[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4746288B2 - Method for producing starch-containing resin composition - Google Patents

Method for producing starch-containing resin composition Download PDF

Info

Publication number
JP4746288B2
JP4746288B2 JP2004203732A JP2004203732A JP4746288B2 JP 4746288 B2 JP4746288 B2 JP 4746288B2 JP 2004203732 A JP2004203732 A JP 2004203732A JP 2004203732 A JP2004203732 A JP 2004203732A JP 4746288 B2 JP4746288 B2 JP 4746288B2
Authority
JP
Japan
Prior art keywords
starch
resin composition
fluid
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004203732A
Other languages
Japanese (ja)
Other versions
JP2006021502A (en
Inventor
實 上田
孝 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGRI FUTURE JOETSU CO Ltd
Original Assignee
AGRI FUTURE JOETSU CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGRI FUTURE JOETSU CO Ltd filed Critical AGRI FUTURE JOETSU CO Ltd
Priority to JP2004203732A priority Critical patent/JP4746288B2/en
Priority to CN2005800075219A priority patent/CN1930228B/en
Priority to US10/592,476 priority patent/US20080036115A1/en
Priority to PCT/JP2005/002992 priority patent/WO2005087857A1/en
Priority to EP05710643A priority patent/EP1724300A1/en
Publication of JP2006021502A publication Critical patent/JP2006021502A/en
Application granted granted Critical
Publication of JP4746288B2 publication Critical patent/JP4746288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/86Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/535Screws with thread pitch varying along the longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/761Venting, drying means; Degassing means the vented material being in liquid form

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、化学合成物質の使用量の軽減を図るために、この化学合成物質に天然由来物質を配合させる組成物に関し、特に、澱粉系物質が配合された樹脂組成物の製造方法、及び、これに関連する技術に関する。   The present invention relates to a composition in which a naturally occurring substance is blended with this chemically synthesized substance in order to reduce the amount of the chemically synthesized substance used, and in particular, a method for producing a resin composition in which a starch-based substance is blended, and It relates to the technology related to this.

食用に生産された農産物であっても、食用に適する期限を経過したものについては、廃棄せざるを得ない。また、米においては、現在、供給過剰状態となっており、このため我国が保有する余剰米は年々増加の一途をたどり、いずれ廃棄されることになる。このような、廃棄される農産物を有効利用したり、余剰米の在庫を圧縮したりするために、食用用途以外にも、これら農産物の用途が模索されている。   Even agricultural products produced for edible use must be discarded if they have passed a suitable period for edible use. In addition, rice is currently oversupplied, so surplus rice held by Japan will continue to increase year by year and will eventually be discarded. In order to effectively use such discarded agricultural products and to reduce the stock of surplus rice, in addition to edible uses, uses of these agricultural products are being sought.

これら農産物のうち、澱粉系物質(米、小麦、とうもろこし、馬鈴薯、甘藷、タピオカ等)を熱可塑性樹脂(ポリオレフィン樹脂等)に配合して成形加工品を得ることは従来から行われている(例えば特許文献1)。このような澱粉系物質を配合することで、化石燃料から製造される熱可塑性樹脂の使用量を低減させることはもとより、焼却時の二酸化炭素発生量を減少(オレフィン樹脂との比較:約20%)させて地球環境の保全に貢献することができる。
特開2004−2613号公報
Among these agricultural products, it has been conventionally practiced to obtain a molded product by blending starch-based substances (rice, wheat, corn, potato, sweet potato, tapioca, etc.) with a thermoplastic resin (polyolefin resin, etc.) (for example, Patent Document 1). By blending such a starch-based material, not only the amount of thermoplastic resin produced from fossil fuel is reduced, but also the amount of carbon dioxide generated during incineration is reduced (compared with olefin resin: about 20%). ) Can contribute to the conservation of the global environment.
JP 2004-2613 A

しかし、熱可塑性樹脂に澱粉系物質を配合させる場合、熱可塑性樹脂のマトリックス中に澱粉系物質を微細に均一に混合させた澱粉配合樹脂組成物を得ることが困難である。特に、延伸加工によりフィルム成形品を得る場合にあっては、粒子サイズの大きい澱粉粒の粉末が不均一に分布していると、膜厚が不均一になったり、延伸加工の途中で亀裂が生じるため薄膜化に限度があったり、成形後のフィルムの機械的特性、外観、風合が著しく劣ったりする等、諸特性の劣化が避けられないといった問題を有していた。   However, when a starch-based material is blended with a thermoplastic resin, it is difficult to obtain a starch-blended resin composition in which a starch-based material is finely and uniformly mixed in a thermoplastic resin matrix. In particular, when a film molded product is obtained by stretching, if the starch granule powder having a large particle size is unevenly distributed, the film thickness becomes non-uniform or cracks occur during the stretching process. As a result, there is a problem in that deterioration of various properties is unavoidable, for example, there is a limit to thinning the film, and mechanical properties, appearance, and texture of the film after molding are extremely inferior.

従来、かかる問題に対しては、あらかじめ、澱粉系物質を微細に粉砕したり、または、澱粉成分のみを抽出したりするといった高度な前処理を施した後に、熱可塑性樹脂に配合し、熱流動温度で混練して澱粉配合樹脂組成物を得ていた。しかし、従来のかかる方法により得られた澱粉配合樹脂組成物においては、前記した前処理の工程を踏む分、コスト面の課題がある。また、澱粉配合樹脂組成物に分散される澱粉粒の微細化の程度は、前記した前処理の粉砕により達成される粒子サイズでほぼ決まり、この粒子サイズの小サイズ化にも限界がある。ところで、フィルム成形品にあっては、分散する澱粉粒の粒子サイズが、膜厚以下であることが要求される。このため、フィルム成形品の薄膜化(厚さ十数μm程度)に対する要請に対し、この膜厚に見合う程度に澱粉粒を小サイズ化させなければならないといった技術面の課題があった。   Conventionally, in order to deal with such problems, after performing advanced pretreatment such as finely pulverizing starch-based materials or extracting only starch components, they are blended into thermoplastic resins and heat-fluidized. The starch-containing resin composition was obtained by kneading at a temperature. However, the starch-containing resin composition obtained by such a conventional method has a problem in terms of cost because of the pretreatment process described above. Further, the degree of refinement of the starch granules dispersed in the starch-blended resin composition is almost determined by the particle size achieved by the above-mentioned pulverization, and there is a limit to reducing the particle size. By the way, in the film molded product, the particle size of the starch granules to be dispersed is required to be equal to or less than the film thickness. For this reason, there has been a technical problem that the starch grains must be reduced in size to the extent appropriate for the film thickness in response to the request for thin film formation (thickness of about several tens of μm).

本発明は、以上の課題を解決するものであり、熱可塑性樹脂に、高度な前処理をすることなく澱粉系物質を配合し、その澱粉粒が微細に均一に分散される澱粉配合樹脂組成物の製造方法及びこれに関連する技術を提供することを目的としてなされたものである。   The present invention solves the above problems, and a starch-containing resin composition in which a starch-based material is blended in a thermoplastic resin without performing advanced pretreatment, and the starch granules are finely and uniformly dispersed. It is made for the purpose of providing the manufacturing method of this, and the technique relevant to this.

本発明は、前記した課題を解決し、前記した目的を達成するために創案されたものであり、まず、第1の発明は、請求項1に記載されたとおり、原料投入工程(A)において、水と澱粉系物質と熱可塑性樹脂とが原料投入部に投入されるが、この原料投入部は、140℃以下の低温に調整されているので、投入された水は、その大部分がすぐさま蒸発してしまうようなことがない。次に、熱流動化処理工程(B)において、投入された水と澱粉系物質と熱可塑性樹脂とは、高温(原料投入部の調整温度より高く、上限は200℃程度)にさらされることとなり、全体が熱流動化する。しかし、大気圧より高圧の雰囲気であるため、水は100℃以上の高温になっても気化することがない。このため、高温の水を含んでいる澱粉系物質の澱粉質は、糊化がより短時間で進行することとなる。 The present invention has been devised to solve the above-described problems and achieve the above-described object. First, the first invention is the raw material charging step (A) as described in claim 1 . Water, starch-based substances, and thermoplastic resins are put into the raw material charging section, but this raw material charging section is adjusted to a low temperature of 140 ° C. or less, so most of the water that is input is immediately There is no such thing as evaporation. Next, in the heat fluidization treatment step (B), the water, starch-based material, and thermoplastic resin that have been charged are exposed to a high temperature (higher than the adjustment temperature of the raw material charging portion and the upper limit is about 200 ° C.). The whole fluidizes. However, since the atmosphere is higher than atmospheric pressure, water does not vaporize even at a high temperature of 100 ° C. or higher. For this reason, gelatinization progresses in a shorter time for the starch substance of the starch-based substance containing high-temperature water.

次に、分散処理工程(C)において、糊化澱粉と熱流動する熱可塑性樹脂とが混練されると、この糊化澱粉は、微細に破砕された澱粉粒となり熱可塑性樹脂のマトリックス中に均一に分散されていくこととなる。このように、糊化澱粉が、微細化しやすいのは、その分子構造が非晶構造を有しているため、分子鎖レベルでばらけやすい性質を有しているからである。次に、脱水処理工程(D)において、澱粉系物質と熱可塑性樹脂と共に投入され、澱粉系物質の糊化に寄与した水はその役目を終え排出される。元来、水分は、最終製品となる澱粉配合樹脂組成物にとっては、無用の成分であるからである。この水の排出は、前工程の分散処理工程(C)における大気圧以上にあった高圧雰囲気を、脱水処理工程(D)では、常圧雰囲気に変化させるだけで、自動的に行われる。またさらに、強制廃棄装置を用いて、大気圧以下の低圧雰囲気に変化させれば、高い脱水効果が発揮される。さらに、吐出工程(G)及び成形工程(I)を経て得られた澱粉配合樹脂組成物は、その内部に分散される澱粉粒が微細化され、さらに均一に分布する構造を有することになる。   Next, in the dispersion treatment step (C), when the gelatinized starch and the heat-flowable thermoplastic resin are kneaded, the gelatinized starch becomes finely crushed starch granules and uniformly in the matrix of the thermoplastic resin. Will be distributed. Thus, gelatinized starch is easily refined because its molecular structure has an amorphous structure, and thus has a property of being easily scattered at the molecular chain level. Next, in the dehydration treatment step (D), water that has been added together with the starch-based material and the thermoplastic resin and contributed to the gelatinization of the starch-based material is discharged after finishing its role. This is because moisture is originally an unnecessary component for the starch-containing resin composition that is the final product. This discharge of water is automatically performed only by changing the high-pressure atmosphere, which was higher than the atmospheric pressure in the dispersion treatment step (C) in the previous step, to the atmospheric pressure in the dehydration treatment step (D). Furthermore, if the forced disposal device is used to change the atmosphere to a low-pressure atmosphere below atmospheric pressure, a high dehydration effect is exhibited. Furthermore, the starch-containing resin composition obtained through the discharging step (G) and the molding step (I) has a structure in which starch granules dispersed therein are refined and more uniformly distributed.

また、第2の発明は、請求項2に記載されたとおり、微粒化工程(H)において、すでに一定サイズの澱粉粒、もしくは糊化澱粉が分散している熱可塑性樹脂の熱流動体が、ヒートロールの間隙を通過することにより、これら澱粉粒等のさらなる微細化が達成されることになる。 Further, the second invention , as described in claim 2 , in the atomization step (H), a thermofluid of a thermoplastic resin in which starch particles of a certain size or gelatinized starch is already dispersed, By passing through the gap between the heat rolls, further refinement of the starch granules and the like is achieved.

本発明にかかる澱粉配合樹脂組成物の製造方法は、以下に示す優れた効果を奏する。
すなわち、熱可塑性樹脂に、高度な前処理をすることなく澱粉系物質を配合して、その澱粉粒が微細に均一に分散される澱粉配合樹脂組成物を得ることができる。このため、この澱粉配合樹脂組成物を用いれば、低コストでかつ、諸特性に優れるフィルム成形品を得ることができる。
さらに、配合する澱粉系物質の比率を高めた澱粉配合樹脂組成物及びそのフィルム成形品が得られるので、処分に困っている澱粉系物質(例えば余剰米)を大量に使用して化石燃料から製造される熱可塑性樹脂の使用量を低減させることが可能になる。さらに、焼却処分しても燃焼熱や二酸化炭素の発生量が抑えられ、また、生分解性を有する熱可塑性樹脂を用いることにより、埋立処分しても100%分解されることとなり、地球環境の保全に大きく貢献する。
Producing how such starch blend resin composition of the present invention, excellent effects described below.
That is, it is possible to obtain a starch-containing resin composition in which a starch-based substance is blended into a thermoplastic resin without performing advanced pretreatment, and the starch granules are finely and uniformly dispersed. For this reason, if this starch-blended resin composition is used, a film molded product having low costs and excellent properties can be obtained.
Furthermore, since a starch-containing resin composition and a film molded product thereof with an increased ratio of starch-based materials to be blended can be obtained, it is manufactured from fossil fuels using a large amount of starch-based materials (for example, surplus rice) that are difficult to dispose of. It is possible to reduce the amount of thermoplastic resin used. Furthermore, the amount of combustion heat and carbon dioxide generated can be suppressed even after incineration, and by using a biodegradable thermoplastic resin, it will be decomposed 100% even when landfilled. Contributes greatly to conservation.

以下に、図面を参照しつつ本発明の実施の形態を詳細に説明する。
図1は、本実施形態にかかる澱粉配合樹脂組成物(ペレット)を製造するための造粒装置を示す全体斜視図である。
造粒装置10は、澱粉配合樹脂組成物の原料となる熱可塑性樹脂及び含水処理のされた澱粉系物質を投入後、熱流動化して混練する二軸混練押出装置20と、この混練に要する駆動力を二軸混練押出装置20に付与する駆動部22と、混練されて吐出口28から押し出された熱流動体を通過させて含まれる澱粉粒をさらに微細化するヒートロール40と、このヒートロール40を通過した熱流動体を細断して固めてペレット51,51…にするサイドホットカット装置50と、から構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall perspective view showing a granulation apparatus for producing a starch-containing resin composition (pellet) according to this embodiment.
The granulating apparatus 10 includes a twin-screw kneading and extruding apparatus 20 that heat-fluidizes and kneads a thermoplastic resin that is a raw material of the starch-blended resin composition and a hydrous-treated starch-based material, and a drive required for this kneading. A drive unit 22 for applying a force to the biaxial kneading and extruding device 20, a heat roll 40 for further refinement of starch granules contained by passing the thermal fluid that has been kneaded and extruded from the discharge port 28, and the heat roll The side hot-cut device 50 is formed by chopping and solidifying the thermal fluid passing through 40 into pellets 51, 51.

二軸混練押出装置20について、図2を用いて説明する。ここで、図2(a)は、二軸混練押出装置20の側面断面図を示し、(b)は水平断面図を示す。
二軸混練押出装置20は、中空形状を有するシリンダ21により外周部が構成され、シリンダ21の中空の内部には、駆動部22の駆動力により同一方向に噛み合って回転する2本のスクリュ30,30が配置されている。そして、二軸混練押出装置20の、駆動部22が配置されている最上流には、原料を投入するためのホッパ23が設けられている。さらに、このホッパ23の開口の上方には、原料の熱可塑性樹脂をホッパ23に送入する送入ポット23aと、同じく原料の含水処理された米(澱粉系物質)をホッパ23に送入する送入ポット23bと、が配置されている。
The biaxial kneading extruder 20 will be described with reference to FIG. Here, Fig.2 (a) shows the side sectional drawing of the biaxial kneading extrusion apparatus 20, (b) shows a horizontal sectional view.
The biaxial kneading and extruding apparatus 20 has an outer peripheral portion constituted by a hollow cylinder 21, and two screws 30 that rotate in mesh with each other in the same direction by the driving force of the driving portion 22 inside the hollow of the cylinder 21. 30 is arranged. A hopper 23 for charging the raw material is provided in the uppermost stream of the biaxial kneading and extruding apparatus 20 where the drive unit 22 is disposed. Further, above the opening of the hopper 23, a feed pot 23a for feeding the raw material thermoplastic resin into the hopper 23 and the raw water-treated rice (starch-based material) are also fed into the hopper 23. An infeed pot 23b is arranged.

ここで、送入ポット23aに蓄積される原料の熱可塑性樹脂は、澱粉配合樹脂組成物のマトリックスを形成するものであって、低密度ポリエチレン(HPPE)、高密度ポリエチレン(HDPE)、ポロプロピレン(PP)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−アクリル酸エチル共重合体(EEA)等のポリオレフィン系の樹脂が代表格として挙げられるが、その他、ポリカーボネート樹脂(PC)、ポリエチレンテレフタレート樹脂(PET)、アクリル・ブチレン・スチレン(ABS)なども用いてもよく、加熱により熱流動する性質をもつ樹脂であれば、特に制限無く用いることができる。また、これら熱可塑性樹脂は、二種以上混合して使用してもよい。
一方、熱可塑性樹脂として、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ポリカプトラクトン(PCL)等の生分解性を具備したものを用いれば、その全てが土に還元される性質を有し、環境保全の観点から好適な澱粉配合樹脂組成物が得られる。また、テグラノボン(商標)や、マクロテク・リサーチ社(米国)のECMマスターバッチ(商品名)等の生分解性を付与する添加剤が付与されているポリオレフィン樹脂を用いても同様に環境保全の観点から好適である。
Here, the raw material thermoplastic resin accumulated in the feeding pot 23a forms a matrix of the starch-containing resin composition, and is composed of low density polyethylene (HPPE), high density polyethylene (HDPE), polypropylene ( Polypropylene resins such as PP), ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA) and the like are typical examples, but other than these, polycarbonate resin (PC), polyethylene terephthalate resin (PET), acrylic / butylene / styrene (ABS), and the like may also be used, and any resin can be used without particular limitation as long as it has a property of being thermally fluidized by heating. Moreover, you may use these thermoplastic resins in mixture of 2 or more types.
On the other hand, if a thermoplastic resin having biodegradability such as polylactic acid (PLA), polybutylene succinate (PBS), polycaptolactone (PCL) is used, all of them are reduced to soil. And a suitable starch-containing resin composition from the viewpoint of environmental protection. Similarly, from the viewpoint of environmental conservation, polyolefin resins to which additives that impart biodegradability such as Tegranobon (trademark) and ECM Masterbatch (trade name) of Macrotech Research (USA) are added. To preferred.

また、送入ポット23bに蓄積される「含水処理された米」とは、具体的には、生米を水に所定時間浸漬させ、遠心分離器で水切処理を行った程度の処理を実施したものである。ここで用いる生米は、玄米や精米の粒状のままで良く、これらを粉砕させたり、予め熱処理をしたりする等の特別な処理は一切必要はない。また、価格の安い古古米やくず米を使用することができる。
なお、用いることができる澱粉系物質としては、ここで挙げた米以外に、小麦、とうもろこし、馬鈴薯、甘藷、タピオカ等を用いることも考えられる。これら、米以外の物質を用いる場合であっても、芯や表皮を取り除く程度の簡便な処理で用いることができる。
In addition, the “moisture-treated rice” accumulated in the feeding pot 23b is specifically processed by immersing raw rice in water for a predetermined time and draining it with a centrifuge. Is. The raw rice used here may be in the form of brown rice or polished rice, and there is no need for any special treatment such as pulverization or heat treatment in advance. In addition, it is possible to use old and cheap rice and waste rice at low prices.
As starch-based substances that can be used, wheat, corn, potato, sweet potato, tapioca and the like can be used in addition to the rice listed here. Even when these substances other than rice are used, they can be used by a simple treatment that removes the core and the skin.

そして、熱可塑性樹脂及び澱粉系物質は、所定の配合比率となるように、それぞれ送入ポット23a及び送入ポット23bからホッパ23に送入される。この配合比率は、熱可塑性樹脂及び澱粉系物質の合計量100重量部に対して、澱粉系物質の配合が80重量部を上限とし下限を5重量部とする。上限を80重量部としたのは、これ以上、澱粉系物質の配合量を増加させるとなると、澱粉配合樹脂組成物のマトリックスが澱粉系物質で形成されることとなり、製造したフィルム成形品は、フィルムとして所望される風合が得られないからである。下限を5重量部としたのは、これ以下では、焼却時に所望の発生熱抑制効果が得られないからである。   Then, the thermoplastic resin and the starch-based material are fed into the hopper 23 from the feeding pot 23a and the feeding pot 23b, respectively, so as to have a predetermined blending ratio. The blending ratio of the starch-based material is 80 parts by weight and the lower limit is 5 parts by weight with respect to 100 parts by weight of the total amount of the thermoplastic resin and the starch-based material. The upper limit of 80 parts by weight is that when the amount of the starch-based material is further increased, the starch-containing resin composition matrix is formed of the starch-based material, This is because the desired texture as a film cannot be obtained. The lower limit of 5 parts by weight is because below this, the desired heat generation suppression effect cannot be obtained during incineration.

なお、ホッパ23に対し、熱可塑性樹脂及び澱粉系物質との相溶性を向上させる相溶化剤をさらに送入させる場合もある。この相溶化剤は、例えば、飽和カルボン酸、不飽和カルボン酸またはその誘導体が用いられる。飽和カルボン酸としては、具体的に無水コハク酸、コハク酸、無水フタル酸、フタル酸、無水テトラヒドロフタル酸、無水アジピン酸等が挙げられる。不飽和カルボン酸としては、マレイン酸、無水マレイン酸、無水ナジック酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、ソルビン酸、アクリル酸等が挙げられる。不飽和カルボン酸の誘導体としては、前記不飽和カルボン酸の金属塩、アミド、イミド、エステル等を使用することができる。また、不飽和カルボン酸またはその誘導体で変性されたポリオレフィン樹脂を使用することができる。これは、ポリオレフィンと不飽和カルボン酸またはその誘導体と、ラジカル発生剤とを溶媒の存在下または不存在下に加熱混合することにより得られる。この相溶化剤の適切な配合量は、実験的に求められるものであるが、熱可塑性樹脂及び澱粉系物質の合計量100重量部に対し、0.2〜20重量部の範囲であることが望ましい。   In some cases, the hopper 23 may be further fed with a compatibilizing agent that improves the compatibility with the thermoplastic resin and the starch-based material. As this compatibilizer, for example, a saturated carboxylic acid, an unsaturated carboxylic acid, or a derivative thereof is used. Specific examples of the saturated carboxylic acid include succinic anhydride, succinic acid, phthalic anhydride, phthalic acid, tetrahydrophthalic anhydride, and adipic anhydride. Examples of the unsaturated carboxylic acid include maleic acid, maleic anhydride, nadic anhydride, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, sorbic acid, acrylic acid and the like. As the derivative of the unsaturated carboxylic acid, a metal salt, amide, imide, ester or the like of the unsaturated carboxylic acid can be used. Further, a polyolefin resin modified with an unsaturated carboxylic acid or a derivative thereof can be used. This can be obtained by heating and mixing a polyolefin, an unsaturated carboxylic acid or derivative thereof, and a radical generator in the presence or absence of a solvent. An appropriate blending amount of the compatibilizing agent is obtained experimentally, but may be in the range of 0.2 to 20 parts by weight with respect to 100 parts by weight of the total amount of the thermoplastic resin and the starch-based substance. desirable.

図1及び図2に戻って説明を続ける。
図1に示すように、造粒装置10を用いて澱粉配合樹脂組成物(ペレット51,51…)を得るためには、原料投入工程A、熱流動化処理工程B、分散処理工程C、脱水処理工程D,F、化学反応工程E、吐出工程G、微粒化工程H、成形工程Iで表される複数の工程を順番に経る必要がある。そして、これらの工程のうちA〜Fは、図2に示すように、二軸混練押出装置20の長手方向に所定間隔で設けられた複数の区画において実行される。
Returning to FIG. 1 and FIG. 2, the description will be continued.
As shown in FIG. 1, in order to obtain a starch-containing resin composition (pellets 51, 51...) Using a granulator 10, a raw material charging process A, a thermal fluidization process B, a dispersion process C, dehydration It is necessary to go through a plurality of steps represented by processing steps D and F, chemical reaction step E, discharge step G, atomization step H, and molding step I in order. Of these steps, A to F are executed in a plurality of sections provided at predetermined intervals in the longitudinal direction of the biaxial kneading and extruding apparatus 20, as shown in FIG.

ここで原料投入工程Aは、原料投入部(低温部)aで示される二軸混練押出装置20の一区画に、ホッパ23から澱粉配合樹脂組成物の原料(熱可塑性樹脂、含水処理された米(澱粉系物質)、相溶化剤等の混合物)が投入される工程である。これら原料は、同一方向に回転する混練スクリュ30,30の表面に所定間隔のピッチで螺旋状に設けられているフライト31により、下流側に隣接する昇温部b1に移送される。ところで、この原料投入部(低温部)aは、温度T1が140℃以下(好ましくは100℃以下)の低温に調整されているため、投入された米に含まれる水分は、原料投入工程Aにおいて、その大部分がすぐさま蒸発することがない。 Here, in the raw material charging step A, a raw material (thermoplastic resin, water-treated rice) of the starch-blended resin composition is fed from a hopper 23 to a section of the biaxial kneading extruder 20 indicated by the raw material charging section (low temperature section) a. (Starch-based substance), a mixture of compatibilizers, and the like). These raw materials are transferred to the temperature raising part b1 adjacent to the downstream side by the flights 31 spirally provided on the surfaces of the kneading screws 30, 30 rotating in the same direction at a predetermined interval. By the way, since this raw material charging part (low temperature part) a is adjusted to a low temperature at which the temperature T 1 is 140 ° C. or lower (preferably 100 ° C. or lower), the water contained in the input rice is supplied to the raw material charging step A Most of it does not evaporate immediately.

次に熱流動化処理工程Bは、昇温工程B1と糊化工程B2にさらに分類される。ここで、昇温工程B1は、昇温部b1で示される二軸混練押出装置20の一区画の上流から下流に原料(熱可塑性樹脂、含水処理された米(澱粉系物質)、相溶化剤等の混合物)を移送させつつ温度T1から、熱可塑性樹脂が熱流動する熱流動温度T2(好ましくは120℃〜200℃)まで、上昇させる工程である。
なお、以降において、二軸混練押出装置20の各区画(a〜f)の温度を示すために、「熱流動温度T2」の記載が登場するが、これは単に、原料が熱流動する温度であることを表しているにすぎず、各区画(a〜f)の温度として示された熱流動温度T2がすべて同じ温度であるわけではない。当然のことながら、各区画(a〜f)における設定温度は、各工程が最適化するように選択されるべきである。
Next, the thermal fluidization process B is further classified into a temperature raising process B1 and a gelatinization process B2. Here, the temperature raising step B1 includes raw materials (thermoplastic resin, water-treated rice (starch-based material), compatibilizing agent) from upstream to downstream of a section of the twin-screw kneading extruder 20 indicated by the temperature raising part b1. And the like, while increasing the temperature T 1 to the heat flow temperature T 2 (preferably 120 ° C. to 200 ° C.) at which the thermoplastic resin flows.
In the following, in order to indicate the temperature of each section (af) of the twin-screw kneading and extruding apparatus 20, the description of “thermal flow temperature T 2 ” appears, but this is simply the temperature at which the raw material is thermally fluidized. only indicates that is, thermal flow temperature T 2, shown as the temperature is not all the same temperature in each compartment (a to f). Of course, the set temperature in each compartment (af) should be selected such that each process is optimized.

そして、糊化工程B2は、高温高圧部(弱練部)b2として示される二軸混練押出装置20の一区画において、原料として投入された米を糊化させる工程である。この高温高圧部(弱練部)b2は、上流から下流にかけて熱流動温度T2で均一に保持されている。さらに、対応する混練スクリュ30,30の表面の螺旋状に設けられているフライト32,32…のピッチは、上流側のフライト31,31…のピッチより幅狭に設けられている。これにより高温高圧部b2において原料は、ピッチが幅狭になった分、占有スペースが狭まり、さらに全体として熱流動するようになるので弱く混練されることになる。しかも、高温高圧部b2におけるシリンダ21の内側面は、完全に外気を遮断しており、さらに上流、下流側はともに原料で密栓された状態にあるので、高温高圧部b2の内部は密閉状態にあるといえ大気圧よりも高圧の雰囲気が形成される。高温高圧部b2において、このような高圧の雰囲気下にさらされた水は、高温でも気化することなく液体の状態で存在し得る。そして、このような高温の熱流動温度T2の水に含浸された米は、短時間のうちに糊化することになる。 And gelatinization process B2 is the process of gelatinizing the rice thrown in as a raw material in one division of the twin-screw kneading extrusion apparatus 20 shown as high temperature high pressure part (weak kneading part) b2. The high-temperature high-pressure part (weakly kneaded part) b2 is uniformly held at the heat flow temperature T 2 from the upstream side to the downstream side. Further, the pitch of the flights 32, 32... Provided in a spiral shape on the surface of the corresponding kneading screws 30, 30 is set narrower than the pitch of the upstream flights 31, 31. As a result, in the high-temperature and high-pressure part b2, the raw material is kneaded weakly because the pitch is narrowed and the occupied space is narrowed, and further the heat flow as a whole. Moreover, the inner surface of the cylinder 21 in the high-temperature and high-pressure part b2 completely shuts out the outside air, and the upstream and downstream sides are both sealed with raw materials, so the inside of the high-temperature and high-pressure part b2 is sealed. Even if there is, an atmosphere higher than atmospheric pressure is formed. In the high-temperature and high-pressure part b2, the water exposed to such a high-pressure atmosphere can exist in a liquid state without being vaporized even at a high temperature. And the rice impregnated with water having such a high heat flow temperature T 2 is gelatinized in a short time.

ここで、米の糊化とは、次のような現象をいう(なお、澱粉系物質全般について同様の説明が当てはまる)。
通常、生米は、それ自体で水分含有量を約13重量%有しているが、さらに水分含有量を増加させて70℃以上の温度環境におくと、生米を構成する澱粉の当初の結晶構造(β構造)が崩れて、非晶構造(α構造)を有するようになる。このように、澱粉が水分を含んでβ構造からα構造に変化することにより、生米は硬い状態から糊状のゲル状態に変化することになる。この現象を糊化するという。なお、この糊化反応は、澱粉に含まれる水分が多いほど、高温であるほど高速に進行することが知られている。
Here, the gelatinization of rice means the following phenomenon (the same explanation applies to starch-based substances in general).
Normally, raw rice itself has a water content of about 13% by weight. However, if the water content is further increased and placed in a temperature environment of 70 ° C. or higher, the initial content of starch constituting the raw rice is as follows. The crystal structure (β structure) breaks down and has an amorphous structure (α structure). Thus, when starch contains moisture and changes from the β structure to the α structure, the raw rice changes from a hard state to a paste-like gel state. This phenomenon is called gelatinization. In addition, it is known that this gelatinization reaction will progress faster, so that there is much water | moisture content contained in starch, and it is high temperature.

高温高圧部b2の内部では、熱流動温度T2(通常は120〜200℃)の高温であっても、水は液体として大量に存在しているので、生米の澱粉構造をβ構造からα構造に短時間で転移させることができる。この糊化工程B2において、原料は、高温・高圧な雰囲気の下、大量の水を含んで熱流動化し、含水熱流動体Pを形成する。この含水熱流動体Pに含まれる生米は、混練の過程で短時間のうちに糊化され得る。 Inside the high-temperature and high-pressure part b2, water is present in a large amount as a liquid even at a high temperature of the heat flow temperature T 2 (usually 120 to 200 ° C.). It can be transferred to the structure in a short time. In this gelatinization step B2, the raw material is thermally fluidized by containing a large amount of water under a high temperature and high pressure atmosphere to form a hydrous thermal fluid P. The raw rice contained in the hydrous heat fluid P can be gelatinized in a short time during the kneading process.

次に分散処理工程Cは、第1強練部cとして示される二軸混練押出装置20の一区画において、含水熱流動体Pに含まれる糊化した米(糊化澱粉)を破砕して分散させる工程である。この第1強練部cは、上流から下流にかけて熱流動温度T2で均一に保持されている。そして、混練スクリュ30,30の対応する部分には、複数のパドル33,33…が設けられている。ここで図3(a)は、混練スクリュ30,30に設けられたパドル33,33…の積層体を拡大して示す上面図で、(b)は、シリンダ21の軸垂直方向から見た図である。 Next, in the dispersion treatment step C, the gelatinized rice (gelatinized starch) contained in the hydrous heat fluid P is crushed and dispersed in one section of the biaxial kneading and extruding apparatus 20 shown as the first toughening part c. It is a process to make. The first strength portion c is uniformly held at the heat flow temperature T 2 from upstream to downstream. A plurality of paddles 33, 33... Are provided in corresponding portions of the kneading screws 30, 30. 3A is an enlarged top view showing a stack of paddles 33, 33... Provided in the kneading screws 30, 30, and FIG. 3B is a view as seen from the direction perpendicular to the axis of the cylinder 21. FIG. It is.

パドル33,33…の構成ならびに動作について説明する。
これらパドル33,33…は、隣接する混練スクリュ30,30同士では、回転の位相が互いに90°ずれるように固定されており、さらに、混練スクリュ30,30の長手方向に順次45°ずれるように固定されている。図4は、隣接する混練スクリュ30,30に取り付けられた一対のパドル33,33…の動作を示す図であって、(a)〜(e)は、それぞれ混練スクリュ30,30が45°づつ同方向に回転した時の状態を示す。
The configuration and operation of the paddles 33, 33.
These paddles 33, 33... Are fixed so that the phases of rotation of the adjacent kneading screws 30, 30 are shifted from each other by 90 °, and are further shifted by 45 ° sequentially in the longitudinal direction of the kneading screws 30, 30. It is fixed. FIG. 4 is a diagram illustrating the operation of a pair of paddles 33, 33... Attached to adjacent kneading screws 30, 30. FIGS. 4 (a) to (e) show that the kneading screws 30, 30 are 45 degrees each. The state when rotating in the same direction is shown.

図4から明らかなように、A,B,Cで表される領域にある混練物は、混練スクリュ30,30の回転に伴い、シリンダ21の内周を周回して強く混練(強練)されることがわかる。ここで、澱粉配合樹脂組成物の製造工程に戻って説明を続けると、高温高圧部b2で、米が糊化して第1強練部cに移送されると、糊化した米(糊化澱粉)は、ゲル状態を示すので、強練されることにより、澱粉の分子鎖がほぐれて、澱粉粒が分子レベルで微細化して熱可塑性樹脂のマトリックス中に分散していくこととなる(澱粉分散熱流動体Q)。なお、第1強練部cの内部圧力は、大気圧より高圧に保たれているので、高温高圧部b2で糊化しきれなかった米の残部は、ここですべて糊化されて、同様に微細化して分散されていく。ここまで、澱粉粒を微細化して分散させることは、従来技術で述べたように、澱粉構造がβ構造(結晶構造)である場合、澱粉系物質をどんなに細かく粉砕しようとしても実現不可能である。   As is clear from FIG. 4, the kneaded material in the regions represented by A, B, and C is strongly kneaded (strengthened) around the inner periphery of the cylinder 21 as the kneading screws 30 and 30 rotate. I understand that Here, returning to the production process of the starch-containing resin composition, the explanation will be continued. When the rice is gelatinized and transferred to the first hardened portion c in the high-temperature and high-pressure portion b2, gelatinized rice (gelatinized starch) ) Shows a gel state, and when it is tempered, the molecular chain of the starch is loosened, and the starch grains are refined at the molecular level and dispersed in the matrix of the thermoplastic resin (starch content). Heat dissipation fluid Q). Since the internal pressure of the first hardened portion c is maintained at a pressure higher than the atmospheric pressure, the remainder of the rice that could not be gelatinized at the high-temperature high-pressure portion b2 is all gelatinized here and similarly fined. Will be dispersed. Up to this point, it is impossible to refine and disperse starch granules when the starch structure is a β structure (crystal structure), no matter how finely the starch-based material is pulverized. .

次に脱水処理工程Dは、第1脱気部dとして示される二軸混練押出装置20の一区画において、澱粉分散熱流動体Qから水分を取り除き無水熱流動体Rにする工程である。そして、第1脱気部dは、熱流動温度T2で均一に保持されている。そして、この第1脱気部dのシリンダ21の上面部には、大気に開口するオープンベント25,25が設けられている。このオープンベント25,25が存在していることにより、第1脱気部dの内部圧力は、大気圧レベルとなり、上流側の第1強練部cから移送されてきた澱粉分散熱流動体Qは、急激な圧力の低下にさらされることになる。このため、原料に含まれる水分は、一気に気化してオープンベント25,25から外部に排出され、無水熱流動体Rが形成されることになる。 Next, the dehydration process D is a process in which water is removed from the starch-dispersed thermal fluid Q to make the anhydrous thermal fluid R in one section of the twin-screw kneading extruder 20 shown as the first degassing part d. The first degassing part d is kept uniform by the heat flow temperature T 2. And the open vents 25 and 25 opened to air | atmosphere are provided in the upper surface part of the cylinder 21 of this 1st deaeration part d. Due to the presence of the open vents 25, 25, the internal pressure of the first degassing part d becomes an atmospheric pressure level, and the starch-dispersed thermal fluid Q that has been transferred from the upstream first strengthening part c. Will be exposed to a sudden drop in pressure. For this reason, the water | moisture content contained in a raw material is vaporized at a stretch, is discharged | emitted outside from the open vents 25 and 25, and the anhydrous heat fluid R is formed.

次に化学反応工程Eは、第2強練部eとして示される二軸混練押出装置20の一区画において、原料として投入されている相溶化剤を化学変化させて熱可塑性樹脂と糊化澱粉との親和性を高め、分散度を向上させる工程である。この第2強練部eは、熱流動温度T2に保持され、ここを通過する無水熱流動体Rは、再び強く混練(強練)されることにより、糊化澱粉の澱粉粒がさらに微細化するとともに、添加した相溶化剤が化学反応して、微細化した澱粉粒と熱可塑性樹脂との親和性を高めて、さらに分散度が高められる。 Next, in the chemical reaction step E, in one section of the biaxial kneading and extruding apparatus 20 shown as the second toughening part e, the compatibilizer charged as a raw material is chemically changed to change the thermoplastic resin and gelatinized starch, It is the process of improving the affinity of and improving dispersity. This second toughened portion e is maintained at the heat flow temperature T 2 , and the anhydrous heat fluid R passing therethrough is kneaded (strengthened) strongly again, so that the starch granules of the gelatinized starch become finer. In addition, the added compatibilizing agent chemically reacts to increase the affinity between the refined starch granules and the thermoplastic resin, thereby further increasing the degree of dispersion.

次に脱水処理工程Fは、第2脱気部fとして示される二軸混練押出装置20の一区画において、強制排気装置27により無水熱流動体Rに残存する水分をさらに取り除く工程である。この第2脱気部fの、シリンダ21の上面部には、大気に開口する真空ベント26が設けられて、そこに強制排気装置27が設置されている。この強制排気装置27が駆動することにより、内部の圧力が大気圧以下となり、脱水処理工程Dで排出しきれなかった水分の残部が無水熱流動体Rから排出されることとなる。   Next, the dehydration process F is a process of further removing moisture remaining in the anhydrous heat fluid R by the forced exhaust device 27 in one section of the twin-screw kneading extruder 20 shown as the second degassing part f. A vacuum vent 26 that opens to the atmosphere is provided on the upper surface of the cylinder 21 of the second degassing part f, and a forced exhaust device 27 is provided there. When the forced exhaust device 27 is driven, the internal pressure becomes equal to or lower than the atmospheric pressure, and the remaining water that cannot be completely discharged in the dehydration process D is discharged from the anhydrous thermal fluid R.

次に吐出工程Gにおいて、無水熱流動体Rは、シリンダ21の最下流端の口径が絞られている吐出口28から吐出されることとなる。
そして、次に、微粒化工程Hにおいては、吐出された無水熱流動体Rが、ヒートロール40を通過することにより、澱粉粒がさらに微細化する。一対のロール41,41は、長手方向の中心軸が互いにに平行になるように配置され、その中心軸を中心に回転している。これら一対の円筒形状のロール41,41が形成する間隙42は、目標とする澱粉粒の大きさに応じて適宜調節されるものとする。また、ロール41,41の回転の方向並びに速度は、澱粉粒の微細化効果が最大限に引き出せるように実験的に定められるものである。さらに、この一対のロール41,41は、表面の温度を熱流動温度T2に維持できるように、全体が加熱炉43に収納されている。
なお、ヒートロール40は、図1では、一対のロール41,41から構成されているとしたが、このような構成に限定されることはなく、例えば、一本の回転するロールと平面板とによって構成される場合もある。すなわち、ヒートロール40とは、一本の回転するロール41の周面と、他の物体の表面とが形成する間隔42に無水熱流動体Rを通過させて、含まれる澱粉粒を、周面で押し潰すかまたはせん断力により破壊するかによって、さらに微細化するものである。
Next, in the discharge process G, the anhydrous thermal fluid R is discharged from the discharge port 28 in which the diameter of the most downstream end of the cylinder 21 is narrowed.
Then, in the atomization step H, the discharged anhydrous heat fluid R passes through the heat roll 40, whereby the starch particles are further refined. The pair of rolls 41 and 41 are arranged so that their longitudinal central axes are parallel to each other, and rotate about the central axis. The gap 42 formed by the pair of cylindrical rolls 41 and 41 is appropriately adjusted according to the target starch particle size. Further, the direction and speed of rotation of the rolls 41 and 41 are experimentally determined so that the effect of refining starch granules can be maximized. Furthermore, the pair of rolls 41, 41 so as to maintain the temperature of the surface heat flow temperature T 2, as a whole is accommodated in the heating furnace 43.
In addition, in FIG. 1, although the heat roll 40 was comprised from a pair of rolls 41 and 41, it is not limited to such a structure, For example, one rotating roll and a plane plate It may be constituted by. That is, the heat roll 40 means that the anhydrous thermal fluid R is passed through the gap 42 formed by the circumferential surface of one rotating roll 41 and the surface of another object, and the contained starch granules are It is further refined by crushing with or by breaking with shearing force.

次に成形工程Iは、さまざまな実施形態を取り得るが、図1においては、一般的に用いられるサイドホットカット装置50を用いて、澱粉配合樹脂組成物としてペレット51,51…を造粒する工程を示している。なお、図1においては、ヒートロール40を通過した後に、サイドホットカット装置50で細断処理されているが、このヒートロール40を通過させずに、二軸混練押出装置20の吐出口28から無水熱流動体Rを直接導いて細断処理を行う場合もあり得る。
図5は、成形工程の他の実施形態を示すものであって、インフレーション成形装置60を用いて、円筒形状の薄膜フィルム成形品を得る工程を示している。なお、図5において、既出の構成要素に関しては、同じ符号を付して説明を省略することとする。
Next, the molding step I can take various embodiments. In FIG. 1, pellets 51, 51... Are granulated as a starch-containing resin composition using a commonly used side hot cut device 50. The process is shown. In FIG. 1, after passing through the heat roll 40, shredding is performed by the side hot cut device 50, but without passing through the heat roll 40, the discharge port 28 of the biaxial kneading extrusion device 20 is used. In some cases, the anhydrous heat fluid R is directly guided to perform shredding.
FIG. 5 shows another embodiment of the molding process, and shows a process of obtaining a cylindrical thin film film molded article using the inflation molding apparatus 60. In FIG. 5, the same components as those described above are denoted by the same reference numerals and description thereof is omitted.

インフレーション成形とは、環状の口金(ダイ)61をもつ金型を取り付けた二軸混練押出装置20で原料を混練し(混練工程J)、熱流動体を筒状に押し出し(吐出工程G)、その中に空気Sを吹き込んで延伸させた後(延伸工程K)、冷却リング66で冷却し、薄膜の円筒状のフィルムを成形し(成形工程I)、安定板65で誘導してピンチロール64をくぐらせ内部の空気をぬいて、ガイドロール63を経由して巻取装置62で巻き取る方法である。
このインフレーション成形によれば、二軸延伸により樹脂の薄膜が形成されるので、引張強さ、耐衝撃性などの機械的諸性質に優れる。さらに、インフレーション成形は、連なった筒状のフィルム成形品として形成されるのでポリエチレンやポリプロピレンなどの熱可塑性樹脂のラップや袋の製造に広く用いられている。
Inflation molding means that the raw material is kneaded by a biaxial kneading and extruding apparatus 20 equipped with a die having an annular die (die) 61 (kneading step J), and the heat fluid is extruded into a cylindrical shape (discharge step G). After air S is blown into the film to be stretched (stretching process K), it is cooled by the cooling ring 66 to form a thin cylindrical film (molding process I), which is guided by the stabilizer 65 and pinched roll 64. This is a method in which the inside air is removed and the winding device 62 winds it through the guide roll 63.
According to this inflation molding, since a resin thin film is formed by biaxial stretching, mechanical properties such as tensile strength and impact resistance are excellent. Further, since the inflation molding is formed as a continuous cylindrical film molded product, it is widely used for the production of wraps and bags of thermoplastic resins such as polyethylene and polypropylene.

本発明にかかる澱粉系樹脂組成物のフィルム成形品の製造方法によれば、熱流動する樹脂の内部に空気Sを入れて急速に膨らましても、澱粉粒は、微細化して均一に分散しており、この澱粉粒が凝集してなる粒状の欠陥部分が存在しないため、フィルムは均等で一様な膜厚で延伸される。このため、冷却後、得られたフィルム成形品は、あたかも100%ポリオレフィン樹脂で成形されたかのように、膜厚が均等で、見た目が美しく、延伸度を高めても亀裂やピンホール等の欠陥もなく機械的特性(引張強度等)も優れたものとなる。   According to the method for producing a film-formed article of a starch-based resin composition according to the present invention, even if air S is rapidly inflated by putting air S inside the heat-fluidized resin, the starch granules are finely and uniformly dispersed. In addition, since there is no granular defect portion formed by aggregation of the starch grains, the film is stretched with a uniform and uniform film thickness. For this reason, after cooling, the obtained film molded product has a uniform film thickness, looks beautiful as if it was molded with 100% polyolefin resin, and has defects such as cracks and pinholes even when the degree of stretching is increased. The mechanical properties (such as tensile strength) are also excellent.

以上、図5の説明では、図2等において詳細に説明した二軸混練押出装置20を用いた場合を想定したが、これに替え、汎用の混練押出装置20´を用いても、ヒートロール40の存在により前記したフィルム成形品の所定の特性を引き出すことができる。また、汎用の混練押出装置20´が搭載されたインフレーション成形装置60であっても、図1の造粒装置10で造粒したペレット51,51…を用いれば、前記した同様の優れた特性のフィルム成形品を得ることが出来る。   As described above, in the description of FIG. 5, it is assumed that the biaxial kneading / extrusion apparatus 20 described in detail in FIG. 2 and the like is used. Predetermined characteristics of the above-mentioned film molded product can be brought out by the presence of. Moreover, even if it is the inflation molding apparatus 60 equipped with general purpose kneading extrusion apparatus 20 ', if the pellets 51, 51 ... granulated by the granulation apparatus 10 of FIG. A film molded product can be obtained.

本実施形態にかかる澱粉配合樹脂組成物(ペレット)を製造するための造粒装置を示す全体斜視図である。It is a whole perspective view which shows the granulation apparatus for manufacturing the starch compounding resin composition (pellet) concerning this embodiment. (a)は、本実施形態で用いられる二軸混練押出装置の側面断面図を示し、(b)は水平断面図を示す。(A) shows the side sectional view of the biaxial kneading extrusion device used in this embodiment, and (b) shows the horizontal sectional view. (a)は、混練スクリュに設けられたパドルの積層体を拡大して示す上面図で、(b)は、シリンダの軸垂直方向から見た図である。(A) is the top view which expands and shows the laminated body of the paddle provided in the kneading screw, (b) is the figure seen from the axial direction of the cylinder. 隣接する混練スクリュに取り付けられた一対のパドルの動作を示す図であって、(a)〜(e)は、それぞれ混練スクリュが45°づつ同方向に回転した時の状態を示す。It is a figure which shows operation | movement of a pair of paddle attached to the adjacent kneading screw, Comprising: (a)-(e) shows a state when each kneading screw rotates in the same direction 45 degrees. 本実施形態にかかるフィルム成形品を製造するインフレーション成形装置の正面図である。It is a front view of the inflation molding apparatus which manufactures the film molded product concerning this embodiment.

符号の説明Explanation of symbols

20 二軸混練押出装置(混練押出装置)
28 吐出口
30 混練スクリュ
40 ヒートロール
42 間隙
60 インフレーション成形装置
A 原料投入工程
B 熱流動化処理工程
B1 昇温工程
B2 糊化工程
C 分散処理工程
D,F 脱水処理工程
E 化学反応工程
G 吐出工程
H 微粒化工程
I 成形工程
J 混練工程
K 延伸工程
P 含水熱流動体
Q 澱粉分散熱流動体
R 無水熱流動体
20 Biaxial kneading extrusion equipment (kneading extrusion equipment)
28 Discharge port 30 Kneading screw 40 Heat roll 42 Gap 60 Inflation molding device A Raw material input process B Thermal fluidization process B1 Temperature rising process B2 Gelatinization process C Dispersion process D, F Dehydration process E Chemical reaction process G Discharge process H Atomization process I Molding process J Kneading process K Drawing process P Hydrous heat fluid Q Starch dispersion heat fluid R Anhydrous heat fluid

Claims (5)

熱可塑性樹脂及び澱粉系物質(但し、粉末処理をしたもの、粉砕処理をしたもの及び顆粒状のもののいずれかに該当するものを除く)を主要な原料とする澱粉配合樹脂組成物の製造方法において、
前記熱可塑性樹脂20〜95重量部、水に浸漬して含水処理のされた前記澱粉系物質80〜5重量部の合計100重量部を少なくとも含む原料が、140℃以下の温度に調整された混練押出装置の原料投入部に投入される原料投入工程と、
投入された前記原料が、大気圧より高圧でかつ前記熱可塑性樹脂が熱流動する高温に調整された高温高圧部に搬送され、含水熱流動体になるとともに、含まれる前記澱粉系物質の少なくとも一部が糊化して糊化澱粉となる熱流動化処理工程と、
前記含水熱流動体が、同じく高温・高圧の下、混練され、前記澱粉系物質の残部が糊化するとともに、生成した糊化澱粉が破砕されて澱粉粒となり、この澱粉粒が前記含水熱流動体の全体に分散して澱粉分散熱流動体となる分散処理工程と、
前記澱粉分散熱流動体が、大気圧以下の低圧でかつ前記澱粉分散熱流動体が熱流動する高温に調整された脱気部に搬送され、前記澱粉分散熱流動体に含まれる水分が蒸発して、無水熱流動体となる脱水処理工程と、
この無水熱流動体を、前記混練押出装置の吐出口から吐出させる吐出工程と、
吐出された前記無水熱流体が、熱流動性が失われる低温の下、固まって澱粉配合樹脂組成物となる成形工程と、を含むことを特徴とする澱粉配合樹脂組成物の製造方法。
In a method for producing a starch-comprising resin composition comprising a thermoplastic resin and a starch-based substance (excluding those subjected to powder processing , pulverized processing, and granular processing ) as main raw materials ,
A raw material containing at least 100 parts by weight of 20 to 95 parts by weight of the thermoplastic resin and 80 to 5 parts by weight of the starch-based material immersed in water and subjected to water treatment is adjusted to a temperature of 140 ° C. or lower. A raw material charging step to be charged into the raw material charging unit of the extrusion device;
The charged raw material is conveyed to a high-temperature and high-pressure part adjusted to a high temperature at which the pressure is higher than atmospheric pressure and the thermoplastic resin is heat-flowed to become a hydrous heat fluid, and at least one of the starch-based substances contained therein. A heat fluidization process in which the part is gelatinized to become gelatinized starch;
The hydrothermal fluid is kneaded under the same high temperature and high pressure, the remainder of the starch-based material is gelatinized, and the resulting gelatinized starch is crushed into starch granules, and the starch granules become the hydrothermal fluid A dispersion treatment step to be dispersed in the whole body to become a starch-dispersed thermal fluid,
The starch-dispersed thermal fluid is conveyed to a deaeration section adjusted to a low pressure below atmospheric pressure and a high temperature at which the starch-dispersed thermal fluid is thermally fluidized, and moisture contained in the starch-dispersed thermal fluid is evaporated. A dehydration process to become an anhydrous heat fluid,
A discharge step of discharging the anhydrous thermal fluid from the discharge port of the kneading extruder;
Manufacturing method of the discharged the anhydrous thermal flow dynamic body, under the low temperature thermal fluidity is lost, starch blend resin composition characterized in that it comprises a molding step of a starch blend resin composition hardens.
請求項1に記載の澱粉配合樹脂組成物の製造方法において、
前記吐出工程の後、前記成形工程の前に、前記無水熱流動体が、ヒートロールの間隙を通過することにより、前記澱粉粒が微細化する微粒化工程を、さらに含むことを特徴とする澱粉配合樹脂組成物の製造方法。
In the manufacturing method of the starch compounding resin composition of Claim 1,
Starch characterized in that it further includes a atomization step in which the anhydrous heat fluid passes through a gap between heat rolls to make the starch particles finer after the discharging step and before the molding step. A method for producing a compounded resin composition.
請求項1又は請求項2に記載の澱粉配合樹脂組成物の製造方法において、
前記澱粉系物質は、米、小麦、とうもろこし、馬鈴薯、甘藷、タピオカの物質群の中から選ばれる少なくとも一の物質から構成されることを特徴とする澱粉配合樹脂組成物の製造方法。
In the manufacturing method of the starch compounding resin composition of Claim 1 or Claim 2,
The method for producing a starch-containing resin composition, wherein the starch-based substance is composed of at least one substance selected from the group of substances of rice, wheat, corn, potato, sweet potato, and tapioca.
請求項1から請求項3のいずれか1項に記載の澱粉配合樹脂組成物の製造方法において、
前記熱可塑性樹脂は、生分解性が付与されたポリオレフィン樹脂、ポリ乳酸、ポリブチレンサクシネート、ポリカプトラクトンの化合物群の中から選ばれる少なくとも一の化合物から構成されることを特徴とする澱粉配合樹脂組成物の製造方法。
In the manufacturing method of the starch compounding resin composition of any one of Claims 1-3,
The thermoplastic resin is composed of at least one compound selected from a compound group of polyolefin resin, polylactic acid, polybutylene succinate, and polycaptolactone imparted with biodegradability. A method for producing a resin composition.
請求項1から請求項4のいずれか1項に記載の澱粉配合樹脂組成物の製造方法において、
前記吐出工程で吐出される前記無水熱流動体を延伸してフィルム形状とする延伸工程をさらに含むことを特徴とする澱粉配合樹脂組成物の製造方法。
In the manufacturing method of the starch-containing resin composition according to any one of claims 1 to 4,
A method for producing a starch-containing resin composition, further comprising a stretching step of stretching the anhydrous thermal fluid discharged in the discharging step into a film shape.
JP2004203732A 2004-03-10 2004-07-09 Method for producing starch-containing resin composition Expired - Fee Related JP4746288B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004203732A JP4746288B2 (en) 2004-07-09 2004-07-09 Method for producing starch-containing resin composition
CN2005800075219A CN1930228B (en) 2004-03-10 2005-02-24 Starch-blended resin composition, molding thereof and process for producing the same
US10/592,476 US20080036115A1 (en) 2004-03-10 2005-02-24 Starch Resin Composition, Molded Product Using the Same and Method for Producing the Same
PCT/JP2005/002992 WO2005087857A1 (en) 2004-03-10 2005-02-24 Starch-blended resin composition, molding thereof and process for producing the same
EP05710643A EP1724300A1 (en) 2004-03-10 2005-02-24 Starch-blended resin composition, molding thereof and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203732A JP4746288B2 (en) 2004-07-09 2004-07-09 Method for producing starch-containing resin composition

Publications (2)

Publication Number Publication Date
JP2006021502A JP2006021502A (en) 2006-01-26
JP4746288B2 true JP4746288B2 (en) 2011-08-10

Family

ID=35795113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203732A Expired - Fee Related JP4746288B2 (en) 2004-03-10 2004-07-09 Method for producing starch-containing resin composition

Country Status (1)

Country Link
JP (1) JP4746288B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4414415B2 (en) * 2006-07-19 2010-02-10 昭和高分子株式会社 Biodegradable resin composition and biodegradable film
US7995185B2 (en) 2006-12-07 2011-08-09 Asml Holding N.V. Systems and methods for thermally-induced aberration correction in immersion lithography
KR20100018504A (en) * 2007-05-01 2010-02-17 아그리 퓨처 조에쓰 카부시키카이샤 Polymer composite material, apparatus for producing the same and method of producing the same
JP4638903B2 (en) * 2007-08-03 2011-02-23 アグリフューチャー・じょうえつ株式会社 Manufacturing method of composite material
JP4660528B2 (en) * 2007-05-01 2011-03-30 アグリフューチャー・じょうえつ株式会社 Polymer composite material manufacturing apparatus and manufacturing method thereof
JP6317903B2 (en) * 2013-09-26 2018-04-25 株式会社白石バイオマス Rice bran film and method for producing the same
KR102427086B1 (en) * 2019-12-24 2022-07-29 김선철 Mask Pack Storage Pouch
CN116723890A (en) * 2020-12-25 2023-09-08 生物质树脂控股有限公司 Method for producing rice-containing resin composition and biaxial kneading apparatus
CN115071156B (en) * 2022-04-28 2024-05-10 山东玲珑轮胎股份有限公司 Pre-composite cushion rubber for tire and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856817A (en) * 1981-09-30 1983-04-04 Aron Kasei Co Ltd Thermoplastic resin molding material containing chaff
JPH0286412A (en) * 1988-09-21 1990-03-27 Sumitomo Chem Co Ltd Granulation of melt
JPH0616857A (en) * 1992-07-03 1994-01-25 Nippon Synthetic Chem Ind Co Ltd:The Production of biodegradable resin foam
JPH06184358A (en) * 1992-07-15 1994-07-05 Roquette Freres New thermoformable composition, its preparation and its use for obtaining thermoformed article
JPH11124485A (en) * 1997-08-19 1999-05-11 Mitsui Chem Inc Composite resin composition
JP2002018839A (en) * 2000-07-10 2002-01-22 Sumitomo Bakelite Co Ltd Method for manufacturing thermosetting resin molding material
JP2002179898A (en) * 2000-12-12 2002-06-26 Riken Technos Corp Antistatic polylactic acid resin composition
JP2003055470A (en) * 2001-06-08 2003-02-26 Daito M Ii Kk Biodegradable resin composition
JP2003192928A (en) * 2001-12-27 2003-07-09 Kazuko Itabashi Pellet-shaped biodegradable resin composition and preparation method of the same
JP2004067989A (en) * 2002-06-14 2004-03-04 Kanebo Ltd Biodegradable resin composition, polylactic acid resin composition, and method for producing these
JP2004149636A (en) * 2002-10-29 2004-05-27 Asahi Kasei Life & Living Corp Polylactic acid resin composition and molded article

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856817A (en) * 1981-09-30 1983-04-04 Aron Kasei Co Ltd Thermoplastic resin molding material containing chaff
JPH0286412A (en) * 1988-09-21 1990-03-27 Sumitomo Chem Co Ltd Granulation of melt
JPH0616857A (en) * 1992-07-03 1994-01-25 Nippon Synthetic Chem Ind Co Ltd:The Production of biodegradable resin foam
JPH06184358A (en) * 1992-07-15 1994-07-05 Roquette Freres New thermoformable composition, its preparation and its use for obtaining thermoformed article
JPH11124485A (en) * 1997-08-19 1999-05-11 Mitsui Chem Inc Composite resin composition
JP2002018839A (en) * 2000-07-10 2002-01-22 Sumitomo Bakelite Co Ltd Method for manufacturing thermosetting resin molding material
JP2002179898A (en) * 2000-12-12 2002-06-26 Riken Technos Corp Antistatic polylactic acid resin composition
JP2003055470A (en) * 2001-06-08 2003-02-26 Daito M Ii Kk Biodegradable resin composition
JP2003192928A (en) * 2001-12-27 2003-07-09 Kazuko Itabashi Pellet-shaped biodegradable resin composition and preparation method of the same
JP2004067989A (en) * 2002-06-14 2004-03-04 Kanebo Ltd Biodegradable resin composition, polylactic acid resin composition, and method for producing these
JP2004149636A (en) * 2002-10-29 2004-05-27 Asahi Kasei Life & Living Corp Polylactic acid resin composition and molded article

Also Published As

Publication number Publication date
JP2006021502A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US12049729B2 (en) Compostable seaweed-based compositions, and associated systems and methods
JP4746288B2 (en) Method for producing starch-containing resin composition
JP2010089483A (en) Method for producing cellulose fiber-containing thermoplastic resin composition
KR20100018504A (en) Polymer composite material, apparatus for producing the same and method of producing the same
WO2005087857A1 (en) Starch-blended resin composition, molding thereof and process for producing the same
JP3593661B2 (en) Biodegradable resin composition
Yimnak et al. Poly (butylene adipate-co-terephthalate)/thermoplastic starch/zeolite 5A films: Effects of compounding sequence and plasticizer content
JP2010241986A (en) Method of producing thermoplastic resin composition
Wu et al. Effect of elongational rheology on plasticization and properties of thermoplastic starch prepared by biaxial eccentric rotor extruder
Yoksan et al. The effect of polyethylene glycol sorbitan monostearate on the morphological characteristics and performance of thermoplastic starch/biodegradable polyester blend films
US20220119598A1 (en) Method for preparing starch blends
US20240124659A1 (en) Method for producing resin composite material, and resin composite material
JP3878623B2 (en) Rice-blended polyolefin resin composition, production method thereof, film molded product thereof, and molding method of this molded product
JP7121428B1 (en) METHOD FOR MANUFACTURING BIOMASS MATERIAL-CONTAINING MOLDED BODY, METHOD FOR MANUFACTURING LAMINATED BODY, AND STARCH-CONTAINING MATERIAL
JP2002363432A (en) Biodegradable plastic composition
JP2011184520A (en) Method for producing cellulose-based resin composition
CN114058086A (en) Starch-based plastic master batch
JP2008023724A (en) Pellet manufacturing method
JP2008144109A (en) Core for winding up sheet or film
JP7260900B2 (en) Particles and resin composition
JP7422708B2 (en) Thermoplastic polymer granules and their manufacturing method
JP7285384B1 (en) Starch-containing resin composition, pellets, flakes, resin molding, method for producing starch-containing resin composition, method for producing pellets or flakes, and method for producing resin molding
CN113429636B (en) Full-biodegradable straw reinforced starch material and preparation method thereof
JP7398586B1 (en) Starch-containing resin compositions, pellets, flakes, resin moldings, methods for producing starch-containing resin compositions, methods for producing pellets or flakes, and methods for producing resin moldings
JPH08134266A (en) Water-resistant plant polymer composition and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees