JP4748361B2 - Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials - Google Patents
Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials Download PDFInfo
- Publication number
- JP4748361B2 JP4748361B2 JP2006006891A JP2006006891A JP4748361B2 JP 4748361 B2 JP4748361 B2 JP 4748361B2 JP 2006006891 A JP2006006891 A JP 2006006891A JP 2006006891 A JP2006006891 A JP 2006006891A JP 4748361 B2 JP4748361 B2 JP 4748361B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- inclination angle
- degrees
- range
- distribution graph
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
この発明は、自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この結果切削抵抗の高いものとなる軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の切削加工で、硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 This invention has a high viscosity and has high adhesion to the hard coating layer on the surface of the cutting tool at the time of cutting. As a result, soft steel, stainless steel, and high manganese steel that have high cutting resistance The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance in cutting hard-to-cut materials and exhibits excellent wear resistance over a long period of time. .
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、図2に概略説明図で示される通り、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、図4に例示される通り、0〜15度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ6〜20μmの平均層厚を有する酸化アルミニウム層(以下、改質α型Al2O3層という)、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具は、上記改質α型Al2O3層がα型Al2O3自身のもつすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を具備することから、例えば各種の一般鋼や普通鋳鉄などの切削加工などに用いた場合に、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を発揮することが知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer having a total average layer thickness of 3 to 20 μm, including one or two or more of a layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) The upper layer has an α-type crystal structure in the state of chemical vapor deposition, and using a field emission scanning electron microscope, as shown schematically in FIG. 2, is a polished surface parallel to the tool base surface. Each of the crystal grains having a hexagonal crystal lattice existing within the measurement range is irradiated with an electron beam, and the normal line of the (0001) plane that is the crystal plane of the crystal grain is relative to the normal line of the polished surface. Measure the inclination angle to be made, divide the measurement inclination angle within the range of 0-45 degrees out of the measurement inclination angle for each pitch of 0.25 degree, and totalize the frequency existing in each division In the inclination angle number distribution graph, as shown in FIG. 4, the highest peak exists in the inclination angle section in the range of 0 to 15 degrees, and the sum of the frequencies existing in the range of 0 to 15 degrees is as follows. , Accounting for 50% or more of the total frequency in the slope angle distribution graph Shows an inclination angle frequency distribution graph, and an aluminum oxide layer having an average layer thickness of 6 to 20 .mu.m (hereinafter, referred to as modified α type the Al 2 O 3 layer),
A coated cermet tool formed by vapor-depositing a hard coating layer composed of the above (a) and (b) is known, and this coated cermet tool has the modified α-type Al 2 O 3 layer formed of α-type Al. 2 O 3 itself has excellent high-temperature hardness and heat resistance, as well as excellent high-temperature strength, so it has excellent resistance when used for cutting of various general steels and ordinary cast iron, for example. It is known that it exhibits chipping properties and exhibits excellent cutting performance over a long period of time.
また、一般に、上記の被覆サーメット工具の硬質被覆層を構成する改質α型Al2O3層が、通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:1〜5%、CO2:0.1〜2%、HCl:0.3〜3%、H2S:0.5〜1%、Ar:20〜35%、H2:残り、
反応雰囲気温度:1000〜1100℃、
反応雰囲気圧力:6〜10kPa、
の条件で蒸着形成されることも知られている。
さらに、同じく硬質被覆層を構成するTi化合物層や改質α型Al2O3層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 0.1~2%, HCl: 0.3~3%, H 2 S: 0.5~1%, Ar: 20~ 35%, H 2 : remaining,
Reaction atmosphere temperature: 1000-1100 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
It is also known that vapor deposition is performed under the following conditions.
Furthermore, the Ti compound layer and the modified α-type Al 2 O 3 layer that also constitute the hard coating layer have a granular crystal structure, and the TiCN layer that constitutes the Ti compound layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitrides is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.
近年の切削装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工には被削材の材種に関して、一層の汎用性をもった切削工具、すなわち1種の切削工具でできるだけ多くの種類の材種の被削材の切削が可能な切削工具が求められる傾向にあるが、上記の従来被覆サーメット工具においては、これを低合金鋼や炭素鋼などの一般鋼、さらにねずみ鋳鉄などの普通鋳鉄の切削加工に用いた場合には問題はないが、特にこれを軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の切削加工に用いた場合には、前記難削材自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この傾向は切削時に発生する高熱によって増大することと相俟って、切削抵抗の高いものとなり、一方硬質被覆層を構成する改質α型Al2O3層の高温強度はこれに耐えるに十分なものではなく、この結果切刃部にチッピング(微少欠け)が発生し易くなり、これが原因で比較的短時間で使用寿命に至るのが現状である。 In recent years, the use of FA for cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. However, in the conventional coated cermet tool described above, there is a tendency to require a cutting tool that can cut as many kinds of work materials as possible with one kind of cutting tool. There is no problem when it is used for cutting general steel such as low alloy steel and carbon steel, and ordinary cast iron such as gray cast iron, but this is especially suitable for difficult-to-cut materials such as mild steel, stainless steel, and high manganese steel. When used for cutting, the difficult-to-cut material itself has a high viscosity and also has high adhesion to the hard coating layer on the surface of the cutting tool during cutting, and this tendency increases due to the high heat generated during cutting. This Coupled with I, it becomes having high cutting resistance, whereas the high temperature strength of the modified α type the Al 2 O 3 layer constituting the hard coating layer is not sufficient to withstand this, chipping result the cutting edge portion (Slight chipping) is likely to occur, and due to this, the service life is reached in a relatively short time.
そこで、本発明者等は、上述のような観点から、上記の改質α型Al2O3層が硬質被覆層の上部層を構成する被覆サーメット工具に着目し、特に前記改質α型Al2O3層の耐チッピング性向上を図るべく研究を行った結果、
上記の従来被覆サーメット工具の硬質被覆層を構成するTi化合物層(下部層)と改質α型Al2O3層(上部層)の間に、通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:1〜5%、CO2:3〜7%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:20〜30kPa、
の条件で酸化アルミニウム(以下、Al2O3で示す)層を0.1〜1.9μmの平均層厚で形成すると、この結果形成されたAl2O3層は、同じくα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、同じく上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図3に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、化学蒸着装置における反応雰囲気圧力を、上記の通り20〜30kPaの範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の75〜90度の範囲内で変化すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占めるようになり、この結果の傾斜角度数分布グラフにおいて75〜90度の範囲内に傾斜角区分の最高ピークが現れるAl2O3層(以下、補強α型Al2O3層という)は、上記の改質α型Al2O3層(上部層)とTi化合物層(下部層)の間にあって、前記改質α型Al2O3層を十分に補強し、切削抵抗の高い上記の難削材の切削加工においても前記改質α型Al2O3層にチッピングが発生するのを抑制し、この結果被覆サーメット工具がすぐれた耐摩耗性を長期に亘って発揮するようになる。
という研究結果を得たのである。
In view of the above, the present inventors focused on the coated cermet tool in which the modified α-type Al 2 O 3 layer constitutes the upper layer of the hard coating layer, and in particular, the modified α-type Al As a result of research to improve chipping resistance of 2 O 3 layer,
Between the Ti compound layer (lower layer) and the modified α-type Al 2 O 3 layer (upper layer) constituting the hard coating layer of the above conventional coated cermet tool, using a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 3~7%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2: remainder ,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 20-30 kPa,
When an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer is formed with an average layer thickness of 0.1 to 1.9 μm under the conditions of the above, the resulting Al 2 O 3 layer has the same α-type crystal structure. Using a field emission scanning electron microscope, as shown in FIGS. 1 (a) and 1 (b), it has a hexagonal crystal lattice that is also present in the measurement range of the polished surface parallel to the tool substrate surface. Each crystal grain is irradiated with an electron beam, an inclination angle formed by a normal line of the (0001) plane that is a crystal plane of the crystal grain is measured with respect to the normal line of the polished surface, When the measured inclination angle in the range of 45 to 90 degrees is divided into pitches of 0.25 degrees and the frequency existing in each of the divisions is represented by an inclination angle number distribution graph, FIG. As shown in Fig. 4, a sharp peak appears at a specific position in the tilt angle section, and According to the results, when the reaction atmosphere pressure in the chemical vapor deposition apparatus is changed within the range of 20 to 30 kPa as described above, the position where the sharpest peak appears changes within the range of 75 to 90 degrees of the inclination angle section. In addition, the sum of the frequencies existing within the range of 75 to 90 degrees occupies a ratio of 50% or more of the entire frequencies in the inclination angle distribution graph, and 75 to 75 in the inclination angle distribution graph as a result. An Al 2 O 3 layer (hereinafter referred to as a reinforced α-type Al 2 O 3 layer) in which the highest peak of the tilt angle section appears in the range of 90 degrees is referred to as the above-mentioned modified α-type Al 2 O 3 layer (upper layer). be between Ti compound layer (lower layer), the modified α type the Al 2 O 3 layer were sufficiently reinforced, the even cutting of high cutting resistance above hard-to-cut materials modified α-type Al 2 O 3 Suppresses chipping in the layer, As a result, the coated cermet tool exhibits excellent wear resistance over a long period of time.
The research result was obtained.
この発明は、上記の研究結果に基づいてなされたものであって、工具基体の表面に、
(a)下部層が、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜15度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ6〜20μmの平均層厚を有する改質α型Al2O3層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具において、
上記の下部層であるTi化合物層と上部層である改質α型Al2O3層の間に、補強層として、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、
75〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ0.1〜1.9μmの平均層厚を有する補強α型Al2O3層、
を介在させてなる、難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the tool base,
(A) a Ti compound layer in which the lower layer is composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and has a total average layer thickness of 3 to 20 μm,
(B) The upper layer is irradiated with an electron beam to each crystal grain having a hexagonal crystal lattice existing in a measurement range of a polished surface parallel to the tool substrate surface using a field emission scanning electron microscope, The inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain is measured with respect to the normal line of the polished surface, and the measurement inclination is in the range of 0 to 45 degrees among the measurement inclination angles. In the inclination angle distribution graph obtained by dividing the angle for each pitch of 0.25 degrees and counting the frequencies existing in each section, the highest peak exists in the inclination angle section within the range of 0 to 15 degrees. In addition, an inclination angle number distribution graph in which the sum of the frequencies existing in the range of 0 to 15 degrees occupies a ratio of 50% or more of the entire degrees in the inclination angle number distribution graph is shown, and an average layer thickness of 6 to 20 μm A modified α-type Al 2 O 3 layer having
In the coated cermet tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,
Using a field emission scanning electron microscope as a reinforcing layer between the Ti compound layer as the lower layer and the modified α-type Al 2 O 3 layer as the upper layer, a polished surface parallel to the tool base surface is used. Each crystal grain having a hexagonal crystal lattice existing in the measurement range is irradiated with an electron beam, and the normal line of the (0001) plane that is the crystal plane of the crystal grain is formed with respect to the normal line of the polished surface. The inclination angle is measured, and among the measurement inclination angles, the measurement inclination angles within a range of 45 to 90 degrees are divided for each pitch of 0.25 degrees, and the frequencies existing in each division are totaled. In the tilt angle distribution graph,
The highest peak exists in the inclination angle section in the range of 75 to 90 degrees, and the total of the frequencies existing in the range of 75 to 90 degrees represents a ratio of 50% or more of the entire degrees in the inclination angle frequency distribution graph. Reinforced α-type Al 2 O 3 layer showing an inclination angle number distribution graph and having an average layer thickness of 0.1 to 1.9 μm,
This is characterized by a coated cermet tool that exhibits excellent chipping resistance with a hard coating layer obtained by cutting difficult-to-cut materials.
以下に、この発明の被覆サーメット工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)Ti化合物層(下部層)
Ti化合物層は、基本的には改質α型Al2O3層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度を具備するようにするほか、工具基体と補強α型Al2O3層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
The reason why the numerical values of the constituent layers of the hard coating layer of the coated cermet tool of the present invention are limited as described above will be described below.
(A) Ti compound layer (lower layer)
The Ti compound layer basically exists as a lower layer of the modified α-type Al 2 O 3 layer, and allows the hard coating layer to have high-temperature strength by its excellent high-temperature strength. And the reinforcing α-type Al 2 O 3 layer firmly adhere to each other, and thus have an effect of improving the adhesion of the hard coating layer to the tool substrate. However, when the total average layer thickness is less than 3 μm, On the other hand, if the total average layer thickness exceeds 20 μm, thermoplastic deformation tends to occur and this causes uneven wear. Therefore, the total average layer thickness is set to 3 to 20 μm. It was.
(b)改質α型Al2O3層(上部層)
改質α型Al2O3層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置は、化学蒸着装置における反応雰囲気圧力を変化させることによって変化するが、試験結果によれば、上記蒸着条件のうちの反応雰囲気圧力を6〜10kPaとすると、最高ピークが、0〜15度の範囲内の傾斜角区分に現れると共に、前記0〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示すようになるものであり、したがって、前記反応雰囲気圧力が前記範囲から低い方に外れても、また高い方に外れても、前記0〜15度の範囲内に測定傾斜角の最高ピークが現れなくなり、このような場合には所望のすぐれた高温強度を具備することができないものである。
また、改質α型Al2O3層は、α型Al2O3自身のもつすぐれた高温硬さおよび耐熱性に加えて、高温強度も具備するようになるが、その平均層厚が6μm未満では、切削工具に十分な使用寿命を確保することができず、また、その平均層厚が20μmを越えると、難削材の切削加工ではチッピングが発生し易くなることから、その平均層厚を6〜20μmと定めた。
(B) Modified α-type Al 2 O 3 layer (upper layer)
The maximum peak position of the measured inclination angle in the inclination angle number distribution graph of the modified α-type Al 2 O 3 layer is changed by changing the reaction atmosphere pressure in the chemical vapor deposition apparatus. When the reaction atmosphere pressure is 6 to 10 kPa, the highest peak appears in the inclination angle section in the range of 0 to 15 degrees, and the total of the frequencies existing in the range of 0 to 15 degrees is the inclination angle. An inclination angle number distribution graph occupying a ratio of 50% or more of the entire frequency in the number distribution graph is shown. Therefore, even if the reaction atmosphere pressure is out of the range, it is out of the range. However, the highest peak of the measured tilt angle does not appear within the range of 0 to 15 degrees, and in such a case, the desired excellent high-temperature strength cannot be provided.
The modified α-type Al 2 O 3 layer also has high-temperature strength in addition to the excellent high-temperature hardness and heat resistance of the α-type Al 2 O 3 itself, but the average layer thickness is 6 μm. If the average layer thickness is less than 20 μm, a sufficient service life cannot be secured for the cutting tool. If the average layer thickness exceeds 20 μm, chipping is likely to occur in the cutting of difficult-to-cut materials. Was determined to be 6 to 20 μm.
(c)補強α型Al2O3層(補強層)
上記の通り、補強α型Al2O3層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置は、化学蒸着装置における反応雰囲気圧力を変化させることによって変化するが、試験結果によれば、上記蒸着条件のうちの反応雰囲気圧力を、20〜30kPaとすると、最高ピークが75〜90度の範囲内の傾斜角区分に現れると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示すようになるものであり、したがって、前記反応雰囲気圧力が前記範囲から低い方に外れても、また高い方に外れても、75〜90度の範囲内に測定傾斜角の最高ピークが現れなくなり、このような場合には所望のすぐれた補強作用を発揮することができないものである。
また、その平均層厚が0.1μm未満では、上記改質α型Al2O3層に対する補強作用が不十分であり、一方、その平均層厚が1.9μmを越えると、これが難削材の切削加工ではチッピング発生の原因となることから、その平均層厚を0.1〜1.9μmと定めた。
(C) Reinforced α-type Al 2 O 3 layer (reinforcing layer)
As described above, the highest peak position of the measured inclination angle in the inclination angle number distribution graph of the reinforced α-type Al 2 O 3 layer changes by changing the reaction atmosphere pressure in the chemical vapor deposition apparatus, but according to the test results, When the reaction atmosphere pressure in the above deposition conditions is 20 to 30 kPa, the maximum peak appears in the tilt angle section in the range of 75 to 90 degrees, and the total of the frequencies existing in the range of 75 to 90 degrees is The inclination angle number distribution graph occupies a ratio of 50% or more of the entire frequency in the inclination angle number distribution graph. Therefore, even if the reaction atmosphere pressure is out of the range, it is high. Even if it deviates, the maximum peak of the measured inclination angle does not appear within the range of 75 to 90 degrees, and in this case, the desired excellent reinforcing action cannot be exhibited. It is a thing.
If the average layer thickness is less than 0.1 μm, the reinforcing action on the modified α-type Al 2 O 3 layer is insufficient. On the other hand, if the average layer thickness exceeds 1.9 μm, this is difficult to cut. In this cutting process, chipping occurs, so the average layer thickness is set to 0.1 to 1.9 μm.
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。 In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.
この発明の被覆サーメット工具は、硬質被覆層の上部層を構成する改質α型Al2O3層を、前記改質α型Al2O3層とTi化合物層との間に介在させた補強α型Al2O3層が十分に補強することから、切削抵抗の高い難削材の切削加工でも硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated cermet tool of the present invention is a reinforcement in which a modified α-type Al 2 O 3 layer constituting an upper layer of a hard coating layer is interposed between the modified α-type Al 2 O 3 layer and the Ti compound layer. The α-type Al 2 O 3 layer is sufficiently reinforced so that even hard-to-cut materials with high cutting resistance can be machined without causing chipping in the hard coating layer, providing excellent wear resistance and further extending the service life. Is possible.
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。 Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix with a ball mill for 24 hours, dry, and press-mold into a green compact at 98 MPa pressure The green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a chip shape conforming to ISO standards / CNMG 120212 were formed.
ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4,5に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、反応ガス組成:容量%で、AlCl3:2.2%、CO2:5%、HCl:2%、H2S:0.15%、H2:残り、
反応雰囲気温度:850℃、
反応雰囲気圧力:20〜30kPaの範囲内の所定の圧力、
の条件で表4,5に示される目標層厚で、補強α型Al2O3層を蒸着形成し、
(c)さらに、反応ガス組成:容量%で、AlCl3:2.2%、CO2:1.5%、HCl:2%、H2S:0.75%、Ar:26.5%、H2:残り、
反応雰囲気温度:1070℃、
反応雰囲気圧力:6〜10kPaの範囲内の所定の圧力、
の条件で同じく表4,5に示される目標層厚で、同じく上部層として改質α型Al2O3層を蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
Then, each of these tool bases A to F and tool bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 4 and 5), the Ti compound layer having the target layer thickness shown in Tables 4 and 5 is deposited as the lower layer of the hard coating layer.
(B) Next, reaction gas composition: volume%, AlCl 3 : 2.2%, CO 2 : 5%, HCl: 2%, H 2 S: 0.15%, H 2 : remaining,
Reaction atmosphere temperature: 850 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 20-30 kPa,
A reinforced α-type Al 2 O 3 layer is formed by vapor deposition at the target layer thickness shown in Tables 4 and 5 under the conditions of
(C) Furthermore, the reaction gas composition: volume%, AlCl 3 : 2.2%, CO 2 : 1.5%, HCl: 2%, H 2 S: 0.75%, Ar: 26.5%, H 2 : Remaining
Reaction atmosphere temperature: 1070 ° C.
Reaction atmosphere pressure: a predetermined pressure within a range of 6 to 10 kPa,
The coated cermet tools 1 to 13 of the present invention were manufactured by depositing a modified α-type Al 2 O 3 layer as an upper layer, with the target layer thicknesses shown in Tables 4 and 5 under the same conditions.
また、比較の目的で、表6,7に示される通り、硬質被覆層の上部層である改質α型Al2O3層と同下部層であるTi化合物層の間に補強α型Al2O3層を形成しない以外は同一の条件で、従来被覆サーメット工具1〜13をそれぞれ製造した。 For comparison purposes, as shown in Tables 6 and 7, a reinforced α-type Al 2 is provided between the modified α-type Al 2 O 3 layer that is the upper layer of the hard coating layer and the Ti compound layer that is the lower layer. Conventionally coated cermet tools 1 to 13 were manufactured under the same conditions except that the O 3 layer was not formed.
ついで、上記の本発明被覆サーメット工具1〜13と従来被覆サーメット工具1〜13の硬質被覆層の上部層を構成する改質α型Al2O3層、および上記の本発明被覆サーメット工具1〜13の補強α型Al2O3層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の本発明被覆サーメット工具1〜13と従来被覆サーメット工具1〜13の改質α型Al2O3層、および本発明被覆サーメット工具1〜13の補強α型Al2O3層について、それぞれ工具基体表面と平行な面をそれぞれ研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、前記改質α型Al2O3層については0〜45度、前記補強α型Al2O3層については45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Subsequently, the modified α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the present invention coated cermet tool 1-13 and the conventional coated cermet tool 1-13, and the present invention coated cermet tool 1-1 With respect to the 13 reinforced α-type Al 2 O 3 layers, inclination angle number distribution graphs were respectively prepared using a field emission scanning electron microscope.
That is, the inclination angle number distribution graph shows the modified α-type Al 2 O 3 layer of the present invention coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 and the reinforcement of the present coated cermet tools 1 to 13. The α-type Al 2 O 3 layer is set in a lens barrel of a field emission scanning electron microscope with each surface parallel to the surface of the tool base being a polished surface, and incident on the polished surface at an incident angle of 70 degrees. An electron backscatter diffraction image apparatus is used to irradiate an electron beam having an acceleration voltage of 15 kV with an irradiation current of 1 nA on each crystal grain having a hexagonal crystal lattice existing within the measurement range of each polished surface, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the polished surface at an interval of 0.1 μm / step in a region of × 50 μm. Based on before Among the measurement inclination angle, the 0-45 degrees for reforming α type the Al 2 O 3 layer, the measurement inclination angle is in the range of 45 to 90 degrees for the reinforcement α type the Al 2 O 3 layer 0.25 This was created by dividing the pitch for each degree and counting the frequencies existing in each division.
この結果得られた各種の改質α型Al2O3層および補強α型Al2O3層の傾斜角度数分布グラフにおいて、表4〜7にそれぞれ示される通り、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の改質α型Al2O3層は、(0001)面の測定傾斜角の分布が、それぞれ0〜15度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示し、一方本発明被覆サーメット工具1〜13の補強α型Al2O3層においては、75〜90度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示すものであった。
また表4〜7には、上記の各種の改質α型Al2O3層および補強α型Al2O3層の傾斜角度数分布グラフにおいて、それぞれ0〜15度および75〜90度の範囲内の傾斜角区分に存在する全傾斜角度数の傾斜角度数分布グラフ全体に占める割合を示した。
なお、図3は、本発明被覆サーメット工具2の補強α型Al2O3層の傾斜角度数分布グラフ、図4は同改質α型Al2O3層の傾斜角度数分布グラフである。
In the gradient angle distribution graphs of the various modified α-type Al 2 O 3 layers and reinforced α-type Al 2 O 3 layers obtained as a result, as shown in Tables 4 to 7, the coated cermet tools 1 to 1 of the present invention are used. 13 and the modified α-type Al 2 O 3 layer of the conventional coated cermet tools 1 to 13, the distribution of the measured inclination angle of the (0001) plane shows the highest peak in the inclination angle section within the range of 0 to 15 degrees, respectively. An inclination angle number distribution graph is shown. On the other hand, in the reinforcing α-type Al 2 O 3 layer of the coated cermet tools 1 to 13 of the present invention, an inclination angle number distribution graph in which the highest peak appears in the inclination angle section within the range of 75 to 90 degrees. Was shown.
Tables 4 to 7 show ranges of 0 to 15 degrees and 75 to 90 degrees in the inclination angle number distribution graphs of the various modified α-type Al 2 O 3 layers and reinforced α-type Al 2 O 3 layers, respectively. The ratio of the total number of tilt angles existing in the tilt angle section to the entire tilt angle distribution graph is shown.
3 is an inclination angle number distribution graph of the reinforced α-type Al 2 O 3 layer of the coated cermet tool 2 of the present invention, and FIG. 4 is an inclination angle number distribution graph of the modified α-type Al 2 O 3 layer.
また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Moreover, when the thickness of the constituent layer of the hard coating layer of the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement). , Each showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.
つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUS316の丸棒、
切削速度:290m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:7分、
の条件(切削条件Aという)でのステンレス鋼の乾式連続切削試験、
被削材:JIS・SS300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min.、
切り込み:2mm、
送り:0.35mm/rev.、
切削時間:6分、
の条件(切削条件Bという)での軟鋼の乾式断続切削試験、さらに、
被削材:JIS・SMn433Hの長さ方向等間隔4本縦溝入り丸棒、
切削速度:270m/min.、
切り込み:1.5mm、
送り:0.25mm/rev.、
切削時間:5分、
の条件(切削条件Cという)での高マンガン鋼の乾式断続切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the various coated cermet tools of the present invention coated cermet tool 1-13 and the conventional coated cermet tool 1-13, all of them are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS / SUS316 round bar,
Cutting speed: 290 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 7 minutes
Dry continuous cutting test of stainless steel under the conditions (cutting condition A),
Work material: JIS / SS300 lengthwise equidistant four round grooved round bars,
Cutting speed: 350 m / min. ,
Cutting depth: 2mm,
Feed: 0.35 mm / rev. ,
Cutting time: 6 minutes
Dry intermittent cutting test of mild steel under the conditions (cutting condition B),
Work material: JIS-SMn433H, 4 longitudinally spaced round bars with equal intervals in the length direction,
Cutting speed: 270 m / min. ,
Incision: 1.5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes
A dry intermittent cutting test of high manganese steel under the above conditions (referred to as cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.
表4〜8に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の下部層であるTi化合物層と上部層である改質α型Al2O3層の間に介在させた補強α型Al2O3層が、(0001)面の傾斜角度数分布グラフで75〜90度の範囲内の傾斜角区分で最高ピークを示し、これの作用で前記改質α型Al2O3層が十分に補強されることから、切削抵抗のきわめて高い難削材の切削加工でもチッピングの発生なく、すぐれた耐摩耗性を示すのに対して、硬質被覆層に前記補強α型Al2O3層の介在形成のない従来被覆サーメット工具1〜13においては、いずれも前記改質α型Al2O3層の強度不足が原因で、難削材の切削加工では硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 8, each of the coated cermet tools 1 to 13 of the present invention is between the Ti compound layer that is the lower layer of the hard coating layer and the modified α-type Al 2 O 3 layer that is the upper layer. The intervening reinforced α-type Al 2 O 3 layer shows the highest peak in the inclination angle section within the range of 75 to 90 degrees in the inclination angle number distribution graph of the (0001) plane, and this action makes the modified α type Since the Al 2 O 3 layer is sufficiently reinforced, the hard coating layer exhibits excellent wear resistance without occurrence of chipping even when machining difficult-to-cut materials with extremely high cutting resistance. in the conventional coated cermet tools 1 to 13 with no intervening formation of mold the Al 2 O 3 layer, either in insufficient strength causes the reforming α type the Al 2 O 3 layer, the hard coating layer by cutting the difficult-to-cut materials It is clear that chipping occurs and the service life is reached in a relatively short time A.
上述のように、この発明の被覆サーメット工具は、各種の一般鋼や普通鋳鉄などの切削加工は勿論のこと、特に自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この結果切削抵抗の高いものとなる軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cermet tool of the present invention is not only for cutting various types of general steel and ordinary cast iron, but also has a high viscosity, and the hard coating layer on the surface of the cutting tool during cutting. Even when cutting difficult-to-cut materials such as mild steel, stainless steel, and high manganese steel, which have high cutting resistance, excellent chipping resistance and excellent wear resistance are achieved. Since it exhibits excellent cutting performance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of cutting, and the cost reduction.
Claims (1)
(a)下部層が、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜15度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ6〜20μmの平均層厚を有する改質α型酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる表面被覆サーメット製切削工具において、
上記の下部層であるTi化合物層と上部層である改質α型酸化アルミニウム層の間に、補強層として、同じく化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、
75〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ0.1〜1.9μmの平均層厚を有する補強α型酸化アルミニウム層、
を介在させたことを特徴とする難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。 On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and a total average of 3 to 20 μm A Ti compound layer having a layer thickness,
(B) A hexagonal crystal lattice in which the upper layer has an α-type crystal structure in the state of chemical vapor deposition and exists within a measurement range of a polished surface parallel to the tool substrate surface using a field emission scanning electron microscope And measuring the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, with respect to the normal line of the polished surface. In the inclination angle number distribution graph formed by dividing the measured inclination angles in the range of 0 to 45 degrees for each pitch of 0.25 degrees and totaling the frequencies existing in each section, 0 to 15 An inclination angle in which the highest peak exists in the inclination angle section within the range of degrees, and the total of the frequencies existing within the range of 0 to 15 degrees accounts for 50% or more of the entire degrees in the inclination angle frequency distribution graph Shows a number distribution graph and average layer thickness of 6-20 μm Modified α-type aluminum oxide layer having
In the surface-coated cermet cutting tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,
A field emission scanning electron microscope having an α-type crystal structure in the same chemical vapor deposition state as a reinforcing layer between the Ti compound layer as the lower layer and the modified α-type aluminum oxide layer as the upper layer. And irradiating each crystal grain having a hexagonal crystal lattice existing within the measurement range of the polished surface parallel to the tool substrate surface with respect to the normal line of the polished surface. The inclination angle formed by the normal line of the (0001) plane which is a crystal plane is measured, and among the measurement inclination angles, the measurement inclination angles within the range of 45 to 90 degrees are divided for each pitch of 0.25 degrees. In the inclination angle number distribution graph obtained by counting the frequencies existing in each section,
The highest peak exists in the inclination angle section in the range of 75 to 90 degrees, and the total of the frequencies existing in the range of 75 to 90 degrees represents a ratio of 50% or more of the entire degrees in the inclination angle frequency distribution graph. Reinforced α-type aluminum oxide layer showing an inclination angle number distribution graph and having an average layer thickness of 0.1 to 1.9 μm,
A surface-covered cermet cutting tool that exhibits excellent chipping resistance in cutting hard-to-cut materials characterized by having a hard coating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006006891A JP4748361B2 (en) | 2005-12-14 | 2006-01-16 | Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005359833 | 2005-12-14 | ||
JP2005359833 | 2005-12-14 | ||
JP2006006891A JP4748361B2 (en) | 2005-12-14 | 2006-01-16 | Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007185751A JP2007185751A (en) | 2007-07-26 |
JP4748361B2 true JP4748361B2 (en) | 2011-08-17 |
Family
ID=38341265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006006891A Active JP4748361B2 (en) | 2005-12-14 | 2006-01-16 | Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4748361B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2570510B2 (en) * | 2011-09-16 | 2019-02-13 | Walter AG | Sulfur containing alpha-alumina coated cutting tool |
JP5892472B2 (en) * | 2012-06-19 | 2016-03-23 | 三菱マテリアル株式会社 | A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting. |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3436169B2 (en) * | 1999-02-03 | 2003-08-11 | 三菱マテリアル株式会社 | Surface-coated cemented carbide cutting tool with an aluminum oxide layer that forms the hard coating layer exhibits excellent toughness |
JP4512989B2 (en) * | 2003-12-26 | 2010-07-28 | 三菱マテリアル株式会社 | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer |
JP4747324B2 (en) * | 2005-12-05 | 2011-08-17 | 三菱マテリアル株式会社 | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting |
-
2006
- 2006-01-16 JP JP2006006891A patent/JP4748361B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007185751A (en) | 2007-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4747324B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting | |
JP2007160497A (en) | SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH | |
JP5023896B2 (en) | Surface coated cutting tool | |
JP5003308B2 (en) | Surface coated cutting tool | |
JP4747388B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP2006116621A (en) | Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting | |
JP4748361B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials | |
JP2008080476A (en) | Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work | |
JP2006000970A (en) | Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting | |
JP4793749B2 (en) | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4747338B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP2007196355A (en) | Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material | |
JP4853188B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP2006289546A (en) | Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work | |
JP4747386B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting | |
JP4438559B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting | |
JP4529578B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting | |
JP4793629B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4788358B2 (en) | Method for producing a surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in difficult-to-cut materials | |
JP5019257B2 (en) | Surface coated cutting tool | |
JP4894406B2 (en) | Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting | |
JP4692065B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP2007168029A (en) | Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut | |
JP2007160464A (en) | Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting | |
JP2008055583A (en) | Surface coated cutting tool with hard coating layer exhibiting excellent abrasion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110421 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110504 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4748361 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |