[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4749948B2 - Exothermic molding for casting - Google Patents

Exothermic molding for casting Download PDF

Info

Publication number
JP4749948B2
JP4749948B2 JP2006174041A JP2006174041A JP4749948B2 JP 4749948 B2 JP4749948 B2 JP 4749948B2 JP 2006174041 A JP2006174041 A JP 2006174041A JP 2006174041 A JP2006174041 A JP 2006174041A JP 4749948 B2 JP4749948 B2 JP 4749948B2
Authority
JP
Japan
Prior art keywords
weight
aluminum
exothermic
casting
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006174041A
Other languages
Japanese (ja)
Other versions
JP2008000799A (en
Inventor
潔 士 小野山
永 覚 徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINTO INDUSTRIAL CO., LTD.
Original Assignee
SHINTO INDUSTRIAL CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINTO INDUSTRIAL CO., LTD. filed Critical SHINTO INDUSTRIAL CO., LTD.
Priority to JP2006174041A priority Critical patent/JP4749948B2/en
Publication of JP2008000799A publication Critical patent/JP2008000799A/en
Application granted granted Critical
Publication of JP4749948B2 publication Critical patent/JP4749948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Description

本発明は鋳造用発熱性造形品に関するものである。 The present invention relates to an exothermic shaped article for casting.

従来より、鋳造の際に押湯温度が過度に低下しないように、鋳型内に発熱材を塗布したりあるいはその造形品を設置し、この発熱材を燃焼させることによって押湯温度の低下を抑制する事が行われている。   Conventionally, to prevent the hot water temperature from dropping excessively during casting, a heating material is applied in the mold or a shaped product is installed, and this heating material is burned to suppress the lowering of the hot water temperature. Things are done.

従来から多用されている鋳造用発熱性造形品は、発熱源としてアルミニウムなどの易酸化性金属粉末を利用したものが主流である。利用できるアルミニウム原料としては後述する様に種々有るが、通常多かれ少なかれその金属粉末の表面には既に非常に薄いが耐熱性が高い酸化被膜、すなわちアルミナ被膜を有している。このことから、この被膜が発熱材としての必要な酸化反応(燃焼)を阻害することとなるので、酸化反応を促進する目的で易酸化性金属の表面の酸化被膜を溶解することの出来る蛍石や氷晶石などのフッ素化合物も同時に混合しておくことが慣用技術となっている。 Conventionally used casting exothermic shaped articles are mainly made of an easily oxidizable metal powder such as aluminum as a heat source. There are various aluminum raw materials that can be used as described later. Usually , the surface of the metal powder is already more or less thin but already has an oxide film with high heat resistance, that is , an alumina film . As a result, this coating hinders the necessary oxidation reaction (combustion) as a heat generating material. Therefore, the fluorite capable of dissolving the oxide film on the surface of the easily oxidizable metal for the purpose of promoting the oxidation reaction. It is a common technique to mix fluorine compounds such as cryolite and cryolite at the same time.

例えば、特開2000−17660号公報(特許文献1)には、その特許請求の範囲の請求項7には「酸化促進剤は、クレオライト、四弗化アルミニウムカリウムまたは六弗化アルミニウムカリウムの何れか1種以上である請求項6記載の鋳造用発熱性アッセンブリー」と明記されているように、フッ化物を用いる事が酸化促進に有効であることが示されている。   For example, Japanese Patent Application Laid-Open No. 2000-17660 (Patent Document 1) states in claim 7 that the “accelerator is any one of cleolite, potassium aluminum tetrafluoride, or potassium aluminum hexafluoride”. It has been shown that the use of fluoride is effective in promoting oxidation, as specified in “The exothermic assembly for casting according to claim 6, which is at least one kind”.

例えば、特開2004−298939号公報(特許文献2)の発熱性塗型剤では、特許請求の範囲の請求項5に「酸化促進剤を5〜15重量部含有する事を特徴とする請求項1〜4いずれかに記載の発熱性塗型剤」と記載されており、発明の実施の形態[0013]段落に「酸化促進剤としては氷晶石、蛍石等の弗化物の1種類以上を使用することが好ましい」と記載されている。 For example , in the exothermic coating agent disclosed in Japanese Patent Application Laid-Open No. 2004-298939 (Patent Document 2), the claim 5 of the claims includes “5 to 15 parts by weight of an oxidation accelerator”. The exothermic coating agent described in any one of 1 to 4 ”is described in the paragraph [0013] of the embodiment of the invention as“ one or more kinds of fluorides such as cryolite and fluorite as the oxidation accelerator ”. Is preferably used. "

同じく特開2003−136201号公報(特許文献3)の鋳造用発熱材でも易酸化性金属の助燃剤に積極的にフッ化物の使用を薦めている。   Similarly, the casting heat-generating material disclosed in Japanese Patent Application Laid-Open No. 2003-136201 (Patent Document 3) positively recommends the use of fluoride as an easily oxidizable metal auxiliary agent.

従って、結果的にこの種の鋳造用発熱性造形品からはかなり多量のフッ素が検出されることになる。
特開2000−176604号公報 特開2004−298939号公報 特開2003−136201号公報
Therefore, considerably so that a large amount of fluorine is detected from the results in forming a exothermic shaped articles cast in this species.
JP 2000-176604 A JP 2004-298939 A Japanese Patent Laid-Open No. 2003-136201

鋳造時に砂型として使用された鋳物砂は鋳造が終わると破砕し、適当な網で篩って異物を取り除き繰り返して使用する事が通例となっている。そして発熱性造形品は鋳物砂に埋め込んで使用されるので、フッ化物を使用した発熱性造形品の燃焼後の残材が鋳物砂に混入することは避ける事が出来ない。 The foundry sand used as a sand mold at the time of casting is usually crushed after the casting is finished, and is screened with a suitable net to remove foreign substances and used repeatedly. Since the exothermic shaped article is used by being embedded in foundry sand, it is inevitable that the remaining material after combustion of the exothermic shaped article using fluoride is mixed into the foundry sand.

フッ化物が鋳物砂に混入すると鋳物砂の耐火度を下げることから鋳物の肌を悪化させることにつながるので、鋳物砂リサイクルの観点からフッ化物の使用量を少なくすることが以前から望まれていた。   If fluoride is mixed in the foundry sand, it lowers the fire resistance of the foundry sand and leads to worsening of the skin of the foundry. Therefore, it has long been desired to reduce the amount of fluoride used from the viewpoint of recycling the foundry sand. .

更に、平成13年環境告示によりフッ素に係る土壌環境基準が検液1リットルに付き0.8mg以下にすることが規制されたことから、鋳造業界でも産業廃棄物中のフッ化物を減少させる必要が生じ、フッ素化合物を使用しない鋳造用発熱性造形品の開発が一層強く望まれるようになったのである。 Furthermore, since the 2001 environmental notice restricts the soil environmental standards related to fluorine to 0.8 mg or less per liter of test solution, it is necessary to reduce fluoride in industrial waste even in the casting industry. occurs, the development of granulation for exothermic shaped articles castings do not use a fluorine compound is had become desirable even stronger.

しかし、発熱材の主な発熱源であるアルミニウム粒子の表面は前述のように大かれ少なかれ薄い酸化被膜、すなわちアルミナ被膜で覆われているため燃焼し難い性質を有している。このことから、発熱材は外部から熱を受けてアルミナ被膜が崩壊または溶解して燃焼を開始することの出来る700〜1000℃程度の温度まで上昇しなければ燃焼を開始することができず、その結果、遅燃にならざるを得なかった。そこで、今までは発熱材を早期に着火し燃焼させる為に最も容易で且つ有効な手段としてフッ化物を混合する方法が続けられて来た。 However, since the surface of the aluminum particles, which is the main heat source of the heat generating material , is covered with a more or less thin oxide film, that is, an alumina film as described above, it has the property that it is difficult to burn. Therefore, heat generating material is unable to initiate combustion to be raised to a temperature of about 700 to 1000 ° C. which can be alumina the film receives heat from the outside starts burning and disintegration or dissolution As a result, they had to lag slowly. So far, the method of mixing fluoride has been continued as the easiest and effective means for igniting and burning the heat generating material at an early stage.

鋳物製造にあたっては押湯の熱をなるべく放散させずに維持する事が求められている。このことから、鋳物の押湯に使用される発熱性造形品には、できるだけ早期に燃焼を開始しかつ長い時間高温を維持できるよう燃焼をコントロールすることが必要となる。   In the production of castings, it is required to maintain the heat of the feeder as much as possible without dissipating it. For this reason, it is necessary to control the combustion so that the exothermic shaped article used for the casting hot metal can start combustion as early as possible and maintain a high temperature for a long time.

本発明者等らは、種々実験の結果、湿式成形法で造形された特定の発熱性造形品によれば、フッ素化合物を使用しなくとも早期燃焼と必要十分な発熱・保温性が得られることを見出した。 As a result of various experiments, the inventors of the present invention are able to obtain early combustion and necessary and sufficient heat generation and heat retention without using a fluorine compound, according to a specific exothermic shaped article formed by a wet molding method. I found.

本発明は、早期に着火したマグネシウムの燃焼熱でアルミニウム表面の酸化被膜を崩壊・溶解させることが出来れば早期に着火した後引き続き主たる発熱源であるアルミニウムの燃焼を促進させうるとの考えからなされたものである。   The present invention was made based on the idea that if the oxide film on the aluminum surface can be disintegrated and dissolved by the combustion heat of magnesium ignited early, the combustion of aluminum, which is the main heat generation source, can continue to be promoted after early ignition. It is a thing.

したがって、本発明による鋳造用発熱性造形品は、アルミニウム発熱材を5〜40重量%、平均粒径50μm〜5mmのマグネシウム粉粒体を1〜30重量%、酸化剤を3〜30重量%、繊維質材料を0.5〜20重量%、粘結剤を2〜15重量%、残部として耐火性骨材を0〜50重量%含有し、湿式成形法で造形されたもの(但し、各成分の合計を100重量%とする)、である。 Therefore, the exothermic molded article for casting according to the present invention comprises 5 to 40% by weight of aluminum heating material, 1 to 30% by weight of magnesium powder having an average particle size of 50 μm to 5 mm , 3 to 30% by weight of oxidizing agent , Containing 0.5 to 20% by weight of fibrous material, 2 to 15% by weight of binder, and 0 to 50% by weight of refractory aggregate as the balance , and formed by a wet molding method (however, each component Is 100% by weight).

このような本発明による鋳造用発熱性造形品は、好ましい態様として、実質的にフッ素化合物を含有しないもの、を包含する。 Such an exothermic molded article for casting according to the present invention includes, as a preferred embodiment, one that does not substantially contain a fluorine compound.

早期に発熱するものとしては例えば有機物などの可燃物や油脂などもあるが、これらは低温で早く燃焼したとしても自身はアルミニウムの表面の耐火物被膜を溶解するまでの高温には至らない。酸化しやすく極めて短時間、瞬間的に燃焼しその為高温に発熱するマグネシウムであればこそ少量の混合でも局部的に高温になり隣接するアルミニウムの燃焼を誘発し連続的にアルミニウムの燃焼を促進させることが可能になるのである。 Examples of those that generate heat early include flammable materials such as organic substances and oils and fats, but even if they burn quickly at low temperatures, they themselves do not reach a high temperature until the refractory film on the surface of aluminum is dissolved. Magnesium that is easy to oxidize and burns instantaneously for a short time and generates heat to a high temperature, so even if it is mixed in a small amount, it becomes locally hot and induces the burning of adjacent aluminum to continuously promote the burning of aluminum. It becomes possible.

また、一旦燃焼を開始した後は、発熱源であるアルミニウムの粒径を細かくしたり、または酸化鉄粉や過酸化物などを増量混合する事で早期に燃焼させることは可能であるが、着火を早めて早期に燃焼を開始させることは、アルミニウムの表面に酸化アルミニウムからなる耐火物被膜が存在する以上アルミニウムの粒子径を細かくしたり酸化鉄粉末や過酸化物などの酸化剤を増量したとしても期待することは出来ない。 In addition, once combustion is started, it is possible to burn early by reducing the particle size of aluminum, which is a heat source, or increasing the amount of iron oxide powder, peroxide, etc. If the refractory coating made of aluminum oxide is present on the surface of aluminum, the particle size of aluminum is reduced or the amount of oxidizing agent such as iron oxide powder or peroxide is increased. I can't even expect.

本発明によれば、従来の湿式成形法で造形された発熱性造形品と同一の発熱性能を有しながら、使用後の残材には有害物質であるフッ素を含まない環境適合型の押湯保温用発熱性造形品を提供する事が出来る。 According to the present invention, while having a conventional wet type same heating performance and shaped pyrogenic shaped articles by molding, the eco-type of the remaining material after use without fluorine is harmful substances press An exothermic shaped product for hot water insulation can be provided.

<鋳造用発熱性造形品><Exothermic molding for casting>
本発明による鋳造用発熱性造形品は鋳造時に使用されて押湯の温度低下を極力抑制、遅延させるもので、その成分組成がアルミニウム発熱材を5〜40重量%、平均粒径50μm〜5mmのマグネシウム粉粒体を1〜30重量%、酸化剤を3〜30重量%、繊維質材料を0.5〜20重量%、粘結剤を2〜15重量%、残部として耐火性骨材を0〜50重量%含有することを特徴とし、湿式成形法で造形されて製品名が押湯保温スリーブ、発熱性中子、発熱性ネックダウンコア、発熱パッド等と呼称されている。そしてその形状は円筒状、板状、ドーム状など用途に応じて様々な種類が有る。造形方法には各種有って一般的に水分を使用して造形する湿式成形と、水分を使用せずに造形する乾式成形とに大別される。両成形方法の成分組成上の一番の違いは、湿式成形法では所定の形状に成型した後、乾燥固化して所望の発熱性造形物を得る為には繊維質材料が必須成分であり、乾式成形法では繊維質材料とその他の粉粒体材料の均一な吹き込みが出来ない為、所望の性能が得られず繊維質材料を排除するのが通例である。本願で実施する湿式成形法とは、上記各種原材料を水中で混合して組成物の成分を水中に分散させたスラリーをつくり、製品の形状に応じて適当な形をした水を透過する成形器にスラリーを充填し、スラリーに圧力をかけて脱水し固形化するか、成形器をスラリー中に浸漬し成形器内部を真空ポンプで負圧にして成形器表面にスラリーを吸着させ、水だけを透過させて固形分を堆積させ希望する形の造形品を得る方法を表す。当該湿式成形方法は、原料を多量の水中に分散させてスラリー状にする為繊維質を大量に含ませることが可能で、その結果湿式造形品は密度が小さく多孔質で保温性が高く、繊維の絡みによって高い強度を確保できる事が特徴である。かくして水分を20〜40重量%含有し、繊維質により所定の形状を維持した生の造形品を、乾燥炉で150〜200℃で乾燥して水分を蒸発させると同時に粘結材を固化させて、所定強度を持った造形品が得られる。以上の通り繊維質を大量に使用できる唯一の造形方法であり、30年以上も前から押湯保温材業界で採用されてきた。その結果、現在日本国内の鋳物メーカーで常用されている発熱性造形品はほとんど全量が湿式成形品によるものである。The exothermic shaped article for casting according to the present invention is used at the time of casting to suppress and delay the temperature drop of the feeder as much as possible, and its composition is 5 to 40% by weight of the aluminum heating material, and the average particle size is 50 μm to 5 mm. 1 to 30% by weight of magnesium powder, 3 to 30% by weight of oxidizer, 0.5 to 20% by weight of fibrous material, 2 to 15% by weight of binder, and 0% of refractory aggregate It is characterized by containing ˜50% by weight, and it is shaped by a wet molding method, and its product name is called a hot water insulation sleeve, a heat generating core, a heat generating neck down core, a heat generating pad and the like. There are various types of shapes such as a cylindrical shape, a plate shape, and a dome shape depending on the application. There are various types of modeling methods, and they are broadly classified into wet molding that generally models using moisture and dry molding that models without using moisture. The most important difference in the component composition between the two molding methods is that the fibrous material is an essential component in order to obtain a desired exothermic shaped article by drying and solidifying after molding into a predetermined shape in the wet molding method, In the dry molding method, since the fibrous material and other granular materials cannot be blown uniformly, the desired performance cannot be obtained and the fibrous material is usually excluded. The wet molding method implemented in the present application is a molding machine that mixes the above-mentioned various raw materials in water to create a slurry in which the components of the composition are dispersed in water, and permeates water in an appropriate shape according to the shape of the product. The slurry is filled and dehydrated by applying pressure to the slurry, or the molding machine is immersed in the slurry and the molding machine is made negative with a vacuum pump so that the slurry is adsorbed on the molding machine surface and only water is used. It represents a method of obtaining a shaped product of a desired shape by permeating and depositing solid content. The wet molding method can contain a large amount of fiber because the raw material is dispersed in a large amount of water to form a slurry. As a result, the wet shaped product has a small density, is porous, has a high heat retention property, and is a fiber. It is characterized in that high strength can be ensured by the entanglement. Thus, a raw shaped article containing 20 to 40% by weight of moisture and maintaining a predetermined shape by the fiber is dried at 150 to 200 ° C. in a drying furnace to evaporate the moisture and simultaneously solidify the binder. A shaped product having a predetermined strength is obtained. As described above, it is the only modeling method that can use a large amount of fiber, and has been adopted in the hot water insulation industry for more than 30 years. As a result, almost all exothermic shaped products that are currently used by foundry manufacturers in Japan are entirely made of wet-formed products.

<アルミニウム発熱材>
主な発熱源であるアルミニウム発熱材の含有量は5〜40重量%である。ここでアルミニウムとは、金属アルミニウム、アルミニウム合金およびこれらの酸化物、並びにこれらの混合物の何れかを意味する。
<Aluminum heating material>
The content of the aluminum heat generating material, which is the main heat source, is 5 to 40% by weight. Here, aluminum means any of metallic aluminum, aluminum alloys, oxides thereof, and mixtures thereof.

アルミニウム発熱材の入手源、製造方法、形状、粒度等は規制されるものではない。例えば、アルミニウム精錬の時に発生するスラグの粉砕粉(アルミ灰)もフッ素が含まれていなければ使用可能である。   There are no restrictions on the source, production method, shape, particle size, etc. of the aluminum heating material. For example, slag pulverized powder (aluminum ash) generated during aluminum refining can be used if it does not contain fluorine.

なお、このアルミニウム発熱材はその表面に酸化被膜が形成されているものが有るが、本発明におけるアルミニウム発熱材は酸素との反応によって発熱可能なものである点で耐火性骨材として例示されたアルミナとは区別されるものである。 Although this aluminum heat generating material is there is what is oxide film is formed on the surface of the aluminum heat generating material in the present invention has been illustrated as a refractory aggregate in that is capable heat by reaction with oxygen It is distinguished from alumina.

アルミニウムは爆発的に燃焼するマグネシウムと違って粒径や酸化鉄粉末などの酸化剤の添加量を調整することで緩やかに燃焼させることも可能であり、なるべく高温を維持させる必要がある発熱性造形品にとってはアルミニウムを含有させることは必要不可欠の成分となる。その含有量が少な過ぎると高温を維持する能力に欠けて発熱性造形品としての十分な効果を得られないこととなり、一方で含有量が多くなり過ぎると発熱能力が過剰に増大し高温になり過ぎて発熱をコントロールすることが難しくなり、更に高温になり過ぎて発熱性造形品の焼結が進み本来の保温効果も損なわれることとなる。アルミニウム発熱材の平均粒径は50μm〜5mm、好ましくは150μm〜2mmである。また、アルミニウム発熱材の形状は任意である。例えば粒状、粉状、箔状等の形状のものを用いる事ができる。この中では特に粒状および粉状が好ましい。 Unlike magnesium, which explosively burns, aluminum can be burned slowly by adjusting the amount of oxidizer such as particle size and iron oxide powder, and it is necessary to maintain as high a temperature as possible. For products, the inclusion of aluminum is an indispensable component. As the content is too small it will not provide sufficient effect as exothermic granulated form products lack the ability to maintain high temperature, whereas the heating power content too many excessively increased to a high temperature in it is difficult to control the heat generation too, so that the further also impair intrinsic thermal effect proceeds sintering exothermic concrete shaped piece too hot. The average particle diameter of the aluminum heating material is 50 μm to 5 mm, preferably 150 μm to 2 mm. Moreover, the shape of the aluminum heating material is arbitrary. For example, a granular shape, a powder shape, a foil shape, or the like can be used. Of these, granular and powder are particularly preferred.

<マグネシウム粉粒体>
マグネシウム粉粒体の含有量は1〜30重量%、好ましくは3〜10重量%である。含有量が少なすぎるとフッ化物に代わる酸化促進の効果を発揮することが出来ず、一方で含有量が多くなれば酸化反応が早くなるが、多すぎると必要以上に反応が早くなるだけでなく爆発的に燃焼して危険と判断されることもある。
<Magnesium powder>
The content of magnesium powder is 1 to 30% by weight, preferably 3 to 10% by weight. If the content is too small, the effect of promoting oxidation in place of fluoride cannot be exhibited. On the other hand, if the content is too high, the oxidation reaction will be faster. It may be judged dangerous by explosive combustion.

マグネシウム粉粒体の入手源、製造方法、形状、粒度等は規制されるものではないが、マグネシウム粉粒体の平均粒径は50μm〜5mm、好ましくは150μm〜2mmである。また、マグネシウム粉粒体の形状は任意であるが、例えば粒状、粉状、箔状等の形状のものを用いることができる。この中では特に粒状および粉状が好ましい。   The source, production method, shape, particle size and the like of the magnesium powder are not restricted, but the average particle diameter of the magnesium powder is 50 μm to 5 mm, preferably 150 μm to 2 mm. Moreover, although the shape of a magnesium granular material is arbitrary, the thing of shapes, such as a granular form, powder form, foil shape, can be used, for example. Of these, granular and powder are particularly preferred.

ここでマグネシウムとは、金属マグネシウム、マグネシウム合金およびこれらの酸化物、並びにこれらの混合物のいずれかを意味する。   Here, magnesium means any of metallic magnesium, magnesium alloys and oxides thereof, and mixtures thereof.

<酸化剤>
酸化剤の含有量は3〜30重量%、好ましくは5〜15重量%である。含有量が少な過ぎるとマグネシウムの燃焼熱がアルミニウム発熱材を着火させた直後に、テルミット反応でアルミニウム発熱材を活発に燃焼させるのに不十分であり、一方で含有量が多くなれば本発明品の耐火度が下がり、使用した時に造形品の熱割れや溶融を誘発することになるので好ましくない。
<Oxidizing agent>
The content of the oxidizing agent is 3 to 30% by weight, preferably 5 to 15% by weight. If the content is too low, immediately after the heat of magnesium combustion ignites the aluminum exothermic material, it is insufficient to actively burn the aluminum exothermic material in the thermite reaction. This is not preferable because the fire resistance of the molded article is lowered, and when it is used , thermal cracking and melting of the shaped article are induced.

本発明の酸化剤としては、例えば、酸化鉄、ベンガラ、硝酸塩、二酸化マンガン、および過マンガン酸カリウムを用いることができる。この中では効果とコストの両面から特に酸化鉄が好ましい。   As the oxidizing agent of the present invention, for example, iron oxide, bengara, nitrate, manganese dioxide, and potassium permanganate can be used. Among these, iron oxide is particularly preferable from the viewpoints of both effect and cost.

酸化剤は、平均粒径が50μm〜2mm、特に15μm〜0.5mmであるものが好ましい。酸化剤の形状は任意であって、例えば粒状、粉状、扁平状等の形状のものを用いることができる。この中では特に粉状が好ましい。   The oxidizing agent preferably has an average particle size of 50 μm to 2 mm, particularly 15 μm to 0.5 mm. The shape of the oxidizing agent is arbitrary, and for example, a shape such as a granular shape, a powdery shape, or a flat shape can be used. Of these, powder is particularly preferred.

<耐火性骨材>
耐火性骨材の配合は必須ではないが、最大50重量%の範囲内で必要に応じて混合することができる。
<Fireproof aggregate>
The composition of the refractory aggregate is not essential, but can be mixed as required within a range of up to 50% by weight.

耐火性骨材としては、従来の鋳造用発熱性造形品を得る際に用いられてきたものを本発明においても採用する事ができる。本発明において好ましい耐火性骨材としては、例えば、アルミナ、SiO、ZrO、MgO、CaO等を挙げることができる。この中では特にアルミナが好ましい。アルミナはバイヤー法で製造されたものでもボーキサイト、バンド頁岩等の天然物も使用可能である。また、発泡バルーン等の軽量骨材等を使用することもできる。 As the refractory aggregate, what has been used when obtaining a conventional exothermic molded article for casting can also be employed in the present invention. Examples of preferable fireproof aggregates in the present invention include alumina, SiO 2 , ZrO 2 , MgO, and CaO. Of these, alumina is particularly preferred. Alumina can be produced by the Bayer method, or natural products such as bauxite and band shale can be used. Also, lightweight aggregates such as foamed balloons can be used.

<繊維質材料>
本発明の発熱性造形品には有機質または無機質を使用するか、もしくは両方の繊維質材料を併用する。繊維質材料を混合することによって嵩が増えて保温性を向上させることができる。無機質繊維はロックウール、アルミナシリケートファイバー、ガラスファイバー等で、有機質繊維は古紙、セルロース、綿、糸屑といったものである。混合する場合は0.5〜20重量%の範囲内で混合する。
<Fibrous material>
The exothermic shaped article of the present invention uses organic or inorganic materials , or both fibrous materials are used in combination. It is possible to improve the warmth increasingly bulk by mixing the fibrous material. Inorganic fibers are rock wool, alumina silicate fiber, glass fiber, etc., and organic fibers are waste paper, cellulose, cotton, yarn waste, and the like. When mixing, it mixes within the range of 0.5-20 weight%.

<粘結剤>
本発明による発熱性造形品には強度を付与する為に粘結剤(結合剤)を用いる。粘結剤として有機質または無機質を使用するか、もしくは両方の粘結剤を併用する。有機質の粘結剤としてはデキストリン、澱粉、フェノール樹脂等があり、無機質粘結剤としては粘土、ベントナイト、珪酸ソーダ等が有る。いずれの粘結剤を使用するかは造形品に求められる性能により適宜決定するが、フェノール樹脂が最も汎用されており、その添加量は2〜15重量%である。
<Binder>
In order to impart strength to the exothermic shaped article according to the present invention, a binder is used. An organic or inorganic material is used as the binder, or both binders are used in combination. Examples of the organic binder include dextrin, starch, and phenol resin , and examples of the inorganic binder include clay, bentonite, and sodium silicate . Which binder is used is appropriately determined depending on the performance required of the molded article, but phenolic resins are most commonly used, and the amount added is 2 to 15% by weight.

なお、上記成分の含有量は、いずれも本発明による鋳造用発熱性造形品を構成している各成分の合計量を100%としたときのものである。   In addition, all content of the said component is a thing when the total amount of each component which comprises the exothermic molded article for casting by this invention is set to 100%.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

[実施例1〜3および比較例1〜3]
に示される配合割合で、マグネシウム切削粉(マグネシウム含有率95%、粒径0.5〜1.5mm)、アルミニウム切削粉(アルミニウム含有率85%)、酸化鉄粉(FeO含有率90%)、アルミナ(アルミナ含有率98%)、繊維質材料(Al−SiOファイバーと古紙を併用)および粘結剤(フェノール樹脂)を水中に分散させてスラリー状とし、湿式成形により板状に造形した後180℃で乾燥して本発明の鋳造用発熱性造形品を得た(実施例)。
[Examples 1 to 3 and Comparative Examples 1 to 3 ]
In the mixing ratio shown in Table 1 , magnesium cutting powder (magnesium content 95%, particle size 0.5-1.5 mm ), aluminum cutting powder (aluminum content 85%), iron oxide powder (FeO content 90%) ), Alumina (alumina content 98%), fibrous material ( combined use of Al 2 O 3 —SiO 2 fiber and waste paper) and binder (phenol resin) are dispersed in water to form a slurry, which is then formed by wet molding. After shaping into a shape, it was dried at 180 ° C. to obtain an exothermic shaped article for casting of the present invention (Examples 1 to 3 ).

一方、比較例として実施例1〜3と同様な成形、乾燥方法で、従来使用されているアルミニウム切削粉と氷晶石(3重量%)を併用した造形品(比較例1)、発熱材料はアルミニウム切削粉だけで氷晶石もマグネシウム切削粉も使用しない造形品(比較例2)、及び発熱材料はマグネシウム切削粉だけで氷晶石もアルミニウム切削粉も使用しない造形品(比較例3)を用意した。各成分の配合割合は表1に示される通りである。

Figure 0004749948
On the other hand, as a comparative example, a shaped article (comparative example 1) using both aluminum cutting powder and cryolite (3 wt%), which has been conventionally used, in the same molding and drying method as in Examples 1 to 3, and the heat generating material are Modeled product that uses only aluminum cutting powder and does not use cryolite or magnesium cutting powder (Comparative Example 2), and Modeled product that uses only magnesium cutting powder and does not use cryolite or aluminum cutting powder (Comparative Example 3) Prepared. The blending ratio of each component is as shown in Table 1.
Figure 0004749948

一般的には燃焼時間が長いほど造形品の保温力が高くなり好ましい。
本発明の鋳造用発熱性造形品の効果を確認するために、表1の実施例1〜3および比較例1〜3の板状造形品から厚さ30mm× 縦・横45mmの試片を切り出し、厚さ15mm×縦50mm×横50mmの断熱耐火煉瓦に載せて煉瓦とともに1000℃に維持されたエレマ電気炉内に挿入し、試片の着火時間と燃焼終了時間を調査した。着火時間は試片のどこか一部が着火開始した時間で、燃焼終了時間は試片の煉瓦と接触している面を除く全表面が着火終了した時間を示す。燃焼時間は燃焼終了時間から着火時間を差し引いた時間で表す。
In general, the longer the burning time, the higher the heat retaining power of the shaped article, which is preferable.
In order to confirm the effect of the exothermic shaped article for casting according to the present invention, a specimen having a thickness of 30 mm × length and width of 45 mm was cut out from the plate-like shaped articles of Examples 1 to 3 and Comparative Examples 1 to 3 in Table 1. Then, it was placed on a heat-resistant refractory brick having a thickness of 15 mm × length 50 mm × width 50 mm and inserted into an elema electric furnace maintained at 1000 ° C. together with the brick, and the ignition time and combustion end time of the specimen were investigated. The ignition time is the time at which some part of the specimen starts to ignite, and the combustion end time is the time at which all surfaces except the surface in contact with the brick of the specimen have been ignited. The combustion time is expressed as a time obtained by subtracting the ignition time from the combustion end time.

および図は、着火時間とマグネシウムの添加量の関係を示すものである。

Figure 0004749948
Table 2 and FIG. 1 show the relationship between the ignition time and the amount of magnesium added.
Figure 0004749948

および図から明らかなように、氷晶石もマグネシウムも含まない比較例は、アルミニウムの着火に時間がかかり過ぎており、一方、アルミニウムを使用せずマグネシウムだけを使用した比較例は着火時間、燃焼終了時間のいずれも非常に早く着火とほぼ同時に爆発的に燃焼を完了しており、この造形品を押湯保温スリーブとして用いると燃焼時に一気に多量のガスが発生し溶湯が沸騰飛散し極めて危険な状況になるものと想定できる。 As is clear from Table 2 and FIG. 1 , Comparative Example 2 containing neither cryolite nor magnesium takes too much time to ignite aluminum, while Comparative Example 3 using only magnesium without using aluminum. the ignition time, any combustion end time is also completed almost simultaneously explosively burned with the ignition very quickly, once a large amount of gas is generated molten metal boils the shaped article at the time of combustion and is used as a feeder insulation sleeve Ru can be assumed that the scattered become extremely dangerous situation.

本発明品のうち実施例およびは、着火時間、燃焼時間のいずれも従来品である比較例と同等か、もしくは優れている。また、実施例の燃焼時間は比較例よりやや短いが着火時間は早く、それも使用上危険なほどの早さではないので、内径100mm以下の比較的小型の押湯保温用造形品としては比較例より好適であり、いずれも本発明の効果が確認できた。 Among the products of the present invention, Examples 1 and 2 are equivalent to or superior to Comparative Example 1 in which both the ignition time and the combustion time are conventional products. Further, the combustion time of Example 3 is slightly shorter than that of Comparative Example 1 , but the ignition time is fast, and it is not so fast as to be dangerous for use. Is more preferable than Comparative Example 1 , and the effects of the present invention were confirmed in all cases.

また、上記実施例および比較例の各造形品の燃焼後の残材についてフッ素溶出試験を行った。結果は表に示される通りである。 In addition, we fluorine dissolution test for residual material after combustion of the shaped articles of Examples 1-3 and Comparative Examples 1-3. The results are as shown in Table 3 .

フッ素溶出試験:「環境庁告示13号」の方法に従った。Fluorine dissolution test: The method of “Environment Agency Notification No. 13” was followed.

Figure 0004749948
Figure 0004749948

表3に示すように従来品である比較例1はフッ素溶出量が30ppmで有ったが、本発明品である実施例1〜3およびフッ化物を使用していない比較例2,3では検出されなかった。As shown in Table 3, Comparative Example 1, which is a conventional product, had a fluorine elution amount of 30 ppm, but was detected in Examples 1 to 3 and Comparative Examples 2 and 3 that did not use fluoride. Was not.

[実施例4および比較例4][Example 4 and Comparative Example 4]
本発明の効果を確認する為、実際に鋳造時に使用される発熱性造形品、すなわち円筒状の発熱スリーブを実施例1〜3と同様な方法で製造し試用した。原料組成は表4に示す通りで、実施例4は実施例1と同配合、比較例4は従来配合品で比較例1と同配合である。発熱スリーブの形状は外径240mm、内径200、厚さ20mm、高さ200mmである。In order to confirm the effect of the present invention, an exothermic shaped article that was actually used at the time of casting, that is, a cylindrical heating sleeve was manufactured and tested in the same manner as in Examples 1 to 3. The raw material composition is as shown in Table 4. Example 4 has the same formulation as Example 1, and Comparative Example 4 is a conventional formulation and the same formulation as Comparative Example 1. The heat generating sleeve has an outer diameter of 240 mm, an inner diameter of 200, a thickness of 20 mm, and a height of 200 mm.

Figure 0004749948
Figure 0004749948

比較試験は実際にダクタイル鋳鉄の鋳造に際し押湯スリーブとして試用し、凝固後型ばらしして押湯の外観及び形状を調査した。その結果、本発明品の実施例4と従来品である比較例4の押湯の形状は同等であり、フッ素を含まない本発明品が十分実用できる事が確認できた。The comparative test was actually used as a feeder sleeve during casting of ductile cast iron, and the appearance and shape of the feeder were investigated by releasing the mold after solidification. As a result, it was confirmed that the shape of the feeder of Example 4 of the present invention and that of Comparative Example 4 which is a conventional product are equivalent, and that the product of the present invention containing no fluorine can be used sufficiently.

上記実施例1〜4と比較例1〜4の結果から、本発明品によれば、フッ化物を使用しなくともアルミニウムと粒径を特定したマグネシウムを規定量併用する事により着火時間を早めながら所望の燃焼時間を確保でき、フッ化物を使用している従来品と同等の押湯の引け状態を得られことが確認できた。From the results of Examples 1 to 4 and Comparative Examples 1 to 4, according to the product of the present invention, while using a specified amount of aluminum and magnesium having a specified particle size without using fluoride, the ignition time is shortened. It was confirmed that the desired combustion time could be ensured and that the hot water was able to close in the same manner as the conventional product using fluoride.

また、表3に示す通り、本発明品の燃焼後の残材からはフッ素が検出されておらず、使用後の環境汚染の心配がないことが確認できた。Moreover, as shown in Table 3, fluorine was not detected from the remaining material after combustion of the product of the present invention, and it was confirmed that there was no concern about environmental pollution after use.

<発明の効果>
本発明によれば、従来の発熱性造形品と同一の発熱性能を有しながら使用残材には有害物質であるフッ素を含まない環境適合型の押湯保温用発熱性造形品を提供する事が出来る。
<Effect of the invention>
According to the present invention, to provide a eco-type feeder warmth for exothermic shaped articles containing no fluorine is a harmful substance for use surplus material while having a conventional outgoing heat shaped articles and the same heating performance I can do it.

発熱性造形品の着火時間とマグネシウムの添加量の関係を示す図。The figure which shows the relationship between the ignition time of an exothermic molded article, and the addition amount of magnesium. 発熱材の着火時間とマグネシウムの添加量の関係を示す図。The figure which shows the relationship between the ignition time of a heat generating material, and the addition amount of magnesium.

Claims (2)

アルミニウム発熱材を5〜40重量%、平均粒径50μm〜5mmのマグネシウム粉粒体を1〜30重量%、酸化剤を3〜30重量%、繊維質材料を0.5〜20重量%、粘結剤を2〜15重量%、残部として耐火性骨材を0〜50重量%含有し、湿式成形法で造形された、鋳造用発熱性造形品(但し、各成分の合計を100重量%とする)。 5-40% by weight of aluminum heating material, 1-30% by weight of magnesium powder with an average particle size of 50 μm-5 mm, 3-30% by weight of oxidizing agent, 0.5-20% by weight of fibrous material , viscosity Exothermic shaped article for casting , containing 2 to 15% by weight of binder and 0 to 50% by weight of refractory aggregate as the balance , and shaped by a wet molding method (however, the total of each component is 100% by weight) To do). 実質的にフッ素化合物を含有しない請求項1記載の鋳造用発熱性造形品The exothermic molded article for casting according to claim 1, which contains substantially no fluorine compound.
JP2006174041A 2006-06-23 2006-06-23 Exothermic molding for casting Active JP4749948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006174041A JP4749948B2 (en) 2006-06-23 2006-06-23 Exothermic molding for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174041A JP4749948B2 (en) 2006-06-23 2006-06-23 Exothermic molding for casting

Publications (2)

Publication Number Publication Date
JP2008000799A JP2008000799A (en) 2008-01-10
JP4749948B2 true JP4749948B2 (en) 2011-08-17

Family

ID=39005591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174041A Active JP4749948B2 (en) 2006-06-23 2006-06-23 Exothermic molding for casting

Country Status (1)

Country Link
JP (1) JP4749948B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107252872A (en) * 2017-05-18 2017-10-17 西峡县众德汽车部件有限公司 One kind heating precoated sand and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058205A1 (en) * 2008-11-20 2010-07-22 AS Lüngen GmbH Molding material mixture and feeder for aluminum casting
JP5886122B2 (en) * 2012-04-26 2016-03-16 滲透工業株式会社 Exothermic shaped article and its manufacturing method
CN111451484A (en) * 2020-04-30 2020-07-28 安徽昱工耐磨材料科技有限公司 Amorphous heating patch for casting and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07323350A (en) * 1994-05-31 1995-12-12 Daitetsuku:Kk Riser heat insulating material for casting
ES2134729B1 (en) * 1996-07-18 2000-05-16 Kemen Recupac Sa IMPROVEMENTS INTRODUCED IN OBJECT APPLICATION FOR A SPANISH INVENTION PATENT N. 9601607 FOR "PROCEDURE FOR THE MANUFACTURE OF EXACT SLEEVES AND OTHER ELEMENTS OF MAZAROTAJE AND FEEDING FOR CAST MOLDS.
CN1305601C (en) * 2002-09-09 2007-03-21 艾布里亚阿施兰德化学公司 Sleeve, manufacturing method thereof and mixture for the production of said sleeve
JP2004209517A (en) * 2002-12-27 2004-07-29 Masamitsu Miki Exothermic heat insulating material for casting in which fluorine is not detected
JP2004225080A (en) * 2003-01-21 2004-08-12 Center For Advanced Science & Technology Incubation Ltd Magnesium silicide-containing magnesium alloy, method of producing the same, and method of forming magnesium silicide
CN1322946C (en) * 2003-12-05 2007-06-27 明和化学工业株式会社 Material for forming exothermic article for casting, exothermic article for casting, and method for producing tehm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107252872A (en) * 2017-05-18 2017-10-17 西峡县众德汽车部件有限公司 One kind heating precoated sand and preparation method thereof

Also Published As

Publication number Publication date
JP2008000799A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
US6416572B1 (en) Binder compositions for bonding particulate material
US20130062549A1 (en) Plastic refractory material and refractory mortar
JP2000176604A (en) Exothermic assembly for casting
JP4749948B2 (en) Exothermic molding for casting
US3942990A (en) Method for producing foamed ceramics
TW201317197A (en) Feeders and formable compositions for production thereof
JP5886122B2 (en) Exothermic shaped article and its manufacturing method
JP2015044734A (en) Cement-free refractory
JP5587794B2 (en) Composition containing specific metallocene and use thereof
JP2010280540A (en) Chromia-enriched castable refractory substance, and precast block using the same
CA1103884A (en) Refractory exothermic heat insulating articles
US4696455A (en) Zircon and MgO preheatable insulating refractory liners and methods of use thereof
US3876420A (en) Thermal insulation molten metal
US20020193493A1 (en) Method of making a product from an expanded mineral
KR960005886B1 (en) Method for covering a metallugical vessel with a purifying lining and the composition thereof
GB2347143A (en) Refractory composition
TW201821180A (en) Highly exothermic feeder sleeves and manufacturing method thereof
JPS5812226B2 (en) Refractories for hot spray repair
JPS5951382B2 (en) Heater plate on top of riser
JPH10101441A (en) Composition for castable refractory and formation of furnace wall using the same composition
JPS6046064B2 (en) fire resistant composition
US2465375A (en) Refractory and method of producing the same
JP2019137561A (en) Monolithic refractory composition
JPS5841940B2 (en) Solid heat-generating heat insulating agent for boiler
US3706682A (en) Hot tops and mixture of materials therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Ref document number: 4749948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250