JP4746431B2 - Method for regenerating aluminum nitride substrate and circuit board using the same - Google Patents
Method for regenerating aluminum nitride substrate and circuit board using the same Download PDFInfo
- Publication number
- JP4746431B2 JP4746431B2 JP2006000597A JP2006000597A JP4746431B2 JP 4746431 B2 JP4746431 B2 JP 4746431B2 JP 2006000597 A JP2006000597 A JP 2006000597A JP 2006000597 A JP2006000597 A JP 2006000597A JP 4746431 B2 JP4746431 B2 JP 4746431B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum nitride
- nitride substrate
- circuit board
- plating
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Ceramic Products (AREA)
- Chemically Coating (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
Description
本発明は、窒化アルミニウム基板の再生方法及び再生した窒化アルミニウム基板を使用した回路基板に関する。 The present invention relates to a method for regenerating an aluminum nitride substrate and a circuit substrate using the regenerated aluminum nitride substrate.
従来、パワーモジュール等に使用される半導体装置用基板として、アルミナ、ベリリア、窒化ケイ素、窒化アルミニウム等のセラミックスが使用されてきた。その材質は、熱伝導率やコスト、安全性等の基準で選択され、大電力を用いるためにはCuやAl等の金属回路や放熱板を接合して用いられてきた。これらは、樹脂基板や樹脂層を絶縁材とする金属基板に対し、高い絶縁性が安定して得られる点が特長である。これらのセラミックスのうちで、窒化アルミニウムは、高熱伝導率、高絶縁性、無害性等の点で好適な材料である。 Conventionally, ceramics such as alumina, beryllia, silicon nitride, and aluminum nitride have been used as substrates for semiconductor devices used in power modules and the like. The material is selected on the basis of thermal conductivity, cost, safety, and the like, and in order to use high power, a metal circuit such as Cu or Al or a heat radiating plate has been used. These are characterized in that high insulating properties can be stably obtained with respect to a resin substrate or a metal substrate using a resin layer as an insulating material. Of these ceramics, aluminum nitride is a suitable material in terms of high thermal conductivity, high insulation, harmlessness, and the like.
窒化アルミニウム回路基板の一般的な製造方法としては、窒化アルミニウム基板と金属板をロウ材で接合した後、エッチングレジストを塗布、エッチングによる回路形成、メッキ処理の工程を経て製造される(特許文献1)。
しかしながら、近年の回路パターンの細線化、複雑化に伴い、規格外となる回路基板の数量が増えてきた。規格外となった窒化アルミニウム回路基板は廃棄せざるを得ない。
しかしながら、そのまま廃棄することは、省資源、環境保護の観点から好ましくない。特に、Mgを含むロウ材を用いて接合した場合、窒化アルミニウム基板に含まれる酸化物相と反応してMgOの形態で存在しやすく、酸やアルカリ等を用いた化学的処理では容易に除去することはできず、また、機械的に除去しようとすると、窒化アルミニウム基板にチッピングが生じ易くなることはもとより、窒化アルミニウム基板の寸法が変化してしまうため再生利用できなくなるという課題があった。
However, with the recent thinning and complexity of circuit patterns, the number of non-standard circuit boards has increased. Aluminum nitride circuit boards that have become out of specification must be discarded.
However, discarding as it is is not preferable from the viewpoint of resource saving and environmental protection. In particular, when bonding is performed using a brazing material containing Mg, it easily reacts with the oxide phase contained in the aluminum nitride substrate and exists in the form of MgO, and is easily removed by chemical treatment using acid or alkali. In addition, when the mechanical removal is attempted, chipping is likely to occur in the aluminum nitride substrate, and the size of the aluminum nitride substrate changes, which makes it impossible to recycle.
本発明の目的は、従来廃棄していた窒化アルミニウム基板の再生方法及び再生した窒化アルミニウム基板を用いた回路基板を提供することである。 An object of the present invention is to provide a method for reclaiming an aluminum nitride substrate that has been conventionally discarded, and a circuit substrate using the regenerated aluminum nitride substrate.
即ち本発明は、Mgを含むロウ材が表面に存在する窒化アルミニウム基板を1700〜1780℃にて加熱してロウ材を除去する窒化アルミニウム基板の再生方法であり、前記再生方法で再生した窒化アルミニウム基板を使用してなる回路基板である。 That is, the present invention is a method for reclaiming an aluminum nitride substrate in which the brazing material containing Mg is present on the surface, and heating the aluminum nitride substrate at 1700 to 1780 ° C. to remove the brazing material. A circuit board using a substrate.
本発明によれば、窒化アルミニウム基板の再生方法、並びに、再生した窒化アルミニウム基板を使用した回路基板が提供される。 According to the present invention, a method for regenerating an aluminum nitride substrate and a circuit board using the regenerated aluminum nitride substrate are provided.
本発明において再生可能な窒化アルミニウム基板は、焼結助剤中にMgOを含まず(但し、窒化アルミニウム原料粉末に含まれる不純物由来の不可避的なMgOは除く)、かつMgを含むロウ材が表面に存在するものである。 The aluminum nitride substrate that can be regenerated in the present invention does not contain MgO in the sintering aid (however, excluding inevitable MgO derived from impurities contained in the aluminum nitride raw material powder), and the brazing material containing Mg is the surface. Exists.
上述したように、Mgを含むロウ材を用いて接合した場合、窒化アルミニウム基板に含まれる酸化物相と反応しMgOの形態で存在しやすい。ロウ材中のMgは、窒化アルミニウム基板表面の酸化物相と反応してMgOを形成し、窒化アルミニウム基板と金属回路および放熱板との強固な接合を可能とする。一度MgOの形態をとると、酸やアルカリ等を用いた化学的処理では容易に除去することができず、再利用に際しては、機械的に接合界面のMgOを除去しないと、十分な接合強度を確保することができなかった。 As described above, when bonding is performed using a brazing material containing Mg, it reacts with the oxide phase contained in the aluminum nitride substrate and tends to exist in the form of MgO. Mg in the brazing material reacts with an oxide phase on the surface of the aluminum nitride substrate to form MgO, thereby enabling strong bonding between the aluminum nitride substrate and the metal circuit and the heat sink. Once in the form of MgO, it cannot be easily removed by chemical treatment using acid, alkali or the like, and when reused, sufficient bonding strength can be obtained unless MgO at the bonding interface is mechanically removed. Could not be secured.
[課題を解決するための手段]すなわち、本発明は、次のとおりである。
(請求項1) セラミックス基板の表面に金属回路、裏面に金属放熱板が形成されており、該金属回路及び金属放熱板の表面に3〜8μm厚みの無電解Niめっきが施されてなる回路基板において、本発明で定義された無電解Niめっき膜の結晶性が0.8度以下、酸化度が0.6以下であることを特徴とする回路基板。結晶性:X線結晶回折(CuKα2θ)におけるNi(111)面のピークの半価幅。酸化度:X線光電子分光法(ESCA)におけるNi−metalに対するNi−O(Ni−O/Ni−metal)のピーク面積比。
(請求項2) セラミックス基板の表面に金属回路、裏面に金属放熱板を形成後、該金属回路と金属放熱板に2〜5μm厚みの無電解Ni−Pめっきを行ってから、全Niめっき膜厚が3〜8μmとなるように、無電解Ni−Bめっきを析出速度0.7〜3μm/Hrで行うことを特徴とする請求項1記載の回路基板の製造方法。
[Means for Solving the Problems] That is, the present invention is as follows.
(Claim 1) A circuit board in which a metal circuit is formed on the surface of a ceramic substrate, a metal heat sink is formed on the back surface, and electroless Ni plating having a thickness of 3 to 8 μm is applied to the surfaces of the metal circuit and the metal heat sink. The circuit board according to claim 1, wherein the electroless Ni plating film defined in the present invention has a crystallinity of 0.8 degrees or less and an oxidation degree of 0.6 or less. Crystallinity: half width of peak of Ni (111) plane in X-ray crystal diffraction (CuKα2θ). Oxidation degree: Peak area ratio of Ni-O (Ni-O / Ni-metal) to Ni-metal in X-ray photoelectron spectroscopy (ESCA).
(Claim 2) After forming a metal circuit on the surface of the ceramic substrate and a metal heat sink on the back surface, electroless Ni-P plating with a thickness of 2 to 5 μm is performed on the metal circuit and the metal heat sink, and then the entire Ni plating film 2. The method of manufacturing a circuit board according to claim 1, wherein the electroless Ni-B plating is performed at a deposition rate of 0.7 to 3 [mu] m / Hr so that the thickness is 3 to 8 [mu] m.
本発明に係る窒化アルミニウム基板の再生方法において、回路パターンを形成する金属は、予め化学的に除去しておく。 In the method for regenerating an aluminum nitride substrate according to the present invention, the metal forming the circuit pattern is chemically removed in advance.
再生に用いる窒化アルミニウム基板の厚みは特に限定されないが、0.3〜3mmの厚さの窒化アルミニウム基板が一般的であり、本発明の方法で再生可能である。 The thickness of the aluminum nitride substrate used for regeneration is not particularly limited, but an aluminum nitride substrate having a thickness of 0.3 to 3 mm is common and can be regenerated by the method of the present invention.
Mgを含むロウ材が表面に存在する窒化アルミニウム基板を1700〜1780℃に加熱する。加熱に供する炉は、特に限定されるものではなく、バッチ炉、連続炉等の公知の炉を用いることができる。 An aluminum nitride substrate having a brazing material containing Mg on the surface is heated to 1700 to 1780 ° C. The furnace used for heating is not particularly limited, and a known furnace such as a batch furnace or a continuous furnace can be used.
窒化アルミニウム基板を炉内にて加熱する方法としては、グリーンシートから脱脂を経て焼結する場合となんら変わりなく実施できる。ただし、積層する場合は、離型剤を表面に塗布し、ずれ防止用の重しは最低限にとどめておくことが好ましい。離型剤を塗布しないと、窒化アルミニウム基板どうしが剥がれにくくなる場合があり、また重しを必要以上に乗せるとMgOが飛散しにくくなる場合がある。 As a method of heating the aluminum nitride substrate in the furnace, it can be carried out without any difference from the case of sintering through degreasing from a green sheet. However, when laminating, it is preferable to apply a release agent to the surface and keep the weight for preventing slippage to a minimum. If the release agent is not applied, the aluminum nitride substrates may be difficult to peel off, and MgO may be difficult to scatter when a weight is placed more than necessary.
加熱雰囲気としては、窒素、アルゴン等を用い非酸化性雰囲気にすることが窒化アルミニウム基板の酸化を防ぐ為に必要である。好ましくは酸素濃度を50ppm以下に制御することにより、加熱時に窒化アルミニウム基板の酸化を抑制することができる。 As the heating atmosphere, it is necessary to use nitrogen, argon or the like to make a non-oxidizing atmosphere in order to prevent oxidation of the aluminum nitride substrate. Preferably, by controlling the oxygen concentration to 50 ppm or less, oxidation of the aluminum nitride substrate can be suppressed during heating.
加熱は1700〜1780℃の範囲で行うことが必要である。1700℃未満では、Mgを含むロウ材の飛散が十分ではなく、窒化アルミニウム基板表面にMgが残留して、再度接合するときに接合不良を起こす場合がある。一方、1780℃を超えて加熱すると、ロウ材は除去されるものの、窒化アルミニウム基板の焼結が進み、窒化アルミニウム基板そのものの強度が低下したり、基板表面からの助剤の飛散により表面が粗くなる場合がある。昇温速度及び冷却速度は特に限定されるものではなく、任意の昇温速度及び冷却速度に設定することが可能である。 Heating must be performed in the range of 1700 to 1780 ° C. When the temperature is lower than 1700 ° C., the brazing material containing Mg is not sufficiently scattered, and Mg remains on the surface of the aluminum nitride substrate, which may cause a bonding failure when bonding again. On the other hand, when heated above 1780 ° C., the brazing material is removed, but the sintering of the aluminum nitride substrate proceeds, the strength of the aluminum nitride substrate itself decreases, or the surface becomes rough due to scattering of the auxiliary from the substrate surface. There is a case. The temperature increase rate and the cooling rate are not particularly limited, and can be set to any temperature increase rate and cooling rate.
離型剤を用いた場合は、再生後にホーニング、ブラスト処理等により離型剤を除去する。 When a release agent is used, the release agent is removed by honing, blasting or the like after regeneration.
本発明の回路基板は、上記Niめっきの施された回路基板であって、Niめっき膜のX線結晶回折(CuKα2θ)におけるNi(111)面のピークの半価幅として定義される「結晶性」が0.8度以下で、しかもX線光電子分光法(ESCA)におけるNi−metalに対するNi−O(Ni−O/Ni−metal)のピーク面積比として定義される「酸化度」が0.6以下のものである。このような回路基板を用いて組み立てられたモジュールの放熱特性は、Niめっき法が無電解法であるにもかかわらず良好となる。 The circuit board of the present invention is a circuit board on which the Ni plating is applied, and is defined as “half-value width of peak of Ni (111) plane in X-ray crystal diffraction (CuKα2θ) of Ni plating film” ”Is 0.8 degrees or less, and the“ oxidation degree ”defined as the peak area ratio of Ni—O (Ni—O / Ni-metal) to Ni—metal in X-ray photoelectron spectroscopy (ESCA) is 0.00. 6 or less. The heat dissipation characteristics of a module assembled using such a circuit board are good even though the Ni plating method is an electroless method.
再生した窒化アルミニウム基板に用いる金属板の厚みは特に限定されず、用途に応じて適宜決められる。一般に、0.1〜0.5mmのものが用いられることが多い。また、その材質はAlまたはAl合金が好ましい。 The thickness of the metal plate used for the regenerated aluminum nitride substrate is not particularly limited, and can be appropriately determined depending on the application. In general, a thickness of 0.1 to 0.5 mm is often used. The material is preferably Al or an Al alloy.
窒化アルミニウム基板と金属板の接合は、活性金属ロウ付け法が好ましい。一般的にはSi、Mg、Cu、Al、Ge、Ag、Tiなどの金属合金がロウ材として用いられるが、本発明ではMg合金が好ましい。ロウ材は、ペースト又は箔として用いられる。ロウ材は、窒化アルミニウム基板、又は、アルミニウム板もしくは金属回路のどちらに塗布、或いは配置してもよく、合金箔を用いる場合は、予めアルミニウム板と合金箔をクラッド化しておくこともできる。 The joining of the aluminum nitride substrate and the metal plate is preferably an active metal brazing method. In general, metal alloys such as Si, Mg, Cu, Al, Ge, Ag, and Ti are used as the brazing material, but Mg alloys are preferred in the present invention. The brazing material is used as a paste or foil. The brazing material may be applied or disposed on an aluminum nitride substrate, an aluminum plate, or a metal circuit. When an alloy foil is used, the aluminum plate and the alloy foil may be clad in advance.
ロウ材の塗布量は、乾燥基準で5〜20mg/cm2 が好ましい。塗布量が5mg/cm2 未満では未反応の部分が生じる場合があり、一方、20mg/cm2を超えると、接合層を除去する時間が長くなり生産性が低下する場合がある。塗布方法は特に限定されず、スクリーン印刷法、ロールコーター法等の公知の塗布方法を採用できる。 The coating amount of the brazing material is preferably 5 to 20 mg / cm 2 on a dry basis. If the coating amount is less than 5 mg / cm 2 , an unreacted portion may be generated. On the other hand, if it exceeds 20 mg / cm 2 , the time for removing the bonding layer may become long and productivity may be lowered. The coating method is not particularly limited, and a known coating method such as a screen printing method or a roll coater method can be employed.
窒化アルミニウム回路基板は、金属板にエッチングレジストを塗布しエッチングすることにより作製される。エッチングレジスト特に限定されず、例えば紫外線硬化型や熱硬化型のものが使用できる。また、エッチング液も特に限定されず、例えば塩化第2鉄溶液、塩化第2銅液、硫酸、過酸化水素水等の溶液が使用できるが、好ましいものとして、塩化第2鉄溶液、或いは塩化第2銅溶液が挙げられる。 The aluminum nitride circuit board is manufactured by applying an etching resist to a metal plate and etching it. The etching resist is not particularly limited, and for example, an ultraviolet curing type or a thermosetting type can be used. Also, the etching solution is not particularly limited, and for example, a solution such as a ferric chloride solution, a cupric chloride solution, sulfuric acid, hydrogen peroxide solution, etc. can be used. 2 copper solution.
本発明において、メッキを施す場合、めっきレジストは特に限定されず、溶剤乾燥タイプインク、UV硬化タイプインク等が使用できる。塗布方法は特に限定されず、スクリーン印刷法、ロールコーター法等の公知の塗布方法を採用できる。塗布厚は、乾燥後で0.005〜0.07mmの厚みとなるように塗布することが望ましい。厚みが0.005mmより薄いと、部分的にアルミニウムが表出してしまう場合があり、一方、0.07mmより厚いと、めっきレジストの除去に時間がかかり、生産性が低下する場合がある。 In the present invention, when plating is performed, the plating resist is not particularly limited, and solvent dry type ink, UV curable type ink, and the like can be used. The coating method is not particularly limited, and a known coating method such as a screen printing method or a roll coater method can be employed. It is desirable that the coating thickness is 0.005 to 0.07 mm after drying. If the thickness is less than 0.005 mm, aluminum may be partially exposed. On the other hand, if the thickness is more than 0.07 mm, it takes time to remove the plating resist, and productivity may be reduced.
めっきレジストの除去方法は特に限定されず、例えば、エタノールやトルエンのような有機溶剤を用いて除去する方法や、アルカリ水溶液に浸浸させる方法が挙げられる。 The method for removing the plating resist is not particularly limited, and examples thereof include a method of removing using an organic solvent such as ethanol and toluene, and a method of immersion in an alkaline aqueous solution.
本発明に係るめっき処理は、特に限定されないが、作業性、コスト等の面から、無電解ニッケルめっき、無電解ニッケル金めっき、はんだめっきが好ましいものとして挙げられる。めっき層の厚みは特に限定されないが、2〜8μmが望ましい。めっき厚が、2μm未満であると、はんだ濡れ性、ワイヤーボンディング特性等の実装特性に悪影響を与える場合がある。一方、めっき厚みが8μmを超えると、めっき被膜の剥がれ等により基板特性に悪影響を及ぼす場合がある。 Although the plating treatment according to the present invention is not particularly limited, electroless nickel plating, electroless nickel gold plating, and solder plating are preferable from the viewpoint of workability and cost. Although the thickness of a plating layer is not specifically limited, 2-8 micrometers is desirable. If the plating thickness is less than 2 μm, it may adversely affect mounting characteristics such as solder wettability and wire bonding characteristics. On the other hand, if the plating thickness exceeds 8 μm, the substrate characteristics may be adversely affected due to peeling of the plating film or the like.
〈実施例1〉
厚み0.635mmの市販の窒化アルミニウム基板(電気化学工業社製、商品名「デンカANプレート」)に、回路形成用、並びに、反対側に放熱板用の厚さ0.4mmのアルミニウム板(1085材、純度99.85%)を、接合材(Al−Mg−Cu系合金)を介してセットした。これを、クッション材としてカーボンコンポジット板(厚さ2mm)に挟んで、ホットプレス装置により、窒化アルミニウム基板に垂直方向に均等に5MPaで加圧しながらN2中で550〜620℃に加熱し、所定温度に達した時点で20分保持して接合した。この接合体のアルミニウム板上に、エッチングレジストインク(太陽インキ製造社製 商品名「PER−27B−6」)を用い、スクリーン印刷法でエッチングレジストパターンを印刷して、塩化鉄水溶液を用いてエッチングを行い、アルミニウム金属回路を形成した。エッチング後、エッチングレジストを剥離した。次に、めっき厚みが5μmとなるように無電解ニッケルめっきを行った。
<Example 1>
A commercially available aluminum nitride substrate having a thickness of 0.635 mm (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Denka AN plate”), an aluminum plate having a thickness of 0.4 mm for circuit formation and a heat sink on the opposite side (1085). Material, purity 99.85%) was set via a bonding material (Al—Mg—Cu alloy). This is sandwiched between carbon composite plates (thickness: 2 mm) as a cushioning material, and heated to 550 to 620 ° C. in N 2 while being uniformly pressurized to the aluminum nitride substrate at 5 MPa by a hot press device. When the temperature was reached, bonding was carried out for 20 minutes. On the aluminum plate of this joined body, an etching resist ink (trade name “PER-27B-6” manufactured by Taiyo Ink Manufacturing Co., Ltd.) is used, an etching resist pattern is printed by a screen printing method, and etching is performed using an aqueous iron chloride solution. To form an aluminum metal circuit. After the etching, the etching resist was peeled off. Next, electroless nickel plating was performed so that the plating thickness was 5 μm.
次に、ニッケルメッキを硝酸溶液にて除去し、アルミニウム回路および放熱板を塩化鉄水溶液にて除去した。除去後の窒化アルミニウム基板の片面に離型剤(電気化学工業社製、デンカボロンナイトライド、GPグレード)を塗布し、積層後重しを載せ、窒化硼素製坩堝に充填した。その後、窒素ガス雰囲気中で1740℃×3時間加熱した。加熱処理後、ホーニング処理にて離型剤を除去し、上記と同じ方法にてAl回路および放熱板を形成し、無電解ニッケルメッキを行った。このようにして、窒化アルミニウム基板の再生及びこれを用いた回路基板の作製を行った。性能評価として、抗折強度の測定、並びに、接合状態の確認を行った。結果を表1に示す。 Next, the nickel plating was removed with a nitric acid solution, and the aluminum circuit and the heat sink were removed with an aqueous iron chloride solution. A release agent (manufactured by Denki Kagaku Kogyo Co., Ltd., Denkaboron nitride, GP grade) was applied to one side of the aluminum nitride substrate after the removal, and a weight was placed after lamination, and filled in a boron nitride crucible. Then, it heated at 1740 degreeC * 3 hours in nitrogen gas atmosphere. After the heat treatment, the release agent was removed by a honing treatment, an Al circuit and a heat sink were formed by the same method as described above, and electroless nickel plating was performed. In this way, regeneration of the aluminum nitride substrate and production of a circuit substrate using the same were performed. As a performance evaluation, the bending strength was measured and the bonding state was confirmed. The results are shown in Table 1.
〈実施例2〜5〉
加熱処理温度を1700〜1780℃の範囲内で変えたこと以外は実施例1と同様の方法で、窒化アルミニウム基板の再生及びこれを用いた回路基板を作製した。結果を表1に示す。
<Examples 2 to 5>
An aluminum nitride substrate was regenerated and a circuit board using the same was produced in the same manner as in Example 1 except that the heat treatment temperature was changed within the range of 1700 to 1780 ° C. The results are shown in Table 1.
〈比較例1、2〉
加熱処理温度を1700℃未満で行ったこと以外は実施例1と同様の方法で、窒化アルミニウム基板の再生及びこれを用いた回路基板を作製した。結果を表1に示す。
<Comparative Examples 1 and 2>
An aluminum nitride substrate was regenerated and a circuit board using the same was produced in the same manner as in Example 1 except that the heat treatment temperature was less than 1700 ° C. The results are shown in Table 1.
〈比較例3、4〉
加熱処理温度を1780℃より上で行ったこと以外は実施例1と同様の方法で、窒化アルミニウム基板の再生及びこれを用いた回路基板を作製した。結果を表1に示す。
<Comparative Examples 3 and 4>
An aluminum nitride substrate was regenerated and a circuit board using the same was produced in the same manner as in Example 1 except that the heat treatment temperature was higher than 1780 ° C. The results are shown in Table 1.
〈比較例5〉
加熱処理を実施しなかったこと以外は実施例1と同様の方法で、窒化アルミニウム基板を用いた回路基板を作製した。結果を表1に示す。
<Comparative Example 5>
A circuit board using an aluminum nitride substrate was produced in the same manner as in Example 1 except that the heat treatment was not performed. The results are shown in Table 1.
〈比較例6〉
厚み0.635mmの市販の窒化アルミニウム基板(電気化学工業社製、商品名「デンカANプレート」)に、回路形成用、並びに、反対側に放熱板用の厚さ0.4mmのアルミニウム板(1085材、純度99.85%)を、接合材(Al−Mg−Cu系合金)を介してセットした。これを、クッション材としてカーボンコンポジット板(厚さ2mm)に挟んで、ホットプレス装置により、窒化アルミニウム基板に垂直方向に均等に5MPaで加圧しながらN2中で550〜620℃に加熱し、所定温度に達した時点で20分保持して接合した。この接合体のアルミニウム板上に、エッチングレジストインク(太陽インキ製造社製 商品名「PER−27B−6」)を用い、スクリーン印刷法でエッチングレジストパターンを印刷して、塩化鉄水溶液を用いてエッチングを行い、アルミニウム金属回路を形成した。エッチング後、エッチングレジストを剥離した。次に、めっき厚みが5μmとなるように無電解ニッケルめっきを行い、回路基板を作製した。性能評価を実施例1と同様に行った。結果を表1に示す。
<Comparative Example 6>
A commercially available aluminum nitride substrate having a thickness of 0.635 mm (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Denka AN plate”), an aluminum plate having a thickness of 0.4 mm for circuit formation and a heat sink on the opposite side (1085). Material, purity 99.85%) was set via a bonding material (Al—Mg—Cu alloy). This is sandwiched between carbon composite plates (thickness: 2 mm) as a cushioning material, and heated to 550 to 620 ° C. in N 2 while being uniformly pressurized to the aluminum nitride substrate at 5 MPa by a hot press device. When the temperature was reached, bonding was carried out for 20 minutes. On the aluminum plate of this joined body, an etching resist ink (trade name “PER-27B-6” manufactured by Taiyo Ink Manufacturing Co., Ltd.) is used, an etching resist pattern is printed by a screen printing method, and etching is performed using an aqueous iron chloride solution. To form an aluminum metal circuit. After the etching, the etching resist was peeled off. Next, electroless nickel plating was performed so that the plating thickness was 5 μm, and a circuit board was produced. Performance evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
〈測定方法〉
[窒化アルミニウム基板の抗折強度]
窒化アルミニウム基板の曲げ強度をJISR 1601に準拠して測定した。
[接合状態の観察]
超音波探査装置(日立建機社製商品名「AT−7000」を用いて窒化アルミニウム基板‐金属回路および放熱板間に剥離があるかどうか観察した。○は「剥離なし」、×は「剥離あり」を表す。
[耐ヒートサイクル試験]
−40℃(10分間)→+125℃(10分間)を1サイクルとし、回路基板を各100枚ずつ試験に供し、ヒートサイクル試験を3000回まで行い、アルミニウム板と窒化アルミニウム基板との界面の剥離の有無を上記の方法で観察した。○は「剥離なし」、×は「剥離あり」、−は「ヒートサイクル試験実施せず」を表す。
<Measuring method>
[Folding strength of aluminum nitride substrate]
The bending strength of the aluminum nitride substrate was measured according to JISR 1601.
[Observation of bonding state]
Using an ultrasonic probe (trade name “AT-7000” manufactured by Hitachi Construction Machinery Co., Ltd.), we observed whether there was any separation between the aluminum nitride substrate and the metal circuit and the heat sink. "Yes".
[Heat cycle resistance test]
-40 ° C (10 minutes) → + 125 ° C (10 minutes) is one cycle, 100 circuit boards are used for each test, heat cycle test is performed up to 3000 times, and the interface between the aluminum plate and the aluminum nitride substrate is peeled off The presence or absence of was observed by the above method. O represents "no peeling", x represents "with peeling", and-represents "no heat cycle test".
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006000597A JP4746431B2 (en) | 2006-01-05 | 2006-01-05 | Method for regenerating aluminum nitride substrate and circuit board using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006000597A JP4746431B2 (en) | 2006-01-05 | 2006-01-05 | Method for regenerating aluminum nitride substrate and circuit board using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007182339A JP2007182339A (en) | 2007-07-19 |
JP4746431B2 true JP4746431B2 (en) | 2011-08-10 |
Family
ID=38338736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006000597A Expired - Fee Related JP4746431B2 (en) | 2006-01-05 | 2006-01-05 | Method for regenerating aluminum nitride substrate and circuit board using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4746431B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7380153B2 (en) * | 2019-12-04 | 2023-11-15 | 三菱マテリアル株式会社 | Method for manufacturing an insulated circuit board and method for manufacturing an insulated circuit board with a heat sink |
JP7371468B2 (en) * | 2019-12-04 | 2023-10-31 | 三菱マテリアル株式会社 | Method for manufacturing an insulated circuit board and method for manufacturing an insulated circuit board with a heat sink |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0364024A (en) * | 1989-08-01 | 1991-03-19 | Fujitsu Ltd | Washing method of surface of semiconductor substrate |
JPH0521409A (en) * | 1991-07-16 | 1993-01-29 | Fujitsu Ltd | Pretreatment method for oxide substrate |
-
2006
- 2006-01-05 JP JP2006000597A patent/JP4746431B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007182339A (en) | 2007-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7144405B2 (en) | CERAMIC CIRCUIT BOARD, MANUFACTURING METHOD THEREOF, AND MODULE USING THE SAME | |
US10834823B2 (en) | Producing metal/ceramic circuit board by removing residual silver | |
US10104783B2 (en) | Method for producing ceramic circuit board | |
JP5367914B2 (en) | Wiring substrate, manufacturing method thereof, and semiconductor device | |
JPWO2018221493A1 (en) | Ceramic circuit board and module using the same | |
JP4053478B2 (en) | Method for manufacturing metal-based circuit board | |
JP4846455B2 (en) | A method for manufacturing a nitride ceramic circuit board. | |
JP7512507B2 (en) | Ceramic copper-clad laminate and method for producing the same | |
JP2014118310A (en) | Ceramic circuit board | |
JP3449458B2 (en) | Circuit board | |
JPH10154866A (en) | Production of ceramic circuit board | |
JP4037425B2 (en) | Ceramic circuit board and power control component using the same. | |
JP4746431B2 (en) | Method for regenerating aluminum nitride substrate and circuit board using the same | |
JPH09181423A (en) | Ceramic circuit board | |
JP4703377B2 (en) | Stepped circuit board, manufacturing method thereof, and power control component using the same. | |
TWI724351B (en) | Copper foil with carrier | |
JP6111102B2 (en) | Method for producing metal / ceramic bonding substrate | |
JP2017065935A (en) | Ceramic circuit board | |
JP2011082502A (en) | Substrate for power module, substrate for power module with heat sink, power module, and method of manufacturing substrate for power module | |
JP5643959B2 (en) | Method for manufacturing metal-ceramic bonding circuit board | |
JP3924479B2 (en) | Manufacturing method of ceramic circuit board | |
JP3353990B2 (en) | Circuit board manufacturing method | |
JP6621353B2 (en) | Heat resistant ceramic circuit board | |
JP3871680B2 (en) | Ceramic substrate, ceramic circuit substrate, and power control component using the same. | |
JPH11246289A (en) | Production of metallized aluminum nitride substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110510 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110513 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4746431 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |