JP4750678B2 - Negative dispersion optical fiber, broadband optical transmission line and optical transmission system - Google Patents
Negative dispersion optical fiber, broadband optical transmission line and optical transmission system Download PDFInfo
- Publication number
- JP4750678B2 JP4750678B2 JP2006318447A JP2006318447A JP4750678B2 JP 4750678 B2 JP4750678 B2 JP 4750678B2 JP 2006318447 A JP2006318447 A JP 2006318447A JP 2006318447 A JP2006318447 A JP 2006318447A JP 4750678 B2 JP4750678 B2 JP 4750678B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- optical fiber
- band
- dispersion
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Description
本発明は単一モード光ファイバを用いた大容量光通信に関し、特に波長1310nm帯及び波長1550nm帯の2波長帯域を同時に用いた高速光通信を可能とする、負分散光ファイバ、及び当該負分散光ファイバを用いた広帯域光伝送路の構成法、並びに当該広帯域光伝送路を用いた光通信システムに関する。
The present invention relates to large-capacity optical communication using a single-mode optical fiber, and in particular, a negative dispersion optical fiber that enables high-speed optical communication using two wavelength bands of a
広帯域データ通信サービスの普及に伴い、光通信システムに要求される伝送容量は飛躍的に増大している。このため、単一モード光ファイバ1芯当たりの伝送容量の拡大を目的として、同一の光ファイバ中に複数の波長の光を伝搬させる波長分割多重(WDM:Wavelength Division Multiplexing)技術が広く普及している。また、1波長当たりの伝送容量の拡大を目的とし、伝送速度10Gbit/s以上の高速光通信技術も利用されている。一般に、このような高速WDM伝送では光ファイバ中の累積分散による伝送特性の劣化が問題となる。このため、光伝送路中における累積分散の低減を目的とし、光伝送路で使用される光ファイバと逆符号の波長分散特性を有する分散補償ファイバ(DCF:Dispersion Compensating Fiber)が開発されている。 With the widespread use of broadband data communication services, the transmission capacity required for optical communication systems has increased dramatically. For this reason, wavelength division multiplexing (WDM) technology for propagating light of a plurality of wavelengths in the same optical fiber has been widely used for the purpose of increasing the transmission capacity per single-mode optical fiber. Yes. High-speed optical communication technology with a transmission speed of 10 Gbit / s or more is also used for the purpose of expanding the transmission capacity per wavelength. In general, in such high-speed WDM transmission, degradation of transmission characteristics due to cumulative dispersion in an optical fiber becomes a problem. For this reason, for the purpose of reducing the accumulated dispersion in the optical transmission line, a dispersion compensating fiber (DCF) having a chromatic dispersion characteristic opposite in sign to that of the optical fiber used in the optical transmission line has been developed.
一方近年、複数の空孔が、光ファイバ断面において均一な大きさ及び間隔で光ファイバの伝搬軸方向に開けられた構造(空孔構造)を有する空孔ファイバが開発されており、その広帯域性、並びに波長分散特性の柔軟な制御性の観点から注目を集めている。一般に光ファイバ断面で均一な大きさ及び間隔の空孔構造を有する空孔ファイバは、従来の空孔構造を有さない光ファイバに比べ大きな正の波長分散を有し、その零分散波長は1300nm以下にシフトすることが知られている(例えば、非特許文献1) 。従って、空孔ファイバを用いた高速光伝送においても、信号光波長帯域における累積分散の低減が必要不可欠となり、非特許文献2では、従来のDCFを用いた波長1550nm帯における累積分散低減の実現性が開示されている。
しかしながら、従来のDCFは波長1550nm帯、最大でも波長1460〜1625nmの波長帯域での使用を目的としており、従来のDCFを用い、特に前記正の波長分散を有する空孔ファイバの、波長1310及び1550nm帯の累積分散を同時に低減することは困難であるという課題があった。
On the other hand, in recent years, a hole fiber having a structure (hole structure) in which a plurality of holes are opened in the optical fiber propagation axis direction at a uniform size and interval in the cross section of the optical fiber has been developed. In addition, it has attracted attention from the viewpoint of flexible controllability of chromatic dispersion characteristics. In general, a holey fiber having a hole structure with a uniform size and interval in the cross section of the optical fiber has a larger positive wavelength dispersion than an optical fiber without a conventional hole structure, and its zero dispersion wavelength is 1300 nm. It is known to shift to the following (for example, Non-Patent Document 1). Therefore, even in high-speed optical transmission using holey fibers, it is essential to reduce the accumulated dispersion in the signal light wavelength band. In
However, the conventional DCF is intended for use in the wavelength band of 1550 nm, and at the maximum, the wavelength band of 1460 to 1625 nm. The conventional DCF is used, and in particular, the
以上のような背景に鑑み、本発明では波長1310及び1550nm帯で正の波長分散特性を有する光ファイバの、当該波長帯域における累積分散を同時に低減する負分散光ファイバ、及び当該負分散光ファイバを用いた広帯域光伝送路、並びに当該広帯域光伝送路を用いた光伝送システムを提供することを目的とする。
In view of the above background, in the present invention, an optical fiber having positive chromatic dispersion characteristics in the
上記目的を達成する第1発明の負分散光ファイバは、波長1310nm帯及び波長1550nm帯で負の波長分散特性を有し、前記波長1310nm帯及び波長1550nm帯で正の波長分散特性を有する光ファイバの、少なくとも前記波長1310nm帯及び波長1550nm帯を含む2波長帯域における累積分散を同時に低減する負分散光ファイバであって、
波長1625nmにおける波長分散D 1625 と波長1550nmにおける波長分散D 1550 との比率D 1625 /D 1550 が1.1〜1.2であり、波長1310nmにおける波長分散D 1310 と前記波長分散D 1550 との比率D 1310 /D 1550 が0.3〜0.6であることと、
屈折率が均一なクラッド部と、前記クラッド部よりも高い屈折率を有する第1コア部と、前記クラッド部よりも低い屈折率を有する第2コア部とを有し、
前記第2コア部の半径aに対する前記第1コア部の半径a1の比率Ra=a1/aが0.24〜0.70の範囲であり、前記第2コア部の前記クラッド部に対する比屈折率差Δ1と、前記第1コア部の前記クラッド部に対する比屈折率差Δとの比率RΔ=Δ1/Δが−0.13〜−1.73の範囲であり、かつ前記第2コア部の半径a及び第1コア部の比屈折率差Δが、それぞれ2.3〜6.0μm及び0.3〜1.5%の範囲であることを特徴とする。
The negative dispersion optical fiber of the first invention that achieves the above object has negative chromatic dispersion characteristics in the
Ratio D 1625 / D 1550 of the chromatic dispersion D 1550 at a wavelength dispersion D 1625 and the wavelength 1550nm in wavelength 1625nm is 1.1 to 1.2, the ratio of the chromatic dispersion D 1550 and the wavelength dispersion D 1310 at a wavelength of 1310nm D 1310 / D 1550 is 0.3 to 0.6,
A clad part having a uniform refractive index, a first core part having a higher refractive index than the clad part, and a second core part having a lower refractive index than the clad part,
The ratio Ra = a1 / a of the radius a1 of the first core portion to the radius a of the second core portion is in the range of 0.24 to 0.70, and the relative refractive index of the second core portion to the cladding portion. The ratio RΔ = Δ1 / Δ between the difference Δ1 and the relative refractive index difference Δ of the first core portion with respect to the cladding portion is in the range of −0.13 to −1.73, and the radius of the second core portion The relative refractive index difference Δ between a and the first core part is in the range of 2.3 to 6.0 μm and 0.3 to 1.5%, respectively.
また、第2発明の負分散光ファイバは、第1発明の負分散光ファイバにおいて、
前記クラッド部に、前記第1コア部の中心から距離Λの円周に外接するように配置された、直径dの少なくとも6個以上の空孔を有し、
前記距離Λと前記第2コア部の半径aとの比率Λ/aが2.0以上であり、かつ前記空孔直径dと前記第2コア部の直径2aとの比率d/2aが0.5以上であることを特徴とする。
The negative dispersion optical fiber of the second invention is the negative dispersion optical fiber of the first invention.
The clad portion has at least six holes having a diameter d, which are arranged so as to circumscribe a circumference of a distance Λ from the center of the first core portion,
The ratio Λ / a between the distance Λ and the radius a of the second core part is 2.0 or more, and the ratio d / 2a between the hole diameter d and the
また、第3発明の広帯域光伝送路は、第1又は第2発明の負分散光ファイバと、
波長1310nm帯及び波長1550nm帯で正の波長分散特性を有する光ファイバとを用いて構成されることを特徴とする。
Further, the broadband optical transmission line of the third invention includes the negative dispersion optical fiber of the first or second invention,
An optical fiber having positive wavelength dispersion characteristics in a
また、第4発明の広帯域光伝送路は、第3発明の広帯域光伝送路において、
前記波長1310nm帯及び波長1550nm帯で正の波長分散特性を有する光ファイバが、複数の空孔が軸方向に開けられた構造を有する空孔ファイバであることを特徴とする。
The broadband optical transmission line of the fourth invention is the broadband optical transmission line of the third invention.
The optical fiber having positive wavelength dispersion characteristics in the
また、第5発明の光伝送システムは、第3又は第4発明の広帯域光伝送路を用い、少なくとも波長1310nm帯及び波長1550nm帯を含む2波長帯を信号伝送帯域として使用することを特徴とする。 An optical transmission system according to a fifth aspect of the invention uses the broadband optical transmission line of the third or fourth aspect of the invention, and uses at least two wavelength bands including a wavelength band of 1310 nm and a wavelength of 1550 nm as a signal transmission band. .
以上説明したように本発明の負分散光ファイバによれば、波長1310及び1550nm帯で正の波長分散特性を有する光ファイバの、当該波長帯域における累積分散を同時に低減することを可能とするため、従来のDCFに比べ累積分散の低減帯域を飛躍的に拡大できるといった効果を奏する。
また本発明の広帯域光伝送路及び光伝送システムによれば、波長1310及び1550nm帯の少なくとも2波長帯域以上を同時に用いた、広帯域かつ高速な光伝送を実現できるため、光ファイバ1芯当たりの伝送容量を飛躍的に拡大できるといった効果も奏する。
As described above, according to the negative dispersion optical fiber of the present invention, it is possible to simultaneously reduce the accumulated dispersion in the wavelength band of the optical fiber having positive wavelength dispersion characteristics in the
Further, according to the broadband optical transmission line and the optical transmission system of the present invention, it is possible to realize broadband and high-speed optical transmission using at least two wavelength bands of the
以下では本発明の実施の形態例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は本発明の実施の形態例に係る広帯域光伝送路及び光伝送システムの1構成例を示す概念図である。図1に示すように、本実施の形態例の光伝送システムは、送信部11、受信部14及び広帯域光伝送路15により構成されており、送信部11と受信部14とが広帯域光伝送路15を介して接続されている。
FIG. 1 is a conceptual diagram showing one configuration example of a broadband optical transmission line and an optical transmission system according to an embodiment of the present invention. As shown in FIG. 1, the optical transmission system according to the present embodiment includes a
送信部11は、波長1310及び1550nm帯の少なくとも2波長帯域を含む波長帯域の光信号を生成し、広帯域光伝送路15に送出する機能を有する。同様に受信部14は、送信部11から広帯域光伝送路15を介して伝送されてくる当該波長帯域における光信号を受信する機能を有する。
The
また、広帯域光伝送路15は、波長1310及び1550nm帯で正の波長分散特性を有する光ファイバ12、及び当該波長帯で負の波長分散特性を有する負分散光ファイバ13により構成される。ここで前記光ファイバ12は、例えば複数の空孔が、光ファイバ断面において均一な大きさ及び間隔で光ファイバの伝搬軸方向に開けられた構造(空孔構造)を有する空孔ファイバにより構成することができる。また、前記光ファイバ12及び負分散光ファイバ13、もしくはその一方のファイバ長を適切に調整することにより、前記波長1310及び1550nm帯における広帯域光伝送路15全長での累積分散を同時に低減することが可能となる。
The broadband
尚、図1の構成例では前記光ファイバ12の後段に負分散光ファイバ13が接続される形態を図示しているが、負分散光ファイバ13の後段に光ファイバ12が接続される構成であっても構わない。また、前記光ファイバ12及び負分散光ファイバ13は、任意の長さの複数区間に分割して任意の順番で接続される構成であっても構わない。更には、前記負分散光ファイバ13の全長、もしくはその一部は、前記送信部11及び受信部14、もしくはその一方に組み込まれる構成であっても構わない。
In the configuration example of FIG. 1, a configuration in which the negative dispersion
以下では本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[実施例1]
本発明の実施例1では、図1に示した実施の形態において、波長1310及び1550nm帯で正の波長分散を有する光ファイバに、複数の空孔が、光ファイバ断面において均一な大きさ及び間隔で光ファイバの伝搬軸方向に開けられた構造(空孔構造)を有する空孔ファイバを用いた場合に対する、負分散光ファイバ及び広帯域光伝送路について図面を用いて説明する。
[Example 1]
In Example 1 of the present invention, in the embodiment shown in FIG. 1, a plurality of holes are formed in an optical fiber having positive chromatic dispersion in the
図2の(a)及び(b)は本発明の実施例で用いた負分散光ファイバの屈折率分布を示す概念図及び断面図である。図2に示すように、本発明の負分散光ファイバは、屈折率が均一なクラッド部21と、前記クラッド部に対する比屈折率差がΔで半径がa1の第1コア部22と、前記クラッド部に対する比屈折率差がΔ1で半径がaの第2コア部23とにより構成される。尚、前記比屈折率差Δ及びΔ1(単位%)は、前記クラッド部の屈折率n0及び、第1コア部もしくは第2コア部の屈折率nを用いて次式(1)の関係で記述される。
またここで、前記第1コア部及び第2コア部の半径、及び比屈折率差の比率を、それぞれRa及びRΔとして、次式(2)及び(3)により定義する。
図3の(a),(b)及び(c)は本発明の実施例で用いた空孔ファイバの波長分散特性を表す図、側面図及び断面図である。図3(a)中の実線及び破線は、空孔構造(規格化空孔直径d0/Λ0、及び空孔間隔Λ0)の異なる2種類の空孔ファイバ1,2に対する測定結果を示している。図3(b),(c)に示す空孔ファイバにおいて、31はクラッド部、32は複数の空孔である。これらの図3(b),(c)に示すようにd0及びΛ0は空孔32の直径及び間隔であり、空孔32は空孔ファイバ断面において均一な大きさ(直径d0)及び間隔Λ0を有し、空孔ファイバの伝搬軸方向に開けられている。図示例では60個の空孔が6角形状に配置されているが、空孔の個数は任意(一般に数十〜数百)であり、空孔の配置パターンも任意の回転対象の形状(4角形状、8角形状、同心円状など)が可能である。尚、図3(a)中の空孔ファイバ1はd0/Λ0=0.5及びΛ0=7.5μm、空孔ファイバ2はd0/Λ0=0.6及びΛ0=5.5μmの空孔構造を有する。図3(a)より、空孔ファイバ1及び2は、ともに波長1310及び1550nm帯で正の波長分散特性を有しており、前記図1に記載の広帯域光伝送路(15)における光ファイバ(12)として適用できることが分かる。
3A, 3B, and 3C are a diagram, a side view, and a cross-sectional view showing wavelength dispersion characteristics of the holey fiber used in the embodiment of the present invention. The solid line and the broken line in FIG. 3A show the measurement results for two types of
表1は図3(a)に示した空孔ファイバ1,2の測定結果から、図3(a)に示した空孔ファイバ1,2の、波長1310、1625、及び1460nmにおける波長分散と、波長1550nmにおける波長分散の比率、それぞれD1310/D1550、D1625/D1550、及びD1460/D1550を計算した一覧表である。
表1から波長1310と1550nmにおける波長分散の比率D1310/D1550、及び波長1625と1550nmにおける波長分散の比率D1625/D1550は、それぞれ0.4〜0.5、及び1.15程度の関係を有することが確認できる。 From Table 1, the chromatic dispersion ratio D 1310 / D 1550 at wavelengths 1310 and 1550 nm and the chromatic dispersion ratio D 1625 / D 1550 at wavelengths 1625 and 1550 nm are about 0.4 to 0.5 and 1.15, respectively. It can be confirmed that there is a relationship.
図4は空孔ファイバにおける前記波長分散比D1310/D1550、D1625/D1550、及びD1460/D1550と、空孔間隔Λ0の関係を示す計算結果である。図中の実線及び破線は、それぞれ規格化空孔直径d0/Λ0が0.2及び0.5の時の結果を示す。図4より均一な空孔構造を有する空孔ファイバの波長分散比D1310/D1550、及びD1625/D1550は、それぞれ0.3〜0.6及び1.1〜1.2の範囲内であり、図3(a)及び表1に示した実際の空孔ファイバにおける測定結果と良く一致していることが分かる。また、波長分散比D1460/D1550は概ね0.8程度であることが分かる。 FIG. 4 is a calculation result showing a relationship between the chromatic dispersion ratios D 1310 / D 1550 , D 1625 / D 1550 , and D 1460 / D 1550 in the hole fiber and the hole interval Λ0. The solid and broken lines in the figure show the results when the normalized hole diameter d0 / Λ0 is 0.2 and 0.5, respectively. As shown in FIG. 4, the chromatic dispersion ratios D 1310 / D 1550 and D 1625 / D 1550 of the holey fiber having a uniform hole structure are in the range of 0.3 to 0.6 and 1.1 to 1.2, respectively. Thus, it can be seen that the measurement results for the actual holey fiber shown in FIG. It can also be seen that the chromatic dispersion ratio D 1460 / D 1550 is about 0.8.
表2は図4に示した均一な空孔構造を有する空孔ファイバ中における波長分散比D1310/D1550、D1625/D1550、及びD1460/D1550を纏めた一覧表である。
従って、本発明の実施の形態の図1に示した構成例において、負分散光ファイバ(13)において、次式(4)及び(5)の関係を満足する波長分散特性を実現することにより、当該空孔ファイバの波長1310、1550nm及び1625nm帯における累積分散を同時に低減することが可能となる。更に好ましくは、波長1460及び1550nmにおける波長分散の比率D1460/D1550を0.8の近傍とすることにより、波長1460nm帯を含むより広帯域での累積分散の低減が実現できることが分かる。
図5は、本発明の実施例の図2に示した屈折率分布を有する負分散光ファイバにおいて、前記式(4)及び(5)の関係を同時に満足する、半径の比率Raと比屈折率差の比率RΔの領域を表す図面である。図中の2本の曲線で囲まれた領域で、前記式(4)及び(5)の関係を同時に満たす波長分散特性を有する負分散光ファイバが実現できる。 FIG. 5 shows a radius ratio Ra and a relative refractive index satisfying the relations of the expressions (4) and (5) at the same time in the negative dispersion optical fiber having the refractive index distribution shown in FIG. 2 of the embodiment of the present invention. It is a drawing showing a region of a difference ratio RΔ. In the region surrounded by the two curves in the figure, a negative dispersion optical fiber having a wavelength dispersion characteristic that simultaneously satisfies the relations of the expressions (4) and (5) can be realized.
図6は、前記図5に示したRa及びRΔの設計領域を満足する、前記第2コア部の比屈折率差Δ1の最大値(符号を含む)と半径の比率Raの関係を示す図面である。図6より、Δ1の最大値はRaの増加と伴に減少する傾向にあることが分かる。一般に、クラッド部を純石英ガラスで形成する場合、クラッド部よりも低い屈折率を得るためには純石英ガラスにフッ素を添加する手法が用いられるが、実際の光ファイバでは損失増加や製造上の困難性の観点から、フッ素による比屈折率差の変化範囲は−0.5%程度までが限界となる。即ち、Raが0.7を超える領域では実際に負分散光ファイバを実現することは困難になると考えられる。 FIG. 6 is a diagram showing the relationship between the maximum value (including the sign) of the relative refractive index difference Δ1 of the second core portion and the radius ratio Ra, which satisfies the design area of Ra and RΔ shown in FIG. is there. From FIG. 6, it can be seen that the maximum value of Δ1 tends to decrease as Ra increases. In general, when the cladding is made of pure silica glass, a technique of adding fluorine to the pure silica glass is used to obtain a lower refractive index than that of the cladding. From the viewpoint of difficulty, the range of change in the relative refractive index difference due to fluorine is limited to about -0.5%. That is, it is considered difficult to actually realize a negative dispersion optical fiber in a region where Ra exceeds 0.7.
従って、図5及び6より、本発明の実施例の図2に示した屈折率分布を有する負分散光ファイバにおいて、半径の比率Ra及び比屈折率差の比率RΔを、それぞれ次式(6)及び(7)の領域で制御することにより、前記式(4)及び(5)の関係を満足する波長分散特性が実現できることが分かる。本実施例の図2に示した屈折率分布を有する負分散光ファイバの第1コア、第2コア部を純石英ガラスにゲルマニウム及びフッ素を添加して形成することで屈折率を変化させることができる。
図7は、前記図5に示したRa及びRΔの設計領域において実現可能な、波長1460及び1550nmにおける波長分散の比率D1460/D1550の最大値と半径の比率Raとの関係を表す図面である。図7よりD1460/D1550はRaと伴に増加する傾向にあることが分かる。また、前記式(6)及び(7)に示した関係において、更に好ましくはRaを0.35〜0.51の範囲とすることにより、D1460/D1550を0.8近傍の0.78〜0.82のより好ましい特性に設定できることが分かる。
FIG. 7 is a diagram showing the relationship between the maximum value of the chromatic dispersion ratio D 1460 / D 1550 at the
図8は、前記図5に示したRa及びRΔの設計領域を満足する、前記第2コア部の半径aと前記第1コア部の比屈折率差Δの関係を示す図面である。図中の6本の曲線は、それぞれRaが0.24、0.3、0.4、0.5、0.6及び0.7の条件におけるaとΔの関係を示している。図8より比屈折率差Δが一定の場合、コア半径aはRaの増加と伴に減少する傾向にあることが分かる。一方、コア半径aが一定の場合、比屈折率差ΔはRaの増加とともに減少する傾向にあることが分かる。従って、本発明の実施例の図2に示した屈折率分布において、第2コア部のコア半径a及び第1コア部の比屈折率差Δを、図8の実線及び破線で囲まれる領域、即ち以下の関係式(8)及び(9)を満たす領域で設計することにより、前記関係式(4)及び(5)を満足する負分散光ファイバが実現できることが分かる。
図9は、前記図8に示したコア半径aと比屈折率差Δの関係を満たす負分散光ファイバと、前記図3(a)に示した空孔ファイバ1とを用いて構成した、本発明の広帯域光伝送路の全長における実効的な波長分散特性を示す図面である。図中の実線、破線及び一点鎖線は、それぞれ前記図2の屈折率分布における(Ra、RΔ、a、Δ)が、(0.40、−0.34、3.4μm、1.35%)、(0.50、−0.56、3.8μm、0.80%)及び(0.60、−0.90、3.6μm、0.70%)で設計された負分散光ファイバに対する結果を示す。また、点線(細い破線)は従来のDCF、即ち前記関係式(4)及び(5)を満足しないDCFを用いた時の結果を示す。図9より従来のDCFでは、波長1550nm帯以外の波長帯域における波長分散が負の符号側に増大する傾向にあることが分かる。一方、本発明の負分散光ファイバを用いた場合、波長1310、1550及び1625nm帯における波長分散の絶対値が低減されていることが分かる。従って、図2に示した屈折率分布を用い、前記関係式(4)〜(7)及び(8)並びに(9)を満足する負分散光ファイバを実現し、実施例の図3に示した複数の空孔が、光ファイバ断面において均一な大きさ及び間隔で光ファイバ断面の伝搬軸方向に開けられた構造を有する空孔ファイバと組み合わせることにより、少なくとも波長1310及び1550nmの2波長帯域における累積分散を同時に低減する、本発明の広帯域光伝送路が実現できることが分かる。
FIG. 9 is a diagram showing the configuration of the negative dispersion optical fiber satisfying the relationship between the core radius a and the relative refractive index difference Δ shown in FIG. 8 and the
尚、本発明の実施例では、図2に示した、屈折率が均一なクラッド部と、クラッド部よりも高い屈折率を有する第1コア部と、クラッド部よりも低い屈折率を有する第2コア部とを有する負分散光ファイバを用いて説明したが、任意の屈折率分布を有する負分散光ファイバ、例えば、前記第2コア部の外側に前記クラッド部よりも高い屈折率を有する第3コア部と、前記クラッド部よりも低い屈折率を有する第4コア部(第3コア部の外側)とを有する屈折率分布、を用いても良く、当該屈折率分布を有する光ファイバにおいて、前記関係式(4)及び(5)を満足することにより、本発明の実施例と同等の作用効果を実現することも可能である。 In the embodiment of the present invention, as shown in FIG. 2, a clad portion having a uniform refractive index, a first core portion having a higher refractive index than the clad portion, and a second refractive index lower than that of the clad portion. Although a negative dispersion optical fiber having a core portion has been described, a negative dispersion optical fiber having an arbitrary refractive index distribution, for example, a third having a higher refractive index than the cladding portion outside the second core portion. A refractive index distribution having a core part and a fourth core part (outside the third core part) having a lower refractive index than the cladding part may be used. In the optical fiber having the refractive index distribution, By satisfying the relational expressions (4) and (5), it is possible to achieve the same operation and effect as the embodiment of the present invention.
[実施例2]
本発明の第2の実施例では、負分散光ファイバに空孔構造を用いた場合について図面を用いて説明する。
[Example 2]
In the second embodiment of the present invention, a case where a hole structure is used in a negative dispersion optical fiber will be described with reference to the drawings.
図10は空孔構造を用いた負分散光ファイバの断面構造を示す概念図である。図10に示すように本発明の空孔構造を有する負分散光ファイバは、コア部81の中心から距離Λの円周に外接し、屈折率が均一なクラッド部82に等間隔(円周方向に等間隔)に配置された少なくとも6個以上の直径dの空孔83を有する構造(空孔構造)を有している。ここで、図10中のコア部81は、実施例1の図2に示した、第1コア部及び第2コア部を含むコア領域に対応し、図10中のコア半径aは、図2中の第2コア部の半径aと等しい。
FIG. 10 is a conceptual diagram showing a cross-sectional structure of a negative dispersion optical fiber using a hole structure. As shown in FIG. 10, the negative dispersion optical fiber having a hole structure according to the present invention circumscribes the circumference at a distance Λ from the center of the
図11は、空孔構造を有する負分散光ファイバにおける、波長分散比の変化量と空孔までの距離Λをコア部の半径aで規格化した規格化空孔位置Λ/aの関係を示す図面である。ここで、縦軸は空孔構造を付与する前に対する、空孔構造付与後の波長分散比、D1310/D1550、D1460/D1550及びD1625/D1550の変化量を示す。また、図中の実線、破線及び一点鎖線は、空孔直径dをコア部の直径2aで規格化した規格化空孔直径d/2aが、それぞれ0.2、0.6及び1.0の場合の計算結果を示す。図11より波長分散比D1310/D1550及びD1460/D1550の変化量は、規格化空孔位置Λ/aの減少と伴に増加する傾向にあることが分かる。一方、D1625/D1550の変化量はΛ/aと伴に減少する傾向にあることが分かる。また、規格化空孔位置Λ/aが2.0以上であれば、何れの波長分散比の変化量も0.1以下に低減できることが分かる。更に好ましくは、規格化空孔位置Λ/aを2.3以上とすることにより、空孔の付与に伴う波長分散比D1460/D1550及びD1625/D1550の変化量をほぼ零とすることが可能となる。
FIG. 11 shows the relationship between the amount of change in the chromatic dispersion ratio and the normalized hole position Λ / a in which the distance Λ to the hole is normalized by the radius a of the core in a negative dispersion optical fiber having a hole structure. It is a drawing. Here, the vertical axis indicates the amount of change in the chromatic dispersion ratio, D 1310 / D 1550 , D 1460 / D 1550, and D 1625 / D 1550 after the hole structure is imparted before the pore structure is imparted. The solid line, the broken line, and the alternate long and short dash line in the figure indicate that the normalized hole diameter d / 2a obtained by normalizing the hole diameter d with the
図12は、規格化空孔位置Λ/aが2.0の空孔構造を有する負分散光ファイバにおける、波長分散比の変化量と規格化空孔直径d/2aの関係を示す図面である。図中の実線、破線、及び一点鎖線は、それぞれ波長分散比D1310/D1550、D1460/D1550及びD1625/D1550に対する結果を示す。図12より波長分散比の変化量の、規格化空孔直径d/2aに対する依存性は、図11で示した規格化空孔位置Λ/aに対する依存性に比べ比較的小さく、d/2aが0.5以上の領域ではほぼ一定の変化量に収束する傾向にあることが分かる。 FIG. 12 is a drawing showing the relationship between the amount of change in the chromatic dispersion ratio and the normalized hole diameter d / 2a in a negative dispersion optical fiber having a hole structure with a normalized hole position Λ / a of 2.0. . The solid line, broken line, and alternate long and short dash line in the figure indicate the results for the chromatic dispersion ratios D 1310 / D 1550 , D 1460 / D 1550 and D 1625 / D 1550 , respectively. As shown in FIG. 12, the dependence of the change amount of the chromatic dispersion ratio on the normalized hole diameter d / 2a is relatively smaller than the dependence on the normalized hole position Λ / a shown in FIG. It can be seen that in the region of 0.5 or more, there is a tendency to converge to a substantially constant change amount.
従って、図11及び図12の結果から、実施例1で述べた手順で好適とした屈折率分布において、規格化空孔位置Λ/aが2.0以上の位置に空孔を付与することにより、波長分散比の変化量を低減し、実施例1の関係式(4)及び(5)に示した好適な波長分散比条件を保持することが可能となる。更に好ましくは、実施例1に示した手順において、波長分散比D1310/D1550の条件に次式(10)を用いることにより、空孔付与後においても実施例1で示した好適な波長分散比の関係式(4)及び(5)を満たすことが可能となる。
図13は、空孔構造を有する負分散光ファイバにおける、曲げ損失の低減量と規格化空孔直径d/2aの関係を示す図面である。ここで縦軸は、空孔の付与に伴う曲げ損失の低減量を表す。図中の実線、破線、及び一点鎖線は、それぞれ規格化空孔位置Λ/aが2.0、2.2及び2.4の時の結果を表す。図13より、負分散光ファイバの曲げ損失は、空孔の付与に伴い改善され、その効果は規格化空孔直径d/2aに対し指数関数的に増大することが分かる。又、曲げ損失の低減効果は規格化空孔位置Λ/aが小さいほど増大するが、曲げ損失の低減効果のΛ/aに対する依存性は、d/2aに対する依存性に比べ比較的小さいことが分かる、従って、実施例1に示した手順で好適とされた屈折率分布を有する負分散光ファイバにおいて、規格化空孔直径d/2aが0.5以上となる空孔構造を付与することにより、空孔付与前に比べ曲げ損失を1桁以上改善できることが分かる。更に好ましくは、規格化空孔位置Λ/aを2.0〜2.4の範囲、規格化空孔直径d/2aを1.1以上とすることにより、空孔構造の付与による曲げ損失の低減効果を2桁以上とすることが可能となる。 FIG. 13 is a diagram showing the relationship between the reduction amount of bending loss and the normalized hole diameter d / 2a in a negative dispersion optical fiber having a hole structure. Here, the vertical axis represents the amount of reduction in bending loss accompanying the provision of holes. The solid line, broken line, and alternate long and short dash line in the figure represent the results when the normalized hole positions Λ / a are 2.0, 2.2, and 2.4, respectively. From FIG. 13, it can be seen that the bending loss of the negative dispersion optical fiber is improved with the provision of the holes, and the effect increases exponentially with respect to the normalized hole diameter d / 2a. Also, the bending loss reduction effect increases as the normalized hole position Λ / a decreases, but the dependency of the bending loss reduction effect on Λ / a is relatively small compared to the dependency on d / 2a. As can be seen, in the negative dispersion optical fiber having a refractive index profile suitable for the procedure shown in Example 1, by providing a hole structure in which the normalized hole diameter d / 2a is 0.5 or more. It can be seen that the bending loss can be improved by an order of magnitude or more compared to before the formation of holes. More preferably, when the normalized hole position Λ / a is in the range of 2.0 to 2.4 and the normalized hole diameter d / 2a is 1.1 or more, the bending loss due to the provision of the hole structure is reduced. The reduction effect can be made two digits or more.
以上により、実施例1に示した手順で好適とされた屈折率分布を有する負分散光ファイバにおいて、規格化空孔位置Λ/aが2.0以上、かつ規格化空孔直径d/2aが0.5以上の条件で、実施例2の図10に示した空孔構造を付与することにより、本発明の負分散光ファイバに好適な波長分散比の条件を満たし、かつ曲げ損失を飛躍的に低減した負分散光ファイバを実現することが可能となる。 As described above, in the negative dispersion optical fiber having the refractive index distribution suitable for the procedure shown in Example 1, the normalized hole position Λ / a is 2.0 or more and the normalized hole diameter d / 2a is By providing the hole structure shown in FIG. 10 of Example 2 under the condition of 0.5 or more, the condition of the chromatic dispersion ratio suitable for the negative dispersion optical fiber of the present invention is satisfied, and the bending loss is remarkably increased. It is possible to realize a negative dispersion optical fiber that is reduced to a very low level.
尚、空孔の付与に伴う波長分散比の変化は、空孔部が光ファイバ断面中の電界分布に変化を与えることにより生じるものであり、一般に光ファイバ中の電界分布はその半径方向で減少する特性を有する。従って、前記図11及び12に示したように、波長分散比の変化は主に空孔部までの距離により制御することが可能となり、空孔の個数には殆ど依存しない。また、空孔の付与に伴う曲げ損失の改善効果は、曲げ付与に伴う電界分布のクラッド部への浸み出しを、空孔部が遮断することにより得られるものであり、6個以上の空孔が付与された場合には、空孔界面が電界分布を遮断する領域が増加することにより、より強い曲げ損失の低減効果が実現可能となる。従って、本発明の実施例2では、空孔数が6個の場合について説明したが、6個を超える空孔構造を付与した場合においても、前記規格化空孔位置Λ/a及び規格化空孔直径d/2aを、それぞれ2.0以上及び0.5以上とすることにより、空孔数が6個の場合と同等、もしくはそれ以上の波長分散比の保持効果と曲げ損失の低減効果を実現することが可能となる。 Note that the change in the chromatic dispersion ratio associated with the provision of holes is caused by the holes changing the electric field distribution in the cross section of the optical fiber, and generally the electric field distribution in the optical fiber decreases in the radial direction. It has the characteristic to do. Therefore, as shown in FIGS. 11 and 12, the change in the chromatic dispersion ratio can be controlled mainly by the distance to the hole, and hardly depends on the number of holes. In addition, the effect of improving the bending loss associated with the provision of the holes is obtained by blocking the leaching of the electric field distribution accompanying the provision of the bending into the cladding part. When holes are provided, a stronger bending loss reduction effect can be realized by increasing the region where the hole interface blocks the electric field distribution. Therefore, in the second embodiment of the present invention, the case where the number of holes is six has been described. However, even when a hole structure having more than six holes is provided, the normalized hole position Λ / a and the normalized holes are also described. By setting the hole diameter d / 2a to 2.0 or more and 0.5 or more, respectively, the effect of maintaining the chromatic dispersion ratio and the effect of reducing the bending loss equal to or more than the case of 6 holes are obtained. It can be realized.
本発明は、特に波長1310nm帯及び波長1550nm帯の2波長帯域を同時に用いた高速光通信を可能とする、負分散光ファイバ、及び当該負分散光ファイバを用いた広帯域光伝送路、並びに当該広帯域光伝送路を用いた光通信システムに適用して有用なものである。
In particular, the present invention provides a negative dispersion optical fiber, a broadband optical transmission line using the negative dispersion optical fiber, and the broadband, which enable high-speed optical communication using two wavelength bands of a
11 送信部
12 波長1310及び1550nm帯で正の波長分散特性を有する光ファイバ
13 負分散光ファイバ
14 受信部
15 広帯域光伝送路
21 クラッド部
22 第1コア部
23 第2コア部
31 クラッド部
32 空孔
81 コア部
82 クラッド部
83 空孔
DESCRIPTION OF
Claims (5)
波長1625nmにおける波長分散D 1625 と波長1550nmにおける波長分散D 1550 との比率D 1625 /D 1550 が1.1〜1.2であり、波長1310nmにおける波長分散D 1310 と前記波長分散D 1550 との比率D 1310 /D 1550 が0.3〜0.6であることと、
屈折率が均一なクラッド部と、前記クラッド部よりも高い屈折率を有する第1コア部と、前記クラッド部よりも低い屈折率を有する第2コア部とを有し、
前記第2コア部の半径aに対する前記第1コア部の半径a1の比率Ra=a1/aが0.24〜0.70の範囲であり、前記第2コア部の前記クラッド部に対する比屈折率差Δ1と、前記第1コア部の前記クラッド部に対する比屈折率差Δとの比率RΔ=Δ1/Δが−0.13〜−1.73の範囲であり、かつ前記第2コア部の半径a及び第1コア部の比屈折率差Δが、それぞれ2.3〜6.0μm及び0.3〜1.5%の範囲であることを特徴とする負分散光ファイバ。 Two wavelengths including at least the wavelength 1310 nm band and the wavelength 1550 nm band of an optical fiber having negative wavelength dispersion characteristics in the wavelength 1310 nm band and the wavelength 1550 nm band and having positive wavelength dispersion characteristics in the wavelength 1310 nm band and the wavelength 1550 nm band A negative dispersion optical fiber that simultaneously reduces the cumulative dispersion in the band,
Ratio D 1625 / D 1550 of the chromatic dispersion D 1550 at a wavelength dispersion D 1625 and the wavelength 1550nm in wavelength 1625nm is 1.1 to 1.2, the ratio of the chromatic dispersion D 1550 and the wavelength dispersion D 1310 at a wavelength of 1310nm D 1310 / D 1550 is 0.3 to 0.6,
A clad part having a uniform refractive index, a first core part having a higher refractive index than the clad part, and a second core part having a lower refractive index than the clad part,
The ratio Ra = a1 / a of the radius a1 of the first core portion to the radius a of the second core portion is in the range of 0.24 to 0.70, and the relative refractive index of the second core portion to the cladding portion. The ratio RΔ = Δ1 / Δ between the difference Δ1 and the relative refractive index difference Δ of the first core portion with respect to the cladding portion is in the range of −0.13 to −1.73, and the radius of the second core portion A negative dispersion optical fiber, wherein the relative refractive index difference Δ between a and the first core portion is in the range of 2.3 to 6.0 μm and 0.3 to 1.5%, respectively.
前記クラッド部に、前記第1コア部の中心から距離Λの円周に外接するように配置された、直径dの少なくとも6個以上の空孔を有し、
前記距離Λと前記第2コア部の半径aとの比率Λ/aが2.0以上であり、かつ前記空孔直径dと前記第2コア部の直径2aとの比率d/2aが0.5以上であることを特徴とする負分散光ファイバ。 The negative dispersion optical fiber according to claim 1 ,
The clad portion has at least six holes having a diameter d, which are arranged so as to circumscribe a circumference of a distance Λ from the center of the first core portion,
The ratio Λ / a between the distance Λ and the radius a of the second core part is 2.0 or more, and the ratio d / 2a between the hole diameter d and the diameter 2a of the second core part is 0. A negative dispersion optical fiber characterized by being 5 or more.
波長1310nm帯及び波長1550nm帯で正の波長分散特性を有する光ファイバとを用いて構成されることを特徴とする広帯域光伝送路。 The negative dispersion optical fiber according to claim 1 or 2 ,
A broadband optical transmission line comprising an optical fiber having positive chromatic dispersion characteristics in a wavelength 1310 nm band and a wavelength 1550 nm band.
前記波長1310nm帯及び波長1550nm帯で正の波長分散特性を有する光ファイバが、複数の空孔が軸方向に開けられた構造を有する空孔ファイバであることを特徴とする広帯域光伝送路。 In the broadband optical transmission line according to claim 3 ,
A broadband optical transmission line, wherein the optical fiber having positive chromatic dispersion characteristics in the wavelength 1310 nm band and the wavelength 1550 nm band is a hole fiber having a structure in which a plurality of holes are opened in the axial direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006318447A JP4750678B2 (en) | 2006-11-27 | 2006-11-27 | Negative dispersion optical fiber, broadband optical transmission line and optical transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006318447A JP4750678B2 (en) | 2006-11-27 | 2006-11-27 | Negative dispersion optical fiber, broadband optical transmission line and optical transmission system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008134297A JP2008134297A (en) | 2008-06-12 |
JP4750678B2 true JP4750678B2 (en) | 2011-08-17 |
Family
ID=39559205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006318447A Expired - Fee Related JP4750678B2 (en) | 2006-11-27 | 2006-11-27 | Negative dispersion optical fiber, broadband optical transmission line and optical transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4750678B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5361319A (en) * | 1992-02-04 | 1994-11-01 | Corning Incorporated | Dispersion compensating devices and systems |
CA2340948A1 (en) * | 1999-06-25 | 2001-01-04 | The Furukawa Electric Co., Ltd. | Dispersion compensation optical fiber and optical transmission line comprising the dispersion compensation optical fiber |
JP5028706B2 (en) * | 2000-05-01 | 2012-09-19 | 住友電気工業株式会社 | Optical fiber and optical transmission system |
JP2004240390A (en) * | 2002-12-10 | 2004-08-26 | Sumitomo Electric Ind Ltd | Optical fiber |
JP2006243423A (en) * | 2005-03-04 | 2006-09-14 | Nippon Telegr & Teleph Corp <Ntt> | Photonick crystal fiber, optical transmission line and optical communication system |
-
2006
- 2006-11-27 JP JP2006318447A patent/JP4750678B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008134297A (en) | 2008-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3715104B2 (en) | Optical fiber | |
JP4065716B2 (en) | Positive dispersion optical fiber with wide effective area | |
US8094985B2 (en) | Multi-core holey fiber and optical transmission system | |
KR100401032B1 (en) | Optical fiber having negative dispersion and low slope in the erbium amplifier region | |
JP3786010B2 (en) | Optical fiber | |
WO2010119930A1 (en) | Multi-core optical fiber | |
WO2022034662A1 (en) | Multicore optical fiber and design method | |
JP6265960B2 (en) | Optical fiber and optical transmission system | |
US20110026890A1 (en) | Holey fibers | |
JP2008096933A (en) | Optical communication system and dispersion compensating optical fiber | |
EP2530502A1 (en) | Optical fiber | |
US20110091176A1 (en) | Holey fibers | |
JP4137515B2 (en) | Dispersion-shifted optical fiber | |
JP5118107B2 (en) | Hole structure optical fiber | |
JP4310923B2 (en) | Optical fiber | |
JP5697157B2 (en) | Core expansion single mode optical fiber and optical transmission system | |
JP6258618B2 (en) | Multi-core optical fiber | |
JP4750678B2 (en) | Negative dispersion optical fiber, broadband optical transmission line and optical transmission system | |
JP2010217472A (en) | Hole structure optical fiber and optical transmission system using the same | |
WO2000052507A1 (en) | Optical fiber | |
US6904216B2 (en) | Optical fiber of complex index profile | |
JP2008209654A (en) | Optical communication system | |
JP5000363B2 (en) | Hole dispersion control fiber and optical transmission system | |
US11860405B2 (en) | Hole assisted optical fiber | |
JP5771569B2 (en) | Optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110315 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110517 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110519 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4750678 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |