[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4639395B2 - Method for producing silver particles - Google Patents

Method for producing silver particles Download PDF

Info

Publication number
JP4639395B2
JP4639395B2 JP2001241505A JP2001241505A JP4639395B2 JP 4639395 B2 JP4639395 B2 JP 4639395B2 JP 2001241505 A JP2001241505 A JP 2001241505A JP 2001241505 A JP2001241505 A JP 2001241505A JP 4639395 B2 JP4639395 B2 JP 4639395B2
Authority
JP
Japan
Prior art keywords
silver
silver particles
aqueous
solution
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001241505A
Other languages
Japanese (ja)
Other versions
JP2003049202A (en
Inventor
友亮 石田
勝明 岡部
正美 大内
俊雄 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2001241505A priority Critical patent/JP4639395B2/en
Publication of JP2003049202A publication Critical patent/JP2003049202A/en
Application granted granted Critical
Publication of JP4639395B2 publication Critical patent/JP4639395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、銀粒子とその製造方法、さらにその銀粒子を用いた導電回路形成用導体ペーストに関するものである。
【0002】
【従来の技術】
携帯電話に代表される高密度実装基板、鉛フリー半田に対応するために高温で焼成する基板など、商品サイクルや技術開発のスピードが速まっているが、新規な基板に対して適切な導体を用いることで、開発期間の短縮を計ることができる。これに対応するためには、粉体物性(粒径、結晶性等)、ペースト特性、その他に関する様々な特性を有する導体が提供される必要がある。
これに関連して、低温焼成などに用いる結晶性の低い銀粒子については、本出願人から多数が提供されている。
【0003】
一方で、高温焼成に適する結晶性の高い銀粒子については、特開2000―1706及び特開2000―1707が挙げられる。これらは、硝酸銀水溶液とLアスコルビン酸水溶液との反応により銀粒子を製造するものであり、導体ペースト焼成の際の導体とセラミックス基板との収縮差やクラック、デラミネーションの防止等の効果があると記載されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の方法において製造された銀粒子については導体ペーストの原料としての分散性や流動性の向上がさらに求められていた。
【0005】
【課題を解決するための手段】
本発明者らは導体ペーストの導体として焼成の際のセラミックス基板との収縮差の低減のほかに、導体ペーストの粘性低減の観点から特に表面平滑性およびタップ密度の向上に重点をおいて鋭意研究した結果、導体ペースト用として好適な銀粒子を提供するに至った。
【0006】
すなわち、本発明は第1に、結晶子径が400〜600Åであり、タップ密度が5 g/cm以上であることを特徴とする銀粒子;第2に、結晶子径が400〜600Åであり、比表面積が0.15 m/g以下であることを特徴とする銀粒子;第3に、結晶子径が400〜600Åであり、タップ密度が5 g/cm以上であり、比表面積が0.15 m/g以下であることを特徴とする銀粒子;第4に、前記銀粒子が導体ペーストの導体用銀粒子である、第1〜3のいずれかに記載の銀粒子;第5に、銀イオンを含有するアルカリ性水溶液と過酸化水素水溶液とを反応させることを特徴とする、第1〜4のいずれかに記載の銀粒子の製造方法;第6に、前記反応に際し、脂肪酸、脂肪酸塩およびそれらの誘導体からなる群から選ばれる1種以上を存在させる、第5記載の製造方法;第7に、前記アルカリ性水溶液が水酸化アンモニウム水溶液であり、前記反応に際し水酸化ナトリウムおよび水酸化カリウムからなる群から選ばれる1種以上が添加される、第5または6記載の製造方法;第8に、前記脂肪酸がステアリン酸およびオレイン酸からなる群から選ばれる1種以上であり、前記脂肪酸塩がステアリン酸ナトリウムおよびオレイン酸ナトリウムからなる群から選ばれる1種以上である、第6または7記載の製造方法;第9に、前記の脂肪酸、脂肪酸塩およびそれらの誘導体からなる群から選ばれる1種以上の添加量が前記アルカリ性水溶液中の銀イオンの重量の0.001〜0.5%である、第6〜8のいずれかに記載の製造方法;第10に、第1〜3のいずれかに記載の銀粒子を導体に用いたことを特徴とする、導体ペースト、を提供するものである。
【0007】
【発明の実施の形態】
本発明における銀粒子の結晶子径は、次のScherrerの式によって求められる。
すなわち、
hkl=Kλ/βcosθ
ここで、
hkl(Å):結晶子径の大きさ(hklに垂直な方向の結晶子の大きさ)
λ(Å):測定X線の波長(Cuターゲット使用時1.5405Å)
β(rad):結晶子の大きさによる回折線の広がりであり、半価幅を用いる。
θ(rad):回折線のブラッグ角であって、入射角と反射角が等しいときの角度であり、ピークトップの角度を使用する。
K:Scherrer定数(Dやβの定義により異なる。βに半価幅を用いる場合K=0.94)
なお、測定は粉末X線回折装置を用い、計算には(200)面のピークデータを用いる。
【0008】
また、本発明においては比表面積(m/g)の値はBET法で求める。
銀粒子の結晶子径の範囲は400〜600Åであり、好ましくは400〜500Åである。400Å未満では高温焼成導体ペースト用の銀粒子としては結晶性が低く、600Åを超えると銀粒子形状が不安定化し、導体ペーストの粘性が増加する。銀粒子のタップ密度については5g/cm以上である。銀粒子のタップ密度が5g/cm未満では導体ペーストを焼成後の導電回路の緻密性および表面平滑性が損なわれ高密度実装基板用に適用困難である。また、銀粒子の比表面積については0.15m/g以下である。銀粒子の比表面積が0.15m/gを超えると表面平滑性が損なわれる。
【0009】
銀粒子の製造にあたっては、銀イオンを含有するアルカリ性水溶液を過酸化水素水溶液と反応させて還元し銀粒子を析出させるが、銀イオン源としては硝酸銀が好ましい。実施例で詳細に記載するがここで銀粒子の製造方法をより具体的に記載すると、ビーカーに純水を入れ、50℃に液温を調節した後、硝酸銀水溶液と、水酸化アンモニウム水溶液(アンモニア水溶液ということがある。)を添加する。50℃を維持したまま、銀の錯体が形成されるだけの時間撹拌後、好ましくは硝酸アンモニウムを添加し、過酸化水素水溶液好ましくは過酸化水素水溶液と水酸化ナトリウム水溶液および水酸化カリウムの1種以上をほぼ同時に液中あるいは液表面に撹拌しながら添加する。過酸化水素水溶液単独で添加しても目的が達せられるが、銀の還元の途中でpHが低下し、還元反応速度が低下してくるため、水酸化ナトリウム、水酸化カリウム等のアルカリを同時に添加することでpHの低下を防止し銀粒子の収量をより向上させることができる。
【0010】
また反応に際し、ステアリン酸やオレイン酸等の脂肪酸、ステアリン酸ナトリウム(ステアリン酸ソーダということがある。)やオレイン酸ナトリウム(オレイン酸ソーダということがある。)等の脂肪酸塩、またはそれらの誘導体を添加することで分散性の良い銀粒子を得ることができる。これらの添加量は前記アルカリ性水溶液中の銀イオンの重量の0.001〜0.5重量%(単に、%と表す。)とする。添加量が0.001%未満では添加効果が発揮されず、0.5%以上では効果が飽和する。また、反応に際しては、その添加時期も重要であり、過酸化水素水溶液の添加前、添加中、添加直後、添加後、添加液への混合等いずれでも効果があるが、過酸化水素水溶液の添加前、添加直後の添加がより効果的である。
【0011】
【実施例】
以下の実施例によって本発明を説明するが、本発明はこれら実施例に限定されるものではない。
【0012】
[ 実施例1] 10Lのビーカーに純水を6600g入れ液温を50℃に保つ。これに硝酸銀水溶液(銀77g相当)、アンモニア水溶液(アンモニア67g相当)を撹拌しながら添加し、15分間撹拌後、硝酸アンモニウム10g、ステアリン酸ソーダ水100 ml(ステアリン酸ソーダ添加比率:500 ppm/Ag)を添加し、その後過酸化水素水溶液(3.3 mol/L)と、水酸化ナトリウム水溶液(0.8 mol/L)とをそれぞれ200 ml/minの速度で同時に240秒間添加する。得られた銀粒子の結晶子径、タップ密度および比表面積は表1のとおりである。
【0013】
【表1】

Figure 0004639395
【0014】
[ 実施例2] 10Lのビーカーに純水を6600g入れ液温を50℃に保つ。これに硝酸銀水溶液(銀77g相当)、アンモニア水溶液(アンモニア67g相当)を撹拌しながら添加し、15分間撹拌後、硝酸アンモニウム10gを添加し、その後過酸化水素水溶液(3.3 mol/L)と、水酸化ナトリウム水溶液(0.8 mol/L)をそれぞれ200 ml/minの速度で同時に120秒間添加し、添加開始20秒後にオレイン酸ソーダ水136 ml(オレイン酸ソーダ添加比率:500 ppm/Ag)を添加する。得られた銀粒子の結晶子径、タップ密度および比表面積は表1のとおりである。
【0015】
[ 実施例3] 過酸化水素水溶液と水酸化ナトリウム水溶液を240秒間添加する以外は実施例2と同一条件で行った。得られた銀粒子の結晶子径、タップ密度および比表面積は表1のとおりである。
【0016】
[ 実施例4] 10Lのビーカーに純水を6600g入れ液温を50℃に保つ。これに硝酸銀水溶液(銀77g相当)、アンモニア水溶液(アンモニア67g相当)を撹拌しながら添加し、15分間撹拌後、硝酸アンモニウム10g、オレイン酸ソーダを80ml(オレイン酸ソーダ添加比率:500 ppm/Ag)を添加し、その後過酸化水素水溶液(3.3 mol/L )と、水酸化ナトリウム水溶液(1.6 mol/L )をそれぞれ200 ml/min の速度で同時に240秒間添加し、添加開始後10秒後にオレイン酸ソーダ80ml(オレイン酸ソーダ添加比率:500ppm/Ag)を添加する。得られた銀粒子の結晶子径、タップ密度および比表面積は表1のとおりである。
【0017】
[ 比較例1] 100mlビーカーに純水約50mlを入れ、ここに硝酸銀溶液(銀6g相当)を加え、conc.の過酸化水素水溶液10mlを添加した。その結果、発泡したが、固体の生成は無く、酸性水溶液中の銀イオンは過酸化水素水溶液によっては還元されなかった。
【0018】
[ 比較例2] 銀10g/Lの硝酸銀溶液に適量のアンモニア水溶液を加え、銀アンミン錯体水溶液を作製し、液温を40℃に保持したまま、撹拌しながら所定量の37%濃度のホルマリン水溶液を添加した。得られた銀粒子の結晶子径は293Å、タップ密度は3.75g/cm3、比表面積は0.23m2/gであった。
【0019】
[ 比較例3] 10Lのビーカーに純水を6600g入れ液温を50℃に保つ。これに硝酸銀水溶液(銀77g相当)、アンモニア水溶液(アンモニア67g相当)を撹拌しながら添加し、15分間撹拌後、硝酸アンモニウム12.5gを添加し、その後過酸化水素水溶液(3.3 mol/L )と、水酸化ナトリウム水溶液(1.6 mol/L )をそれぞれ200 ml/min の速度で同時に60秒間添加し、添加開始と同時に別系統で過酸化水素のconc.溶液52.5gを一度に添加する。得られた銀粒子の結晶子径は405Å、タップ密度は3.59g/cm3、比表面積は0.16m2/gであった。
【0020】
【発明の効果】
本発明によれば、結晶子径が400〜600Åと結晶性が高く、タップ密度が5 g/cm以上、比表面積が0.15 m/g以下の銀粒子を効率的に製造することができる。また、これらの銀粒子を用いた導体ペーストは高温焼成用に最適であり、ペースト粘性が低減されて印刷性に優れ、さらに焼成後の回路が緻密性と表面平滑性とを有するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to silver particles, a method for producing the same, and a conductive paste for forming a conductive circuit using the silver particles.
[0002]
[Prior art]
Product cycles and technological development speeds are increasing, such as high-density mounting boards typified by mobile phones and boards that are baked at high temperatures to support lead-free solder. By using it, the development period can be shortened. In order to cope with this, it is necessary to provide a conductor having various characteristics relating to powder physical properties (particle size, crystallinity, etc.), paste characteristics, and others.
In this connection, a large number of silver particles having low crystallinity used for low-temperature firing or the like are provided by the present applicant.
[0003]
On the other hand, JP-A-2000-1706 and JP-A-2000-1707 are exemplified for silver particles having high crystallinity suitable for high-temperature firing. These produce silver particles by the reaction of an aqueous silver nitrate solution and an aqueous L ascorbic acid solution, and have effects such as the prevention of shrinkage differences, cracks, and delamination between the conductor and the ceramic substrate during firing of the conductor paste. Are listed.
[0004]
[Problems to be solved by the invention]
However, the silver particles produced by the above method have been further required to improve dispersibility and fluidity as a raw material for the conductive paste.
[0005]
[Means for Solving the Problems]
In addition to reducing the difference in shrinkage between the ceramic paste and the ceramic substrate during firing, the present inventors have conducted intensive research with an emphasis on improving the surface smoothness and tap density, especially from the viewpoint of reducing the viscosity of the conductive paste. As a result, it came to provide a silver particle suitable for conductor paste.
[0006]
That is, the present invention firstly has a crystallite diameter of 400 to 600 、 and a tap density of 5 g / cm 3 or more; second, a crystallite diameter of 400 to 600 Å A silver particle characterized by having a specific surface area of 0.15 m 2 / g or less; third, a crystallite diameter of 400 to 600 mm, a tap density of 5 g / cm 3 or more, Silver particles having a surface area of 0.15 m 2 / g or less; fourth, the silver particles according to any one of the first to third, wherein the silver particles are conductive silver particles of a conductive paste. 5th, the method for producing silver particles according to any one of 1st to 4th, wherein an alkaline aqueous solution containing silver ions is reacted with an aqueous hydrogen peroxide solution; , Selected from the group consisting of fatty acids, fatty acid salts and derivatives thereof Wherein the alkaline aqueous solution is an aqueous ammonium hydroxide solution, and at least one selected from the group consisting of sodium hydroxide and potassium hydroxide is present in the reaction. The manufacturing method of 5th or 6 added, 8thly, the said fatty acid is 1 or more types chosen from the group which consists of stearic acid and oleic acid, and the said fatty acid salt consists of sodium stearate and sodium oleate The manufacturing method of 6th or 7 which is 1 or more types chosen from a group; 9th, 1 or more types of addition amount chosen from the group which consists of said fatty acid, fatty acid salt, and those derivatives are in said alkaline aqueous solution. The production method according to any one of 6 to 8, which is 0.001 to 0.5% of the weight of silver ions of the above; Characterized by using silver particles according to the conductor, there is provided a conductive paste, a.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The crystallite diameter of the silver particles in the present invention is determined by the following Scherrer equation.
That is,
D hkl = Kλ / βcosθ
here,
D hkl (Å): size of crystallite (size of crystallite in a direction perpendicular to hkl)
λ (Å): X-ray wavelength (1.5405Å when using Cu target)
β (rad): The broadening of the diffraction line depending on the crystallite size, and the half width is used.
θ (rad): Bragg angle of the diffraction line, which is an angle when the incident angle and the reflection angle are equal, and the peak top angle is used.
K: Scherrer constant (depending on the definition of D or β. When half width is used for β, K = 0.94)
The measurement uses a powder X-ray diffractometer and the calculation uses peak data on the (200) plane.
[0008]
In the present invention, the value of the specific surface area (m 2 / g) is determined by the BET method.
The range of the crystallite diameter of the silver particles is 400 to 600 mm, preferably 400 to 500 mm. If it is less than 400 mm, the silver particles for high-temperature fired conductor paste have low crystallinity, and if it exceeds 600 mm, the silver particle shape becomes unstable and the viscosity of the conductor paste increases. The tap density of the silver particles is 5 g / cm 3 or more. When the tap density of the silver particles is less than 5 g / cm 3 , the denseness and surface smoothness of the conductive circuit after firing the conductor paste is impaired, making it difficult to apply to a high-density mounting substrate. The specific surface area of the silver particles is 0.15 m 2 / g or less. When the specific surface area of the silver particles exceeds 0.15 m 2 / g, the surface smoothness is impaired.
[0009]
In the production of silver particles, an alkaline aqueous solution containing silver ions is reacted with a hydrogen peroxide aqueous solution for reduction to precipitate silver particles, and silver nitrate is preferred as the silver ion source. Although described in detail in the examples, the production method of silver particles will be described in more detail here. After adding pure water to a beaker and adjusting the liquid temperature to 50 ° C., an aqueous silver nitrate solution and an aqueous ammonium hydroxide solution (ammonia) (Sometimes referred to as an aqueous solution). After stirring for a time sufficient to form a silver complex while maintaining 50 ° C., ammonium nitrate is preferably added, and an aqueous hydrogen peroxide solution, preferably an aqueous hydrogen peroxide solution, preferably an aqueous hydrogen peroxide solution, an aqueous sodium hydroxide solution, or potassium hydroxide. Is added to the liquid or the liquid surface with stirring almost simultaneously. Addition of hydrogen peroxide aqueous solution alone can achieve the purpose, but pH decreases during the reduction of silver and the reduction reaction rate decreases, so alkali such as sodium hydroxide and potassium hydroxide is added simultaneously. By doing so, a decrease in pH can be prevented and the yield of silver particles can be further improved.
[0010]
In the reaction, fatty acids such as stearic acid and oleic acid, fatty acid salts such as sodium stearate (sometimes called sodium stearate) and sodium oleate (sometimes called sodium oleate), or derivatives thereof By adding, silver particles having good dispersibility can be obtained. These addition amounts are 0.001 to 0.5% by weight (simply expressed as%) of the weight of silver ions in the alkaline aqueous solution. If the addition amount is less than 0.001%, the addition effect is not exhibited, and if it is 0.5% or more, the effect is saturated. In addition, the timing of addition is also important during the reaction, and it can be effective before, during, immediately after addition, after addition, after addition, and mixing with the added solution. The addition immediately before and immediately after the addition is more effective.
[0011]
【Example】
The present invention will be described with reference to the following examples, but the present invention is not limited to these examples.
[0012]
[Example 1] 6600 g of pure water was put into a 10 L beaker and the liquid temperature was kept at 50 ° C. To this was added an aqueous silver nitrate solution (equivalent to 77 g of silver) and an aqueous ammonia solution (equivalent to 67 g of ammonia). After stirring for 15 minutes, 10 g of ammonium nitrate and 100 ml of sodium stearate water (sodium stearate addition ratio: 500 ppm / Ag) Then, an aqueous hydrogen peroxide solution (3.3 mol / L) and an aqueous sodium hydroxide solution (0.8 mol / L) are added simultaneously at a rate of 200 ml / min for 240 seconds. Table 1 shows the crystallite size, tap density, and specific surface area of the obtained silver particles.
[0013]
[Table 1]
Figure 0004639395
[0014]
[Example 2] 6600 g of pure water was put into a 10 L beaker and the liquid temperature was kept at 50 ° C. To this, an aqueous silver nitrate solution (equivalent to 77 g of silver) and an aqueous ammonia solution (equivalent to 67 g of ammonia) were added with stirring. After stirring for 15 minutes, 10 g of ammonium nitrate was added, and then an aqueous hydrogen peroxide solution (3.3 mol / L), Sodium hydroxide aqueous solution (0.8 mol / L) was added simultaneously at a rate of 200 ml / min for 120 seconds, and after 20 seconds of addition, 136 ml of sodium oleate water (sodium oleate addition ratio: 500 ppm / Ag) Add. Table 1 shows the crystallite size, tap density, and specific surface area of the obtained silver particles.
[0015]
[Example 3] The test was performed under the same conditions as in Example 2 except that an aqueous hydrogen peroxide solution and an aqueous sodium hydroxide solution were added for 240 seconds. Table 1 shows the crystallite size, tap density, and specific surface area of the obtained silver particles.
[0016]
[Example 4] 6600 g of pure water is put into a 10 L beaker and the liquid temperature is kept at 50 ° C. To this was added an aqueous silver nitrate solution (equivalent to 77 g of silver) and an aqueous ammonia solution (equivalent to 67 g of ammonia). After stirring for 15 minutes, 10 g of ammonium nitrate and 80 ml of sodium oleate (sodium oleate addition ratio: 500 ppm / Ag) were added. Then, an aqueous hydrogen peroxide solution (3.3 mol / L) and an aqueous sodium hydroxide solution (1.6 mol / L) were added simultaneously at a rate of 200 ml / min for 240 seconds, and 10 seconds after the start of addition. Later, 80 ml of sodium oleate (sodium oleate addition ratio: 500 ppm / Ag) is added. Table 1 shows the crystallite size, tap density, and specific surface area of the obtained silver particles.
[0017]
[Comparative Example 1] About 50 ml of pure water was put into a 100 ml beaker, and a silver nitrate solution (equivalent to 6 g of silver) was added thereto, and 10 ml of a hydrogen peroxide solution of conc. Was added. As a result, foaming occurred, but no solid was formed, and silver ions in the acidic aqueous solution were not reduced by the aqueous hydrogen peroxide solution.
[0018]
[Comparative Example 2] An appropriate amount of aqueous ammonia solution was added to a silver nitrate solution of 10 g / L of silver to prepare an aqueous solution of silver ammine complex, and while maintaining the liquid temperature at 40 ° C, a predetermined amount of 37% strength formalin aqueous solution was stirred. Was added. The obtained silver particles had a crystallite diameter of 293 mm, a tap density of 3.75 g / cm 3 , and a specific surface area of 0.23 m 2 / g.
[0019]
[Comparative Example 3] 6600 g of pure water was put into a 10 L beaker and the liquid temperature was kept at 50 ° C. To this, an aqueous silver nitrate solution (equivalent to 77 g of silver) and an aqueous ammonia solution (equivalent to 67 g of ammonia) were added with stirring. After stirring for 15 minutes, 12.5 g of ammonium nitrate was added, and then an aqueous hydrogen peroxide solution (3.3 mol / L). Then, sodium hydroxide aqueous solution (1.6 mol / L) was added simultaneously at a rate of 200 ml / min for 60 seconds, and 52.5 g of hydrogen peroxide conc. To do. The obtained silver particles had a crystallite diameter of 405 mm, a tap density of 3.59 g / cm 3 , and a specific surface area of 0.16 m 2 / g.
[0020]
【The invention's effect】
According to the present invention, it is possible to efficiently produce silver particles having a crystallite diameter of 400 to 600Å, high crystallinity, a tap density of 5 g / cm 3 or more, and a specific surface area of 0.15 m 2 / g or less. Can do. In addition, the conductive paste using these silver particles is optimal for high-temperature firing, the paste viscosity is reduced and printability is excellent, and the circuit after firing has denseness and surface smoothness.

Claims (6)

銀イオンを錯体として含有する水酸化アンモニウム水溶液に過酸化水素水溶液と水酸化ナトリウムおよび水酸化カリウムからなる群から選ばれる1種以上とを同時に添加して反応させることを特徴とする銀粒子の製造方法。Production of silver particles, characterized in that an aqueous solution of hydrogen peroxide and one or more selected from the group consisting of sodium hydroxide and potassium hydroxide are simultaneously added to and reacted with an ammonium hydroxide aqueous solution containing silver ions as a complex Method. 前記反応に際し、脂肪酸、脂肪酸塩およびそれらの誘導体からなる群から選ばれる1種以上を存在させる、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein at least one selected from the group consisting of fatty acids, fatty acid salts and derivatives thereof is present in the reaction. 前記脂肪酸がステアリン酸およびオレイン酸からなる群から選ばれる1種以上であり、前記脂肪酸塩がステアリン酸ナトリウムおよびオレイン酸ナトリウムからなる群から選ばれる1種以上である、請求項2に記載の製造方法。 The production according to claim 2 , wherein the fatty acid is one or more selected from the group consisting of stearic acid and oleic acid, and the fatty acid salt is one or more selected from the group consisting of sodium stearate and sodium oleate. Method. 前記の脂肪酸、脂肪酸塩およびそれらの誘導体からなる群から選ばれる1種以上の添加量が前記水酸化アンモニウム水溶液中の銀イオンの重量の0.001〜0.5%である、請求項2または3に記載の製造方法。Wherein the fatty acid is 0.001 to 0.5% of the weight of silver ion addition amount of one or more members selected from the group consisting of fatty acid salts and derivatives in the aqueous ammonium hydroxide, claim 2 or 3. The production method according to 3 . 前記反応は液温50℃で行う、請求項1〜4のいずれかに記載の製造方法 The production method according to claim 1, wherein the reaction is performed at a liquid temperature of 50 ° C. 銀イオン源は硝酸銀である、請求項1〜5のいずれかに記載の製造方法 The production method according to claim 1, wherein the silver ion source is silver nitrate .
JP2001241505A 2001-08-09 2001-08-09 Method for producing silver particles Expired - Fee Related JP4639395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001241505A JP4639395B2 (en) 2001-08-09 2001-08-09 Method for producing silver particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001241505A JP4639395B2 (en) 2001-08-09 2001-08-09 Method for producing silver particles

Publications (2)

Publication Number Publication Date
JP2003049202A JP2003049202A (en) 2003-02-21
JP4639395B2 true JP4639395B2 (en) 2011-02-23

Family

ID=19071934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001241505A Expired - Fee Related JP4639395B2 (en) 2001-08-09 2001-08-09 Method for producing silver particles

Country Status (1)

Country Link
JP (1) JP4639395B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018080090A1 (en) * 2016-10-31 2018-05-03 엘에스니꼬동제련 주식회사 Surface-treated silver powder and method for producing same
KR20180078208A (en) * 2018-06-29 2018-07-09 엘에스니꼬동제련 주식회사 Surface treated silver powder and manufacturing method of the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028695B2 (en) * 2004-11-25 2012-09-19 Dowaエレクトロニクス株式会社 Silver powder and method for producing the same
US8721931B2 (en) 2005-12-21 2014-05-13 E I Du Pont De Nemours And Company Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
JP5323307B2 (en) * 2005-12-21 2013-10-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Solar cell electrode paste
JP5144022B2 (en) * 2006-03-24 2013-02-13 三井金属鉱業株式会社 Copper powder manufacturing method and copper powder obtained by the manufacturing method
CN102189270A (en) * 2011-05-04 2011-09-21 上海大学 Method for chemically synthesizing nano lead-free solder particles with low melting point
JP5991459B2 (en) * 2012-02-02 2016-09-14 戸田工業株式会社 Silver fine particles, production method thereof, and conductive paste, conductive film and electronic device containing the silver fine particles
JP5924481B2 (en) * 2012-02-02 2016-05-25 戸田工業株式会社 Method for producing silver fine particles, silver fine particles obtained by the method for producing silver fine particles, and conductive paste containing the silver fine particles
KR101733169B1 (en) * 2015-08-12 2017-05-08 엘에스니꼬동제련 주식회사 silver particles and manufacturing method thereof
CN107876799A (en) * 2017-12-18 2018-04-06 西安宏星电子浆料科技有限责任公司 High-tap density low specific surface area super fine silver powder and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336251A (en) * 1999-05-31 2000-12-05 Tatsuta Electric Wire & Cable Co Ltd Conductive paste composition for semiconductor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121270A (en) * 1978-03-14 1979-09-20 Fukuda Metal Foil Powder Production of finely divided silver powder
JPS6051522B2 (en) * 1980-12-10 1985-11-14 三菱マテリアル株式会社 Manufacturing method of silver fine powder
JPH04323310A (en) * 1991-04-12 1992-11-12 Daido Steel Co Ltd Production of fine metal powder
JPH06306401A (en) * 1993-04-15 1994-11-01 Noritake Co Ltd Production of nobel metal (alloy) powder for thick-film paste and its nobel metal (alloy) powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336251A (en) * 1999-05-31 2000-12-05 Tatsuta Electric Wire & Cable Co Ltd Conductive paste composition for semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018080090A1 (en) * 2016-10-31 2018-05-03 엘에스니꼬동제련 주식회사 Surface-treated silver powder and method for producing same
KR20180078208A (en) * 2018-06-29 2018-07-09 엘에스니꼬동제련 주식회사 Surface treated silver powder and manufacturing method of the same

Also Published As

Publication number Publication date
JP2003049202A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
JP2638271B2 (en) Production method of copper fine powder
US7534283B2 (en) Method of producing copper powder and copper powder
KR101945166B1 (en) Copper powder for conductive paste and method for manufacturing same
JP4639395B2 (en) Method for producing silver particles
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
KR101927476B1 (en) Silver powder and manufacturing method of the same
US8282702B2 (en) Silver powder and method for producing same
JPWO2008059789A1 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
JP2007131950A (en) Silver powder
US7909908B2 (en) Method of improving the weatherability of copper powder
JP2900650B2 (en) Method for producing nickel fine powder
JP2000129318A (en) Silver powder and its production
JPH07118868A (en) Production of palladium-coated spherical silver powder
JP3073732B1 (en) Nickel fine powder and method for producing the same
JPH0372683B2 (en)
JPH05221637A (en) Production of cuprous oxide powder and copper powder
JP2017101286A (en) Copper powder, method for producing copper powder and conductive paste
JPH04235205A (en) Production of copper powder
JP2550586B2 (en) Method for producing fine silver alloy powder
JP4012961B2 (en) Production method of plate copper powder
WO2019135306A1 (en) Copper nano ink production method and copper nano ink
JP2021161495A (en) Nickel particle and method for producing the same, as well as conductive composition
JP6031571B2 (en) Copper powder for conductive paste and method for producing the same
KR102122317B1 (en) Method for manufacturing silver powder and conducitve paste including silver powder
JP3245965B2 (en) Production method of copper powder

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101112

R150 Certificate of patent or registration of utility model

Ref document number: 4639395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees