JP4634102B2 - Light control element - Google Patents
Light control element Download PDFInfo
- Publication number
- JP4634102B2 JP4634102B2 JP2004263261A JP2004263261A JP4634102B2 JP 4634102 B2 JP4634102 B2 JP 4634102B2 JP 2004263261 A JP2004263261 A JP 2004263261A JP 2004263261 A JP2004263261 A JP 2004263261A JP 4634102 B2 JP4634102 B2 JP 4634102B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- light
- optical waveguide
- photonic crystal
- control element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Description
この発明は、フォトニック結晶構造により形成された光導波路に電界を印加して光を制御する光制御素子に関する。 The present invention relates to a light control element that controls light by applying an electric field to an optical waveguide formed with a photonic crystal structure.
光の波長程度で一次元、二次元または三次元的に屈折率の異なる周期構造を、誘電体に人工的に形成したフォトニック結晶は、半導体素子の電子に対するバンド構造と類似した光子に対するバンド構造をもち、ある周期構造ではフォトニックバンドギャップと呼ばれる光の禁制体をもつ。フォトニック結晶は、強力な光閉じ込め効果や異常分散効果等の光を制御する効果をもつため、他の光機能素子では不可能とされる様々の機能を実現でき、例えば、光集積回路の大きさを劇的に小さくしたフォトニックIC等の重要な光デバイスを形成できると期待されている。 A photonic crystal that is artificially formed in a dielectric with a periodic structure with a refractive index that is different one-dimensionally, two-dimensionally, or three-dimensionally at the wavelength of light is a band structure for photons that is similar to the band structure for electrons in semiconductor devices. Some periodic structures have a light forbidden body called photonic band gap. Photonic crystals have the effect of controlling light, such as a powerful light confinement effect and anomalous dispersion effect, so that they can realize various functions that are impossible with other optical functional elements. It is expected to be able to form important optical devices such as photonic ICs with dramatically reduced thickness.
光を制御する効果が大きい三次元のフォトニック結晶は、製作が困難である一方、二次元のフォトニック結晶は、半導体チップのプロセス技術であるリソグラフィーやエッチング等の微細加工技術を用いて容易に形成できる。二次元のフォトニック結晶では、例えば、配列の一部を除去した線欠陥光導波路を形成することにより、光を強く局所的に閉じ込めて伝搬できるとともに急峻な曲げを実現できる。また、線欠陥導波路を伝搬するある波長の光の伝搬速度は極めて遅いため、短い距離で大きな光の相互作用を得られることから、光を変調して制御する光スイッチ等の光制御素子を微小化できる。 Three-dimensional photonic crystals, which have a large effect of controlling light, are difficult to manufacture, while two-dimensional photonic crystals are easily produced using microfabrication technologies such as lithography and etching, which are semiconductor chip process technologies. Can be formed. In a two-dimensional photonic crystal, for example, by forming a line-defect optical waveguide from which a part of the array is removed, light can be confined and propagated locally and a sharp bend can be realized. In addition, since the propagation speed of light of a certain wavelength propagating through a line defect waveguide is extremely slow, a large light interaction can be obtained at a short distance. Therefore, an optical control element such as an optical switch that modulates and controls light is provided. Can be miniaturized.
フォトニック結晶を光制御素子として機能させるためには、フォトニック結晶を電気光学材料で形成して電圧を印加する等により屈折率を制御する。 In order for the photonic crystal to function as a light control element, the refractive index is controlled by forming a photonic crystal of an electro-optic material and applying a voltage.
特許文献1では、二次元フォトニック結晶配列をもち電気光学効果を示す平面状の基板に、光を導波しようとする経路に沿って電極を積層し、該電極の対向電極との間に電圧を印加して電極の積層方向直下の基板の屈折率を変化させることにより光導波路を形成する光デバイスが提案されている。特許文献1の光デバイスでは光導波路から電極にしみだした光が電極で吸収されやすいため、光の伝搬損失が大きい。 In Patent Document 1, an electrode is stacked on a planar substrate having a two-dimensional photonic crystal array and exhibiting an electro-optic effect along a path for guiding light, and a voltage is applied between the electrode and the counter electrode. An optical device has been proposed in which an optical waveguide is formed by changing the refractive index of a substrate immediately below the stacking direction of the electrodes by applying a voltage. In the optical device of Patent Document 1, light that has oozed from the optical waveguide to the electrode is easily absorbed by the electrode, and thus the light propagation loss is large.
特許文献2では、二次元フォトニック結晶配列に線欠陥導波路をもつ平面状の基板に、線欠陥導波路に沿って電極を積層し、該電極に対向する電極との間に電圧を印加して電極の積層方向直下の線欠陥導波路の屈折率を変化させる光スイッチが提案されている。特許文献1の光デバイスでは線欠陥導波路から電極にしみだした光が電極で吸収されやすいため、光の伝搬損失が大きい。 In Patent Document 2, an electrode is stacked along a line defect waveguide on a planar substrate having a line defect waveguide in a two-dimensional photonic crystal array, and a voltage is applied between the electrode facing the electrode. There has been proposed an optical switch that changes the refractive index of a line defect waveguide immediately below the stacking direction of the electrodes. In the optical device of Patent Document 1, light that has oozed from the line defect waveguide to the electrode is easily absorbed by the electrode, so that the light propagation loss is large.
本発明は、フォトニック結晶配列で構成された光導波路に光を高効率に閉じ込め、光導波路を伝搬する光を制御できる光制御素子を提供することを目的とする。 An object of the present invention is to provide a light control element capable of confining light in an optical waveguide configured with a photonic crystal array with high efficiency and controlling light propagating through the optical waveguide.
この発明の光制御素子は、伝搬層と電極対とを備え、伝搬層は、電気光学効果を有する材料で形成され、禁止帯領域と光導波路とを有する。禁止帯領域は、二次元で周期的に、屈折率の異なるフォトニック結晶構造をもち特定の波長の光の二次元的な伝搬を禁止し、光導波路は、フォトニック結晶構造の周期性を線状に乱して禁止帯領域で伝搬の禁止された波長の光を伝搬する。電極対は、伝搬層の一部に埋め込まれ、フォトニック結晶構造の二次元的な配列に直交する方向において光導波路に重ならずに両側から挟んで、禁止帯領域のフォトニック結晶構造と同一の構造が一体的に形成され、電極対に電圧を印加し、光導波路内に電界を発生させ、伝搬層の誘電率を変化させることにより光制御を行う。 The light control element of the present invention includes a propagation layer and an electrode pair. The propagation layer is formed of a material having an electro-optic effect, and includes a forbidden band region and an optical waveguide. The forbidden band region has two-dimensional periodic photonic crystal structures with different refractive indexes and prohibits two-dimensional propagation of light of a specific wavelength, and the optical waveguide linearizes the periodicity of the photonic crystal structure. The light of the wavelength prohibited to propagate in the forbidden band region is propagated. The electrode pair is embedded in a part of the propagation layer and is sandwiched from both sides without overlapping the optical waveguide in the direction orthogonal to the two-dimensional arrangement of the photonic crystal structure, and is identical to the photonic crystal structure in the forbidden band region These structures are integrally formed, and a light is controlled by applying a voltage to the electrode pair, generating an electric field in the optical waveguide, and changing the dielectric constant of the propagation layer .
また、電極対に電圧を印加する電圧源を備えるとよい。 Moreover , it is good to provide the voltage source which applies a voltage to an electrode pair.
請求項1の光制御素子によれば、光導波路に電界が発生するときの電極による光の吸収を防止して高効率に光を導波しながら光を制御できる。 According to the light control element of the first aspect, it is possible to control light while guiding light with high efficiency by preventing light absorption by the electrode when an electric field is generated in the optical waveguide.
請求項2の光制御素子によれば、光導波路に電界が発生するときの電極による光の吸収を防止して高効率に光を導波しながら光を制御できる。 According to the light control device according to claim 2, capable of controlling the light while guiding light with high efficiency by preventing absorption of light by the electrode when an electric field is generated in the optical waveguide.
第1の実施形態の光制御素子1は、図1(a)の平面図及び図1(b)のA1-A2断面図に示すように、伝搬層10と第1反射層11と第2反射層12と第1電極13と第2電極14と第3電極15と第4電極16とシリコン基板17とを備え、伝搬層10を両面から挟むように第1反射層11と第2反射層12とが設けられ、第1反射層11の伝搬層10と逆側の面に第1電極13及び第2電極14が設けられ、第2反射層12の伝搬層10と逆側の面に第3電極15及び第4電極16が設けられている。 As shown in the plan view of FIG. 1A and the A1-A2 cross-sectional view of FIG. 1B, the light control element 1 of the first embodiment has a propagation layer 10, a first reflection layer 11, and a second reflection. The layer 12, the first electrode 13, the second electrode 14, the third electrode 15, the fourth electrode 16, and the silicon substrate 17 are provided, and the first reflective layer 11 and the second reflective layer 12 are provided so as to sandwich the propagation layer 10 from both sides. The first electrode 13 and the second electrode 14 are provided on the surface of the first reflective layer 11 opposite to the propagation layer 10, and the third electrode is provided on the surface of the second reflective layer 12 opposite to the propagation layer 10. An electrode 15 and a fourth electrode 16 are provided.
伝搬層10は、印加された電界に依存して屈折率を変化させるポッケルス効果やカー効果等の電気光学効果を有する材料、例えばニオブ酸リチウム(LiNbO3)で形成され、図2(a)の平面図及び図2(b)のB1-B2断面図に示すように、禁止帯領域100と光導波路101とをもつフォトニック結晶構造を有する。 The propagation layer 10 is formed of a material having an electro-optic effect such as a Pockels effect or a Kerr effect that changes a refractive index depending on an applied electric field, for example, lithium niobate (LiNbO 3 ), as shown in FIG. As shown in the plan view and the B1-B2 sectional view of FIG. 2B, it has a photonic crystal structure having a forbidden band region 100 and an optical waveguide 101.
禁止帯領域100には同じ円筒形状のホール102が光の波長程度の周期をもって二次元的に規則正しく配列され、各ホール102は、平行かつ等間隔の直線群103と、この直線群103を同じ間隔のまま60度回転させた直線群104との交点を中心にもつ三角配列に形成されている。禁止帯領域100では、ニオブ酸リチウムの存在する部分とホール102が形成されてニオブ酸リチウムの存在しない領域とが周期的に配列されることにより、伝搬層10の平面内を伝搬する光のうち特定波長の光の伝搬が禁止される。なお、禁止帯領域100は、三角配列の他、正方配列、蜂の巣配列等の配列で形成してもよい。ホール102には空気が充填されるほか、ニオブ酸リチウムと屈折率が異なる他の物質を充填してもよく、ニオブ酸リチウムとホール102内の物質とのいずれの屈折率が大きくてもよい。 In the forbidden band region 100, the same cylindrical holes 102 are regularly arranged two-dimensionally with a period of about the wavelength of light, and each hole 102 has a straight line group 103 in parallel and equally spaced, and the straight line group 103 having the same interval. It is formed in a triangular arrangement with the intersection with the straight line group 104 rotated 60 degrees as it is. In the forbidden band region 100, a portion where lithium niobate is present and a region where the hole 102 is formed and the lithium niobate is not present are periodically arranged, so that the light propagating in the plane of the propagation layer 10 Propagation of light of a specific wavelength is prohibited. The forbidden band region 100 may be formed in an array such as a square array or a honeycomb array in addition to a triangular array. In addition to being filled with air, hole 102 may be filled with another substance having a refractive index different from that of lithium niobate, and any refractive index of lithium niobate and the substance in hole 102 may be large.
光導波路101は、禁止帯領域100におけるホール102の二次元的な規則性を乱し、線状にホール102を形成しないことにより線欠陥構造として形成される。光導波路101ではホール102の規則性が乱されているため、禁止帯領域100で伝搬が禁止される波長の光を導波することができ、光導波路101に入射される光は二次元的に光導波路101内に閉じ込められる。光導波路101の線欠陥構造は光を伝播すれば、線状に連続的にホール102を形成しない他、飛び飛びでホール102を形成しないようにしてもよい。 The optical waveguide 101 is formed as a line defect structure by disturbing the two-dimensional regularity of the holes 102 in the forbidden band region 100 and not forming the holes 102 linearly. Since the regularity of the holes 102 is disturbed in the optical waveguide 101, it is possible to guide light having a wavelength prohibited to propagate in the forbidden band region 100, and the light incident on the optical waveguide 101 is two-dimensionally transmitted. It is confined in the optical waveguide 101. As long as light propagates, the line defect structure of the optical waveguide 101 may not form the holes 102 continuously in a linear manner, but may not form the holes 102 by jumping.
第1反射層11及び第2反射層12は、伝搬層10を形成するニオブ酸リチウムよりも屈折率が低い材料、例えば二酸化シリコンで少なくとも光導波路101の積層方向両面を覆うように形成され、光導波路101に入射される光は積層方向へ伝搬できない。すなわち、伝搬層10に平行に光導波路101に入射した光は、伝搬層10の面内においてはフォトニック結晶配列により光導波路101内に閉じ込められ、積層方向においては第1反射層11及び第2反射層12により光導波路101内に閉じ込められることにより、三次元的に光導波路101内に閉じ込められて光導波路101に沿って進行する。なお、製造を容易にする等のため、図3(a)の平面図及び図3(b)のC1-C2断面図に示すように第1反射層11及び第2反射層12にホール102を貫通させてもよい。 The first reflective layer 11 and the second reflective layer 12 are formed so as to cover at least both sides in the stacking direction of the optical waveguide 101 with a material having a refractive index lower than that of lithium niobate forming the propagation layer 10, for example, silicon dioxide. Light incident on the waveguide 101 cannot propagate in the stacking direction. That is, light incident on the optical waveguide 101 parallel to the propagation layer 10 is confined in the optical waveguide 101 by the photonic crystal arrangement in the plane of the propagation layer 10, and the first reflective layer 11 and the second reflection layer 11 in the stacking direction. By being confined in the optical waveguide 101 by the reflective layer 12, it is confined in the optical waveguide 101 three-dimensionally and travels along the optical waveguide 101. For ease of manufacture, etc., holes 102 are formed in the first reflective layer 11 and the second reflective layer 12 as shown in the plan view of FIG. 3A and the C1-C2 cross-sectional view of FIG. It may be penetrated.
第1電極13、第2電極14、第3電極15、第4電極16は、フォトニック結晶構造の二次元的な配列に直交する積層方向において禁止帯領域100にのみ重なり光導波路101には重ならないように、光導波路101に沿って形成されている。第1電極13と第2電極14との間隔及び第3電極15と第4電極16との間隔は、光導波路101の幅に等しい。第1電極13と第3電極15とは1対の電極対を構成して積層方向において対向するように同形状に形成され、第2電極14と第4電極16とは他の1対の電極対を構成して積層方向において対向するように同形状に形成されている。なお、製造を容易にする等のため、図4(a)の平面図及び図4(b)のD1-D2断面図に示すように第1電極13、第2電極14、第3電極15及び第4電極16にホール102を貫通させてもよい。 The first electrode 13, the second electrode 14, the third electrode 15, and the fourth electrode 16 overlap only the forbidden band region 100 in the stacking direction orthogonal to the two-dimensional arrangement of the photonic crystal structure, and overlap the optical waveguide 101. It is formed along the optical waveguide 101 so as not to become. The distance between the first electrode 13 and the second electrode 14 and the distance between the third electrode 15 and the fourth electrode 16 are equal to the width of the optical waveguide 101. The first electrode 13 and the third electrode 15 constitute a pair of electrodes and are formed in the same shape so as to face each other in the stacking direction, and the second electrode 14 and the fourth electrode 16 are another pair of electrodes. The pair is formed in the same shape so as to face each other in the stacking direction. For ease of manufacture, etc., the first electrode 13, the second electrode 14, the third electrode 15 and the first electrode 13, as shown in the plan view of FIG. 4A and the D1-D2 cross-sectional view of FIG. The hole 102 may be passed through the fourth electrode 16.
伝搬層10、第1反射層11、第2反射層12、第1電極13、第2電極14、第3電極15、第4電極16に同一のフォトニック結晶構造を形成した光制御素子1の製作方法を説明する。まず、土台となるシリコン基板17にポジ型のレジストを塗布し、シリコン基板17をリソグラフィーにより第3電極15及び第4電極16の形状にエッチングし、全体に電極材料の金を200nm堆積させてリフトオフ法によりエッチングされていないレジスト上の金を除去することにより第3電極15及び第4電極16を形成する。なお、第3電極15及び第4電極16に電圧を印可できるように引き出し線も同時に形成する。次に、シリコン基板17、第3電極15及び第4電極16を覆うように、スパッタまたはCVDを用いて二酸化シリコンを2μm成膜して第2反射層12を形成する。次に、第2反射層12にニオブ酸リチウム基板を接合し、ニオブ酸リチウム基板を研磨して0.5μmに薄膜化し、光学研磨して表面粗さを10nm以下に抑え、さらに研磨面に熱酸化シリコンを2μm成膜することにより伝搬層10を形成する。次に、伝搬層10にポジ型のレジストを塗布し、シリコン基板17をリソグラフィーにより第1電極13及び第2電極14の形状にエッチングし、全体に電極材料の金を200nm堆積させてリフトオフ法によりエッチングされていないレジスト上の金を除去することにより第1電極13及び第2電極14を形成する。なお、第1電極13及び第2電極14に電圧を印可できるように引き出し線も同時に形成する。次に、第2反射層12、第1電極13及び第2電極14を覆うようにニッケルを100nm蒸着し、さらにポジ型のレジストを塗布して電子ビーム描画を用いたリソグラフィーにより400nm間隔の直径280nmのホール102をもつフォトニック結晶構造の金属マスクを形成する。なお、電子ビーム描画を用いたリソグラフィーの他、フォトリソグラフィー、レーザ加工等により金属マスクを形成してもよい。金属マスクにより、アルゴン系のドライエッチングと、フロン系のドライエッチングを用いて第2電極14層、第2反射層12、伝搬層10、第1反射層11、第1電極13層を積層方向にエッチングしてフォトニック結晶構造のホール102を形成する。エッチングにはプラズマエッチングによるドライエッチングの他、薬品によるウェットエッチング等を用いてもよい。 The light control element 1 having the same photonic crystal structure formed on the propagation layer 10, the first reflection layer 11, the second reflection layer 12, the first electrode 13, the second electrode 14, the third electrode 15, and the fourth electrode 16. The production method will be described. First, a positive resist is applied to the base silicon substrate 17, the silicon substrate 17 is etched to the shape of the third electrode 15 and the fourth electrode 16 by lithography, and the electrode material is deposited with a thickness of 200 nm on the whole to lift off. The third electrode 15 and the fourth electrode 16 are formed by removing the gold on the resist not etched by the method. A lead line is also formed at the same time so that a voltage can be applied to the third electrode 15 and the fourth electrode 16. Next, 2 μm of silicon dioxide is formed by sputtering or CVD so as to cover the silicon substrate 17, the third electrode 15, and the fourth electrode 16, thereby forming the second reflective layer 12. Next, a lithium niobate substrate is joined to the second reflective layer 12, the lithium niobate substrate is polished to a thickness of 0.5 μm, optically polished to suppress the surface roughness to 10 nm or less, and the polished surface is thermally oxidized The propagation layer 10 is formed by depositing 2 μm of silicon. Next, a positive resist is applied to the propagation layer 10, the silicon substrate 17 is etched to the shape of the first electrode 13 and the second electrode 14 by lithography, and gold of electrode material is deposited to a thickness of 200 nm on the whole and lift-off is used. The first electrode 13 and the second electrode 14 are formed by removing the gold on the resist that has not been etched. A lead line is also formed at the same time so that a voltage can be applied to the first electrode 13 and the second electrode 14. Next, nickel is deposited to a thickness of 100 nm so as to cover the second reflective layer 12, the first electrode 13, and the second electrode 14, a positive resist is applied, and a diameter of 280 nm at 400 nm intervals is applied by lithography using electron beam drawing. A metal mask having a photonic crystal structure having a plurality of holes 102 is formed. In addition to lithography using electron beam drawing, a metal mask may be formed by photolithography, laser processing, or the like. Using a metal mask, the second electrode 14 layer, the second reflective layer 12, the propagation layer 10, the first reflective layer 11, and the first electrode 13 layer are stacked in the stacking direction using argon-based dry etching and Freon-based dry etching. Etching forms holes 102 with a photonic crystal structure. Etching may be dry etching using plasma etching, wet etching using chemicals, or the like.
伝搬層10は、印加された電界に依存して屈折率を変化させるポッケルス効果やカー効果等の電気光学効果を有する材料であれば、ニオブ酸リチウムの他、ニオブ酸チタン及びKTP等の無機結晶、PZT及びPZLT等のセラミックス、アゾ色素、スチルベンゼン色素及びダスト等の有機分子または有機結晶、並びに量子井戸構造を有する半導体結晶等であってもよい。 If the propagation layer 10 is a material having an electro-optic effect such as a Pockels effect or a Kerr effect that changes the refractive index depending on an applied electric field, an inorganic crystal such as titanium niobate and KTP in addition to lithium niobate. Further, ceramics such as PZT and PZLT, organic molecules or organic crystals such as azo dyes, stilbenzene dyes and dusts, and semiconductor crystals having a quantum well structure may be used.
伝搬層10は、ADP(NH4H2PO4)、KDP(KH2PO4)、DKDP(KD2PO4)、RDP(RbH2PO4)、RDA(RbH2AsO4)、LN、LT、KN、KT、BNN、SBN、LI、BBO、LBO、BSO、GaAs、GaP、InP、ZnTe、ZnSe、ZnS、ZnO、CdTe、CdS、CdSe、Te、Se、Ag3AsS3、Ag3SbS3、AgGaS2、AgGaSe2、ZnGeP2、GdGeAs2、Bi12SiO20、Bi12GeO20、Bi12TiO20、KTiOAsO4、KTiOPO4、BaTiO3、SrTiO3、KTaO3、KTa0.65Nb0.35O3、Cd2Nb2O7、LaBGeO5や、PZT、PLZT等のセラミックス、Ga、In、Al、As、P、N、Sb、Zn、SeのIII-V族及びII-VI族半導体混晶である半導体量子井戸構造等の無機光学材料で形成してもよい。 The propagation layer 10 includes ADP (NH 4 H 2 PO 4 ), KDP (KH 2 PO 4 ), DKDP (KD 2 PO 4 ), RDP (RbH 2 PO 4 ), RDA (RbH 2 AsO 4 ), LN, LT , KN, KT, BNN, SBN, LI, BBO, LBO, BSO, GaAs, GaP, InP, ZnTe, ZnSe, ZnS, ZnO, CdTe, CdS, CdSe, Te, Se, Ag 3 AsS 3 , Ag 3 SbS 3 , AgGaS 2 , AgGaSe 2 , ZnGeP 2 , GdGeAs 2 , Bi 12 SiO 20 , Bi 12 GeO 20 , Bi 12 TiO 20 , KTiOAsO 4 , KTiOPO 4 , BaTiO 3 , SrTiO 3 , KTaO 3 , KTa 0.65 Nb 0.35 O 3 , Cd 2 Nb 2 O 7 , LaBGeO 5 and PZT, PLZT and other ceramics, Ga, In, Al, As, P, N, Sb, Zn, Se III-V and II-VI group semiconductor mixed crystals You may form with inorganic optical materials, such as a semiconductor quantum well structure.
また伝搬層10は、アゾ色素、スチルベンゼン色素、ダスト、ポリジアセチレン、mNA、MNA、MAP、POM、DAN、DIVA、NPP、COANP、MNBA、MMONS、MBANP、TC-28、DNBB、DMNP、MNA、MNP、MMNA、PCNB、ECNB、IPMPU、ECPMDA、p-NMDA、MNPMDA、4NpNa、ホストゲスト系材料、高分子側錯あるいは主錯にNLO基を化学結合した修飾型材料、架橋系材料等の有機光学材料で形成してもよい。 The propagation layer 10 is composed of azo dye, stilbenzene dye, dust, polydiacetylene, mNA, MNA, MAP, POM, DAN, DIVA, NPP, COANP, MNBA, MMONS, MBANP, TC-28, DNBB, DMNP, MNA, Organic optics such as MNP, MMNA, PCNB, ECNB, IPMPU, ECPMDA, p-NMDA, MNPMDA, 4NpNa, host-guest materials, polymer side complexes or modified materials with chemically bonded NLO groups to the main complex, and cross-linked materials You may form with a material.
有機光学材料のホストゲスト系材料として、LCP、PMMA、POE、Poly(Vp-co-St)、PVP、PRO、PCL、PBSSe、PBDG等のホストポリマーと、DANS、DANS33、DR1、DCV、TCV、p-NMDA、p-NA、p-DMNP、CPABMCA、MNA等のゲスト色素との組み合わせを用いることができる。 Host polymers for organic optical materials such as LCP, PMMA, POE, Poly (Vp-co-St), PVP, PRO, PCL, PBSSe, PBDG, etc., and DANS, DANS 33 , DR1, DCV, TCV , P-NMDA, p-NA, p-DMNP, CPABMCA, a combination with guest dyes such as MNA can be used.
高分子側錯あるいは主錯にNLO基を化学結合した修飾型材料では、NLOポリマーとして、Poly(St-DR1)、Poly(St-DASP)、Poly(St-NPP)、Poly(MMA-HNS)、Poly(MMA-co-MMA-DCV)、Poly(St-co-MAAB)、Poly(St-co-MABA)、Poly(St-co-MA-CM)、Poly(MMA-co-MMA-DR1)、Poly(organopho-sphazene-ANS)、PPNA、Poly(VA-co-Vat-NA)、Poly(VAc-co-Vat-NA)、Poly(ST-NA)、Poly(MMA-NA)、Poly(MMA-co-MMA-2R)、Poly(MMS-co-MMA-3R)、P6CS/MMA、ポリアリルアミン、pNA-EG、PMMA/MNA、pNA-PVA、Poly(VDCN-co-VAc)、MSMA等を用いることができ、架橋系材料として(架橋モノマーポリマー、NLO色素)の組み合わせで、(Bis-A、NPDA)、(Bis-A、ANT)、(NNDN、NAN)、(DGE+PS(O)、NPP)、(PVCN、CNNB-R)等を用いることができ、LB膜材料として、DCAMP、FA6、PO86、AODA、TMSC、Poly(HEA-co-A-ASB)、PtBM等を用いることができ、高分子系3次非線形光学材料として、ポリジアセチレン(PTS、TCDU、DCHDFMP、BTFP、mBCMU)、ポリアセチレン誘導体、ポリフェニルアセチレン誘導体、ポリアリレンビニレン(PPV、PTV、MO-PPV、PFV)、ポリチオフェン、アヌレン類、フタロシアニン、フラーレン等を用いることができる。 For modified materials in which NLO groups are chemically bonded to the polymer side complex or main complex, Poly (St-DR1), Poly (St-DASP), Poly (St-NPP), Poly (MMA-HNS) are used as NLO polymers. , Poly (MMA-co-MMA-DCV), Poly (St-co-MAAB), Poly (St-co-MABA), Poly (St-co-MA-CM), Poly (MMA-co-MMA-DR1 ), Poly (organopho-sphazene-ANS), PPNA, Poly (VA-co-Vat-NA), Poly (VAc-co-Vat-NA), Poly (ST-NA), Poly (MMA-NA), Poly (MMA-co-MMA-2R), Poly (MMS-co-MMA-3R), P6CS / MMA, polyallylamine, pNA-EG, PMMA / MNA, pNA-PVA, Poly (VDCN-co-VAc), MSMA And (Bis-A, NPDA), (Bis-A, ANT), (NNDN, NAN), (DGE + PS ( O), NPP), (PVCN, CNNB-R), etc. can be used, and DCAMP, FA6, PO86, AODA, TMSC, Poly (HEA-co-A-ASB), PtBM, etc. are used as LB film materials Polydiacetylene (PTS, TCDU, DC) HDFMP, BTFP, mBCMU), polyacetylene derivatives, polyphenylacetylene derivatives, polyarylene vinylenes (PPV, PTV, MO-PPV, PFV), polythiophenes, annulenes, phthalocyanines, fullerenes, and the like can be used.
第1反射層11及び第2反射層12は、伝搬層10よりも屈折率が小さい媒質で形成されていればよく、第1反射層11及び第2反射層12の屈折率と伝搬層10の屈折率との差が大きいほど好ましい。例えば、伝搬層10に屈折率約2.2のニオブ酸リチウムを用いる場合、第1反射層11及び第2反射層12には、屈折率約1.45の熱酸化シリコン、屈折率約1.3のフッ化マグネシウム(MgF2)、屈折率約1.5の水晶等を用いることができ、熱酸化シリコン、フッ化マグネシウム及び水晶はスパッタ装置等を用いて比較的容易に成膜できる。 The first reflective layer 11 and the second reflective layer 12 may be formed of a medium having a refractive index smaller than that of the propagation layer 10. The refractive indexes of the first reflective layer 11 and the second reflective layer 12 and the propagation layer 10 The larger the difference from the refractive index, the better. For example, when lithium niobate having a refractive index of about 2.2 is used for the propagation layer 10, the first reflective layer 11 and the second reflective layer 12 include thermally oxidized silicon having a refractive index of about 1.45 and magnesium fluoride (refractive index of about 1.3). MgF 2 ), a crystal having a refractive index of about 1.5 or the like can be used, and thermally oxidized silicon, magnesium fluoride, and crystal can be formed relatively easily using a sputtering apparatus or the like.
第1反射層11及び第2反射層12は、それぞれ単層で形成する他、反射率を高く確保できれば、SiO2、Al2O3、MgO、ZrO2、ZnO、Ta2O5、TiO2、Nb2O2等の誘電体を組み合わせた多層膜や、Si、GaAs、InP等の半導体を組み合わせた多層膜で形成してもよい。第1反射層11及び第2反射層12を多層膜で構成することにより、伝搬層10の屈折率との差を大きくしやすくなる。誘電体多層膜は、例えば、スパッタ、電子ビーム蒸着、イオンプレーティングで100層以上の成膜が可能であり、半導体多層膜は、例えば、分子線ビームエピタキシー(MBE)法や有機金属気相成長(MOCVD)法により材料すなわち屈折率の異なる膜を成膜できる。 The first reflective layer 11 and the second reflective layer 12 are each formed as a single layer, and if a high reflectance can be ensured, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , ZnO, Ta 2 O 5, TiO 2 , multilayer film or a combination of dielectric material such as nb 2 O 2, Si, GaAs , may be formed of a multilayer film of a combination of a semiconductor such as InP. By configuring the first reflective layer 11 and the second reflective layer 12 with a multilayer film, the difference from the refractive index of the propagation layer 10 can be easily increased. The dielectric multilayer film can be formed into 100 or more layers by, for example, sputtering, electron beam evaporation, or ion plating. The semiconductor multilayer film can be formed by, for example, molecular beam epitaxy (MBE) method or metal organic vapor phase growth. Films with different materials, that is, refractive indexes can be formed by the (MOCVD) method.
1対の電極対を構成する第1電極13と第3電極15とに電圧を印加するとともに、他の電極対を構成する第2電極14と第4電極16とに電圧を印加すると、禁止帯領域100に電界が印加されるとともに矢印で示すように光導波路101部分にも電界が広がり、第1電極13と第3電極15との間に発生する電界と、第2電極14と第4電極16との間に発生する電界とは、光導波路101部分において同方向となる。 When a voltage is applied to the first electrode 13 and the third electrode 15 constituting one electrode pair, and a voltage is applied to the second electrode 14 and the fourth electrode 16 constituting the other electrode pair, a forbidden band is obtained. An electric field is applied to the region 100 and an electric field spreads in the optical waveguide 101 as indicated by an arrow, and an electric field generated between the first electrode 13 and the third electrode 15, and the second electrode 14 and the fourth electrode. And the electric field generated between the optical waveguide 101 and the optical waveguide 101 are in the same direction.
電界が印加されて禁止帯領域100及び光導波路101の誘電率が変化すると、禁止帯領域100で伝搬が禁止され光導波路101で伝搬が許容される光の波長が変化するとともに、光導波路101を伝搬する光の強度、位相、偏光方向等を変調することができるため、電圧を印加して光導波路101を伝搬する光の波長を切り換えたり、光の透過及び遮断を切り換える光スイッチ等の光制御素子として機能させることができる。 When the electric field is applied and the dielectric constants of the forbidden band region 100 and the optical waveguide 101 change, the wavelength of light that is prohibited to propagate in the forbidden band region 100 and allowed to propagate in the optical waveguide 101 changes, and the optical waveguide 101 Since the intensity, phase, polarization direction, etc. of propagating light can be modulated, optical control such as an optical switch for switching the wavelength of light propagating through the optical waveguide 101 by applying a voltage or switching between transmission and blocking of light It can function as an element.
この光制御素子1によれば、フォトニック結晶構造の二次元的な配列に直交する方向において各電極対が光導波路に重ならないため、光導波路から反射層へしみ出した光が電極で吸収されず高効率に光を伝搬しながら変調できるとともに、対向する電極対の間隔を近づけることができる。 According to this light control element 1, since each electrode pair does not overlap the optical waveguide in the direction orthogonal to the two-dimensional arrangement of the photonic crystal structure, the light oozing out from the optical waveguide to the reflection layer is absorbed by the electrode. Therefore, the light can be modulated while propagating light with high efficiency, and the distance between the opposing electrode pairs can be reduced.
第2の実施形態の光制御素子2は、図5(a)の平面図及び図5(b)のE1-E2断面図に示すように、第1の実施形態の光制御素子1において、第3電極15及び第4電極16を備えていない構成をもち、伝搬層10の一面側で光導波路101をまたいで配置され1対の電極対を構成する第1電極13と第2電極14との間に印加される電圧により発生する電界は、矢印に示すように光導波路101部分にも広がるため、フォトニック結晶構造の二次元的な配列に平行かつ光導波路101を横断する電界が光導波路101に印加される。第1電極13と第2電極14との間隔は、光導波路101の幅と同程度、すなわち光の波長程度の距離であるため、小さな印可電圧で大きな電界を得られる。なお、光導波路101に印加される電圧が均一となるように、第1反射層11及び第2反射層12の厚みに応じて第1電極13と第2電極14との間隔を1〜10μm程度で最適化することが望ましい。また、第1の実施形態における第3電極15と第4電極16とを他の1対の電極対として、フォトニック結晶構造の二次元的な配列に平行かつ光導波路101を横断する電界を光導波路101に印加するようにしてもよい。 As shown in the plan view of FIG. 5A and the E1-E2 cross-sectional view of FIG. 5B, the light control element 2 of the second embodiment is the same as the light control element 1 of the first embodiment. The first electrode 13 and the second electrode 14 having a configuration in which the three electrodes 15 and the fourth electrode 16 are not provided and are disposed across the optical waveguide 101 on one surface side of the propagation layer 10. Since the electric field generated by the voltage applied between them also extends to the optical waveguide 101 as indicated by the arrow, the electric field parallel to the two-dimensional arrangement of the photonic crystal structure and crossing the optical waveguide 101 To be applied. Since the distance between the first electrode 13 and the second electrode 14 is about the same as the width of the optical waveguide 101, that is, about the wavelength of light, a large electric field can be obtained with a small applied voltage. Note that the interval between the first electrode 13 and the second electrode 14 is about 1 to 10 μm depending on the thickness of the first reflective layer 11 and the second reflective layer 12 so that the voltage applied to the optical waveguide 101 is uniform. It is desirable to optimize with. Further, the third electrode 15 and the fourth electrode 16 in the first embodiment are used as another pair of electrodes, and an electric field that is parallel to the two-dimensional arrangement of the photonic crystal structure and crosses the optical waveguide 101 is guided. You may make it apply to the waveguide 101. FIG.
電界が印加されて禁止帯領域100及び光導波路101の誘電率が変化すると、禁止帯領域100で伝搬が禁止され光導波路101で伝搬が許容される光の波長が変化するとともに、光導波路101を伝搬する光の強度、位相、偏光方向等を変調することができるため、電圧を印加して光導波路101を伝搬する光の波長を切り換えたり、光の透過及び遮断を切り換える光スイッチ等の光制御素子として機能させることができる。 When the electric field is applied and the dielectric constants of the forbidden band region 100 and the optical waveguide 101 change, the wavelength of light that is prohibited to propagate in the forbidden band region 100 and allowed to propagate in the optical waveguide 101 changes, and the optical waveguide 101 Since the intensity, phase, polarization direction, etc. of propagating light can be modulated, optical control such as an optical switch for switching the wavelength of light propagating through the optical waveguide 101 by applying a voltage or switching between transmission and blocking of light It can function as an element.
この光制御素子2によれば、フォトニック結晶構造の二次元的な配列に直交する方向において各電極対が光導波路に重ならないため、光導波路から反射層へしみ出した光が電極で吸収されず高効率に光を伝搬しながら変調できるとともに、対向する電極対の間隔を近づけることができる。 According to this light control element 2, since each electrode pair does not overlap the optical waveguide in the direction orthogonal to the two-dimensional arrangement of the photonic crystal structure, the light oozing out from the optical waveguide to the reflection layer is absorbed by the electrode. Therefore, the light can be modulated while propagating light with high efficiency, and the distance between the opposing electrode pairs can be reduced.
なお、製造を容易にする等のため、第1反射層11及び第2反射層12にホール102を貫通させてもよく、さらに第1電極13、第2電極14、第3電極15及び第4電極16にホール102を貫通させてもよい。また、第3電極15及び第4電極16を設け、第3電極15と第4電極16との間に印加された電圧により、第1電極11と第2電極12とにより発生する電界と同方向の電界を光導波路101に発生させてもよい。 For ease of manufacture, the holes 102 may be passed through the first reflective layer 11 and the second reflective layer 12, and the first electrode 13, the second electrode 14, the third electrode 15 and the fourth electrode The hole 16 may be passed through the electrode 16. The third electrode 15 and the fourth electrode 16 are provided, and the same direction as the electric field generated by the first electrode 11 and the second electrode 12 due to the voltage applied between the third electrode 15 and the fourth electrode 16 is provided. This electric field may be generated in the optical waveguide 101.
第3の実施形態の光制御素子3は、図6(a)の平面図及び図6(b)のF1-F2断面図に示すように、第2の実施形態の光制御素子2が備える第1電極13及び第2電極14のかわりに、フォトニック結晶構造をもち1対の電極対を構成する第1電極33及び第2電極34を備える。第1電極33及び第2電極34のフォトニック結晶構造は、伝搬層10の禁止帯領域100と同様に、ホール302を規則的に配置した構成をもつ。ホール302の周期及び径は第1電極33と第2電極34との間に印加される電圧により発生する電磁波の波長の伝搬を禁止するように決定される。第1電極33と第2電極34とは、第1電極33と第2電極34との間に印加される電圧により発生する電磁波が共振できる間隔を開けて配置される。第1電極33と第2電極34との間に発生する電磁波は、フォトニック結晶構造の二次元的な配列に直交する積層方向において光導波路100に重なる領域に電磁波を閉じ込めて増幅された定在波を発生させる。 As shown in the plan view of FIG. 6A and the F1-F2 cross-sectional view of FIG. 6B, the light control element 3 of the third embodiment is provided in the light control element 2 of the second embodiment. Instead of the first electrode 13 and the second electrode 14, a first electrode 33 and a second electrode 34 having a photonic crystal structure and constituting a pair of electrodes are provided. The photonic crystal structure of the first electrode 33 and the second electrode 34 has a configuration in which the holes 302 are regularly arranged in the same manner as the forbidden band region 100 of the propagation layer 10. The period and diameter of the hole 302 are determined so as to prohibit the propagation of the wavelength of the electromagnetic wave generated by the voltage applied between the first electrode 33 and the second electrode 34. The first electrode 33 and the second electrode 34 are arranged with an interval at which electromagnetic waves generated by a voltage applied between the first electrode 33 and the second electrode 34 can resonate. The electromagnetic wave generated between the first electrode 33 and the second electrode 34 is amplified by confining the electromagnetic wave in a region overlapping the optical waveguide 100 in the stacking direction orthogonal to the two-dimensional arrangement of the photonic crystal structure. Generate a wave.
この光制御素子3によれば、光制御素子2の効果に加えて、光導波路を伝搬する光を効率よく変調し、かつ、高速な変調を行うことができる。なお、第1の実施形態において1対の電極対を構成する第1電極13と第3電極15とにフォトニック結晶構造を形成し、発生する電磁波が共振できる間隔を開けて第1電極13と第3電極15とを配置し、他の電極対を構成する第2電極14と第4電極16とにフォトニック結晶構造を形成し、発生する電磁波が共振できる間隔を開けて第2電極14と第4電極16とを配置するようにし、伝搬層10に電磁波を閉じ込めて増幅した定在波を発生させてもよい。 According to the light control element 3, in addition to the effects of the light control element 2, light propagating through the optical waveguide can be efficiently modulated and high-speed modulation can be performed. In the first embodiment, a photonic crystal structure is formed on the first electrode 13 and the third electrode 15 constituting one pair of electrodes, and the first electrode 13 The third electrode 15 is disposed, a photonic crystal structure is formed on the second electrode 14 and the fourth electrode 16 constituting another electrode pair, and the second electrode 14 The fourth electrode 16 may be disposed, and a standing wave amplified by confining electromagnetic waves in the propagation layer 10 may be generated.
第4の実施形態の光制御素子4は、図7(a)の平面図及び図7(b)のG1-G2断面図に示すように、伝搬層40と第1反射層11と第2反射層12と第1電極43と第2電極44とシリコン基板17とを備え、第1の実施形態の光制御素子1と同様に、伝搬層40の両面を挟むように第1反射層11と第2反射層12とを設け、シリコン基板17に第2反射層12側を積層した構成をもつ。伝搬層40は第1の実施形態の伝搬層10と同様の構成をもち、一部に第1電極43及び第2電極44を埋め込んだ構成をもつ。 As shown in the plan view of FIG. 7A and the G1-G2 cross-sectional view of FIG. 7B, the light control element 4 of the fourth embodiment includes the propagation layer 40, the first reflection layer 11, and the second reflection. The layer 12, the first electrode 43, the second electrode 44, and the silicon substrate 17 are provided. Similar to the light control element 1 of the first embodiment, the first reflective layer 11 and the second reflective layer 11 are sandwiched between both surfaces of the propagation layer 40. 2 reflective layers 12 are provided, and the second reflective layer 12 side is laminated on the silicon substrate 17. The propagation layer 40 has a configuration similar to that of the propagation layer 10 of the first embodiment, and has a configuration in which the first electrode 43 and the second electrode 44 are partially embedded.
第1電極43及び第2電極44は1対の電極対を構成し、フォトニック結晶構造の二次元的な配列が形成された禁止帯領域400の面内において光導波路401を両側から挟んで配置されている。第1電極43及び第2電極44には禁止帯領域400のフォトニック結晶構造と同一の構造が一体的に形成されている。第1電極43及び第2電極44にもフォトニック結晶配列を形成することで、光導波路401を伝搬する光を高効率で閉じ込めることができる。なお、フォトニック結晶構造による光の閉じ込めの効率を高めるため、第1電極43及び第2電極44の屈折率を伝搬層40の屈折率と同じにすることが好ましい。第1電極43及び第2電極44の屈折率を伝搬層40の屈折率と同じにすることにより、第1電極43と第2電極44との距離を近づけることができる。 The first electrode 43 and the second electrode 44 constitute a pair of electrodes and are arranged with the optical waveguide 401 sandwiched from both sides in the plane of the forbidden band region 400 in which a two-dimensional array of photonic crystal structures is formed. Has been. The first electrode 43 and the second electrode 44 are integrally formed with the same structure as the photonic crystal structure of the forbidden band region 400. By forming a photonic crystal array on the first electrode 43 and the second electrode 44, light propagating through the optical waveguide 401 can be confined with high efficiency. In order to increase the efficiency of light confinement by the photonic crystal structure, it is preferable that the refractive indexes of the first electrode 43 and the second electrode 44 be the same as the refractive index of the propagation layer 40. By making the refractive indexes of the first electrode 43 and the second electrode 44 the same as the refractive index of the propagation layer 40, the distance between the first electrode 43 and the second electrode 44 can be reduced.
電界が印加されて禁止帯領域400及び光導波路401の誘電率が変化すると、禁止帯領域400で伝搬が禁止され光導波路401で伝搬が許容される光の波長が変化するとともに、光導波路401を伝搬する光の強度、位相、偏光方向等を変調することができるため、電圧を印加して光導波路401を伝搬する光の波長を切り換えたり、光の透過及び遮断を切り換える光スイッチ等の光制御素子として機能させることができる。 When the electric field is applied and the dielectric constants of the forbidden band region 400 and the optical waveguide 401 change, the wavelength of light that is prohibited to propagate in the forbidden band region 400 and allowed to propagate in the optical waveguide 401 changes, and the optical waveguide 401 Since the intensity, phase, polarization direction, etc. of propagating light can be modulated, optical control such as an optical switch that switches the wavelength of light propagating through the optical waveguide 401 by applying a voltage, or switches between transmission and blocking of light It can function as an element.
この光制御素子4によれば、フォトニック結晶構造の二次元的な配列に直交する方向において各電極対が光導波路に重ならないため、光導波路から反射層へしみ出した光が電極で吸収されず高効率に光を伝搬しながら変調できるとともに、対向する電極対の間隔を近づけることができ、さらに、光導波路と同一の面内に電極を設けることにより伝搬層に平行で均一な電界を光導波路に印加できる。 According to this light control element 4, since each electrode pair does not overlap the optical waveguide in the direction orthogonal to the two-dimensional arrangement of the photonic crystal structure, the light oozing out from the optical waveguide to the reflection layer is absorbed by the electrode. It can be modulated while propagating light with high efficiency, and the distance between the opposing electrode pairs can be reduced. Furthermore, by providing electrodes in the same plane as the optical waveguide, a uniform electric field parallel to the propagation layer can be transmitted. Can be applied to the waveguide.
なお、製造を容易にする等のため、第1電極43及び第2電極44は、第1反射層11及び第2反射層12の一部または全部を貫くようにしてもよく、第1反射層11及び第2反射層12にホール102を貫通させてもよい。また、第3の実施形態と同様に1対の電極対を構成する第1電極43と第2電極44とにフォトニック結晶構造を形成し、発生する電磁波が共振できる間隔を開けて第1電極43と第2電極44とを配置するようにし、伝搬層40に電磁波を閉じ込めて増幅した定在波を発生させてもよい。 For ease of manufacture, the first electrode 43 and the second electrode 44 may penetrate part or all of the first reflective layer 11 and the second reflective layer 12. 11 and the second reflective layer 12 may penetrate the hole 102. Similarly to the third embodiment, a photonic crystal structure is formed on the first electrode 43 and the second electrode 44 constituting a pair of electrodes, and the first electrode is provided with an interval at which the generated electromagnetic wave can resonate. 43 and the second electrode 44 may be arranged, and a standing wave amplified by confining electromagnetic waves in the propagation layer 40 may be generated.
1;光制御素子、2;光制御素子、3;光制御素子、4;光制御素子、10;伝搬層、
11;第1反射層、12;第2反射層、13;第1電極、14;第2電極、
15;第3電極、16;第4電極、17;シリコン基板、33;第1電極、
34;第2電極、40;伝搬層、43;第1電極、44;第2電極、
100;禁止帯領域、101;光導波路、102;ホール、103;直線群、
104;直線群、302;ホール、400;禁止帯領域、401;光導波路。
1; light control element, 2; light control element, 3; light control element, 4; light control element, 10; propagation layer,
11; First reflective layer, 12; Second reflective layer, 13; First electrode, 14; Second electrode,
15; third electrode, 16; fourth electrode, 17; silicon substrate, 33; first electrode,
34; second electrode, 40; propagation layer, 43; first electrode, 44; second electrode,
100; forbidden band region, 101; optical waveguide, 102; hole, 103;
104; straight line group; 302; hole; 400; forbidden band region; 401;
Claims (2)
前記伝搬層は、電気光学効果を有する材料で形成され、禁止帯領域と光導波路とを有し、前記禁止帯領域は、二次元で周期的に、屈折率の異なるフォトニック結晶構造をもち特定の波長の光の二次元的な伝搬を禁止し、前記光導波路は、前記フォトニック結晶構造の周期性を線状に乱して前記禁止帯領域で伝搬の禁止された波長の光を伝搬し、
前記電極対は、前記伝搬層の一部に埋め込まれ、前記フォトニック結晶構造の二次元的な配列に直交する方向において前記光導波路に重ならずに両側から挟んで、前記禁止帯領域のフォトニック結晶構造と同一の構造が一体的に形成され、
前記電極対に電圧を印加し、前記光導波路内に電界を発生させ、前記伝搬層の誘電率を変化させることにより光制御を行うことを特徴とする光制御素子。 A propagation layer and an electrode pair;
The propagation layer is made of a material having an electro-optic effect, and includes a forbidden band region and an optical waveguide, and the forbidden band region has a photonic crystal structure having a different refractive index periodically in two dimensions. Prohibiting two-dimensional propagation of light of the wavelength of the light, the optical waveguide perturbs the periodicity of the photonic crystal structure linearly, and propagates light of the wavelength prohibited to propagate in the forbidden band region ,
The electrode pair is embedded in a part of the propagation layer, and sandwiched from both sides without overlapping the optical waveguide in a direction perpendicular to the two-dimensional arrangement of the photonic crystal structure, and the photo of the forbidden band region The same structure as the nick crystal structure is formed integrally,
A light control element that performs light control by applying a voltage to the electrode pair, generating an electric field in the optical waveguide, and changing a dielectric constant of the propagation layer .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004263261A JP4634102B2 (en) | 2004-09-10 | 2004-09-10 | Light control element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004263261A JP4634102B2 (en) | 2004-09-10 | 2004-09-10 | Light control element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006078813A JP2006078813A (en) | 2006-03-23 |
JP4634102B2 true JP4634102B2 (en) | 2011-02-16 |
Family
ID=36158313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004263261A Expired - Fee Related JP4634102B2 (en) | 2004-09-10 | 2004-09-10 | Light control element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4634102B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6736894B2 (en) * | 2016-01-26 | 2020-08-05 | 株式会社豊田中央研究所 | Light modulator and light modulator |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04263214A (en) * | 1991-02-18 | 1992-09-18 | Fujitsu Ltd | Semiconductor optical waveguide controller |
JPH1124114A (en) * | 1997-07-03 | 1999-01-29 | Furukawa Electric Co Ltd:The | Optical function element |
JP2002062554A (en) * | 2000-08-16 | 2002-02-28 | Nippon Telegr & Teleph Corp <Ntt> | Optical controller |
JP2002303836A (en) * | 2001-04-04 | 2002-10-18 | Nec Corp | Optical switch with photonic crystal structure |
JP2003215646A (en) * | 2002-01-21 | 2003-07-30 | Matsushita Electric Works Ltd | Optical switch |
JP2004109412A (en) * | 2002-09-18 | 2004-04-08 | Nippon Telegr & Teleph Corp <Ntt> | Variable optical attenuator |
JP2005292721A (en) * | 2004-04-05 | 2005-10-20 | Canon Inc | Element structure and display element with same |
WO2005114279A1 (en) * | 2004-05-20 | 2005-12-01 | Matsushita Electric Industrial Co., Ltd. | Photonic crystal device |
JP2006053407A (en) * | 2004-08-13 | 2006-02-23 | Hitachi Maxell Ltd | Optical element, and optical module |
-
2004
- 2004-09-10 JP JP2004263261A patent/JP4634102B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04263214A (en) * | 1991-02-18 | 1992-09-18 | Fujitsu Ltd | Semiconductor optical waveguide controller |
JPH1124114A (en) * | 1997-07-03 | 1999-01-29 | Furukawa Electric Co Ltd:The | Optical function element |
JP2002062554A (en) * | 2000-08-16 | 2002-02-28 | Nippon Telegr & Teleph Corp <Ntt> | Optical controller |
JP2002303836A (en) * | 2001-04-04 | 2002-10-18 | Nec Corp | Optical switch with photonic crystal structure |
JP2003215646A (en) * | 2002-01-21 | 2003-07-30 | Matsushita Electric Works Ltd | Optical switch |
JP2004109412A (en) * | 2002-09-18 | 2004-04-08 | Nippon Telegr & Teleph Corp <Ntt> | Variable optical attenuator |
JP2005292721A (en) * | 2004-04-05 | 2005-10-20 | Canon Inc | Element structure and display element with same |
WO2005114279A1 (en) * | 2004-05-20 | 2005-12-01 | Matsushita Electric Industrial Co., Ltd. | Photonic crystal device |
JP2006053407A (en) * | 2004-08-13 | 2006-02-23 | Hitachi Maxell Ltd | Optical element, and optical module |
Also Published As
Publication number | Publication date |
---|---|
JP2006078813A (en) | 2006-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Toney | Lithium niobate photonics | |
EP2513715B1 (en) | Apparatus and method for guiding optical waves | |
CN107430297B (en) | Electro-optic modulator | |
US5640267A (en) | Optical apparatus | |
US7215842B2 (en) | Light control element and light control device | |
JP2002303836A (en) | Optical switch with photonic crystal structure | |
JP2007052328A (en) | Composite optical waveguide | |
JPWO2004083953A1 (en) | Optical switch, optical modulator, and tunable filter | |
WO1989009425A2 (en) | Electro-optic quantum well device | |
CN113196150B (en) | Light Modulator | |
US5825525A (en) | Electro-optic modulator with voltage tunable quantum well waveguide cladding layer | |
US20050175305A1 (en) | Method and apparatus for polarization insensitive phase shifting of an optical beam in an optical device | |
US20090263068A1 (en) | Optical guided mode spatial switches and their fabrication | |
US7317860B2 (en) | Optical device having photonic crystal structure | |
WO2021149183A1 (en) | Optical device | |
JP2004258169A (en) | Optical deflection element and optical switch using the same | |
JP4634102B2 (en) | Light control element | |
JP3586635B2 (en) | Optical devices and substrates | |
JP4253606B2 (en) | Light control element | |
JP2006276576A (en) | Optical control element and method for manufacturing optical element | |
KR20020026646A (en) | Optical device | |
JPH01214827A (en) | Electrooptic element | |
Tong Ph. D et al. | Electro-optic waveguides | |
US12147098B2 (en) | Plasmonic waveguide | |
JP2009109773A (en) | Optical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070314 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20091207 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100319 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101118 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |