrix to form and maintain sub-crystal grains. The effect is improved by adding three elements in combination. Preferred contents are in the ranges of Mn: 0.15 to 0.43%, Cr: 0.05 to 0.23%, Zr: 0.05 to 0.24%, and all of Mn, Cr and Zr If the content is less than the lower limit, the effect of forming and maintaining sub-crystal grains is not sufficient, resulting in a coarse recrystallized structure, and if the content of at least one of Mn, Cr and Zr exceeds the upper limit, a huge intermetallic compound Is formed, reducing toughness and ductility. More preferable content ranges are Mn: 0.17 to 0.43%, Cr: 0.07 to 0.23%, Zr: 0.10 to 0.24%, and further preferable component ranges are Mn: 0.20. -0.40%, Cr: 0.10-0.20%, Zr: 0.12-0.22%.
本発明のアルミニウム合金押出材においては、押出材断面の肉厚中心部が平均結晶粒径10μm以下で、該亜結晶粒組織の断面に占める割合が70%以上であることが重要である。平均結晶粒10μm以下の亜結晶粒組織は強度向上に寄与し、また耐食性の低下を抑制する。亜結晶粒組織の断面に占める割合を70%以上とすることにより、材料全体の強度を考えた場合、押出材の表層部に形成される再結晶組織に起因する強度低下は問題とならず十分な強度を維持することができる。また、押出材の表層部に形成される再結晶組織部において耐食性が低下し、粒界腐食が発生する場合があるが、上記亜結晶粒組織の存在により、材料全体の靭性低下には影響しない。 In the aluminum alloy extruded material of the present invention, it is important that the thickness center portion of the cross section of the extruded material has an average crystal grain size of 10 μm or less and the ratio of the subcrystal grain structure to the cross section is 70% or more. A sub-grain structure with an average grain size of 10 μm or less contributes to strength improvement and suppresses a decrease in corrosion resistance. When the strength of the entire material is considered by setting the ratio of the subcrystalline grain structure to the cross section to 70% or more, the strength reduction due to the recrystallized structure formed in the surface layer portion of the extruded material is not a problem and is sufficient. High strength can be maintained. In addition, the corrosion resistance of the recrystallized structure formed in the surface layer part of the extruded material may be reduced and intergranular corrosion may occur. .
上記の亜結晶粒組織を得るためには、熱間押出に先立ち、アルミニウム合金鋳塊を400〜480℃の低温で均質化処理し、480〜550℃の温度で減面率30%以上の熱間押出を行うことが望ましい。均質化処理温度が400℃よりも低い場合には、亜結晶粒組織の生成を促すMn、Cr、Zrの晶出物の分解が不十分となる。その結果、マトリックス中への微細化合物としての分散もまた不十分となり、十分な亜結晶粒組織の生成が達成されない。均質化処理温度が480℃を超えると、熱間押出加工時に安定した亜結晶粒組織の形成が難しくなり、また押出温度が480℃未満の場合は、導入される加工歪み量が高いため、その後の溶体化処理や鍛造前の加熱時に表層に再結晶層が生成され、亜結晶比率70%以上を確保することができなくなることがある。また、減面率によっては熱間押出自体が不可能となることが有り得る。押出温度が550℃を超えると、表層における亜結晶粒組織の形成・維持が困難となり易く、亜結晶粒組織が断面に占める割合を70%以上に確保することが困難となる。また、複合的に添加元素を含有することにより、本来のAl−Mg−Si系合金よりも融点の低い共晶合金が生成されるため、この共晶合金の融解による割れの誘発が懸念される。この押出工程により、鋳塊を熱間鍛造することにより得られる亜結晶組織よりさらに集束度の高い亜結晶組織が得られ、その結果、高強度、高靭性が達成できる。熱間押出の減面率が30%未満では亜結晶粒の集束度が低くなったり、条件によっては亜結晶粒組織を得ることが難しくなったりする。押出形状は、中実材、中空材のいずれでもよく、いずれの形状に押出加工しても上記の組織性状が得られる。 In order to obtain the above subgrain structure, prior to hot extrusion, the aluminum alloy ingot is homogenized at a low temperature of 400 to 480 ° C., and a heat reduction of 30% or more at a temperature of 480 to 550 ° C. It is desirable to perform interextrusion. When the homogenization temperature is lower than 400 ° C., decomposition of crystallized substances of Mn, Cr, and Zr that promote the formation of subgrain structure becomes insufficient. As a result, dispersion as a fine compound in the matrix is also insufficient, and sufficient subgrain structure formation is not achieved. If the homogenization temperature exceeds 480 ° C., it becomes difficult to form a stable subgrain structure during hot extrusion, and if the extrusion temperature is less than 480 ° C., the amount of processing strain introduced is high. A recrystallized layer is formed on the surface layer during solution treatment or heating before forging, and it may be impossible to ensure a subcrystal ratio of 70% or more. Further, depending on the area reduction rate, hot extrusion itself may be impossible. When the extrusion temperature exceeds 550 ° C., it is difficult to form and maintain the subcrystalline structure in the surface layer, and it becomes difficult to ensure the ratio of the subcrystalline structure in the cross section to 70% or more. Moreover, since the eutectic alloy having a melting point lower than that of the original Al—Mg—Si alloy is produced by containing the additive elements in a composite manner, there is a concern about the induction of cracks due to melting of the eutectic alloy. . By this extrusion process, a subcrystalline structure having a higher degree of focusing than that obtained by hot forging the ingot is obtained, and as a result, high strength and high toughness can be achieved. If the area reduction ratio of the hot extrusion is less than 30%, the degree of focusing of the sub-crystal grains becomes low, and it is difficult to obtain the sub-grain structure depending on the conditions. The extruded shape may be either a solid material or a hollow material, and the above-described texture property can be obtained even if extruded into any shape.
熱間押出加工後に熱間鍛造を行った場合にも、鍛造後、上記の亜結晶粒組織が得られ、高強度、高靭性が達成できる。この場合、熱間鍛造温度は、480〜550℃の温度域で行うことが望ましい。480℃より低い場合には、鍛造時に塑性歪みが導入され易くなり、その結果、溶体化処理後の断面組織における亜結晶粒面積率が70%未満となり、かつ亜結晶粒の結晶粒径が10μmを超えることが懸念される。550℃を超える場合は、熱間加工時の加工発熱を考慮すると、添加元素により生成した共晶合金の融解による割れの誘発が懸念される。 Even when hot forging is performed after hot extrusion, the above subgrain structure is obtained after forging, and high strength and high toughness can be achieved. In this case, it is desirable that the hot forging temperature is in a temperature range of 480 to 550 ° C. When the temperature is lower than 480 ° C., plastic strain is easily introduced during forging. As a result, the sub-crystal grain area ratio in the cross-sectional structure after solution treatment is less than 70%, and the crystal grain size of the sub-crystal grains is 10 μm. It is feared that When the temperature exceeds 550 ° C., considering the heat generated during hot working, there is a concern about the induction of cracking due to melting of the eutectic alloy produced by the additive element.
本発明においては、熱間押出後、または熱間鍛造後、510〜570℃で溶体化処理し、150〜200℃で時効処理することにより所定の強度、靭性を得ることができる。これらの処理によって、強度に寄与する合金元素が十分に溶入し、溶入した合金元素がマトリックス中に微細に析出して強度、靭性を高める。溶体化処理温度が510℃未満の場合は、溶入化が不十分となり、十分な強度が得られない。溶体化処理温度が570℃を超えると、溶体化処理後の断面組織における亜結晶粒面積率が70%を下回るだけでなく、添加元素により生成した共晶合金の融解による割れの誘発が懸念される。時効処理温度が150℃より低い場合には、析出が不十分となり、十分な強度が得られない。一方、時効処理温度が200℃よりも高い場合には、析出物が粗大となり、その結果十分な強度が得られない。 In the present invention, after hot extrusion or hot forging, solution treatment is performed at 510 to 570 ° C., and aging treatment is performed at 150 to 200 ° C., whereby predetermined strength and toughness can be obtained. By these treatments, the alloy elements contributing to the strength are sufficiently infused, and the infused alloy elements are finely precipitated in the matrix to increase the strength and toughness. When the solution treatment temperature is less than 510 ° C., the infiltration is insufficient and sufficient strength cannot be obtained. When the solution treatment temperature exceeds 570 ° C., not only the sub-crystal grain area ratio in the cross-sectional structure after solution treatment is less than 70%, but also there is a concern about induction of cracking due to melting of the eutectic alloy formed by the additive element. The When the aging treatment temperature is lower than 150 ° C., precipitation is insufficient and sufficient strength cannot be obtained. On the other hand, when the aging temperature is higher than 200 ° C., the precipitate becomes coarse, and as a result, sufficient strength cannot be obtained.
以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれに限定されるものではない。 Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. These examples show one embodiment of the present invention, and the present invention is not limited thereto.
実施例1
表1に示す組成のアルミニウム合金を溶解し、半連続鋳造法により、直径90mmの押出用ビレットに造塊した。得られたビレットを450℃で均質化処理後、押出温度520℃、減面率95%で直径20mmの丸棒に熱間押出加工した。その後、表2に示す条件で溶体化処理および時効処理を施した。
Example 1
An aluminum alloy having the composition shown in Table 1 was melted and formed into a billet for extrusion having a diameter of 90 mm by a semi-continuous casting method. The obtained billet was homogenized at 450 ° C. and then hot extruded into a round bar having an extrusion temperature of 520 ° C. and a surface area reduction ratio of 95% and a diameter of 20 mm. Thereafter, solution treatment and aging treatment were performed under the conditions shown in Table 2.
得られた材料を試験材として、以下の方法で、肉厚中心部の平均結晶粒径、断面に占める亜結晶粒の割合(亜結晶粒面積率)を調査した。また、機械的性質(引張強さ:σB、耐力:σ0.2、伸び率:δ)の測定を行い、さらに靭性、耐食性を評価した。結果を表2に示す。
平均結晶粒径の調査:調査断面を電解研磨後、偏光ミクロ観察を行い、画像解析により平均結晶粒径を算出した。
亜結晶粒面積率の調査:調査断面を苛性エッチング後、画像解析により亜結晶粒面積率を算出した。
機械的性質の測定:JIS Z 2201の4号試験片(備考2による相似形)を作製して、JIS Z 2241に準拠して測定し、耐力400MPa以上を合格とした。
靭性の評価:試験材をJIS3号衝撃試験片に加工後、室温にてシャルピー衝撃試験を実施し、シャルピー衝撃値が25J/cm 2 以上を合格とした。
Using the obtained material as a test material, the average crystal grain size at the thickness center and the ratio of sub-crystal grains in the cross section (sub-crystal grain area ratio) were investigated by the following methods. In addition, mechanical properties (tensile strength: σB, proof stress: σ0.2, elongation: δ) were measured, and toughness and corrosion resistance were further evaluated. The results are shown in Table 2.
Investigation of average crystal grain size: After electrolytic polishing of the cross section of the investigation, polarization micro observation was performed, and the average crystal grain size was calculated by image analysis.
Investigation of subcrystalline grain area ratio: After caustic etching of the investigation cross section, the subcrystalline grain area ratio was calculated by image analysis.
Measurement of mechanical properties: A JIS Z 2201 No. 4 test piece (similar shape according to Remark 2) was prepared and measured according to JIS Z 2241, and a proof stress of 400 MPa or more was regarded as acceptable.
Evaluation of toughness: After processing the test material into a JIS No. 3 impact test piece, a Charpy impact test was performed at room temperature, and a Charpy impact value of 25 J / cm 2 or more was accepted.
耐食性評価:ISO/DIS11846B法に基づいて、下記の粒界腐食試験を行い、最大腐食深さ50μm以下を合格とした。
ISO/DIS11846 Method B
前処理 A.洗浄液(硝酸 50mL/L+フッ酸 5mL/L)95±2℃で1分間浸漬
B.水洗
C.硝酸(常温)で2分間浸漬
D.水洗
E.乾燥
試験 A.試験液(NaCl 30g/L+塩酸 10mL/L)常温で24時間連続浸漬
B.液量 試料表面積×5mL/cm2以上
後処理 A.水洗(流水中)
B.濃硝酸で30秒浸漬
C.水洗
Corrosion resistance evaluation: Based on the ISO / DIS11846B method, the following intergranular corrosion test was conducted, and the maximum corrosion depth of 50 μm or less was regarded as acceptable.
ISO / DIS11846 Method B
Pretreatment A. Cleaning solution (Nitric acid 50mL / L + hydrofluoric acid 5mL / L) Immerse for 1 minute at 95 ± 2 ℃. Water washing C.I. Immerse in nitric acid (room temperature) for 2 minutes. Water washing E. Drying test A. B. Test solution (NaCl 30g / L + hydrochloric acid 10mL / L) Continuous immersion for 24 hours at room temperature Amount of liquid Sample surface area x 5 mL / cm2 or more Post-treatment Flushing (running water)
B. Immersion in concentrated nitric acid for 30 seconds C.I. Flushing
表2にみられるように、本発明に従う試験材1〜5は機械的性質、靭性(衝撃特性)、耐食性に優れており、いずれも合格値を示した。 As seen in Table 2, the test materials 1 to 5 according to the present invention were excellent in mechanical properties, toughness (impact characteristics), and corrosion resistance, and all showed acceptable values.
比較例1
表1の合金No.Aの押出用ビレットを、450℃で均質化処理後、押出温度520℃(但し、試験材8は560℃)、減面率95%で直径20mmの丸棒に熱間押出加工し、表3に示す条件で溶体化処理および時効処理を施した。得られた材料を試験材として、実施例1と同じ方法で肉厚中心部の平均結晶粒径、断面に占める亜結晶粒の割合(亜結晶粒面積率)を調査し、機械的性質、靭性、耐食性の評価を行った。結果を表3に示す。なお、表3において本発明の条件を外れたものには下線を付した。
Comparative Example 1
Alloy No. 1 in Table 1 A billet for extrusion of A was homogenized at 450 ° C. and then hot extruded into a round bar having an extrusion temperature of 520 ° C. (however, test material 8 is 560 ° C.) and a reduction in area of 95% and a diameter of 20 mm. The solution treatment and the aging treatment were performed under the conditions shown in FIG. Using the obtained material as a test material, the average crystal grain size at the center of thickness and the ratio of sub-crystal grains in the cross section (sub-crystal grain area ratio) were investigated in the same manner as in Example 1, and the mechanical properties and toughness were investigated. The corrosion resistance was evaluated. The results are shown in Table 3. In Table 3, those outside the conditions of the present invention are underlined.
表3に示すように、試験材6は溶体化温度が低いため、試験材9は時効温度が低いため、また試験材10は時効温度が高いため、いずれも機械的性質が劣っている。試験材7は溶体化処理温度が高いため、溶体化処理後の断面組織における亜結晶粒面積率が70%未満となり、かつ亜結晶粒の結晶粒径が10μmを超えており、その結果、機械的性質、耐食性、靭性(シャルピー衝撃性)のいずれにおいても不合格となった。試験材8は、押出温度が高かったため押出時に割れが発生し、試験に供することができなかった。 As shown in Table 3, the test material 6 has a low solution temperature, the test material 9 has a low aging temperature, and the test material 10 has a high aging temperature. Since the test material 7 has a high solution treatment temperature, the sub-crystal grain area ratio in the cross-sectional structure after the solution treatment is less than 70%, and the crystal grain size of the sub-crystal grains exceeds 10 μm. It failed in any of the mechanical properties, corrosion resistance, and toughness (Charpy impact property). Since the test material 8 had a high extrusion temperature, cracks occurred during extrusion, and the test material 8 could not be used for the test.
比較例2
表4に示す組成のアルミニウム合金を溶解し、半連続鋳造法により、直径90mmの押出用ビレットに造塊した。得られたビレットを450℃で均質化処理後、押出温度520℃、減面率95%で直径20mmの丸棒に熱間押出加工した。その後、表5に示す条件で溶体化処理および時効処理を施した。得られた材料を試験材として、実施例1と同じ方法で肉厚中心部の平均結晶粒径、断面に占める亜結晶粒の割合(亜結晶粒面積率)を調査し、機械的性質、靭性、耐食性の評価を行った。結果を表5に示す。なお、表4、表5において本発明の条件を外れたものには下線を付した。
Comparative Example 2
Aluminum alloys having the compositions shown in Table 4 were melted and formed into a billet for extrusion having a diameter of 90 mm by a semi-continuous casting method. The obtained billet was homogenized at 450 ° C. and then hot extruded into a round bar having an extrusion temperature of 520 ° C. and a surface area reduction ratio of 95% and a diameter of 20 mm. Thereafter, solution treatment and aging treatment were performed under the conditions shown in Table 5. Using the obtained material as a test material, the average crystal grain size at the center of thickness and the ratio of sub-crystal grains in the cross section (sub-crystal grain area ratio) were investigated in the same manner as in Example 1, and the mechanical properties and toughness were investigated. The corrosion resistance was evaluated. The results are shown in Table 5. In Tables 4 and 5, those outside the conditions of the present invention are underlined.
表5に示すように、試験材11はSi量が低いため、試験材13はCu量が低いため、いずれも機械的性質が不合格となった。試験材12はCu量に対する過剰Si量が低いため、試験材14はMg量が低くCu量が高いため、いずれも耐食性において不合格となった。試験材15はMn、CrおよびZr量が低いため、溶体化処理後の断面組織における亜結晶粒面積率が70%未満となり、かつ亜結晶粒の結晶粒径が10μmを超えた結果、機械的性質、耐食性、靭性(シャルピー衝撃性)のいずれにおいても不合格となった。試験材16はMn、CrおよびZr量が高いため、延性が低下しシャルピー衝撃性において不合格となった。 As shown in Table 5, since the test material 11 had a low amount of Si, the test material 13 had a low amount of Cu, and therefore all of the mechanical properties failed. Since the test material 12 had a low amount of excess Si relative to the Cu content, the test material 14 had a low Mg content and a high Cu content, so that both of them failed in corrosion resistance. Since the test material 15 has a low amount of Mn, Cr and Zr, the subcrystalline grain area ratio in the cross-sectional structure after solution treatment was less than 70%, and the crystal grain size of the subcrystalline grains exceeded 10 μm. It failed in any of properties, corrosion resistance, and toughness (Charpy impact property). Since the test material 16 had high amounts of Mn, Cr and Zr, the ductility was lowered and the Charpy impact property was rejected.
実施例2、比較例3
表1の合金Aの押出用ビレットを、450℃で均質化処理後、押出温度520℃、減面率95%で直径20mmの丸棒に熱間押出加工した。得られた熱間押出加工材を、520℃および450℃の温度で熱間鍛造し、ともに535℃で溶体化処理後、180℃で時効処理した。得られた材料を試験材として、実施例1と同じ方法で肉厚中心部の平均結晶粒径、断面に占める亜結晶粒の割合(亜結晶粒面積率)を調査し、機械的性質、靭性、耐食性の評価を行った。結果を表6に示す。なお、表6において本発明の条件を外れたものには下線を付した。
Example 2 and Comparative Example 3
The extrusion billet of alloy A in Table 1 was homogenized at 450 ° C. and then hot extruded into a round bar having an extrusion temperature of 520 ° C. and a surface area reduction ratio of 95% and a diameter of 20 mm. The obtained hot-extruded material was hot forged at temperatures of 520 ° C. and 450 ° C., both were solution treated at 535 ° C., and then aged at 180 ° C. Using the obtained material as a test material, the average crystal grain size at the center of thickness and the ratio of sub-crystal grains in the cross section (sub-crystal grain area ratio) were investigated in the same manner as in Example 1, and the mechanical properties and toughness were investigated. The corrosion resistance was evaluated. The results are shown in Table 6. In Table 6, those outside the conditions of the present invention are underlined.
表6に示すように、本発明に従う試験材17は機械的性質、靭性(衝撃特性)、耐食性に優れており、いずれも合格値を示した。一方、試験材18は、鍛造温度が低いため鍛造時に導入された塑性歪みのため、溶体化処理後の断面組織における亜結晶粒面積率が70%未満となり、かつ亜結晶粒の結晶粒径が10μmを超えており、その結果、機械的性質、耐食性、靭性(シャルピー衝撃性)のいずれにおいても不合格となった。 As shown in Table 6, the test material 17 according to the present invention was excellent in mechanical properties, toughness (impact characteristics), and corrosion resistance, and all showed acceptable values. On the other hand, since the test material 18 has a low forging temperature and plastic strain introduced at the time of forging, the subcrystalline grain area ratio in the cross-sectional structure after solution treatment is less than 70%, and the crystal grain size of the subcrystalline grains is small. As a result, it exceeded the mechanical properties, corrosion resistance, and toughness (Charpy impact property).
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005379133A JP4757022B2 (en) | 2005-12-28 | 2005-12-28 | High strength and toughness aluminum alloy extruded material and forged material excellent in corrosion resistance, and method for producing the extruded material and forged material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005379133A JP4757022B2 (en) | 2005-12-28 | 2005-12-28 | High strength and toughness aluminum alloy extruded material and forged material excellent in corrosion resistance, and method for producing the extruded material and forged material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007177308A JP2007177308A (en) | 2007-07-12 |
JP4757022B2 true JP4757022B2 (en) | 2011-08-24 |
Family
ID=38302775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005379133A Expired - Fee Related JP4757022B2 (en) | 2005-12-28 | 2005-12-28 | High strength and toughness aluminum alloy extruded material and forged material excellent in corrosion resistance, and method for producing the extruded material and forged material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4757022B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9517498B2 (en) | 2013-04-09 | 2016-12-13 | Ball Corporation | Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys |
US9663846B2 (en) | 2011-09-16 | 2017-05-30 | Ball Corporation | Impact extruded containers from recycled aluminum scrap |
US10875684B2 (en) | 2017-02-16 | 2020-12-29 | Ball Corporation | Apparatus and methods of forming and applying roll-on pilfer proof closures on the threaded neck of metal containers |
US11185909B2 (en) | 2017-09-15 | 2021-11-30 | Ball Corporation | System and method of forming a metallic closure for a threaded container |
US11459223B2 (en) | 2016-08-12 | 2022-10-04 | Ball Corporation | Methods of capping metallic bottles |
US11519057B2 (en) | 2016-12-30 | 2022-12-06 | Ball Corporation | Aluminum alloy for impact extruded containers and method of making the same |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5723192B2 (en) * | 2010-03-31 | 2015-05-27 | 株式会社神戸製鋼所 | Aluminum alloy forging and method for producing the same |
CN102950236A (en) * | 2011-08-18 | 2013-03-06 | 苏州有色金属研究院有限公司 | Wrought aluminum alloy forging method |
JP5698695B2 (en) | 2012-03-30 | 2015-04-08 | 株式会社神戸製鋼所 | Aluminum alloy forgings for automobiles and manufacturing method thereof |
JP5837026B2 (en) * | 2013-03-29 | 2015-12-24 | 株式会社神戸製鋼所 | Aluminum alloy forgings for automobiles and manufacturing method thereof |
WO2016202810A1 (en) | 2015-06-15 | 2016-12-22 | Constellium Singen Gmbh | Manufacturing process for obtaining high strength solid extruded products made from 6xxx aluminium alloys for towing eye |
SI24911A (en) | 2016-03-04 | 2016-07-29 | Impol 2000, d.d. | High-strength aluminum alloy Al-Mg-Si and procedure for its manufacture |
JP7003676B2 (en) | 2018-01-16 | 2022-02-04 | トヨタ自動車株式会社 | Manufacturing method of hot forged aluminum alloy |
JP7235621B2 (en) * | 2019-08-27 | 2023-03-08 | 株式会社神戸製鋼所 | Steel plate for low-strength hot stamping, hot stamped parts, and method for manufacturing hot stamped parts |
WO2022249665A1 (en) * | 2021-05-27 | 2022-12-01 | 住友電気工業株式会社 | Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy wire |
EP4350020A4 (en) * | 2021-05-27 | 2024-10-02 | Sumitomo Electric Industries | Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy wire |
CN115717206B (en) * | 2022-10-28 | 2024-02-13 | 北京科技大学 | High-strength high-corrosion-resistance Al-Mg-Si alloy and preparation method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05339667A (en) * | 1992-06-09 | 1993-12-21 | Honda Motor Co Ltd | High strength al-mg-si alloy |
JPH06330264A (en) * | 1993-05-17 | 1994-11-29 | Furukawa Alum Co Ltd | Production of aluminum alloy forged material excellent in strength and toughness |
JPH07150312A (en) * | 1993-11-26 | 1995-06-13 | Mitsubishi Alum Co Ltd | Manufacture of aluminum alloy forged base stock |
JP2931538B2 (en) * | 1995-02-24 | 1999-08-09 | 住友軽金属工業株式会社 | High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same |
JPH09202933A (en) * | 1996-01-25 | 1997-08-05 | Nippon Steel Corp | High strength aluminum alloy excellent in hardenability |
JPH11310841A (en) * | 1998-04-28 | 1999-11-09 | Nippon Steel Corp | Aluminum alloy extruded shape excellent in fatigue strength, and its production |
JP2004131826A (en) * | 2002-10-11 | 2004-04-30 | Kobe Steel Ltd | Impact absorbing member having excellent axial crushing crack property |
JP2007169699A (en) * | 2005-12-21 | 2007-07-05 | Toyota Motor Corp | High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component |
-
2005
- 2005-12-28 JP JP2005379133A patent/JP4757022B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9663846B2 (en) | 2011-09-16 | 2017-05-30 | Ball Corporation | Impact extruded containers from recycled aluminum scrap |
US10584402B2 (en) | 2011-09-16 | 2020-03-10 | Ball Corporation | Aluminum alloy slug for impact extrusion |
US9517498B2 (en) | 2013-04-09 | 2016-12-13 | Ball Corporation | Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys |
US9844805B2 (en) | 2013-04-09 | 2017-12-19 | Ball Corporation | Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys |
US11459223B2 (en) | 2016-08-12 | 2022-10-04 | Ball Corporation | Methods of capping metallic bottles |
US11519057B2 (en) | 2016-12-30 | 2022-12-06 | Ball Corporation | Aluminum alloy for impact extruded containers and method of making the same |
US10875684B2 (en) | 2017-02-16 | 2020-12-29 | Ball Corporation | Apparatus and methods of forming and applying roll-on pilfer proof closures on the threaded neck of metal containers |
US11185909B2 (en) | 2017-09-15 | 2021-11-30 | Ball Corporation | System and method of forming a metallic closure for a threaded container |
Also Published As
Publication number | Publication date |
---|---|
JP2007177308A (en) | 2007-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4757022B2 (en) | High strength and toughness aluminum alloy extruded material and forged material excellent in corrosion resistance, and method for producing the extruded material and forged material | |
EP3299483B1 (en) | Improved 6xxx aluminum alloys, and methods for producing the same | |
CN1237195C (en) | Weldable high strength Al-Mg-Si alloy product | |
JP5421613B2 (en) | High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof | |
EP3084027B1 (en) | HIGH PERFORMANCE AlSiMgCu CASTING ALLOY | |
JP5813955B2 (en) | Aluminum zinc magnesium silver alloy | |
JP6022882B2 (en) | High strength aluminum alloy extruded material and manufacturing method thereof | |
JP5204793B2 (en) | High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance | |
KR20150008422A (en) | Improved free-machining wrought aluminium alloy product and manufacturing process thereof | |
JP6000988B2 (en) | High-strength aluminum alloy extruded material excellent in corrosion resistance, ductility and hardenability, and method for producing the same | |
EP2840156A1 (en) | Magnesium alloy and method for producing same | |
JP6723215B2 (en) | Aluminum-zinc-copper (Al-Zn-Cu) alloy and method for producing the same | |
JP6672503B1 (en) | Automotive door beams made of extruded aluminum alloy | |
JP2004084058A (en) | Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging | |
JP5476452B2 (en) | High strength, high toughness aluminum alloy forging material with excellent corrosion resistance, its manufacturing method, and suspension parts | |
RU2468107C1 (en) | High-strength deformable alloy based on aluminium with lower density and method of its processing | |
JP2001107168A (en) | High strength and high toughness aluminum alloy forged material excellent in corrosion resistance | |
JP2000319742A (en) | Aluminum alloy extruded material with excellent crushing characteristic in axial direction | |
JP2020164980A (en) | Automobile door beam made of extruded aluminum alloy material | |
JP3853021B2 (en) | Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance | |
JP5931554B2 (en) | Aluminum alloy material | |
JP5823010B2 (en) | High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance | |
JP2007169699A (en) | High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component | |
JP5631379B2 (en) | High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance | |
JP2004068076A (en) | Aluminum alloy forging material for structure having excellent corrosion resistance and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110531 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110531 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4757022 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140610 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |