JP4637143B2 - In-cylinder injection internal combustion engine, piston for in-cylinder injection internal combustion engine, low heat conduction alloy for piston for in-cylinder injection internal combustion engine, low heat conduction member for piston for in-cylinder injection internal combustion engine, and manufacturing method thereof - Google Patents
In-cylinder injection internal combustion engine, piston for in-cylinder injection internal combustion engine, low heat conduction alloy for piston for in-cylinder injection internal combustion engine, low heat conduction member for piston for in-cylinder injection internal combustion engine, and manufacturing method thereof Download PDFInfo
- Publication number
- JP4637143B2 JP4637143B2 JP2007186245A JP2007186245A JP4637143B2 JP 4637143 B2 JP4637143 B2 JP 4637143B2 JP 2007186245 A JP2007186245 A JP 2007186245A JP 2007186245 A JP2007186245 A JP 2007186245A JP 4637143 B2 JP4637143 B2 JP 4637143B2
- Authority
- JP
- Japan
- Prior art keywords
- piston
- internal combustion
- combustion engine
- low heat
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Pistons, Piston Rings, And Cylinders (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、ディーゼルエンジンやガソリンエンジンなどの筒内噴射式内燃機関に用いられるピストン、そのピストンに使用され液体燃料の霧化や気化を促進する低熱伝導部材およびそれに適した低熱伝導合金、さらにはその低熱伝導部材等の製造方法に関するものである。 The present invention relates to a piston used in a direct injection internal combustion engine such as a diesel engine or a gasoline engine, a low heat conduction member used for the piston to promote atomization or vaporization of liquid fuel, and a low heat conduction alloy suitable therefor, The present invention relates to a method for producing such a low thermal conductive member.
環境意識の高揚に伴い、自動車、二輪車、産業機械等に使用されるディーゼルエンジンやガソリンエンジン等の内燃機関は、省燃費化かつ排気ガスの清浄化が強く要請されている。例えば、省燃費の観点から、最近では筒内噴射式ガソリンエンジンが一般的な市販車にまで採用されるに至っている。 With increasing environmental awareness, internal combustion engines such as diesel engines and gasoline engines used in automobiles, motorcycles, industrial machines, and the like are strongly required to save fuel and clean exhaust gases. For example, from the viewpoint of fuel saving, a direct injection gasoline engine has recently been adopted for general commercial vehicles.
ところで、筒内噴射式内燃機関の場合、シリンダ内へ直接噴霧される燃料の噴霧量や噴霧タイミングが内燃機関の負荷に応じて変動するため、常に燃料を完全に霧化または気化させることは容易ではなかった。このため、燃料の不完全燃焼等が僅かながら生じて、例え冷間時の一時にしろ、燃費が悪化したり、排気ガス中のハイドロカーボンやすす等が増加することがあった。確かに最近の自動車等には排気ガス触媒装置が装着されてはいるが、ある程度昇温しなければ触媒は活性しないため、始動直後など内燃機関の冷間時に排気ガスの浄化が不十分な場合が起こり易かった。 By the way, in the case of a cylinder injection internal combustion engine, since the spray amount and spray timing of the fuel sprayed directly into the cylinder vary depending on the load of the internal combustion engine, it is always easy to completely atomize or vaporize the fuel. It wasn't. For this reason, incomplete combustion of the fuel or the like occurs slightly, and even if it is cold, the fuel consumption may deteriorate, or the hydrocarbon soot in the exhaust gas may increase. Certainly, recent automobiles are equipped with an exhaust gas catalyst device, but the catalyst does not activate unless the temperature rises to some extent, so if exhaust gas purification is insufficient when the internal combustion engine is cold, such as immediately after startup It was easy to happen.
特に筒内噴射式ガソリンエンジンは、均一混合燃焼に加えて空燃比の高い超希薄領域での成層燃焼をも可能とする。しかし、成層燃焼時に点火プラグ周囲で燃料の霧化や気化が不十分だと、着火性の悪化に伴い未燃焼ガスが排出されるなど、却って省燃費化や排気ガスの清浄化に悪影響を与え得る。 In particular, the direct injection gasoline engine enables stratified combustion in an ultra lean region with a high air-fuel ratio in addition to uniform mixed combustion. However, if the fuel is not sufficiently atomized or vaporized around the spark plug during stratified combustion, unburned gas will be discharged as the ignitability deteriorates, which adversely affects fuel efficiency and exhaust gas purification. obtain.
このような事情の下、噴霧した燃料の霧化または気化を促進させるために、例えば、ピストン頂面の燃料衝突域に周囲よりも高温となる低熱伝導域を設けることが従来から提案されており、下記の特許文献にそれに関する具体的な開示がある。 Under such circumstances, in order to promote atomization or vaporization of the sprayed fuel, for example, it has been conventionally proposed to provide a low heat conduction region that is higher in temperature than the surroundings in the fuel collision region of the piston top surface. The following patent documents have specific disclosures related thereto.
特許文献1は、燃料の蒸発促進や燃料の付着を減少させるために、筒内噴射式火花点火機関用ピストンの頂面にある燃料衝突域に低熱伝導部材を設けることを提案している。もっとも特許文献1は、その低熱伝導部材に関して具体的な材質を特定してはおらず、単に熱伝導率および比熱を提示しているに留まる。
特許文献2は、特許文献1と同様な目的の下、ピストン頂面に設けた燃料衝突部に低熱伝導材料プレートを載置することを提案している。具体的には、そのプレートとピストン本体との接合界面を凹凸にして空気層を形成し、プレートからピストン本体への熱伝達を抑制して、プレート温度を適度に調整することを提案している。
Patent Document 2 proposes placing a low heat conductive material plate on a fuel collision portion provided on the top surface of the piston for the same purpose as
もっとも特許文献2は、実質的に前記接合界面の凹凸形状について開示しているのみである。確かに「チタン系合金の焼結材」等の記載はあるが、実質的には、プレートの材質等について詳細な開示をしていない。ちなみにチタン合金の熱伝導率は、ピストン材料として一般的なアルミニウム合金の約1/20であり、チタン合金の線膨張係数はそのアルミニウム合金の約1/2程度である。このようなチタン合金からなる部材をピストン頂部の燃料衝突域に設けた場合、低熱伝導性により燃料の気化等は促進されるとしても、線膨張係数差によってピストン頂部には繰返し熱応力が作用し、熱疲労破壊等の信頼性が低く実用性に乏しい。 However, Patent Document 2 substantially discloses only the uneven shape of the joint interface. Although there is a description of “sintered titanium alloy” or the like, there is substantially no detailed disclosure of the material of the plate. Incidentally, the thermal conductivity of the titanium alloy is about 1/20 of that of a general aluminum alloy as a piston material, and the linear expansion coefficient of the titanium alloy is about 1/2 of that of the aluminum alloy. When such a titanium alloy member is provided in the fuel collision area at the top of the piston, even if fuel vaporization is promoted due to low thermal conductivity, repeated thermal stress acts on the top of the piston due to the difference in linear expansion coefficient. In addition, reliability such as thermal fatigue failure is low and practicability is poor.
本発明はこのような事情に鑑みて為されたものである。すなわち、本発明は、筒内噴射式内燃機関のピストン頂部に設ける燃料衝突域中の低熱伝導域の形成に適した低熱伝導合金を提供することを目的とする。
また、その低熱伝導合金を用いた低熱伝導部材およびその製造方法を提供することを目的とする。さらには、その低熱伝導部材等を用いた筒内噴射式内燃機関用ピストンおよびそのピストンを用いた筒内噴射式内燃機関を提供することを目的とする。
The present invention has been made in view of such circumstances. That is, an object of the present invention is to provide a low heat conduction alloy suitable for forming a low heat conduction region in a fuel collision region provided at the top of a piston of a direct injection internal combustion engine.
Moreover, it aims at providing the low heat conductive member using the low heat conductive alloy, and its manufacturing method. Furthermore, it aims at providing the cylinder injection type internal combustion engine using the low heat conductive member etc., and the cylinder injection type internal combustion engine using the piston.
本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、熱伝導率が非常に低く、線膨張係数がピストンの構成材料である一般的なアルミニウム合金に非常に近い合金を新たに見出した。また、本発明者はその合金が機械的特性にも優れ得ることを確認した。こうして本発明は完成するに至った。 As a result of extensive research and trial and error, the present inventor has made an alloy that has a very low thermal conductivity and a linear expansion coefficient that is very close to a general aluminum alloy that is a constituent material of a piston. Newly found. The inventor has also confirmed that the alloy can be excellent in mechanical properties. Thus, the present invention has been completed.
〈筒内噴射式内燃機関用ピストンの低熱伝導合金〉
(1)すなわち、本発明の筒内噴射式内燃機関用ピストンの低熱伝導合金は、内燃機関のシリンダブロックのシリンダ内を往復動可能なピストン本体部の頂部にあるアルミニウム合金製のピストン頂部に設けられ、該シリンダブロック上のシリンダヘッドに設けた燃料噴射弁から該シリンダ内へ噴射された液体燃料が衝突し得る燃料衝突域の少なくとも一部であって周囲よりも熱伝導率の低い低熱伝導域を形成する低熱伝導層または低熱伝導部材に用いられ、全体を100質量%としたときに、マンガン(Mn):5〜35質量%と、炭素(C):0.5〜1.5質量%と、残部:鉄(Fe)および不可避不純物若しくは付従的元素と、からなることを特徴とする。
<Low heat conduction alloy of piston for in-cylinder internal combustion engine>
(1) That is, the low heat conductive alloy of the piston for the cylinder injection type internal combustion engine of the present invention is provided at the top of the piston made of aluminum alloy at the top of the piston main body that can reciprocate in the cylinder of the cylinder block of the internal combustion engine. A low thermal conductivity area that is at least part of a fuel collision area where liquid fuel injected into the cylinder from a fuel injection valve provided in a cylinder head on the cylinder block can collide and has a lower thermal conductivity than the surrounding area Is used for a low thermal conductive layer or a low thermal conductive member, and manganese (Mn): 5 to 35 mass% and carbon (C): 0.5 to 1.5 mass% when the whole is 100 mass% And the balance: iron (Fe) and inevitable impurities or incidental elements.
(2)最近の内燃機関は、慣性質量の低減等を図る観点から、ガソリンエンジンは勿論のことディーゼルエンジンであってもアルミニウム合金製ピストンが使用されている。そのピストン用アルミニウム合金の熱伝導率は、温度域にも依るが、通常約120〜140W/mK程度である。 (2) In recent internal combustion engines, aluminum alloy pistons are used for diesel engines as well as gasoline engines from the viewpoint of reducing inertial mass. The thermal conductivity of the aluminum alloy for pistons is usually about 120 to 140 W / mK although it depends on the temperature range.
これに対して本発明の低熱伝導合金は、理由は必ずしも定かではないが、前記ピストン用アルミニウム合金に較べて熱伝導率が1/10〜1/20と非常に小さい。このため、筒内噴射式内燃機関用ピストンの燃料衝突域の低熱伝導域に本発明の低熱伝導合金を用いた場合、その低熱伝導域において、燃料の燃焼によって受けた熱は非常に拡散または放散がされ難い状況となる。このため本発明の低熱伝導合金を用いた低熱伝導域は、周囲のアルミニウム合金よりも素早く昇温して高温になり易い。 On the other hand, although the reason for the low thermal conductive alloy of the present invention is not necessarily clear, the thermal conductivity is as small as 1/10 to 1/20 as compared with the aluminum alloy for pistons. For this reason, when the low heat conduction alloy of the present invention is used in the low heat conduction area of the fuel collision area of the piston for the cylinder injection type internal combustion engine, the heat received by the combustion of the fuel is very diffused or dissipated in the low heat conduction area. It becomes difficult to be done. For this reason, the low heat conduction region using the low heat conduction alloy of the present invention is likely to be heated to a higher temperature than the surrounding aluminum alloy.
燃料衝突域に向けて新たに噴霧され、その高温の低熱伝導域に接触した燃料は、その低熱伝導域から受熱し、即座に気化したり気化しなくとも高温となって燃料自体のエンタルピーが増加する。
この結果、例えばガソリンエンジンの場合であれば、少なくとも点火プラグ周囲に適当な濃度の混合気が形成され易くなり、超希薄燃焼時でも安定した燃焼が可能となる。また、ディーゼルエンジンの場合でも、燃料の霧化や気化が促進され、そのエンタルピーが上昇して、後燃えが減少して上死点近傍で燃焼が完了し易くなる。
いずれにしろ本発明の低熱伝導合金をピストンの低熱伝導域に用いれば、筒内噴射式内燃機関の安定した運転領域の拡大、筒内噴射式内燃機関の省燃費化や排気ガスの清浄化等、優れた効果が得られ得る。
Fuel that is newly sprayed toward the fuel collision zone and contacts the high-temperature, low heat conduction zone receives heat from the low-heat conduction zone, resulting in high temperature and high enthalpy of the fuel itself without being vaporized or vaporized immediately. To do.
As a result, in the case of a gasoline engine, for example, an air-fuel mixture with an appropriate concentration is easily formed at least around the spark plug, and stable combustion is possible even during ultra lean combustion. Even in the case of a diesel engine, the atomization and vaporization of the fuel are promoted, the enthalpy is increased, the afterburning is reduced, and the combustion is easily completed near the top dead center.
In any case, if the low heat conduction alloy of the present invention is used in the low heat conduction region of the piston, the stable operation range of the direct injection internal combustion engine is expanded, the fuel consumption of the direct injection internal combustion engine is reduced, the exhaust gas is purified, etc. Excellent effects can be obtained.
なお、本発明の低熱伝導合金からなる部分が周囲のアルミニウム合金より高温になるといっても、燃料が噴霧される度に冷却されるから、その部分が過熱されることはない。すなわち、本発明の低熱伝導合金からなる低熱伝導層や低熱伝導部材がヒートスポットとなって、回避できなような深刻なノッキングやプレイグニッション等の問題を生じることはない。 Even if the portion made of the low heat conductive alloy of the present invention is hotter than the surrounding aluminum alloy, the portion is not overheated because it is cooled each time the fuel is sprayed. That is, the low heat conductive layer or the low heat conductive member made of the low heat conductive alloy of the present invention becomes a heat spot, and serious problems such as knocking and preignition that cannot be avoided are not caused.
(3)ところで、一般的なピストン用アルミニウム合金は、線膨張係数が約20x10-6/K程度と高い。このアルミニウム合金(母材)からなるピストン頂部の燃料衝突域に、それと異なる合金製の低熱伝導層や低熱伝導部材を設けた場合、母材との間の線膨張係数差によって両者間に剥離や破壊、繰返熱応力による熱疲労破壊等の不都合を生じ得る。 (3) By the way, a general aluminum alloy for pistons has a high coefficient of linear expansion of about 20 × 10 −6 / K. When a low heat conduction layer or a low heat conduction member made of a different alloy is provided in the fuel collision area at the top of the piston made of this aluminum alloy (base material), separation or Inconveniences such as fracture and thermal fatigue failure due to repeated thermal stress can occur.
しかし、本発明の低熱伝導合金は、理由は必ずしも定かではないが、前記ピストン用アルミニウム合金とほぼ同等な線膨張係数を有する。すなわち、両者の線膨張係数差は実質的に無いか僅差である。このため、本発明の低熱伝導合金からなる低熱伝導部材等をピストン頂部に設けた場合でも、その低熱伝導部材等とピストン頂部との間に線膨張係数差に起因した熱応力はほとんど生じない。こうして、本発明の低熱伝導合金を用いた場合、単なる強度のみならず熱疲労強度にも優れた耐久性の高いピストンが得られることになる。 However, the low thermal conductive alloy of the present invention has a linear expansion coefficient substantially equal to that of the aluminum alloy for piston, although the reason is not necessarily certain. That is, there is substantially no difference between the linear expansion coefficients of the two. For this reason, even when a low heat conductive member made of the low heat conductive alloy of the present invention is provided at the top of the piston, there is almost no thermal stress due to the difference in linear expansion coefficient between the low heat conductive member and the piston top. Thus, when the low thermal conductive alloy of the present invention is used, a highly durable piston excellent not only in strength but also in thermal fatigue strength can be obtained.
なお、ピストン頂部の燃料衝突域に生じる繰返熱応力として、燃料の燃焼による加熱と衝突した燃料の気化等による冷却とに起因した短期的な繰返熱応力と、内燃機関自体の冷間時と温間時に起因した長期的な繰返熱応力が考えられる。本発明の低熱伝導合金を用いれば、いずれの熱応力をも小さくすることができ、短期的にも長期的にも耐熱疲労性に優れたピストンひいては筒内噴射式内燃機関が得られる。 Note that the repeated thermal stress generated in the fuel collision zone at the top of the piston includes short-term repeated thermal stress caused by heating due to combustion of the fuel and cooling due to vaporization of the collided fuel, and when the internal combustion engine itself is cold. Long-term repeated thermal stress due to warm weather is considered. If the low thermal conductive alloy of the present invention is used, any thermal stress can be reduced, and a piston excellent in heat fatigue resistance in the short term and in the long term, that is, a cylinder injection type internal combustion engine can be obtained.
(4)ところでピストンには、前述した熱応力に加えて、大きな爆発圧力が繰返し作用し、また、高回転時には大きな慣性力が作用する。このためピストンに使用される合金や部材には、優れた強度または靱性等の機械的特性が求められる。本発明の低熱伝導合金は、前述の熱伝導率や線膨張係数に加えて、強度または伸び等の機械的特性にも優れ得る。このことは多くの試験結果により確認されている。
このように本発明の低熱伝導合金は、いずれの観点からも正にピストン頂部の燃料衝突域における低熱伝導域を形成するのに好適といい得る。
(4) By the way, in addition to the above-described thermal stress, a large explosion pressure repeatedly acts on the piston, and a large inertial force acts at a high speed. For this reason, mechanical properties such as excellent strength or toughness are required for alloys and members used for pistons. The low thermal conductive alloy of the present invention can be excellent in mechanical properties such as strength or elongation in addition to the above-described thermal conductivity and linear expansion coefficient. This has been confirmed by many test results.
Thus, it can be said that the low heat conductive alloy of the present invention is suitable for forming a low heat conductive region in the fuel collision region at the top of the piston from any viewpoint.
但し、本発明の低熱伝導合金は、あくまでも第一義的には上述の熱伝導率および線膨張係数といった熱的特性において優れるものであれば足り、必ずしもその強度または伸びといった機械的特性まで要求されるものではなく、その機械的特性によって限定解釈されるものではない。 However, the low thermal conductive alloy of the present invention is only required to have excellent thermal characteristics such as the above-described thermal conductivity and linear expansion coefficient, and is required to have mechanical characteristics such as strength or elongation. It is not intended to be construed as limited by its mechanical properties.
(5)本発明の低熱伝導合金はその存在形態を問わない。すなわち、粉末、インゴット等の原料であってもいいし、固体に限らず液体(溶湯)状でもいい。その原料から製造した中間品(低熱伝導部材)であってもいい。さらには既にピストン頂部に適用した後の低熱伝導層または低熱伝導部材でも良い。
本明細書中でいう「付従的元素」とは、前述したMn、CおよびFe以外の元素であって不可避的不純物でもなく、本発明の低熱伝導合金の特性を基本的に損なわない範囲で従として含有することが許容される元素をいう。付従的元素は、本発明の低熱伝導合金の特性を改善するか否かは問わない。特性の改善効果がなくても、上述した本発明の低熱伝導合金の基本的な特性を損なわない元素も付従的元素である。
(5) The existence form of the low thermal conductive alloy of the present invention is not limited. That is, it may be a raw material such as powder or ingot, and may be in the form of a liquid (molten metal) as well as a solid. It may be an intermediate product (low thermal conductivity member) manufactured from the raw material. Further, it may be a low heat conductive layer or a low heat conductive member already applied to the top of the piston.
The “subsidiary element” in the present specification is an element other than Mn, C, and Fe described above, is not an inevitable impurity, and is within a range that does not fundamentally impair the characteristics of the low thermal conductive alloy of the present invention. An element that is allowed to be contained as a subordinate. It does not matter whether the incidental element improves the characteristics of the low thermal conductive alloy of the present invention. An element that does not impair the basic characteristics of the low heat conductive alloy of the present invention described above even if there is no effect of improving the characteristics is also a subsidiary element.
なお、本明細書中で「x〜y」という数値範囲は、特に断らない限り、下限値(x)および上限値(y)を含むものとする。また、本明細書に上限値または下限値として特記した数値の他、範囲指定した数値の上下限値、[実施例]欄に記載した数値、さらには添付した表中に示した数値など、任意の数値を適宜組合わせて新たな上下限値または新たな数値範囲を設定できることを断っておく。これらのことは本明細書全体に共通することである。 In the present specification, the numerical range “x to y” includes the lower limit (x) and the upper limit (y) unless otherwise specified. In addition to the numerical values specified as the upper limit value or the lower limit value in the present specification, the upper and lower limit values of the numerical values specified for the range, the numerical values described in the [Example] column, and the numerical values shown in the attached table are arbitrary. It should be noted that a new upper / lower limit value or a new numerical value range can be set by appropriately combining these numerical values. These are common throughout this specification.
〈筒内噴射式内燃機関用ピストンの低熱伝導部材〉
本発明は、低熱伝導合金としてのみならず、その低熱伝導合金を用いた低熱伝導部材としても把握できる。すなわち、本発明は、内燃機関のシリンダブロックのシリンダ内を往復動可能なピストン本体部の頂部にあるアルミニウム合金製のピストン頂部に設けられ、該シリンダブロック上のシリンダヘッドに設けた燃料噴射弁から該シリンダ内へ噴射された液体燃料が衝突し得る燃料衝突域の少なくとも一部であって周囲よりも熱伝導率の低い低熱伝導域を形成し、前述した本発明の低熱伝導合金からなることを特徴とする筒内噴射式内燃機関用ピストンの低熱伝導部材でもある。
<Low heat conduction member of piston for in-cylinder internal combustion engine>
The present invention can be grasped not only as a low heat conductive alloy but also as a low heat conductive member using the low heat conductive alloy. That is, the present invention provides a fuel injection valve provided on the top of an aluminum alloy piston at the top of a piston main body that can reciprocate in a cylinder of a cylinder block of an internal combustion engine, and provided on a cylinder head on the cylinder block. Forming a low heat conduction region which is at least a part of a fuel collision region where the liquid fuel injected into the cylinder can collide and has a lower thermal conductivity than the surroundings, and is made of the low heat conduction alloy of the present invention described above. It is also a low heat conduction member of a piston for a cylinder injection type internal combustion engine which is characterized.
〈筒内噴射式内燃機関用ピストン〉
また本発明は、低熱伝導部材としてのみならず、それを用いたピストンとしても把握できる。すなわち、本発明は、内燃機関のシリンダブロックのシリンダ内を往復動可能なピストン本体部と、該シリンダブロック上のシリンダヘッドに設けた燃料噴射弁から該シリンダ内へ噴射された液体燃料が衝突し得る燃料衝突域の少なくとも一部であって周囲よりも熱伝導率の低い低熱伝導域を形成する低熱伝導層または低熱伝導部材を該ピストン本体部の頂部に有するアルミニウム合金製のピストン頂部とからなる筒内噴射式内燃機関用ピストンであって、前記低熱伝導層または低熱伝導部材は、前述した本発明の低熱伝導合金からなることを特徴とする筒内噴射式内燃機関用ピストンでもある。
<Piston for in-cylinder internal combustion engine>
Moreover, this invention can be grasped | ascertained not only as a low heat conductive member but as a piston using it. That is, according to the present invention, a piston main body capable of reciprocating in a cylinder of a cylinder block of an internal combustion engine and a liquid fuel injected into the cylinder from a fuel injection valve provided in a cylinder head on the cylinder block collide with each other. A piston top made of an aluminum alloy having a low heat conduction layer or a low heat conduction member at the top of the piston main body which forms at least a part of the obtained fuel collision area and has a low heat conduction area having a lower thermal conductivity than the surroundings. A piston for a cylinder injection internal combustion engine, wherein the low heat conduction layer or the low heat conduction member is made of the low heat conduction alloy of the present invention described above.
〈筒内噴射式内燃機関〉
さらに本発明は、ピストンとしてのみならず、それを用いた筒内噴射式内燃機関自体としても把握できる。すなわち、本発明は、シリンダを有するシリンダブロックと、該シリンダブロック上に設けたシリンダヘッドと、該シリンダヘッドに設けた燃料噴射弁と、該シリンダ内を往復動可能なピストン本体部と該燃料噴射弁から該シリンダ内へ噴射された液体燃料が衝突し得る燃料衝突域の少なくとも一部であって周囲よりも熱伝導率の低い低熱伝導域を形成する低熱伝導層または低熱伝導部材を該ピストン本体部の頂部に有するアルミニウム合金製のピストン頂部とからなるピストンと、を備えた筒内噴射式内燃機関であって、前記低熱伝導層または低熱伝導部材は、請求項1または2に記載の低熱伝導合金からなることを特徴とする筒内噴射式内燃機関でもある。
<In-cylinder injection internal combustion engine>
Further, the present invention can be grasped not only as a piston but also as a direct injection internal combustion engine using the same. That is, the present invention provides a cylinder block having a cylinder, a cylinder head provided on the cylinder block, a fuel injection valve provided on the cylinder head, a piston main body capable of reciprocating in the cylinder, and the fuel injection A low heat conduction layer or a low heat conduction member that forms a low heat conduction area that is at least a part of a fuel collision area where liquid fuel injected from the valve into the cylinder can collide and has a lower thermal conductivity than the surroundings. An in-cylinder injection internal combustion engine comprising a piston made of an aluminum alloy piston at the top of the part, wherein the low heat conduction layer or the low heat conduction member is the low heat conduction according to
〈筒内噴射式内燃機関用ピストンの低熱伝導部材の製造方法〉
ところで本発明は、前述した低熱伝導部材の製造に好適な低熱伝導部材の製造方法としても把握できる。すなわち、本発明は、成形型のキャビティに充填した原料粉末を加圧して粉末成形体とする成形工程と、該粉末成形体を加熱炉内で加熱して焼結体とする焼結工程とからなり、前記原料粉末は、全体を100質量%としたときに、Mn:5〜35質量%と、C:0.5〜1.5質量%と、残部:Feおよび不可避不純物若しくは付従的元素とからなり、前記焼結体から前述した本発明の低熱伝導部材が得られることを特徴とする筒内噴射式内燃機関用ピストンの低熱伝導部材の製造方法でもある。
<Method for producing low thermal conductive member of piston for in-cylinder internal combustion engine>
By the way, this invention can be grasped | ascertained also as a manufacturing method of the low heat conductive member suitable for manufacture of the low heat conductive member mentioned above. That is, the present invention includes a molding process in which a raw material powder filled in a cavity of a mold is pressed to form a powder compact, and a sintering process in which the powder compact is heated in a heating furnace to form a sintered compact. When the total amount of the raw material powder is 100% by mass, Mn: 5 to 35% by mass, C: 0.5 to 1.5% by mass, balance: Fe and inevitable impurities or incidental elements The low heat conductive member of the present invention described above is obtained from the sintered body. The method for producing a low heat conductive member for a piston for a cylinder injection internal combustion engine is also provided.
〈その他本発明〉
(1)以上説明した本発明は、いずれもレシプロエンジンを想定したものである。しかし、本発明の本質は、特定の組成からなるFe−Mn−C合金が、特定の熱伝導率および線膨張係数を発現することにある。とすると、それら両特性が要求される部位や部品等に本発明の低熱伝導合金が使用される限り、その有効性は明かである。
本発明を上位概念的に考察すると、本発明は、全体を100質量%としたときに、Mn:5〜35質量%と、C:0.5〜1.5質量%と、残部:Feおよび不可避不純物若しくは付従的元素とからなり、熱伝導率:7〜13W/m・Kおよび線膨張係数:15〜25x10-6/Kが要求される低熱伝導部位または低熱伝導部材に用いられることを特徴とする低熱伝導合金としても把握できる。
<Other invention>
(1) The present invention described above assumes a reciprocating engine. However, the essence of the present invention is that an Fe—Mn—C alloy having a specific composition exhibits a specific thermal conductivity and a linear expansion coefficient. Then, as long as the low heat conductive alloy of the present invention is used for a part or part that requires both of these characteristics, the effectiveness is clear.
When the present invention is considered in a high-level concept, the present invention has a Mn of 5 to 35% by mass, a C of 0.5 to 1.5% by mass, and a balance of Fe and 100% by mass. It is composed of inevitable impurities or ancillary elements, and is used for a low heat conduction part or a low heat conduction member that requires a thermal conductivity of 7 to 13 W / m · K and a linear expansion coefficient of 15 to 25 × 10 −6 / K. It can be grasped as a characteristic low thermal conductive alloy.
さらに、上記の要求特性に、引張強さ:300〜500MPaおよび/または伸び:3〜20%を追加して、本発明の低熱伝導合金を把握しても良い。さらには、前記組成を有し、前記範囲の熱伝導率、線膨張係数、引張強さおよび伸びのうち少なくとも二つ以上を同時に満たすことが要求される特定部位や特定部材に用いられることを特徴とする低熱伝導合金としても把握できる。 Furthermore, you may grasp | ascertain the low heat conductive alloy of this invention by adding tensile strength: 300-500 Mpa and / or elongation: 3-20% to said required characteristic. Furthermore, it has the composition, and is used for a specific part or a specific member that is required to satisfy at least two of the thermal conductivity, linear expansion coefficient, tensile strength, and elongation in the above range at the same time. It can be grasped as a low thermal conductive alloy.
このように考えると、ピストン頂部の燃料衝突域に低熱伝導域を形成する低熱伝導層や低熱伝導部材に用いられる前述した本発明の低熱伝導合金は、上位概念的な本発明の用途を特定した下位概念的な発明であると見ることもできる。
(2)本発明の低熱伝導合金の用途は、レシプロエンジンに限られるものではなく、ロータリーエンジンや外燃機関等を含む燃焼機関さらには広くはボイラー等を含む燃焼装置にまでも拡張し得る。
When considered in this way, the low thermal conductive alloy of the present invention described above used for the low thermal conductive layer and the low thermal conductive member that forms a low thermal conductive area in the fuel collision area on the top of the piston specified the high-level conceptual application of the present invention. It can also be regarded as a subordinate conceptual invention.
(2) The use of the low thermal conductive alloy of the present invention is not limited to a reciprocating engine, and can be extended to a combustion engine including a rotary engine, an external combustion engine, etc., and more widely to a combustion apparatus including a boiler.
そこでさらに本発明を考察すると、本発明は、燃焼装置の燃料噴射孔から噴射された液体燃料が衝突し得るアルミニウム合金製基材上の燃料衝突域の少なくとも一部であって周囲よりも熱伝導率の低い低熱伝導域を形成する低熱伝導層または低熱伝導部材に用いられ、全体を100質量%としたときに、Mn:5〜35質量%と、C:0.5〜1.5質量%と、残部:Feおよび不可避不純物若しくは付従的元素と、からなることを特徴とする燃焼装置用低熱伝導合金としても把握できる。 Therefore, considering the present invention further, the present invention is at least a part of the fuel collision area on the aluminum alloy base material on which the liquid fuel injected from the fuel injection hole of the combustion apparatus can collide and is more thermally conductive than the surroundings. It is used for a low thermal conductive layer or a low thermal conductive member that forms a low thermal conductivity region with a low rate, and when the total is 100% by mass, Mn: 5 to 35% by mass and C: 0.5 to 1.5% by mass And the remainder: Fe and unavoidable impurities or incidental elements.
勿論本発明は、燃焼装置の燃料噴射孔から噴射された液体燃料が衝突し得るアルミニウム合金製基材上の燃料衝突域の少なくとも一部であって周囲よりも熱伝導率の低い低熱伝導域を形成し、前記燃焼装置用低熱伝導合金を用いた燃焼装置用低熱伝導部材としても把握できる。さらには、燃焼装置自体や燃焼装置用低熱伝導部材の製造方法としも把握できる。これらのことは上述した筒内噴射式内燃機関の場合と同様である。 Of course, the present invention provides at least a part of the fuel collision area on the aluminum alloy base material on which the liquid fuel injected from the fuel injection hole of the combustion apparatus can collide, and has a low thermal conductivity area having a lower thermal conductivity than the surrounding area. It can also be grasped as a low heat conductive member for a combustion device using the low heat conductive alloy for the combustion device. Furthermore, it can be grasped as a manufacturing method of the combustion apparatus itself or a low thermal conductive member for the combustion apparatus. These are the same as in the case of the cylinder injection internal combustion engine described above.
発明の実施形態を挙げて、本発明をより詳しく説明する。なお、以下の実施形態を含め、本明細書で説明する内容は、本発明に係る低熱伝導合金のみならず、低熱伝導部材およびその製造方法にも適宜適用できるものであることを断っておく。 The present invention will be described in more detail with reference to embodiments of the invention. It should be noted that the contents described in this specification including the following embodiments are applicable not only to the low thermal conductive alloy according to the present invention but also to the low thermal conductive member and the manufacturing method thereof.
もちろん、下記の内容は、本発明の筒内噴射式内燃機関や筒内噴射式内燃機関用ピストン等にのみ限定されるものではなく、その上位概念的、中間概念的または下位概念的な発明にもそれらの趣旨に反しない範囲で適宜適用されることはいうまでもない。さらに、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なることを断っておく。 Of course, the following contents are not limited only to the in-cylinder injection internal combustion engine and the piston for the in-cylinder injection internal combustion engine of the present invention, but to the higher conceptual, intermediate conceptual, or lower conceptual invention. Needless to say, the present invention may be applied as appropriate without departing from the spirit of the invention. Furthermore, it should be noted that which embodiment is best depends on the target, required performance, and the like.
〈低熱伝導合金の組成〉
(1)Mn
(a)Mnは、本発明の目的とする特定の熱伝導率および線膨張係数を得る上で重要な必須元素である。本発明において好適なMn量は5〜35質量%である。
ここでMn単体の熱伝導率は7.8W/mK、線膨張係数は21.6x10-6/Kである。Fe単体の熱伝導率は80.3W/mK、線膨張係数は13.8x10-6/Kである。
<Composition of low thermal conductive alloy>
(1) Mn
(a) Mn is an essential element important for obtaining the specific thermal conductivity and linear expansion coefficient that are the object of the present invention. In the present invention, the preferred amount of Mn is 5 to 35% by mass.
Here, the thermal conductivity of Mn alone is 7.8 W / mK, and the linear expansion coefficient is 21.6 × 10 −6 / K. The thermal conductivity of Fe alone is 80.3 W / mK, and the linear expansion coefficient is 13.8 × 10 −6 / K.
しかし、Fe−Mn−C合金の熱伝導率や線膨張係数は、単なる構成元素量の複合則によって決定されるものではない。本発明者の真摯で詳細な実験により、Mnが比較的少量でも熱伝導率が非常に低くなることが解った。逆に、Mnが比較的多量でも線膨張係数がMn単体の線膨張係数から遠ざかることも解った。このような研究結果を踏まえて、本発明ではMn量を上記範囲とした。 However, the thermal conductivity and the linear expansion coefficient of the Fe—Mn—C alloy are not determined simply by the complex rule of the amount of constituent elements. As a result of the inventor's sincere and detailed experiments, it has been found that the thermal conductivity becomes very low even if the amount of Mn is relatively small. Conversely, it has also been found that even when the amount of Mn is relatively large, the linear expansion coefficient is far from the linear expansion coefficient of Mn alone. Based on such research results, in the present invention, the amount of Mn is set to the above range.
Mnが上記範囲にあると、所望の熱伝導率および線膨張係数が安定して得られる。これに対してMnが過少では熱伝導率が急増して好ましくない。Mnが過多では線膨張係数が低下して所望の線膨張係数が得られない。Mnが7〜30質量%であるとより好ましい。 When Mn is in the above range, desired thermal conductivity and linear expansion coefficient can be stably obtained. On the other hand, if Mn is too small, the thermal conductivity increases rapidly, which is not preferable. When Mn is excessive, the linear expansion coefficient is lowered and a desired linear expansion coefficient cannot be obtained. It is more preferable that Mn is 7 to 30% by mass.
(b)本発明者の研究によれば、Mn量が上記範囲内のさらに特定の範囲にあるとき、その前後よりも顕著な特性を示すことが明かとなった。すなわち、Mnが5〜18質量%(特に5〜15質量%のとき)または20〜30質量%の場合である。 (b) According to the inventor's research, when the amount of Mn is in a more specific range within the above range, it has been revealed that the characteristics are more remarkable than before and after that. That is, it is a case where Mn is 5-18 mass% (especially when it is 5-15 mass%) or 20-30 mass%.
先ず、Mnが10質量%前後のとき、比較的Mn量が少ないにもかかわらず、熱伝導率が極小傾向を示し、線膨張係数が極大傾向を示す。 First, when Mn is around 10% by mass, the thermal conductivity shows a minimum tendency and the linear expansion coefficient shows a maximum tendency even though the amount of Mn is relatively small.
この場合、Mnの下限値は7質量%、8質量%さらには9質量%であるとより好ましく、Mnの上限値は18質量%、16質量%、14質量%、12質量%さらには11質量%であるとより好ましい。 In this case, the lower limit of Mn is more preferably 7% by mass, 8% by mass, and further 9% by mass, and the upper limit of Mn is 18% by mass, 16% by mass, 14% by mass, 12% by mass, and further 11% by mass. % Is more preferable.
次に、Mnが25質量%前後の20〜30質量%のとき、熱伝導率や線膨張係数は所望の範囲内でありながら、引張強さおよび伸びが極大傾向を示す。 Next, when Mn is 20 to 30% by mass, around 25% by mass, the tensile strength and the elongation tend to be maximized while the thermal conductivity and the linear expansion coefficient are within the desired ranges.
この場合、Mnの下限値は22質量%、23質量%さらには24質量%であるとより好ましく、Mnの上限値は28質量%、27質量%さらには26質量%であるとより好ましい。 In this case, the lower limit value of Mn is more preferably 22% by mass, 23% by mass, and further 24% by mass, and the upper limit value of Mn is more preferably 28% by mass, 27% by mass, and further 26% by mass.
(2)C
(a)Cも、本発明の目的とする特定の熱伝導率および線膨張係数を得る上で重要な必須元素である。本発明において好適なC量は0.5〜1.5質量%である。
本発明者が真摯に行った実験結果によれば、Cが上記範囲内にあるとき、所望の熱伝導率および線膨張係数が安定して得られる。これに対してCが過少では熱伝導率が急増したり、線膨張係数が所望範囲より低くなって好ましくない。
(2) C
(a) C is also an essential element important for obtaining the specific thermal conductivity and linear expansion coefficient that are the object of the present invention. In the present invention, the preferred amount of C is 0.5 to 1.5% by mass.
According to the results of experiments conducted by the present inventors sincerely, when C is within the above range, desired thermal conductivity and linear expansion coefficient can be stably obtained. On the other hand, if C is too small, the thermal conductivity increases rapidly or the linear expansion coefficient becomes lower than the desired range, which is not preferable.
一方、Cが増加するほど、熱伝導率や線膨張係数は所望範囲に近づき好ましいが、Cが過多では引張強さが急減して実用性が乏しくなり好ましくない。また、伸びはCが過少でも過多でも低下するため好ましくない。このような研究結果を踏まえて、本発明ではC量を上記の範囲とした。 On the other hand, as C increases, the thermal conductivity and the linear expansion coefficient are preferably close to the desired range, but when C is excessive, the tensile strength is rapidly reduced and the practicality becomes poor. Further, the elongation is not preferable because C decreases even if C is too little or too much. Based on such research results, in the present invention, the amount of C is within the above range.
(b)本発明者の研究によれば、Cが1質量%前後であるとき、熱伝導率や線膨張係数が所望の範囲内で安定しつつ、引張強さや伸びが極大傾向を示すことが解った。このような傾向を示す理由は現状定かではないが、次のように考えられる。すなわち、Cが過少ではMn酸化物が生成し、また、Cが過多ではFe、Mn系炭化物が生成して、引張強さや伸びが低下すると推定される。Cが1質量%前後であるとき、ほぼオーステナイト単相となり優れた引張特性を示す。 (b) According to the inventor's research, when C is around 1% by mass, the thermal conductivity and the linear expansion coefficient are stable within a desired range, and the tensile strength and elongation tend to be maximal. I understand. The reason for this tendency is not clear, but it can be considered as follows. That is, it is estimated that when C is too small, Mn oxide is generated, and when C is excessive, Fe and Mn-based carbides are generated, and tensile strength and elongation are lowered. When C is around 1% by mass, it becomes an austenite single phase and exhibits excellent tensile properties.
この場合、Cの下限値は0.7質量%、0.8質量%さらには0.9質量%であるとより好ましく、Cの上限値は1.3質量%、1.2質量%さらには1.1質量%であるとより好ましい。 In this case, the lower limit value of C is more preferably 0.7 mass%, 0.8 mass%, and further 0.9 mass%, and the upper limit value of C is 1.3 mass%, 1.2 mass%, It is more preferable in it being 1.1 mass%.
(3)残部
(a)残部の主成分はFeであり、Feも本発明の目的とする特定の熱伝導率および線膨張係数を得る上で重要な必須元素である。本発明の低熱伝導合金も鉄基合金(Fe−Mn−C合金)ではあるが、特定量のMn、CおよびFeの3元素が相乗して一般的な鉄系材料とはかけ離れた特性を示す。少なくとも、熱伝導率や線膨張係数に関して観れば、前述のように鉄基合金とは思えないような優れた特性を示す。
(3) The rest
(a) The main component of the balance is Fe, and Fe is an essential element that is important in obtaining the specific thermal conductivity and linear expansion coefficient that are the object of the present invention. Although the low thermal conductive alloy of the present invention is also an iron-based alloy (Fe-Mn-C alloy), the specific elements of Mn, C and Fe synergistically show characteristics far from general iron-based materials. . At least in terms of thermal conductivity and linear expansion coefficient, it exhibits excellent characteristics that cannot be considered as an iron-based alloy as described above.
本発明の低熱伝導合金は、公知の浸炭処理や窒化処理などを適切に行うことで、本発明の低熱伝導合金の表層のみを必要に応じて改質することも可能である。この目的は低熱伝導合金の強度向上には限らず、例えば、DLC被膜等の下地処理などにも利用可能である。 Only the surface layer of the low heat conductive alloy of the present invention can be modified as necessary by appropriately performing known carburizing treatment, nitriding treatment or the like for the low heat conductive alloy of the present invention. This purpose is not limited to the improvement of the strength of the low thermal conductive alloy, but can be used for, for example, a base treatment such as a DLC film.
(b)本発明の低熱伝導合金の基本構成元素はMn、CおよびFeの3元素ではあるが、本発明の低熱伝導合金の所望する特性が得られる範囲であれば、他の元素(付従的元素)を含有させることに何らの問題はない。このような付従的元素として、例えば、Si、P、S、O、N、Cu、Ni、Cr、Mo、Nb、V、Ti等が考えられる。このような付従的元素の含有量は通常微量(0.01〜1質量%)であるから、付従的元素を微量元素と呼ぶこともできる。 (b) The basic constituent elements of the low thermal conductive alloy of the present invention are three elements of Mn, C and Fe, but other elements (subsidiary) are within the range where desired characteristics of the low thermal conductive alloy of the present invention are obtained. There is no problem with the inclusion of the target element. Examples of such ancillary elements include Si, P, S, O, N, Cu, Ni, Cr, Mo, Nb, V, and Ti. Since the content of such ancillary elements is usually a trace amount (0.01 to 1% by mass), the ancillary element can also be called a trace element.
〈低熱伝導合金の用途〉
(1)低熱伝導部材または低熱伝導層
(a)本発明の低熱伝導合金からなる低熱伝導部材や低熱伝導層は、線膨張係数が20x10-6 /K程度で熱伝導率が比較的高い母材からなるベース部材に、低熱伝導域を部分的に形成する際に用いられる。その低熱伝導部材または低熱伝導層の形態(大きさ、厚み、膜厚等)や製造方法等は問わない。また、低熱伝導部材であれば、溶製材でも焼結材でもよい。焼結材で低熱伝導部材を形成した場合であれば、ネットシェイプによる加工費削減、気孔率(密度)の調整による熱伝導率の増減なども可能となる。低熱伝導層は、例えば、溶射等によって形成される。いずれにしろ、要求される仕様に応じて、低熱伝導合金の形態や製法が適宜選択され得る。
<Applications of low thermal conductive alloys>
(1) Low thermal conductive member or low thermal conductive layer
(a) The low thermal conductive member or the low thermal conductive layer made of the low thermal conductive alloy of the present invention has a low thermal conductive region on a base member made of a base material having a linear expansion coefficient of about 20 × 10 −6 / K and a relatively high thermal conductivity. Used when partially forming. The form (size, thickness, film thickness, etc.) and manufacturing method of the low heat conductive member or low heat conductive layer are not limited. Moreover, as long as it is a low heat conductive member, a melting material or a sintered material may be sufficient. If a low heat conductive member is formed of a sintered material, the processing cost can be reduced by net shape, and the thermal conductivity can be increased or decreased by adjusting the porosity (density). The low thermal conductive layer is formed by, for example, thermal spraying. In any case, depending on the required specifications, the form and manufacturing method of the low heat conductive alloy can be selected as appropriate.
(b)低熱伝導部材または低熱伝導層は、ピストン頂部の燃料衝突域に設けられ、低熱伝導域を形成する。例えば、低熱伝導部材はアルミニウム合金製のピストン頂部に鋳込まれ、低熱伝導層はそのピストン頂部に溶射等されて形成される。 (b) The low heat conduction member or the low heat conduction layer is provided in the fuel collision area at the top of the piston to form a low heat conduction area. For example, the low thermal conductive member is cast on the top of an aluminum alloy piston, and the low thermal conductive layer is formed by thermal spraying or the like on the piston top.
低熱伝導部材等は、接触した液体燃料の気化等を促進するために、表面に微少な凹凸形状等を有し、その表面積を拡大しても良い。また、低熱伝導部材等からピストン頂部への熱伝達を抑制するために、両者の界面に空気等の断熱層を部分的に形成しても良い。また、低熱伝導部材が気孔率の高い焼結体からなる場合、低熱伝導部材自体の熱伝導率は低下し、また、表面には微少な凹凸形状ができ、燃料の気化が促進されるので好ましい。 The low heat conducting member or the like may have a minute uneven shape on the surface in order to promote vaporization of the liquid fuel that has come into contact, and the surface area thereof may be enlarged. In order to suppress heat transfer from the low heat conducting member or the like to the top of the piston, a heat insulating layer such as air may be partially formed at the interface between the two. In addition, when the low thermal conductive member is made of a sintered body having a high porosity, the thermal conductivity of the low thermal conductive member itself is decreased, and a minute uneven shape is formed on the surface, which facilitates fuel vaporization. .
もっとも、気孔率が大きい場合、低熱伝導部材の内部へ含浸した燃料の気化が却って阻害されることも考えられる。このような場合は、低熱伝導部材の表面に適宜、封孔処理を施すと好ましい。 Of course, when the porosity is high, the vaporization of the fuel impregnated into the low heat conducting member may be hindered. In such a case, it is preferable to appropriately seal the surface of the low thermal conductive member.
(2)用途の拡張
(a)本発明に係る低熱伝導合金さらには低熱伝導部材または低熱伝導層の用途は、上述した筒内噴射式内燃機関用ピストンが代表的であるがそれには限られない。例えば、熱伝導率、線膨張係数、強度または伸びのいずれか一つまたは二つ以上が特定範囲であることが要求される部材や部位に本発明の低熱伝導合金は適する。
(2) Expansion of usage
(a) The use of the low heat conductive alloy and the low heat conductive member or the low heat conductive layer according to the present invention is typically the above-described piston for a cylinder injection type internal combustion engine, but is not limited thereto. For example, the low thermal conductive alloy of the present invention is suitable for a member or part where one or more of thermal conductivity, linear expansion coefficient, strength and elongation are required to be in a specific range.
例えば、熱伝導率が5〜15W/m・K、7〜13W/m・K、8〜12W/m・Kさらには9〜11W/m・K等の部位や部材である。例えば、線膨張係数が15〜25x10-6/K、17〜23x10-6/K、18〜22x10-6/Kさらには19〜21x10-6/K等の部位や部材である。例えば、引張強さが300MPa〜500MPa、350〜450MPaさらには370〜430MPa等の部位や部材である。例えば、伸びが3〜20%、4〜18%、5〜17%、6〜16%さらには8〜14%等の部位や部材である。 For example, it is a part or member having a thermal conductivity of 5 to 15 W / m · K, 7 to 13 W / m · K, 8 to 12 W / m · K, or 9 to 11 W / m · K. For example, the linear expansion coefficient of 15~25x10 -6 / K, 17~23x10 -6 / K, 18~22x10 -6 / K even at sites or members such as 19~21x10 -6 / K. For example, it is a part or member having a tensile strength of 300 MPa to 500 MPa, 350 to 450 MPa, or 370 to 430 MPa. For example, it is a part or member having an elongation of 3 to 20%, 4 to 18%, 5 to 17%, 6 to 16%, or 8 to 14%.
なお、これらの範囲は本発明の低熱伝導部材等の用途に関する要求特性を示す一例である。要求特性は、上記範囲に限らず、記載した上下限値を任意に組合わせ、新たな範囲を設定することも可能である。さらに、上限値または下限値のいずれか一方のみを境界とする新たな要求特性を考えても良い。例えば、熱伝導率であれば特定値以下、引張強さや伸びであれば特定値以上として、本発明の低熱伝導合金等が使用される場合の特性を特定すれば十分な場合も多い。このことは本明細書全体を通じて同様に該当する。 In addition, these ranges are an example which shows the required characteristic regarding uses, such as the low heat conductive member of this invention. The required characteristic is not limited to the above range, and the upper and lower limit values described can be arbitrarily combined to set a new range. Furthermore, a new required characteristic having only one of the upper limit value and the lower limit value as a boundary may be considered. For example, it is often sufficient to specify the characteristics in the case where the low thermal conductive alloy of the present invention is used such that the thermal conductivity is not more than a specific value and the tensile strength or elongation is not less than the specific value. This applies as well throughout the specification.
(b)本発明の低熱伝導合金や低熱伝導部材等の具体的な用途として、筒内噴射式内燃機関用ピストン以外に次のようなものが考えられる。
例えば、内燃機関における高温ガス流路を形成する部分の断熱材または断熱部材である。具体的には、吸気ポート、排気ポートの外周部などである。
(b) In addition to the in-cylinder internal combustion engine piston, the following may be considered as specific applications of the low heat conductive alloy and the low heat conductive member of the present invention.
For example, it is a heat insulating material or a heat insulating member of a part forming a hot gas flow path in an internal combustion engine. Specifically, the outer peripheral portion of the intake port and the exhaust port.
〈低熱伝導部材の製造方法〉
本発明の低熱伝導部材はその製造方法が特に限定されるものではない。従って、本発明の低熱伝導部材は溶製材でも焼結材でも良い。もっとも、本発明者が鋭意研究したところ、既述した本発明の焼結法で低熱伝導部材を製造した場合、その製造条件の相違が低熱伝導部材の特性に顕著な影響を与えることが解った。以下、本発明の低熱伝導部材の製造方法を構成する成形工程と焼結工程とに分けて説明する。
<Manufacturing method of low thermal conductive member>
The manufacturing method of the low thermal conductive member of the present invention is not particularly limited. Therefore, the low thermal conductive member of the present invention may be a melted material or a sintered material. However, as a result of intensive studies by the present inventors, it has been found that when a low heat conductive member is manufactured by the sintering method of the present invention described above, the difference in the manufacturing conditions significantly affects the characteristics of the low heat conductive member. . Hereinafter, the low heat conductive member manufacturing method of the present invention will be described by being divided into a forming step and a sintering step.
(1)成形工程
成形工程は、成形型のキャビティに原料粉末を充填する充填工程と、その充填した原料粉末を加圧して粉末成形体とする加圧工程に分れ得る。
(1) Molding process The molding process can be divided into a filling process in which a raw material powder is filled in a cavity of a molding die and a pressurizing process in which the filled raw material powder is pressed to form a powder compact.
(a)充填工程で用いる原料粉末として、予め所望の組成に調整されたアトマイズ粉等を用いることも可能であるが、通常は安価に入手できる素粉末または合金粉末を配合、混合した調製粉末であることが多い。本発明の場合であれば、純Fe粉末、純Mn粉末、黒鉛粉末、Fe−Mn粉末などを適宜組合わせて原料粉末とすることが考えられる。 (a) As the raw material powder used in the filling step, it is possible to use atomized powder or the like that has been adjusted to a desired composition in advance. There are often. In the case of the present invention, it is conceivable that pure Fe powder, pure Mn powder, graphite powder, Fe-Mn powder, etc. are appropriately combined to form a raw material powder.
本発明者の研究によれば、使用する粉末の種類により、得られる低熱伝導部材の特性が相違することが解った。例えば、純Fe粉末、Fe−Mn粉末および黒鉛粉末を組合わせた場合と純Fe粉末、純Mn粉末および黒鉛粉末を組合わせた場合とでは、後者の場合の方が熱伝導率は低く、かつ、線膨張係数は所望値により近接する傾向を示した。このような傾向を示す理由は現状定かではないが、次のように考えられる。すなわち、純Mn粉末を使用した場合は、Fe−Mn粉末を使用した場合に比較して、成形、焼結を同じ条件で行う限り、微視的、局所的にMnが濃化している部分が存在しているため、低熱伝導率、高線膨張係数になると推定される。 According to the inventor's research, it has been found that the characteristics of the obtained low heat conducting member differ depending on the type of powder used. For example, when pure Fe powder, Fe-Mn powder and graphite powder are combined with pure Fe powder, pure Mn powder and graphite powder, the latter case has lower thermal conductivity, and The linear expansion coefficient tended to be closer to the desired value. The reason for this tendency is not clear, but it can be considered as follows. That is, when pure Mn powder is used, as compared with the case where Fe-Mn powder is used, as long as molding and sintering are performed under the same conditions, there is a portion where Mn is concentrated microscopically and locally. Because it exists, it is estimated that it will have a low thermal conductivity and a high coefficient of linear expansion.
しかもFe−Mn粉末よりも純Mn粉末の方が安価に入手できるので、コスト的にも純Mn粉末を使用することが好ましい。従って、本発明の製造方法の場合、原料粉末がMnおよび不可避的不純物からなる純Mn粉末を少なくとも含むと好適である。特に、原料粉末が純Fe粉末、純Mnおよび黒鉛粉末からなるとより好適である。 In addition, since pure Mn powder can be obtained at a lower cost than Fe—Mn powder, it is preferable to use pure Mn powder in terms of cost. Therefore, in the manufacturing method of the present invention, it is preferable that the raw material powder contains at least pure Mn powder composed of Mn and inevitable impurities. In particular, the raw material powder is more preferably composed of pure Fe powder, pure Mn, and graphite powder.
なお、純Mn粉末を用いた場合、同じ製造条件で焼結体を製造しても密度が低下し、それに伴い引張強さも低下する傾向にあった。しかし、この場合でも再圧縮・再焼結(いわゆる2P2S)を行えば、高密度、高強度化を図ることは容易である。しかも、再圧縮・再焼結の実施による製造コスト増加分は、純Mn粉末の使用による原料コスト低減分で十分に吸収可能でもある。 In addition, when pure Mn powder was used, even if a sintered compact was produced under the same production conditions, the density was lowered, and the tensile strength was also lowered accordingly. However, even in this case, if re-compression / re-sintering (so-called 2P2S) is performed, it is easy to achieve high density and high strength. Moreover, the manufacturing cost increase due to the recompression and re-sintering can be sufficiently absorbed by the raw material cost reduction due to the use of pure Mn powder.
(b)加圧工程時の成形圧力の相違によっても、得られる低熱伝導部材の特性は影響を受け得る。もっとも、成形圧力が550MPa以上になると、線膨張係数や伸びはほぼ安定した値を示す。勿論、成形圧力が増加する程、密度や引張強さも増加傾向を示すが、その傾向は小さく成形圧力が750MPa以上でほぼ飽和状態となる。また、熱伝導率についても同様に、成形圧力が550MPa以上で安定している。 (b) The characteristics of the obtained low heat conductive member can also be affected by the difference in molding pressure during the pressing step. However, when the molding pressure is 550 MPa or more, the linear expansion coefficient and elongation show almost stable values. Of course, as the molding pressure increases, the density and tensile strength tend to increase, but the tendency is small and the molding pressure becomes almost saturated when the molding pressure is 750 MPa or more. Similarly, the thermal conductivity is stable at a molding pressure of 550 MPa or more.
そこで本発明の製造方法の場合、成形圧力は550MPa以上が好適である。成形圧力の下限値は600MPa、700MPa、750MPaさらには780MPaが好ましい。成形圧力の上限値は、金型寿命や効率性等を考慮して、2000MPa、1500MPa、1000MPaさらには850MPaが好ましい。 Therefore, in the production method of the present invention, the molding pressure is preferably 550 MPa or more. The lower limit of the molding pressure is preferably 600 MPa, 700 MPa, 750 MPa or even 780 MPa. The upper limit of the molding pressure is preferably 2000 MPa, 1500 MPa, 1000 MPa, or even 850 MPa in consideration of the mold life and efficiency.
ちなみに、成形圧力を800MPa以上とすることは必ずしも容易ではない。一般的に、成形圧力が高くなると粉末成形体と成形用金型の内壁面との間にかじり等を生じて、粉末成形体の取出しが困難であったり、粉末成形体の表面が荒れたり、高価な金型が損傷したりし得る。これを防止するために、従来は多くの内部潤滑剤を原料粉末に混在させたりしていた。しかし、これでは高密度の焼結体を得ることができず、また、放出された内部潤滑剤が炭化等して、焼結炉を汚染するため好ましくない。 Incidentally, it is not always easy to set the molding pressure to 800 MPa or more. Generally, when the molding pressure is increased, galling or the like occurs between the powder molded body and the inner wall surface of the molding die, and it is difficult to take out the powder molded body, the surface of the powder molded body is rough, Expensive molds can be damaged. In order to prevent this, conventionally, many internal lubricants have been mixed in the raw material powder. However, this is not preferable because a high-density sintered body cannot be obtained, and the discharged internal lubricant is carbonized to contaminate the sintering furnace.
本発明者らは、このような内部潤滑剤を用いなくても超高圧成形できる金型潤滑温間加圧成形法を開発し、既に特許を取得している(日本国特許第3309970号公報参照)。この金型潤滑温間加圧成形法を用いれば、幅広い成形圧力で成形した粉末成形体ひいては焼結体を得ることができる。しかも、この金型潤滑温間加圧成形法によれば内部潤滑剤を用いる必要がないため、粉末成形体の密度がそのまま焼結体の密度に反映され易く、原料コストや製造コストの削減も可能である。 The present inventors have developed a mold lubrication warm pressure molding method that can perform ultra-high pressure molding without using such an internal lubricant, and have already obtained a patent (see Japanese Patent No. 3309970). ). By using this mold lubrication warm pressure molding method, it is possible to obtain a powder molded body and a sintered body molded with a wide range of molding pressures. In addition, according to this mold lubrication warm pressure molding method, it is not necessary to use an internal lubricant, so the density of the powder compact is easily reflected in the density of the sintered compact as it is, and the raw material cost and manufacturing cost can be reduced. Is possible.
なお、成形圧力が低くなっても、得られた焼結体の線膨張係数や熱伝導率はほぼ安定した値を示す。このため、高強度や高伸びが要求されない部位や部材なら、比較的低い成形圧力で製造した焼結体を用いることもできる。成形圧力が低くなると、通常は粉末成形体の密度も低下し、焼結体の気孔率が増加するため、熱伝導率の一層低い低熱伝導部材を得ることも可能である。これにより、本発明の低熱伝導部材の要求特性ひいてはその用途をより拡張できる。 Even when the molding pressure is lowered, the linear expansion coefficient and the thermal conductivity of the obtained sintered body show almost stable values. For this reason, if it is a site | part and member in which high intensity | strength and high elongation are not requested | required, the sintered compact manufactured with comparatively low molding pressure can also be used. When the molding pressure is lowered, the density of the powder compact is usually lowered and the porosity of the sintered compact is increased, so that it is possible to obtain a low thermal conductivity member having a lower thermal conductivity. Thereby, the required characteristics of the low thermal conductive member of the present invention, and its application can be further expanded.
(2)焼結工程
焼結工程は、成形工程後に得られた粉末成形体を加熱炉(焼結炉)内で加熱して焼結体とする工程である。焼結工程では、焼結雰囲気、焼結温度、焼結時間等の焼結条件が重要である。これら焼結条件の相違が、本発明の低熱伝導部材の特性に少なからず影響を与えることが本発明者の真摯な研究により明かとなった。以下、これら焼結条件について順次説明する。
(2) Sintering process A sintering process is a process of heating the powder compact obtained after the forming process in a heating furnace (sintering furnace) to form a sintered body. In the sintering process, sintering conditions such as a sintering atmosphere, a sintering temperature, and a sintering time are important. It has been clarified by the inventor's sincere research that these differences in sintering conditions affect the characteristics of the low thermal conductive member of the present invention. Hereinafter, these sintering conditions will be sequentially described.
(a)焼結雰囲気 (a) Sintering atmosphere
焼結雰囲気は、通常、酸化防止雰囲気で行われる。酸化防止雰囲気は、不活性ガス雰囲気、窒素雰囲気、または真空雰囲気などである。本発明者の研究によれば、焼結雰囲気の相違が熱伝導率や線膨張係数に影響を与えることが明らかとなった。特に、Mn量に応じて生じる低熱伝導部材の特性変動の程度が、選択する焼結雰囲気によって異なることも明かとなった。 The sintering atmosphere is usually performed in an antioxidant atmosphere. The oxidation prevention atmosphere is an inert gas atmosphere, a nitrogen atmosphere, a vacuum atmosphere, or the like. According to the inventor's research, it has been clarified that the difference in the sintering atmosphere affects the thermal conductivity and the linear expansion coefficient. In particular, it has also been clarified that the degree of the characteristic fluctuation of the low thermal conductive member generated according to the amount of Mn varies depending on the sintering atmosphere to be selected.
例えば、不活性ガス(Ar)雰囲気よりも窒素(N2)雰囲気の方が、熱伝導率は低くなる傾向で、線膨張係数は所望値(20x10-6/K)により近接する傾向であった。また、引張強さも、不活性ガス雰囲気よりも窒素雰囲気の方が高くなる傾向にあった。このような傾向を示す理由は現状定かではないが、次のように考えられる。すなわち、オーステナイト相の安定化、またNの侵入型固溶により、フォノンが妨げられる。引張強さの向上はNの固溶強化によると考えられる。 For example, a nitrogen (N 2 ) atmosphere tends to be lower in thermal conductivity than an inert gas (Ar) atmosphere, and the linear expansion coefficient tends to be closer to a desired value (20 × 10 −6 / K). . Also, the tensile strength tended to be higher in the nitrogen atmosphere than in the inert gas atmosphere. The reason for this tendency is not clear, but it can be considered as follows. That is, phonons are hindered by the stabilization of the austenite phase and the interstitial solid solution of N. The improvement in tensile strength is thought to be due to the solid solution strengthening of N.
従って、それらの特性および製造コストに着目すれば、焼結工程の焼結雰囲気は、窒素(N2)雰囲気であると好適である。そして焼結雰囲気が窒素雰囲気であるとき、Mnが10〜25質量%、10〜20質量%、11〜17質量%さらには12〜15質量%付近にあれば、熱伝導率が極小傾向を示し、線膨張係数が極大傾向を示し得る。 Accordingly, in view of these characteristics and manufacturing costs, the sintering atmosphere in the sintering process is preferably a nitrogen (N 2 ) atmosphere. When the sintering atmosphere is a nitrogen atmosphere, if Mn is in the vicinity of 10 to 25% by mass, 10 to 20% by mass, 11 to 17% by mass, or even 12 to 15% by mass, the thermal conductivity tends to be minimal. The linear expansion coefficient may show a maximum tendency.
一方、伸びに関して観れば、窒素雰囲気よりも不活性ガス雰囲気の方が高くなる傾向にある。このような傾向を示す理由は現状定かではないが、微量析出した窒化物または炭窒化物が破壊の起点となって伸びが低下するためと考えられる。 On the other hand, in terms of elongation, the inert gas atmosphere tends to be higher than the nitrogen atmosphere. The reason for such a tendency is not clear at present, but it is thought that a small amount of deposited nitride or carbonitride is the starting point of fracture and the elongation decreases.
従って、低熱伝導部材の伸びに着目すれば、焼結工程の焼結雰囲気は、不活性ガス雰囲気、特にAr雰囲気であると好適である。そして焼結雰囲気が不活性ガス雰囲気であるとき、Mnが15〜35質量%、20〜30質量%さらには23〜27質量%さらには24〜26質量%付近にあれば、低熱伝導部材の伸びが極大傾向を示す。 Therefore, if attention is paid to the elongation of the low thermal conductive member, the sintering atmosphere in the sintering step is preferably an inert gas atmosphere, particularly an Ar atmosphere. And when sintering atmosphere is inert gas atmosphere, if Mn is 15-35 mass%, 20-30 mass%, further 23-27 mass%, and if it is 24 to 26 mass% vicinity, elongation of a low heat conductive member will be carried out. Indicates a maximal trend.
(b)焼結温度
焼結温度の相違によっても、低熱伝導部材の特性が影響されることが解った。すなわち、焼結温度が高くなる程、熱伝導率は低くなる傾向にあり、線膨張係数は所望値(20x10-6/K)により近接する傾向となった。
(b) Sintering temperature It was found that the characteristics of the low heat conducting member are also affected by the difference in sintering temperature. That is, the higher the sintering temperature, the lower the thermal conductivity, and the linear expansion coefficient tends to be closer to the desired value (20 × 10 −6 / K).
このような傾向を示す理由は現状定かではないが、焼結温度が高いほど、拡散が促進され、均一なオーステナイト相になるためと考えられる。 The reason for this tendency is not clear at present, but it is considered that the higher the sintering temperature, the more the diffusion is promoted and the uniform austenite phase is obtained.
また、焼結温度が高くなる程、引張強さおよび伸びも高くなる傾向となった。もっとも、焼結温度が過小では引張強さや伸びが急減して実用性が乏しくなる。また、焼結温度が過大では製造コストが増大し形状変化も生じ易くなり好ましくない。従って、焼結工程の焼結温度は1100〜1300℃さらには1150〜1300℃であると好適である。 Moreover, the tensile strength and elongation tended to increase as the sintering temperature increased. However, if the sintering temperature is too low, the tensile strength and elongation decrease rapidly and the practicality becomes poor. On the other hand, if the sintering temperature is excessively high, the manufacturing cost increases and the shape is liable to change. Therefore, the sintering temperature in the sintering step is preferably 1100 to 1300 ° C, more preferably 1150 to 1300 ° C.
ここでFe−25%Mn−1%Cの粉末成形体をAr中で焼結させた場合(すなわち、「伸び」が極大傾向を示した場合)につき本発明者が真摯に実験したところ、焼結温度が1200〜1300℃付近で、密度が低下し、引張強さおよび伸びが顕著な極大傾向を示すことが解った。 Here, when the present inventor earnestly experimented when the powder compact of Fe-25% Mn-1% C was sintered in Ar (that is, when “elongation” showed a maximum tendency), It was found that the density decreased, and the tensile strength and elongation showed a remarkable maximum tendency when the kneading temperature was around 1200 to 1300 ° C.
このような傾向を示す理由は現状定かではないが、次のように考えられる。すなわち、焼結温度が高すぎると液相焼結となり、組織は粗大な凝固組織となって偏析や凝固欠陥(微小な空隙)も伴うため、密度や引張特性が低下する。 The reason for this tendency is not clear, but it can be considered as follows. That is, if the sintering temperature is too high, liquid phase sintering occurs, and the structure becomes a coarse solidified structure, which is accompanied by segregation and solidification defects (minute voids), resulting in a decrease in density and tensile properties.
従って、焼結工程の焼結温度は、1200〜1300℃さらには1220〜1280℃であると好適である。 Therefore, it is preferable that the sintering temperature in the sintering step is 1200 to 1300 ° C, further 1220 to 1280 ° C.
(b)焼結時間
焼結時間の相違は、焼結体からなる低熱伝導部材の熱伝導率、線膨張係数、引張強さ、密度などにあまり影響を与えないことが解った。この傾向は原料粉末の組成変化によってもあまり影響を受けなかった。一方伸びは、焼結時間が長くなる程、増加する傾向を示した。
(b) Sintering time It was found that the difference in the sintering time does not significantly affect the thermal conductivity, linear expansion coefficient, tensile strength, density, etc. of the low thermal conductive member made of a sintered body. This tendency was not significantly affected by changes in the composition of the raw material powder. On the other hand, the elongation tended to increase as the sintering time increased.
このような傾向を示す理由は現状定かではないが、次のように考えられる。すなわち、焼結時間が短いと、形成された気孔が丸みを帯びておらず、破壊の起点になり易いためと考えられる。一方、焼結時間が長いと、形成された気孔は丸みを帯びて、破壊の起点になり難いためと考えられる。 The reason for this tendency is not clear, but it can be considered as follows. That is, it is considered that when the sintering time is short, the formed pores are not rounded and easily become a starting point of fracture. On the other hand, if the sintering time is long, the formed pores are rounded and are unlikely to become the starting point of destruction.
もっとも、焼結時間が10分間以下と短い場合でも、実用上は十分な伸びを示した。また、焼結時間が120分間より長くなっても、伸びの増加は観られずほぼ飽和状態となった。 従って、焼結工程の焼結時間は120分間以下であると好適である。製造サイクルタイムの短縮と伸びの確保とを図る観点から、焼結時間は10〜120分間さらには30〜90分間であるとより好適である。 However, even when the sintering time was as short as 10 minutes or less, the elongation was practically sufficient. Further, even when the sintering time was longer than 120 minutes, no increase in elongation was observed, and the sample was almost saturated. Accordingly, the sintering time in the sintering process is preferably 120 minutes or less. From the viewpoint of shortening the manufacturing cycle time and securing the elongation, the sintering time is more preferably 10 to 120 minutes, and further preferably 30 to 90 minutes.
実施例を挙げて本発明をより具体的に説明する。
〈筒内噴射式内燃機関〉
本発明の筒内噴射式内燃機関の一例である、ガソリンを燃料とする筒内噴射式火花点火機関1(以下、単に「エンジン1」という。)を図9に示した。
The present invention will be described more specifically with reference to examples.
<In-cylinder injection internal combustion engine>
FIG. 9 shows a direct injection spark ignition engine 1 (hereinafter simply referred to as “
エンジン1は、シリンダブロック30と、シリンダブロック30上にガスケット(図略)を介してヘッドボルト(図略)で固定されたシリンダヘッド40と、シリンダブロック30のシリンダ31内に往復動可能に嵌挿されたピストン10とからなる。
The
シリンダブロック30、シリンダヘッド40およびピストン10はアルミニウム合金製である。ピストン10のアルミニウム合金はAC8A合金(JIS規格)で、熱伝導率134W/mK(室温)、線膨張係数20.9x10-6/K(室温〜200℃)である。シリンダブロック30のシリンダ31は、圧入された鋳鉄製スリーブからなる。
The
シリンダヘッド40は、吸気ポート41と排気ポート42を備える。吸気ポート41の開孔は吸気側カム(図略)によって駆動される吸気バルブ71の傘部により開閉される。排気ポート42の開孔は排気側カム(図略)によって駆動される排気バルブ72の傘部により開閉される。吸気バルブ71と排気バルブ72の略中央には点火プラグ80が配設される。また、吸気ポート41側には燃料噴射弁であるインジェクタ50が配設され、インジェクタ50の開孔51から所定圧力に加圧されたガソリン(液体燃料)がシリンダ31内へ噴霧される。
The
筒内噴射式内燃機関用ピストンであるピストン10は、ピストン頂部11とピストン本体部12とからなる。ピストン10は、ピストン本体部12に設けたピンホール113に嵌挿されたピストンピン61を介して、コンロッド61と揺動可能に連結されている。
A
ピストン10の上側にあるピストン頂部11は、外周側にトップリング112a、セカンドリング112bおよびオイルリング112cを備える。ピストン頂部11の頂面側には、深皿部111が形成されている。ガソリンは、深皿部111に向けてインジェクタ50から噴霧される。この深皿部111の内壁面(特に内底面)が本発明でいう燃料衝突域を形成することとなる。
The
超希薄燃焼時など上死点付近で噴霧されたガソリンは、深皿部111によって点火プラグ80の周囲に集められる。これにより、空燃比が高くても点火プラグ80の周囲には着火可能は濃度の混合気が形成される。そして、点火プラグ80のギャップ間で火花放電がなされると、シリンダヘッド40とピストン頂部11との間に形成された燃焼室内で成層燃焼が生じる。勿論、高負荷時には、ピストン10が下降する吸気行程中からガソリンがインジェクタ50より噴霧され、ストイキ領域またはリッチ領域で均一混合燃焼が行われる。
Gasoline sprayed near the top dead center such as during ultra lean combustion is collected around the
ところで、本実施例のエンジン1では、低熱伝導部材20をピストン頂部11の深皿部111に鋳込んだピストン10を用いた。この低熱伝導部材20の表面部21が本発明でいう低熱伝導域に相当する。図9からも明らかなように、低熱伝導部材20の表面部21は深皿部111の内壁の全部ではなく一部を形成しているに過ぎない。すなわち、インジェクタ50から噴霧されたガソリンが主に衝突または付着し得る部分に限られている。これにより、噴霧されたガソリンの気化を促進する一方で、ノッキング等の原因となるヒートスポットの形成が回避される。
By the way, in the
〈低熱伝導部材の製造方法〉
(1)原料粉末
低熱伝導部材20に用いる低熱伝導合金からなる焼結体を次のように製造した。
原料粉末を配合、混合するために、純Fe粉末、黒鉛粉末、純Mn粉末およびFe−Mn合金粉末(組成:Fe−50質量%Mn)を用意した。なお、純Mn粉末は、Mn塊を粒径150μm以下に機械粉砕したものである。Fe−Mn合金粉末はガスアトマイズ粉であり粒径150μm以下に分級したものである。これらの粉末を用いて表1〜8に示した成分組成に配合し、回転型混合機で均一に混合して各試験片毎の原料粉末を得た。
<Manufacturing method of low thermal conductive member>
(1) Raw material powder The sintered compact which consists of a low heat conductive alloy used for the low heat
In order to mix and mix the raw material powder, pure Fe powder, graphite powder, pure Mn powder and Fe—Mn alloy powder (composition: Fe-50 mass% Mn) were prepared. The pure Mn powder is obtained by mechanically pulverizing a Mn lump to a particle size of 150 μm or less. The Fe—Mn alloy powder is a gas atomized powder and is classified to a particle size of 150 μm or less. These powders were blended into the component compositions shown in Tables 1 to 8 and uniformly mixed with a rotary mixer to obtain raw material powder for each test piece.
(2)成形工程
(a)先ず、次の3形状のキャビティをもつ超硬製金型(成形型)を用意した。キャビティの内壁面には予めTiNコート処理を施しておき、その表面粗さを0.4Zとした。
(2) Molding process
(a) First, a cemented carbide die (molding die) having the following three cavities was prepared. The inner wall surface of the cavity was previously subjected to TiN coating treatment, and the surface roughness was set to 0.4Z.
(i)円盤型試験片:直径23mmx高さ5mm、
(ii)平板型試験片:平行部16mmx5mmx3mm、
(iii)直方体型試験片:30mmx30mmx5mm
(i) Disc type test piece: diameter 23 mm x
(ii) Flat plate test piece: parallel part 16 mm × 5 mm × 3 mm,
(iii) rectangular parallelepiped test piece: 30 mm × 30 mm × 5 mm
(b)成形工程は、次に示す金型潤滑温間加圧成形法により行った。
前記の各金型をバンドヒータで予め150℃に加熱しておいた。加熱した金型の内壁面に、ステアリン酸リチウム(高級脂肪酸系潤滑剤)を分散させた水溶液をスプレーガンにて1cm3/秒程度の割合で均一に塗布した(塗布工程)。
(b) The molding step was performed by the following mold lubrication warm pressure molding method.
Each of the molds was previously heated to 150 ° C. with a band heater. An aqueous solution in which lithium stearate (higher fatty acid-based lubricant) was dispersed was uniformly applied to the inner wall surface of the heated mold with a spray gun at a rate of about 1 cm 3 / second (application process).
ちなみに、水溶液は水に界面活性剤と消泡剤とを添加したものである。界面活性剤はポリオキシエチレンノニルフェニルエーテル(EO)6、(EO)10及びホウ酸エステルエマルボンT−80を用いて、それぞれを水溶液全体(100体積%)に対して1体積%づつ添加した。消泡剤はFSアンチフォーム80を用いて、水溶液全体(100体積%)に対して0.2体積%添加した。ステアリン酸リチウムは、融点が約225℃で平均粒径が20μmのものを用いた。その分散量は、上記水溶液100cm3に対して25gとした。
Incidentally, the aqueous solution is obtained by adding a surfactant and an antifoaming agent to water. As the surfactant, polyoxyethylene nonylphenyl ether (EO) 6, (EO) 10 and borate ester Emulbon T-80 were added in an amount of 1% by volume based on the entire aqueous solution (100% by volume). . An antifoaming agent was added by 0.2% by volume to the entire aqueous solution (100% by volume) using
さらにこれをボールミル式粉砕装置で微細化処理(テフロンコート鋼球:100時間)した。得られた原液を20倍に希釈して最終濃度の1%の水溶液を得た。この水溶液を前述の塗布工程に供した。 Furthermore, this was refined by a ball mill type pulverizer (Teflon coated steel balls: 100 hours). The obtained stock solution was diluted 20 times to obtain a 1% aqueous solution having a final concentration. This aqueous solution was subjected to the aforementioned coating process.
この水溶液が内壁面に塗布された金型へ各種の原料粉末を自然充填した(充填工程)。なお、試験片のサイズが大きい場合は、金型と同温に原料粉末を加熱しておいても良い。 Various raw material powders were naturally filled in a mold in which this aqueous solution was applied to the inner wall surface (filling step). If the size of the test piece is large, the raw material powder may be heated at the same temperature as the mold.
金型を150℃に保持したまま、キャビティ内の原料粉末を表1〜8に示した成形圧力で温間加圧成形して、種々の粉末成形体を得た(成形工程)。なお、この成形時に金型と粉末成形体との間でかじり等を生じることはなく、低い抜圧で粉末成形体を金型から取出すことができた。 While holding the mold at 150 ° C., the raw material powder in the cavity was warm-pressed at the molding pressure shown in Tables 1 to 8 to obtain various powder compacts (molding process). In this molding, no galling or the like occurred between the mold and the powder molded body, and the powder molded body could be taken out from the mold with a low pressure.
(3)焼結工程
得られた各粉末成形体を表1〜8に示した焼結条件(焼結雰囲気、焼結温度、焼結時間)の下で焼結し、焼結体からなる各試験片を得た。なお、焼結雰囲気は1atmのArまたはN2とした。
(3) Sintering step Each obtained powder compact is sintered under the sintering conditions (sintering atmosphere, sintering temperature, sintering time) shown in Tables 1 to 8, and each of the sintered compacts. A specimen was obtained. The sintering atmosphere was 1 atm Ar or N2.
〈各試験片の測定〉
得られた各試験片を用いて、次の各特性を測定した。
(i)密度の測定には前記の円盤型試験片を用いた。その直径および高さを再計測して体積を求め、その重量を測定して密度を求めた。
(ii)引張強さおよび伸びは、前記の平板型試験片を用いて、JIS Z2241に準じて引張試験を行って求めた。
(iii)熱伝導率および線膨張係数は、前記の直方体型試験片から適宜切出した試験片を用いて求めた。すなわち、熱伝導率は、JIS A1412−2に準じて、50℃における熱伝導率を求めた。また、線膨張係数は、JIS Z2285に準じて、20〜200℃までの平均線膨張係数を求めた。
<Measurement of each specimen>
The following properties were measured using the obtained test pieces.
(i) The disk-shaped test piece was used for density measurement. The diameter and height were re-measured to determine the volume, and the weight was measured to determine the density.
(ii) Tensile strength and elongation were determined by conducting a tensile test according to JIS Z2241 using the flat plate test piece.
(iii) The thermal conductivity and the linear expansion coefficient were determined using test pieces appropriately cut out from the rectangular parallelepiped type test pieces. That is, the thermal conductivity was determined as the thermal conductivity at 50 ° C. according to JIS A1412-2. Moreover, the linear expansion coefficient calculated | required the average linear expansion coefficient to 20-200 degreeC according to JISZ2285.
〈評価〉
(1)Mn量の影響
(a)Mn量が低熱伝導部材(低熱伝導合金)の特性に及す影響を表1にまとめた。Mn量に対する各特性を図1Aに示した。また、Mn量が熱伝導率(κ)および線膨張係数(α)の両方に与える影響を明確にするために、表1に示したデータに基づいて熱的特性指数:1/κ(αAl−α)を算出した。Mn量に対するこの熱的特性指数の変化を図1Bに示した。
<Evaluation>
(1) Effect of Mn content
(a) The influence of the amount of Mn on the characteristics of the low thermal conductive member (low thermal conductive alloy) is summarized in Table 1. Each characteristic with respect to the amount of Mn is shown in FIG. 1A. In order to clarify the influence of the amount of Mn on both the thermal conductivity (κ) and the linear expansion coefficient (α), the thermal characteristic index: 1 / κ (α Al -Α) was calculated. The change in the thermal characteristic index with respect to the amount of Mn is shown in FIG. 1B.
(b)図1A及び図1Bから明かなように、Mn:5〜35質量%の範囲で熱伝導率が低く、線膨張係数がアルミニウム合金の線膨張係数:20x10-6 /Kに十分に近接していることが解る。しかもその範囲内で、実用的な強度および伸びが確保されていることも解る。 (b) As is clear from FIGS. 1A and 1B, the thermal conductivity is low in the range of Mn: 5 to 35% by mass, and the linear expansion coefficient is sufficiently close to the linear expansion coefficient of the aluminum alloy: 20 × 10 −6 / K. I understand that you are doing. In addition, it is understood that practical strength and elongation are secured within the range.
(c)このうち特にMn:15質量%付近では熱伝導率、線膨張係数および熱的特性指数がピーク値を示した。また、Mn:25質量%付近では引張強さおよび伸びがピーク値を示すと共に、熱伝導率および線膨張係数も所望範囲内にあった。
従って、熱伝導率を可能な限り低く保ち、線膨張係数をアルミニウム合金の線膨張係数:20x10-6 /Kにできるだけ近接させたい場合は、Mn:5〜15質量%とするのが好ましいといえる。ここでさらに強度や伸びを加味すれば、Mn:10〜15質量%とするのが良い。
(c) Of these, especially in the vicinity of Mn: 15% by mass, the thermal conductivity, linear expansion coefficient and thermal characteristic index showed peak values. Further, in the vicinity of Mn: 25% by mass, the tensile strength and elongation showed peak values, and the thermal conductivity and the linear expansion coefficient were also within the desired ranges.
Therefore, when the thermal conductivity is kept as low as possible and the linear expansion coefficient is desired to be as close as possible to the linear expansion coefficient of the aluminum alloy: 20 × 10 −6 / K, it can be said that Mn: 5 to 15% by mass is preferable. . Here, if strength and elongation are further taken into account, Mn: 10 to 15% by mass is preferable.
一方、熱伝導率および線膨張係数のみならず、高強度および高伸びを求める場合には、Mn:15〜35質量%、特に20〜30質量%とするのが好ましいといえる。 On the other hand, when not only thermal conductivity and linear expansion coefficient but also high strength and high elongation are required, it can be said that Mn is 15 to 35% by mass, particularly 20 to 30% by mass.
(2)C量の影響
(a)C量が低熱伝導部材(低熱伝導合金)の特性に及す影響を表2にまとめた。C量に対する各特性を図2に示した。
(2) Effect of C content
(a) Table 2 summarizes the influence of the amount of C on the characteristics of the low thermal conductive member (low thermal conductive alloy). Each characteristic with respect to the amount of C is shown in FIG.
(b)図2から明かなように、C:0.5〜1.5質量%の範囲で熱伝導率および線膨張係数が所望範囲内で安定していた。C量の増加と共に熱伝導率が低下し線膨張係数がアルミニウム合金の線膨張係数に近づくという好ましい傾向も示した。 (b) As apparent from FIG. 2, the thermal conductivity and the linear expansion coefficient were stable within the desired range in the range of C: 0.5 to 1.5% by mass. It also showed a favorable tendency that the thermal conductivity decreased with an increase in the amount of C and the linear expansion coefficient approached the linear expansion coefficient of the aluminum alloy.
(c)このうち特に、C:1質量%付近では引張強さおよぼ伸びがピーク値を示した。この傾向は、引張強さおよぼ伸びがピークとなるMn:25質量%のときに顕著であるが、M:15質量%のときであっても同様な傾向が認められる。
従って、Cは、0.5〜1.5質量%さらには0.7〜1.3質量%とするのが好ましいといえる。
(c) Among these, in particular, the tensile strength and elongation showed peak values in the vicinity of C: 1% by mass. This tendency is conspicuous when Mn is 25% by mass where the tensile strength and elongation reach a peak, but the same tendency is observed even when M is 15% by mass.
Therefore, it can be said that C is preferably 0.5 to 1.5 mass%, more preferably 0.7 to 1.3 mass%.
(3)焼結温度の影響
(a)焼結温度が低熱伝導部材(低熱伝導合金)の特性に及す影響を表3にまとめた。焼結温度に対する各特性を図3に示した。用いた試験片の組成はFe−25%Mn−1%C(単位:質量%)である。
(3) Influence of sintering temperature
(a) The influence of the sintering temperature on the characteristics of the low thermal conductive member (low thermal conductive alloy) is summarized in Table 3. Each characteristic with respect to the sintering temperature is shown in FIG. The composition of the test piece used is Fe-25% Mn-1% C (unit: mass%).
(b)図3から明かなように、焼結温度:1100℃以上の範囲で熱伝導率および線膨張係数が所望範囲内で安定している。焼結温度の増加と共に熱伝導率が低下し線膨張係数がアルミニウム合金の線膨張係数に近づくという好ましい傾向も示している。 (b) As is clear from FIG. 3, the thermal conductivity and the linear expansion coefficient are stable within a desired range at a sintering temperature of 1100 ° C. or higher. It also shows a favorable tendency that the thermal conductivity decreases with increasing sintering temperature and the linear expansion coefficient approaches the linear expansion coefficient of the aluminum alloy.
(c)このうち、焼結温度:1250℃付近で引張強さおよぼ伸びがピークを示した。特に伸びの増加が顕著であり、1250℃のときの伸び(17%)は1150℃のときの伸び(4%)の4倍以上にもなっている。従って、実用的な伸びおよび製造コストを考慮して、焼結温度:1150〜1300℃とするのが好ましいといえる。 (c) Of these, the tensile strength and elongation peaked at a sintering temperature of about 1250 ° C. The increase in elongation is particularly remarkable, and the elongation (17%) at 1250 ° C. is more than four times the elongation (4%) at 1150 ° C. Therefore, it can be said that the sintering temperature is preferably 1150 to 1300 ° C. in consideration of practical elongation and manufacturing cost.
(4)焼結雰囲気の影響
(a)焼結雰囲気が低熱伝導部材(低熱伝導合金)の特性に及す影響を表4にまとめた。焼結雰囲気に対する各特性を図4Aおよび図4Bに示した。図4Bは前述した熱的特性指数を示したものである。用いた試験片の組成はFe−x%Mn−1%C(単位:質量%)である。
(4) Influence of sintering atmosphere
(a) The influence of the sintering atmosphere on the characteristics of the low thermal conductive member (low thermal conductive alloy) is summarized in Table 4. Each characteristic with respect to the sintering atmosphere is shown in FIGS. 4A and 4B. FIG. 4B shows the above-described thermal characteristic index. The composition of the test piece used is Fe-x% Mn-1% C (unit: mass%).
(b)図4Aおよび図4Bから明かなように、窒素雰囲気のときの方がAr雰囲気のときよりも、熱伝導率、線膨張係数および引張強さが優れている。熱的特性指数は窒素雰囲気中で、Mn:12.5質量%のときにピークを示した。従って、焼結雰囲気は不活性ガス(Ar)雰囲気よりも、窒素雰囲気の方が好ましい。しかも、窒素雰囲気のときは、Mn:10〜20質量%さらには10〜15質量%が好ましい。 (b) As is clear from FIGS. 4A and 4B, the thermal conductivity, the linear expansion coefficient, and the tensile strength are better in the nitrogen atmosphere than in the Ar atmosphere. The thermal characteristic index showed a peak in a nitrogen atmosphere when Mn was 12.5% by mass. Therefore, the nitrogen atmosphere is preferable to the sintering atmosphere rather than the inert gas (Ar) atmosphere. Moreover, in a nitrogen atmosphere, Mn: 10 to 20% by mass and further 10 to 15% by mass is preferable.
(c)もっとも、Ar雰囲気であっても熱伝導率、線膨張係数および引張強さは所望の範囲内にあった。しかも、伸びに関しては、Mn:25質量%においてAr雰囲気のとき、窒素雰囲気のときよりも顕著なピークを示した。 (c) However, even in an Ar atmosphere, the thermal conductivity, linear expansion coefficient, and tensile strength were within the desired ranges. In addition, with regard to elongation, a peak prominent when Mn was 25% by mass in the Ar atmosphere than in the nitrogen atmosphere.
(5)焼結雰囲気と焼結温度の影響
(a)焼結雰囲気と焼結温度が低熱伝導部材(低熱伝導合金)の特性に及す影響を表5にまとめた。図5Aは窒素雰囲気の場合の各特性であり、図5BはAr雰囲気の場合の各特性である。いずれも、●は焼結温度が1150℃の場合、○は焼結温度が1250℃の場合である。用いた試験片の組成はFe−x%Mn−1%C(単位:質量%)である。
(5) Influence of sintering atmosphere and sintering temperature
(a) The influence of the sintering atmosphere and the sintering temperature on the characteristics of the low thermal conductive member (low thermal conductive alloy) is summarized in Table 5. FIG. 5A shows each characteristic in a nitrogen atmosphere, and FIG. 5B shows each characteristic in an Ar atmosphere. In both cases, ● represents a case where the sintering temperature is 1150 ° C., and ○ represents a case where the sintering temperature is 1250 ° C. The composition of the test piece used is Fe-x% Mn-1% C (unit: mass%).
(b)図5Aおよび図5Bから明かなように、いずれの雰囲気の場合においても、焼結温度が低いと、伸びが激減していることが解る。ここで、焼結温度:1150℃の場合であって、伸びがピークとなり易いMn:25質量%のときを観ると、窒素雰囲気では伸びが高々2%程度であるのに対して、Ar雰囲気では伸びが4%となっている。すると、焼結温度が低いとき、少なくとも伸びに関しては、Ar雰囲気の方が窒素雰囲気よりも好ましいといえる。 (b) As is clear from FIGS. 5A and 5B, it can be seen that in any atmosphere, the elongation is drastically reduced when the sintering temperature is low. Here, when the sintering temperature is 1150 ° C. and the elongation tends to peak, Mn: 25% by mass, the elongation is at most about 2% in the nitrogen atmosphere, whereas in the Ar atmosphere, The growth is 4%. Then, when the sintering temperature is low, it can be said that the Ar atmosphere is preferable to the nitrogen atmosphere at least with respect to elongation.
但し、全体的に観ると、前述したように、窒素雰囲気の方がAr雰囲気よりも好ましい。さらに焼結温度が比較的高温の1250℃であると一層好ましいといえる。 However, as a whole, the nitrogen atmosphere is preferable to the Ar atmosphere as described above. Further, it can be said that the sintering temperature is more preferably 1250 ° C., which is a relatively high temperature.
(6)原料粉末の影響
(a)原料粉末の構成粉末の相違が低熱伝導部材(低熱伝導合金)の特性に及す影響を表6にまとめた。構成粉末の相違による特性への影響を図6Aおよび図6Bに示した。図6Bは前述した熱的特性指数を示したものである。用いた試験片の組成はFe−15%Mn−1%CとFe−25%Mn−1%C(単位:質量%)である。対比した構成粉末は、Fe−50質量%Mnの合金粉末と純Mn粉末とである。
(6) Influence of raw material powder
Table 6 summarizes the influence of the difference in the constituent powder of the raw material powder on the characteristics of the low thermal conductive member (low thermal conductive alloy). FIG. 6A and FIG. 6B show the influence on the characteristics due to the difference in the constituent powder. FIG. 6B shows the above-described thermal characteristic index. The composition of the test piece used is Fe-15% Mn-1% C and Fe-25% Mn-1% C (unit: mass%). Contrast constituent powders are Fe-50 mass% Mn alloy powder and pure Mn powder.
(b)図6Aおよび図6Bから明かなように、純Mn粉末を用いた方がFe−Mn合金粉末を用いるよりも熱伝導率は低く、線膨張係数はアルミニウム合金の線膨張係数に近接する。この結果、熱的特性指数も純Mn粉末を用いた方が優れた値を示す。 (b) As is clear from FIGS. 6A and 6B, the thermal conductivity is lower when pure Mn powder is used than when Fe-Mn alloy powder is used, and the linear expansion coefficient is closer to the linear expansion coefficient of the aluminum alloy. . As a result, the thermal characteristic index shows a superior value when pure Mn powder is used.
一方、Mn:25質量%の場合を観れば明らかなように、引張強さおよび伸びに関しては、純Mn粉末を用いるよりもFe−Mn合金粉末を用いる方が好ましい。 On the other hand, as apparent from the case of Mn: 25% by mass, with respect to tensile strength and elongation, it is preferable to use Fe—Mn alloy powder rather than pure Mn powder.
もっとも、純Mn粉末を用いた場合でも、実用上十分な強度および伸びが得られており、熱伝導率および線膨張係数のみならず原料コストをも加味すると、純Mn粉末を用いる方が好ましい。 However, even when pure Mn powder is used, practically sufficient strength and elongation are obtained, and it is preferable to use pure Mn powder in consideration of raw material costs as well as thermal conductivity and linear expansion coefficient.
(c)なお、純Mn粉末を用いた場合、低熱伝導部材の密度が低下する傾向にある。しかし、必要に応じて再圧縮および/または再焼結を行えば、密度を上げることも可能である。純Mn粉末を用いた低熱伝導部材に再圧縮・再焼結を行った場合の各特性を図6Cに示した。これにより、再圧縮等を行っても、熱伝導率や線膨張係数はほとんど変化せず、密度が再圧縮圧力と共に格段に向上することが明かである。なお再焼結は、窒素雰囲気、焼結温度:1250℃、焼結時間:30分間の焼結条件下で行った。 (c) When pure Mn powder is used, the density of the low thermal conductive member tends to decrease. However, the density can be increased by performing recompression and / or re-sintering as required. Each characteristic when recompressing and re-sintering is performed on a low thermal conductive member using pure Mn powder is shown in FIG. 6C. Thereby, even if recompression etc. are performed, it is clear that thermal conductivity and a linear expansion coefficient hardly change, and a density improves markedly with recompression pressure. The re-sintering was performed under a nitrogen atmosphere, a sintering temperature of 1250 ° C., and a sintering time of 30 minutes.
(7)成形圧力の影響
(a)成形圧力が低熱伝導部材(低熱伝導合金)の特性に及す影響を表7にまとめた。また、Fe−50質量%Mnの合金粉末で原料粉末を調製した場合と純Mn粉末で原料粉末を調製した場合の両方について、成形圧力に対する各特性の変化を図7に示した。ここで用いた試験片の組成はFe−25%Mn−1%C(単位:質量%)である。
(7) Influence of molding pressure
Table 7 summarizes the influence of the molding pressure on the characteristics of the low thermal conductive member (low thermal conductive alloy). In addition, FIG. 7 shows changes in characteristics with respect to the molding pressure in both cases where the raw material powder was prepared with an alloy powder of Fe-50 mass% Mn and the raw material powder was prepared with pure Mn powder. The composition of the test piece used here is Fe-25% Mn-1% C (unit: mass%).
(b)図7から明かなように、成形圧力が増加する程に密度および引張強さも増加するが、成形圧力が588MPa以上さらには784MPa以上でそれらははほぼ飽和状態に近くなった。また、成形圧力が588MPa以上さらには784MPa以上で線膨張係数および伸びはほとんど変化せず、所望の範囲内で安定していた。これらの傾向は原料粉末の種類が異なってもほぼ同様であった。 (b) As apparent from FIG. 7, the density and the tensile strength increase as the molding pressure increases. However, when the molding pressure is 588 MPa or more, further 784 MPa or more, they are almost saturated. Further, when the molding pressure was 588 MPa or more, further 784 MPa or more, the linear expansion coefficient and elongation were hardly changed and stable within a desired range. These tendencies were almost the same regardless of the type of raw material powder.
従って、原料粉末の種類を問わず、成形圧力は550MPa以上さらには750MPa以上が好ましいといえる。
(8)焼結時間の影響
Therefore, it can be said that the molding pressure is preferably 550 MPa or more, more preferably 750 MPa or more, regardless of the type of raw material powder.
(8) Influence of sintering time
(a)焼結時間が低熱伝導部材(低熱伝導合金)の特性に及す影響を表8にまとめた。また、Fe−50質量%Mnの合金粉末で原料粉末を調製した場合と純Mn粉末で原料粉末を調製した場合の両方について、成形圧力に対する各特性の変化を図8に示した。ここで用いた試験片の組成はFe−25%Mn−1%C(単位:質量%)である。 Table 8 summarizes the influence of the sintering time on the characteristics of the low thermal conductive member (low thermal conductive alloy). In addition, FIG. 8 shows changes in the characteristics with respect to the molding pressure for both the case where the raw material powder was prepared with an alloy powder of Fe-50 mass% Mn and the case where the raw material powder was prepared with pure Mn powder. The composition of the test piece used here is Fe-25% Mn-1% C (unit: mass%).
(b)図8から明かなように、原料粉末の種類によらず、焼結時間による密度、熱伝導率、線膨張係数および引張強さへの影響は小さいといえる。もっとも、伸びは焼結時間が30分間以上となるあたりから急増し、120分間あたりで飽和状態となっている。 (b) As is clear from FIG. 8, it can be said that the influence of the sintering time on the density, thermal conductivity, linear expansion coefficient and tensile strength is small regardless of the type of raw material powder. However, the elongation increases rapidly from the time when the sintering time is 30 minutes or more, and is saturated in about 120 minutes.
従って、製造サイクルタイム等をも考慮すると、焼結時間は30〜120分間とするのが好ましい。もっとも、焼結時間が僅か5分でも伸びは10%前後もあり、しかも熱伝導率、線膨張係数および引張強さは所望の範囲内にあることから、焼結時間は比較的短くすることが可能なことが解る。 Therefore, considering the production cycle time and the like, the sintering time is preferably 30 to 120 minutes. However, even if the sintering time is only 5 minutes, the elongation is around 10%, and the thermal conductivity, linear expansion coefficient and tensile strength are within the desired ranges, so the sintering time can be made relatively short. I understand that it is possible.
1 筒内噴射式火花点火機関(筒内噴射式内燃機関)
10 ピストン
11 ピストン頂部
12 ピストン本体部
111 燃料衝突域
20 低熱伝導部材
21 低熱伝導域
30 シリンダブロック
31 シリンダ
40 シリンダヘッド
50 インジェクタ(燃料噴射弁)
1 In-cylinder injection spark ignition engine (in-cylinder injection internal combustion engine)
DESCRIPTION OF
Claims (12)
全体を100質量%としたときに、
マンガン(Mn):5〜35質量%と、
炭素(C):0.5〜1.5質量%と、
残部:鉄(Fe)および不可避不純物若しくは付従的元素と、
からなることを特徴とする筒内噴射式内燃機関用ピストンの低熱伝導合金。 It is provided at the top of an aluminum alloy piston at the top of a piston main body that can reciprocate in a cylinder block of an internal combustion engine, and is injected into the cylinder from a fuel injection valve provided at a cylinder head on the cylinder block. Used for a low thermal conduction layer or a low thermal conduction member that forms a low thermal conduction area that is at least part of a fuel collision area where liquid fuel can collide and has a lower thermal conductivity than the surroundings,
When the total is 100% by mass,
Manganese (Mn): 5 to 35% by mass;
Carbon (C): 0.5 to 1.5% by mass;
Balance: iron (Fe) and inevitable impurities or incidental elements;
A low heat conductive alloy for a piston for a cylinder injection type internal combustion engine.
請求項1または2に記載の低熱伝導合金からなることを特徴とする筒内噴射式内燃機関用ピストンの低熱伝導部材。 It is provided at the top of an aluminum alloy piston at the top of a piston main body that can reciprocate in a cylinder block of an internal combustion engine, and is injected into the cylinder from a fuel injection valve provided at a cylinder head on the cylinder block. Forming a low thermal conductivity region that is at least part of the fuel collision area where liquid fuel can collide and has a lower thermal conductivity than the surroundings,
A low heat conduction member for a piston for a cylinder injection internal combustion engine, comprising the low heat conduction alloy according to claim 1.
該シリンダブロック上のシリンダヘッドに設けた燃料噴射弁から該シリンダ内へ噴射された液体燃料が衝突し得る燃料衝突域の少なくとも一部であって周囲よりも熱伝導率の低い低熱伝導域を形成する低熱伝導層または低熱伝導部材を該ピストン本体部の頂部に有するアルミニウム合金製のピストン頂部とからなる筒内噴射式内燃機関用ピストンであって、
前記低熱伝導層または低熱伝導部材は、請求項1または2に記載の低熱伝導合金からなることを特徴とする筒内噴射式内燃機関用ピストン。 A piston main body capable of reciprocating in a cylinder of a cylinder block of an internal combustion engine;
A low heat conduction region is formed which is at least a part of a fuel collision region where liquid fuel injected into the cylinder from a fuel injection valve provided on a cylinder head on the cylinder block can collide and has a lower thermal conductivity than the surroundings. A piston for an in-cylinder internal combustion engine comprising a piston top made of an aluminum alloy having a low heat conduction layer or a low heat conduction member on the top of the piston main body,
The in-cylinder internal combustion engine piston according to claim 1, wherein the low heat conductive layer or the low heat conductive member is made of the low heat conductive alloy according to claim 1.
該シリンダブロック上に設けたシリンダヘッドと、
該シリンダヘッドに設けた燃料噴射弁と、
該シリンダ内を往復動可能なピストン本体部と該燃料噴射弁から該シリンダ内へ噴射された液体燃料が衝突し得る燃料衝突域の少なくとも一部であって周囲よりも熱伝導率の低い低熱伝導域を形成する低熱伝導層または低熱伝導部材を該ピストン本体部の頂部に有するアルミニウム合金製のピストン頂部とからなるピストンと、を備えた筒内噴射式内燃機関であって、
前記低熱伝導層または低熱伝導部材は、請求項1または2に記載の低熱伝導合金からなることを特徴とする筒内噴射式内燃機関。 A cylinder block having a cylinder;
A cylinder head provided on the cylinder block;
A fuel injection valve provided in the cylinder head;
Low thermal conductivity that is at least part of a fuel collision area where liquid fuel injected from the fuel injection valve into the cylinder can collide with the piston main body that can reciprocate in the cylinder and has lower thermal conductivity than the surroundings. A piston comprising an aluminum alloy piston top having a low heat conduction layer or a low heat conduction member forming a region at the top of the piston body, and a cylinder injection internal combustion engine comprising:
The in-cylinder injection internal combustion engine, wherein the low thermal conductive layer or the low thermal conductive member is made of the low thermal conductive alloy according to claim 1 or 2.
該粉末成形体を加熱炉内で加熱して焼結体とする焼結工程とからなり、
前記原料粉末は、全体を100質量%としたときに、
Mn:5〜35質量%と、
C:0.5〜1.5質量%と、
残部:Feおよび不可避不純物若しくは付従的元素とからなり、
前記焼結体から請求項3に記載の低熱伝導部材が得られることを特徴とする筒内噴射式内燃機関用ピストンの低熱伝導部材の製造方法。 A molding process in which the raw material powder filled in the cavity of the mold is pressed to form a powder compact; and
It comprises a sintering step in which the powder compact is heated in a heating furnace to form a sintered body,
When the raw material powder is 100% by mass as a whole,
Mn: 5 to 35% by mass,
C: 0.5 to 1.5 mass%,
The balance: Fe and inevitable impurities or incidental elements,
The method for producing a low heat conductive member for a piston for a cylinder injection internal combustion engine, wherein the low heat conductive member according to claim 3 is obtained from the sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007186245A JP4637143B2 (en) | 2007-07-17 | 2007-07-17 | In-cylinder injection internal combustion engine, piston for in-cylinder injection internal combustion engine, low heat conduction alloy for piston for in-cylinder injection internal combustion engine, low heat conduction member for piston for in-cylinder injection internal combustion engine, and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007186245A JP4637143B2 (en) | 2007-07-17 | 2007-07-17 | In-cylinder injection internal combustion engine, piston for in-cylinder injection internal combustion engine, low heat conduction alloy for piston for in-cylinder injection internal combustion engine, low heat conduction member for piston for in-cylinder injection internal combustion engine, and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009024527A JP2009024527A (en) | 2009-02-05 |
JP4637143B2 true JP4637143B2 (en) | 2011-02-23 |
Family
ID=40396579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007186245A Expired - Fee Related JP4637143B2 (en) | 2007-07-17 | 2007-07-17 | In-cylinder injection internal combustion engine, piston for in-cylinder injection internal combustion engine, low heat conduction alloy for piston for in-cylinder injection internal combustion engine, low heat conduction member for piston for in-cylinder injection internal combustion engine, and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4637143B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112012002584A2 (en) * | 2009-08-06 | 2016-03-22 | Federal Mogul Corp | piston for an internal combustion engine, and method for building the same. |
CN115537672B (en) * | 2022-07-19 | 2023-08-18 | 燕山大学 | Low-cost austenitic steel with yield strength greater than 1000MPa and warm rolling preparation process thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000186617A (en) * | 1998-12-24 | 2000-07-04 | Toyota Motor Corp | Piston of direct injection type internal combustion engine and its manufacture |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11193721A (en) * | 1997-10-30 | 1999-07-21 | Toyota Central Res & Dev Lab Inc | Direct injection type spark-ignition engine |
-
2007
- 2007-07-17 JP JP2007186245A patent/JP4637143B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000186617A (en) * | 1998-12-24 | 2000-07-04 | Toyota Motor Corp | Piston of direct injection type internal combustion engine and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JP2009024527A (en) | 2009-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4458496B2 (en) | In-cylinder injection internal combustion engine, piston for in-cylinder injection internal combustion engine, method for manufacturing piston for in-cylinder injection internal combustion engine | |
KR102139838B1 (en) | Highly Thermally Conductive Valve Seat Ring | |
JP3928782B2 (en) | Method for producing sintered alloy for valve seat | |
KR101895141B1 (en) | Assembly of internal combustion engine valve and valve seat | |
EP1418249B1 (en) | Hard particle, wear-resistant iron-base sintered alloy, method of manufacturing the same, and valve seat | |
JP5658804B1 (en) | Sintered alloy valve guide and manufacturing method thereof | |
JP6026015B2 (en) | Sintered valve seat and manufacturing method thereof | |
JP6386676B2 (en) | Sintered valve seat | |
GB2476395A (en) | Sintered valve guide and a method of making a sintered valve guide | |
TW200925295A (en) | Metallurgical powder composition and method of production | |
JP4375359B2 (en) | Piston of internal combustion engine | |
JP2011157845A (en) | Valve seat for internal combustion engine, superior in cooling power | |
JP4637143B2 (en) | In-cylinder injection internal combustion engine, piston for in-cylinder injection internal combustion engine, low heat conduction alloy for piston for in-cylinder injection internal combustion engine, low heat conduction member for piston for in-cylinder injection internal combustion engine, and manufacturing method thereof | |
JP3749809B2 (en) | Piston ring composite wear-resistant ring with cooling cavity with excellent high-temperature wear resistance and thermal conductivity | |
JPH0233848B2 (en) | KOONTAIMAMOSEIBARUBUSHIITO | |
JP3942136B2 (en) | Iron-based sintered alloy | |
KR101636762B1 (en) | Method for manufacturing a vehicle engine piston joined with a combined sintered insert ring, and an engine piston made by it | |
JP3470595B2 (en) | Al-Si alloy piston that can be installed above the top ring groove | |
JP2000337511A (en) | Piston-ring abrasion-resistant ring made of free-graphite precipitated iron system sintered material excellent in abrasion resistance and heat conductivity | |
JP6309700B1 (en) | Sintered valve seat | |
JP3346270B2 (en) | Piston ring wear ring made of free graphite precipitated iron-based sintered material with excellent high temperature wear resistance | |
JP2013173961A (en) | Valve seat made from iron-based sintered alloy | |
KR101046419B1 (en) | Valve seat and method of producing the valve seat | |
JPH11350059A (en) | Valve guide | |
JPH11269619A (en) | Piston ring wear resistant ring made of free graphite-precipitated iron base sintering material excellent in high temperature wear resistance and thermal conductivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091127 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20091127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |