JP4633993B2 - Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method - Google Patents
Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method Download PDFInfo
- Publication number
- JP4633993B2 JP4633993B2 JP2002077794A JP2002077794A JP4633993B2 JP 4633993 B2 JP4633993 B2 JP 4633993B2 JP 2002077794 A JP2002077794 A JP 2002077794A JP 2002077794 A JP2002077794 A JP 2002077794A JP 4633993 B2 JP4633993 B2 JP 4633993B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- temperature
- less
- alloy plate
- bending workability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Metal Rolling (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、曲げ加工性および塗装焼付硬化性に優れ、とくに自動車用外板に適したアルミニウム合金板およびその製造方法に関する。
【0002】
【従来の技術】
地球環境問題である温暖化対策として、自動車の燃費向上のために、軽量化を目的として自動車部品用材料は従来の鋼鈑からアルミニウム合金板置換され使用されている。その中でも自動車外板に各種アルミニウム合金が開発され、実用化されている。
【0003】
自動車用外板としては、1)成形性、2)形状凍結性(プレス加工時にプレス型の形状が正確に出ること)、3)耐デント性、4)耐食性 5)製品面質等が要求されている。これらの特性の中で形状凍結性は、耐力が小さいほど良好となるのに対して、耐デント性は耐力が大きいほど良好となり、耐力に関して両者は相反する。この相反する課題の解決のために、6000系(Al-Mg-Si系)アルミニウム合金においては、形状凍結性に優れた耐力の低い段階でプレス成形を行い、その後塗装焼付時に硬化させて耐力を高め、耐デント性を向上させるという手法が行われている(特開平4-147951号公報、特開平5-247610号公報、特開平5-279822号公報、特開平6-1720号公報)。
【0004】
耐食性や製品面質が外板には厳しく要求される部位、とくにボンネットアウターでは、プレス加工後、肌荒れやリジングマーク(塑性加工によって発生する圧延方向に長い筋状欠陥)が生じ製品面質が劣ることがある。この様な製品面質は、化学成分や製造条件の調整、管理により解決が図られており、例えば、リジングマークの抑制のために、500℃以上の温度で均質化処理した後、450〜350℃まで冷却し、この温度域で熱間圧延を開始することにより粗大析出物の生成を防止することは提案されている(特開平7-228956号公報)が、この手法においては、Mg2Si の析出、凝集化が起こることがあり、そのため、溶体化処理が高温で長時間必要となり、工業的には能率を低下させるという問題がある。
【0005】
また、アウタ−用材料は、インナーとアセンブルする際にヘム加工が行なわれ、フラットヘムが可能であることが望まれているが、アルミニウム合金は、鋼鈑に比べ曲げ加工性に劣り、さらに従来の6000系アルミニウム合金は、5000系アルミニウム合金より曲げ加工性が劣り、プレス加工度が大きな部位では、フラットヘムができないという課題がある。さらに成形形状が厳しかったり、寸法精度の厳しい部位ではフラットヘム以上の曲げ(内側曲げ半径が0.5mm より小さい加工)が望まれている。
【0006】
発明者らは、6000系(Al−Mg−Si系)アルミニウム合金材の成形性、とくに曲げ加工性に及ぼす要因について、試験、検討を重ねた結果、曲げ加工性はランクフォード値と相関があり、曲げ加工性を向上させるためには、ランクフォード値の異方性を大きくすることが必要であることを見出し、そのためには、6000系アルミニウム合金の主要添加元素であるSi量、Mg量の最適化を図り、且つ製造工程の最適化、とくに均質化処理後の冷却速度を適正に制御することが重要であることを知見した。
【0007】
【発明が解決しようとする課題】
本発明は、6000系(Al−Mg−Si系)アルミニウム合金板を自動車用外板として適用する場合における上記従来の問題点を解消するために、上記の知見をベースとして、さらに試験、検討を行った結果としてなされたものであり、その目的は、フラットヘム加工が可能な優れた曲げ加工性をそなえ、耐デント性の問題を解決し得る優れた塗装焼付硬化性を有し、耐食性にも優れたアルミニウム合金板およびその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するための本発明の請求項1による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板は、Si:0.5〜2.0%、Mg:0.2〜1.5%を含有し、さらにTi:0.1%以下、B:50ppm以下のうち少なくとも1種を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金の圧延板であって、ランクフォード値の異方性が0.4を越え、15%引張変形後の180°曲げ加工における内側限界曲げ半径が0.1mm以下であることを特徴とする。
【0009】
請求項2による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板は、請求項1において、アルミニウム合金が、Si:0.5〜2.0%、Mg:0.2〜1.5%を含有し、さらにTi:0.1 %以下、B:50ppm以下のうち少なくとも1種を含有し、0.7Si%+Mg%≦2.2%、Si%−0.58Mg%≧0.1%を満足し、残部Alおよび不可避的不純物からなるアルミニウム合金であることを特徴とする。
【0010】
請求項3による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板は、請求項1または2において、アルミニウム合金板がさらにZn:0.5%以下を含有することを特徴とする。
【0011】
請求項4による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板は、請求項1〜3のいずれかにおいて、アルミニウム合金板がさらにCu:1.0 %以下を含有することを特徴とする。
【0012】
請求項5による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板は、請求項1〜4のいずれかにおいて、アルミニウム合金板がさらにMn:1.0%以下、Cr:0.3%以下、V:0.2%以下、Zr:0.2%以下のうちの1種または2種以上を含有することを特徴とする。
【0015】
請求項6による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板の製造方法は、請求項1〜5のいずれかに記載のアルミニウム合金板の製造方法であって、請求項1〜5のいずれかに記載の組成を有するアルミニウム合金の鋳塊を450℃以上の温度で均質化処理後、100℃/h以上の冷却速度で350℃未満の温度まで冷却し、さらに300〜500℃の温度に再加熱して圧延を開始する熱間圧延を行い、さらに冷間圧延した後、450℃以上の温度で溶体化処理を行い、溶体化処理後、120℃までを5℃/s以上の冷却速度で冷却する焼入れを行い、焼入れ後60分以内に40〜120℃の温度で50h以内の熱処理を行うことを特徴とする。
【0016】
請求項7による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板の製造方法は、請求項1〜5のいずれかに記載のアルミニウム合金板の製造方法であって、請求項1〜5のいずれかに記載の組成を有するアルミニウム合金の鋳塊を450℃以上の温度で均質化処理後、100℃/h以上の冷却速度で350℃未満の温度まで冷却し、さらに室温まで冷却し、ついで300〜500℃の温度に再加熱して圧延を開始する熱間圧延を行い、さらに冷間圧延した後、450℃以上の温度で溶体化処理を行い、溶体化処理後、120℃までを5℃/s以上の冷却速度で冷却する焼入れを行い、焼入れ後60分以内に40〜120℃の温度で50h以内の熱処理を行うことを特徴とする。
【0017】
請求項8による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板の製造方法は、請求項6または7において、熱間圧延の終了温度を300℃以下とすることを特徴とする。
【0019】
【発明の実施の形態】
本発明のAl−Mg−Si系合金板における合金成分の意義および限定理由について説明する。
Si:強度および高BH性を得るために必要で、Mg-Si 系化合物を形成して強度を高めるよう機能する。好ましい含有量は0.5 〜2.0 %の範囲であり、0.5 %未満では塗装焼付時の加熱で十分な強度が得らず、さらに成形性が劣ることがあり、また、2.0 %を越えると、プレス加工時の耐力が高く、成形性及び形状凍結性が劣り、塗装後の耐食性も劣化する。さらに好ましい含有量は0.8 〜1.2 %の範囲である。
【0020】
Mg:Siと同様に強度を高めるよう機能する。好ましい含有量は0.2 〜1.5 %の範囲であり、0.2 %未満では塗装焼付時の加熱で十分な強度が得られない。また、1.5 %を越えると、溶体化処理後もしくは最終熱処理完了後の耐力が高く成形性及び形状凍結性が劣る。さらに好ましい含有量は、0.3 〜0.7 %の範囲である。
【0021】
本発明においては、主要成分のSi量とMg量との関係を0.7Si %+Mg%≦2.2 %で、且つSi%−0.58Mg%≧0.1 %とすることが重要であり、この関係を満足するMgおよびSiの含有で、溶体化処理後、集合組織が形成されてランクフォード値の異方性が大きくなり、適正な強度が得られ、曲げ加工性が良好となる。さらに好ましいMgおよびSi量の関係は、0.7Si %+Mg%≦1.8 %で、且つSi%− 0.58Mg %≧0.3 %である。
【0022】
Zn:表面処理時のりん酸亜鉛処理性を向上させるが、好ましい含有量は0.5 %以下の範囲であり、0.5 %を越えると耐食性を劣化させる。さらに好ましくは、0.1 〜0.3 %の範囲で添加する。
【0023】
Cu:強度、成形性を向上させる。好ましい含有量は1.0 %以下であり、0.1 %を越えると耐食性を劣化させる。さらに好ましくは、0.3 〜0.8 %の範囲で添加される。
【0024】
Mn、Cr、V、Zr:強度を向上し、結晶粒を微細化して成形加工時の肌荒れを防止するよう機能する。好ましい含有量は、Mn0.3 %以下、Cr0.3 %以下、V0.2 %以下およびZr0.15%以下の範囲であり、それぞれ上限を越えると、粗大な金属間化合物が生成して成形性が劣化する。さらに好ましくは、Mn:0.05〜0.15%、Cr:0.05〜0.15%、V:0.05〜0.15%、Zr:0.05〜0.12%の範囲で添加する。
【0025】
Ti、B:鋳造組織を微細化し、成形性が向上させる。好ましい含有量は、Ti0.1 %以下、B50ppm 以下の範囲であり、それぞれ上限を越えて含有すると、粗大な金属間化合物が増加して成形性が低下する。なお、その他不純物として、Feを0.5 %以下、好ましくは0.3 %以下に規制することが望ましい。
【0026】
つぎに本発明のアルミニウム合金板の製造工程について説明する。
均質化処理条件:450 ℃以上の温度で行うことが必要であり、加熱温度が450 ℃未満では、鋳塊偏析の除去や均質化が不十分で、強度に寄与するMg2Si 成分の固溶が不十分となり、成形性が劣ることがある。
【0027】
均質化処理後の冷却:冷却速度を100 ℃/h以上、より好ましくは、300 ℃/h以上の冷却速度で冷却とすることにより良好な特性が得られる。冷却速度を早めるためには大がかりな設備が必要とすることから、実用上は300 〜1000℃/hで管理することが望ましい。冷却速度が遅いとMg-Si 系化合物が析出し、凝集化する。従来の冷却方法では、大型スラブの場合、冷却速度は30℃/ h程度であり、このような低い冷却速度では、冷却中にMg-Si 系化合物が析出、凝集粗大化し、ランクフォード値の異方性の大きな材料を得ることはできなかった。粗大な析出物となると溶体化処理時の再結晶が抑制され、ランクフォード値の異方性が小さくなる。
【0028】
均質化処理後の冷却は、350 ℃未満の温度域までを100 ℃/ ℃以上、好ましくは300 ℃/ ℃以上の冷却速度で冷却する必要があり、部分的でも350 ℃以上の場所があると特性に影響する。このため、全体が250 ℃以下になるまで上記の速度で冷却するのが、さらに好ましい。均質化処理された鋳塊の冷却方法は、水冷、ファン冷却、ミスト冷却、ヒートシンク接触など、必要冷却速度が得られるものであればよく、とくに限定されない。
【0029】
冷却の開始温度は、必ずしも均質化処理温度である必要はなく、析出が顕著に起こらない温度まで徐冷した後、100 ℃/h以上の冷却速度での冷却を開始しても、同様の効果を得ることができる。例えば、500 ℃以上の温度で均質化処理を行った場合には、500 ℃までの冷却は遅くてもよい。
【0030】
熱間圧延:熱間圧延は、350℃未満の温度まで冷却し、350〜500℃の温度に再加熱して熱間圧延を開始する。300℃未満の温度まで冷却し、さらに室温まで冷却した後、300〜500℃の温度に再加熱して熱間圧延を開始してもよい。
【0031】
熱延開始温度が300 ℃以下では、変形抵抗が大きくなり、圧延能率が悪化するため好ましくない。500 ℃越えると圧延中の結晶粒が粗大化し、リジングマークが発生し易い材料となるため、圧延開始温度は300 〜500 ℃に規制する必要がある。変形抵抗や加工組織の均一性を考慮すると、圧延開始温度は380 〜450 ℃が好ましい。
【0032】
熱延終了温度が300 ℃を越えると、Mg-Si 系化合物の析出が起こり易く、成形性が低下し易いとともに再結晶粒が粗大となり、リジングマークの原因となることがあるため、熱間圧延の終了温度は300 ℃以下とするのが望ましく、熱間圧延時の材料の変形抵抗、クーラントによるオイルステン残留などを考慮すると200 ℃以上とするのが好ましい。
【0033】
溶体化処理:好ましい溶体化処理温度は450 ℃以上である。450 ℃未満では、Mg−Si系析出物の固溶が不十分となり十分な強度、成形性が得られないか、必要な強度、成形性を得るために、非常に長時間の熱処理が必要となり工業的に好ましくない。溶体化処理時間は、強度が得られる範囲で行われればよく、とくに限定されないが、工業的には通常120 s以内の保持が一般的である。
【0034】
焼入時の冷却速度:溶体化処理温度から120 ℃以下までを5 ℃/s以上で冷却することが必要でであり、10℃/s以上の冷却速度で冷却するのが望ましい。焼入れ速度が遅すぎると溶出元素の析出が起こり、強度、BH性、成形性が劣化するとともに耐食性も低下する。
【0035】
最終熱処理:焼入後60分以内に、40〜120 ℃で50h以内の熱処理を行う。この処理によってBH化性が向上する。40℃未満では、BH性の向上が不十分で、120 ℃を超える温度もしくは50hを越える時間では、初期耐力が高くなり過ぎ成形性の低下もしくは塗装焼付硬化性が低下することがある。
【0036】
上記の組成を有するアルミニウム合金に、上記の製造工程を適用することにより、溶体化処理、焼入れ後、ランクフォード値rの異方性が0.4を越え、優れた曲げ加工性をそなえた板材が得られる。さらに好ましくは、合金成分、とくにSi、Mg量の調整、製造条件の調整により、ランクフォード値の異方性を0.6以上とする。当該アルミニウム合金板は、例えばヘム加工が行われる自動車用フード、トランクリッド,ドアなど、形状が複雑でかつ軽量な自動車用部材として好適に使用され、またヘム加工が行われないフェンダー、ルーフなどに適用した場合においても、曲げ加工性が優れていることで、複雑形状にプレス加工した後、曲げ半径の小さい厳しい加工が可能となり、自動車用材料へのアルミニウム材の適用の範囲が広がり、車体の軽量化に寄与することが可能となる。
【0037】
【実施例】
以下、本発明の実施例を比較例と対比して説明する。これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれに限定されるものではない。
【0038】
実施例1
表1に示す組成を有するアルミニウム合金をDC鋳造により造塊し、得られた鋳塊を、550 ℃で6 hの均質化処理した後、200 ℃まで600 ℃/hの冷却速度で冷却した。さらに室温まで冷却し、420 ℃の温度に再加熱して熱間圧延を開始し、厚さ4.5 mmまで圧延した。熱間圧延の終了温度は250 ℃とした。
【0039】
続いて、冷間圧延を行って厚さ1 mmの板とし、さらに、540 ℃で20s の溶体化処理を行い、30℃/sの冷却速度で120 ℃まで焼入した。焼き入れ後、3min後に100 ℃で3hの熱処理を施した。
【0040】
最終熱処理から10日後のアルミニウム合金板について、以下の方法で、引張性能、ランクフォード値の異方性、塗装焼付硬化性(BH性)、曲げ加工性を評価した。結果を表2に示す。
【0041】
引張性能:3方向(圧延方向に対して、0 °、45°、90°)から引張試験片を採取して引張試験を行い、引張性能として引張強さ、耐力、伸びの平均値を求める。
ランクフォード値の異方性:3方向(圧延方向に対して、0 °、45°、90°)から引張試験片を採取して引張試験を行い、15%変形時のランクフォード値rを求め、その異方性を算出する。
【0042】
塗装焼付硬化性(BH性):圧延方向に対して2 %の引張変形を加え、170 ℃-20minの加熱処理を行った後、耐力を測定し200MPa以上を合格とする。
曲げ加工性:15%引張予歪後に、限界曲げ半径を調査する180 ゜曲げ試験を行い、内側限界曲げ半径0.1mm 以下を合格とした。
【0043】
【表1】
【0044】
【表2】
【0045】
表2にみられるように、本発明に従う試験材No.1〜7はいずれも、強度、BH性に優れ、ランクフォード値の異方性は0.4を越えており、優れた限界曲げ特性をそなえている。
【0046】
比較例1
表3に示す組成を有するアルミニウム合金をDC鋳造により造塊し、得られた鋳塊を、実施例1と同一の工程で処理し、最終熱処理から10日後のアルミニウム合金板について、実施例1と同じ方法で、引張性能、ランクフォード値の異方性、塗装焼付硬化性(BH性)、曲げ加工性を評価した。結果を表4に示す。
【0047】
【表3】
【0048】
【表4】
【0049】
表4に示すように、試験材No.8はSi量が少なく、また試験材No.10はMg量が少ないため、いずれも強度が低く、BH性が劣る。試験材No.9はSi量が多いため強度が高く、ランクフォード値の異方性が小さくなり、曲げ加工性が劣っている。試験材No.11は、(Si%− 0.58Mg %)の値が0.1%より小さいため、ランクフォード値の異方性が小さくなり、限界曲げ加工性度が劣る。
【0050】
試験材No.12は、(0.7Si %+Mg%)の値が2.2%を越え、また、試験材13〜17は、それぞれ、Cu量、Mn量、Cr量、V 量、Zr量が多すぎるため、ランクフォード値の異方性が小さくなり、曲げ加工性が劣っている。
【0051】
実施例2、比較例2
表1に示す合金BをDC鋳造し、得られた鋳塊を、540 ℃で10hの均質化処理後、表5に示す冷却速度で250 ℃まで冷却し、その後室温まで冷却した。続いて、表5に示す温度に加熱して熱間圧延を行ない、厚さ4.2 mmまで圧延した。熱間圧延の終了温度は280 ℃であった。さらに冷間圧延を経て、厚さ1 mmの板とした。条件27のみ3.0 mm厚さまで冷間圧延後に450 ℃-30 sの中間焼鈍を行った。
【0052】
その後、550 ℃で10s の溶体化処理を行い、30℃/sの冷却速度で120 ℃まで焼入した。焼き入れ後3 min 後に100 ℃で3hの熱処理を施した。以上の工程により製造したアルミニウム合金板について、実施例1と同様の方法で、引張性能、ランクフォード値の異方性、BH性、曲げ加工性の評価を行った。
【0053】
さらに、リジングマークの評価として、圧延90°方向に引張試験片を採取し、10%引張変形を加え、電着塗装後のリジングマークの有無を判定した。
これらの結果を第6表に示す。
【0054】
【表5】
【0055】
【表6】
【0056】
表6に示すように、本発明に従う試験材No.18〜22はいずれも、強度、BH性に優れ、ランクフォード値の異方性は0.4を越えており、優れた限界曲げ特性をそなえている。
【0057】
これに対して、試験材No.24は、ランクフォード値の異方性が小さく曲げ加工性が劣り、また、熱間圧延温度が高いため、リジングマークが発生した。試験材No.25は均質化処理後の冷却速度が小さいため、ランクフォード値の異方性が小さくなり、曲げ加工性が劣る。試験材No.26は、熱間圧延温度が高く、均質化処理後の冷却速度が小さいため、リジングマークが発生し、ランクフォード値の異方性が小さくなって曲げ加工性が劣る。試験材No.27は、中間焼鈍を行ったため、ランクフォード値の異方性が小さくなり、曲げ加工性が劣る。
【0058】
実施例3
表1に示す合金BをDC鋳造し、得られた鋳塊を、550 ℃で8 hの均質化処理した後、200 ℃まで 500 ℃/hの冷却速度で冷却した。さらに室温まで冷却し、400 ℃に再加熱して熱間圧延を開始し、厚さ4.2 mmまで圧延した。熱間圧延の終了温度は260 ℃とした。
【0059】
続いて、冷間圧延を行って厚さ1mmの板とした。さらに、550 ℃で4sの溶体化処理を行い、40℃/sで120 ℃まで焼入した。焼き入れ後2min後に100 ℃で2hの熱処理を施した。
【0060】
上記の工程で製造したアルミニウム合金板を、最終熱処理から7 日後に、実施例1と同じ方法で、圧延方向に対して0°、45°、90°の各方向の引張強さ、耐力、伸び、ランクフォード値r、BH後の耐力、限界曲げ半径を求め、ランクフォード値rの異方性を算出し、リジングマークの有無を判定した。結果を表7に示す。表7に示すように、いずれの方向でも優れた特性が得られている。
【0061】
【表7】
【0062】
【発明の効果】
本発明によれば、フラットヘム加工が可能な優れた曲げ加工性、塗装焼付硬化性を有し、耐食性にも優れたアルミニウム合金板およびその製造方法が提供される。当該アルミニウム合金板は、例えばヘム加工が行われる自動車用フード、トランクリッド,ドアなど、形状が複雑でかつ軽量な自動車用部材として好適に使用される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy plate excellent in bending workability and paint bake hardenability, and particularly suitable for an automobile outer plate, and a method for producing the same.
[0002]
[Prior art]
As a countermeasure against global warming, which is a global environmental problem, materials for automobile parts have been replaced with aluminum alloy plates from conventional steel plates for the purpose of weight reduction in order to improve automobile fuel efficiency. Among them, various aluminum alloys have been developed and put into practical use for automobile outer plates.
[0003]
As automotive outer panels, 1) formability, 2) shape freezing properties (the shape of the press die appears accurately during pressing), 3) dent resistance, 4) corrosion resistance, and 5) product surface quality are required. ing. Among these characteristics, the shape freezing property is better as the yield strength is smaller, whereas the dent resistance is better as the yield strength is larger. In order to solve this conflicting problem, in 6000 series (Al-Mg-Si series) aluminum alloys, press forming is performed at a low yield strength stage with excellent shape freezing properties, and then cured at the time of paint baking to increase the yield strength. Techniques for enhancing and improving dent resistance have been performed (Japanese Patent Laid-Open Nos. 4-147951, 5-247610, 5-279822, and 6-1720).
[0004]
In parts where corrosion resistance and product surface quality are strictly required for the outer plate, especially bonnet outers, rough surface and ridging marks (streaks that are long in the rolling direction caused by plastic processing) occur after press processing, resulting in poor product surface quality. Sometimes. Such product surface quality is solved by adjustment and management of chemical components and manufacturing conditions. For example, in order to suppress ridging marks, after homogenizing at a temperature of 500 ° C. or higher, 450 to 350 It has been proposed to prevent the formation of coarse precipitates by cooling to 0 ° C. and starting hot rolling in this temperature range (Japanese Patent Laid-Open No. 7-228956), but in this method, Mg 2 Si Precipitation and agglomeration may occur, so that a solution treatment is required for a long time at a high temperature, and there is a problem that the efficiency is reduced industrially.
[0005]
In addition, the outer material is hemmed when assembled with the inner, and it is desired that flat hem is possible. However, aluminum alloys are inferior in bending workability compared to steel plates, and more The 6000 series aluminum alloy has a problem that bending workability is inferior to that of the 5000 series aluminum alloy, and flat hem cannot be formed at a portion where the degree of press work is large. Furthermore, in areas where the molding shape is severe or dimensional accuracy is severe, bending beyond flat hem (processing where the inner bending radius is smaller than 0.5 mm) is desired.
[0006]
As a result of repeated tests and examinations on the factors affecting the formability of 6000 series (Al-Mg-Si series) aluminum alloy materials, especially the bendability, the bendability has a correlation with the Rankford value. In order to improve the bending workability, it was found necessary to increase the anisotropy of the Rankford value, and for that purpose, the Si content and Mg content of the main additive elements of the 6000 series aluminum alloy It was found that it is important to optimize and optimize the manufacturing process, in particular, to properly control the cooling rate after the homogenization.
[0007]
[Problems to be solved by the invention]
In order to solve the above-mentioned conventional problems in the case where a 6000 series (Al-Mg-Si series) aluminum alloy plate is applied as an automobile outer plate, the present invention is further tested and examined based on the above knowledge. The purpose of the test was to provide excellent bending processability that can solve the problem of dent resistance, as well as excellent resistance to corrosion and corrosion resistance. An object of the present invention is to provide an excellent aluminum alloy plate and a method for producing the same.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 1 of the present invention is Si: 0.5 to 2.0%, Mg: 0.2 to 1. An aluminum alloy rolled sheet containing 5%, further containing at least one of Ti: 0.1% or less, B: 50ppm or less, and comprising the balance Al and unavoidable impurities, and having different Rankford values isotropic exceeds 0.4, radius inner critical bending at 15% tensile deformation 180 ° bending after is characterized der Rukoto below 0.1 mm.
[0009]
The aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 2 is the aluminum alloy plate according to claim 1, wherein the aluminum alloy is Si: 0.5 to 2.0%, Mg: 0.2 to 1.5%. Further, Ti: 0.1% or less, B: At least one of 50ppm or less , 0.7Si% + Mg% ≦ 2.2%, Si% −0.58Mg% ≧ 0.1% And an aluminum alloy composed of the balance Al and inevitable impurities.
[0010]
The aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 3 is characterized in that, in claim 1 or 2, the aluminum alloy plate further contains Zn: 0.5% or less.
[0011]
The aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 4 is characterized in that in any one of claims 1 to 3, the aluminum alloy plate further contains Cu: 1.0% or less. .
[0012]
The aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 5 is the aluminum alloy plate according to any one of claims 1 to 4, wherein the aluminum alloy plate is further Mn: 1.0% or less, Cr: 0.3% or less V: 0.2% or less, Zr: 0.2% or less, or one or more of them are contained.
[0015]
The method for producing an aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 6 is the method for producing an aluminum alloy plate according to any one of claims 1 to 5, wherein The aluminum alloy ingot having the composition described in any one of the above is homogenized at a temperature of 450 ° C. or higher, then cooled to a temperature of less than 350 ° C. at a cooling rate of 100 ° C./h or higher, and a temperature of 300 to 500 ° C. After performing the hot rolling to reheat to start rolling and further cold rolling, solution treatment is performed at a temperature of 450 ° C. or higher, and after the solution treatment, cooling to 120 ° C. is performed at 5 ° C./s or higher. It is characterized in that quenching is performed at a rate and heat treatment is performed at a temperature of 40 to 120 ° C. within 50 hours within 60 minutes after quenching.
[0016]
The process according to claim 7 by bending workability and bake hardenability excellent in the aluminum alloy sheet, a manufacturing method of an aluminum alloy plate according to claim 1, of claims 1 to 5 An aluminum alloy ingot having a composition described in any one of the above is homogenized at a temperature of 450 ° C. or higher, then cooled to a temperature of less than 350 ° C. at a cooling rate of 100 ° C./h or higher, and further cooled to room temperature. After performing hot rolling to reheat to a temperature of 300 to 500 ° C. to start rolling, and further cold rolling, solution treatment is performed at a temperature of 450 ° C. or higher, and after solution treatment, up to 120 ° C. It is characterized in that quenching is performed at a cooling rate of ° C / s or more, and heat treatment is performed at a temperature of 40 to 120 ° C within 50 hours within 60 minutes after quenching.
[0017]
The method for producing an aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 8 is characterized in that, in claim 6 or 7 , the end temperature of hot rolling is 300 ° C. or less.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The significance and reasons for limitation of the alloy components in the Al—Mg—Si alloy plate of the present invention will be described.
Si: Necessary for obtaining strength and high BH property, and functions to increase the strength by forming an Mg-Si compound. The preferred content is in the range of 0.5 to 2.0%. If it is less than 0.5%, sufficient strength cannot be obtained by heating during paint baking, and the formability may be inferior. The yield strength is high, the moldability and the shape freezing property are inferior, and the corrosion resistance after painting is also deteriorated. A more preferred content is in the range of 0.8 to 1.2%.
[0020]
Similar to Mg: Si, it functions to increase strength. The preferred content is in the range of 0.2 to 1.5%, and if it is less than 0.2%, sufficient strength cannot be obtained by heating during paint baking. On the other hand, if it exceeds 1.5%, the yield strength after solution treatment or after completion of the final heat treatment is high, and the moldability and shape freezeability are poor. A more preferable content is in the range of 0.3 to 0.7%.
[0021]
In the present invention, it is important that the relationship between the Si content and the Mg content of the main component is 0.7 Si% + Mg% ≦ 2.2% and Si% −0.58 Mg% ≧ 0.1%, which satisfies this relationship. With the inclusion of Mg and Si, after solution treatment, a texture is formed, the anisotropy of the Rankford value is increased, an appropriate strength is obtained, and bending workability is improved. More preferable relationships between Mg and Si are 0.7 Si% + Mg% ≦ 1.8% and Si% −0.58 Mg% ≧ 0.3%.
[0022]
Zn: Improves zinc phosphate treatability during surface treatment, but the preferred content is in the range of 0.5% or less, and if it exceeds 0.5%, the corrosion resistance deteriorates. More preferably, it is added in the range of 0.1 to 0.3%.
[0023]
Cu: Improves strength and formability. The preferable content is 1.0% or less, and if it exceeds 0.1%, the corrosion resistance is deteriorated. More preferably, it is added in the range of 0.3 to 0.8%.
[0024]
Mn, Cr, V, Zr: functions to improve strength and refine crystal grains to prevent rough skin during molding. Preferable contents are in the ranges of Mn 0.3% or less, Cr 0.3% or less, V0.2% or less and Zr0.15% or less. When the upper limit is exceeded, coarse intermetallic compounds are formed and formability is reached. Deteriorates. More preferably, Mn: 0.05 to 0.15%, Cr: 0.05 to 0.15%, V: 0.05 to 0.15%, Zr: 0.05 to 0.12% are added.
[0025]
Ti, B: The cast structure is refined and the formability is improved. Preferable contents are in the range of Ti 0.1% or less and B50 ppm or less. When the content exceeds each upper limit, coarse intermetallic compounds increase and formability deteriorates. As other impurities, it is desirable to regulate Fe to 0.5% or less, preferably 0.3% or less.
[0026]
Next, the manufacturing process of the aluminum alloy plate of the present invention will be described.
Homogenization treatment conditions: Must be performed at a temperature of 450 ° C or higher. If the heating temperature is less than 450 ° C, the ingot segregation and homogenization are insufficient, and the solid solution of the Mg 2 Si component that contributes to strength Becomes insufficient, and the moldability may be inferior.
[0027]
Cooling after homogenization treatment: Good characteristics can be obtained by cooling at a cooling rate of 100 ° C./h or more, more preferably 300 ° C./h or more. In order to increase the cooling rate, a large-scale facility is required. Therefore, in practice, it is desirable to manage at 300 to 1000 ° C./h. When the cooling rate is slow, Mg-Si compounds precipitate and aggregate. In the conventional cooling method, the cooling rate for large slabs is about 30 ° C / h. At such a low cooling rate, Mg-Si compounds precipitate and agglomerate during cooling, resulting in different Rankford values. A highly anisotropic material could not be obtained. When the precipitate is coarse, recrystallization during the solution treatment is suppressed, and the anisotropy of the Rankford value is reduced.
[0028]
The cooling after the homogenization treatment must be performed at a cooling rate of 100 ° C / ° C or higher, preferably 300 ° C / ° C or higher, to a temperature range of less than 350 ° C. Affects properties. For this reason, it is more preferable to cool at the above speed until the whole becomes 250 ° C. or less. The method for cooling the homogenized ingot is not particularly limited as long as the required cooling rate can be obtained, such as water cooling, fan cooling, mist cooling, and heat sink contact.
[0029]
The cooling start temperature does not necessarily need to be the homogenization treatment temperature, and the same effect can be obtained even if cooling is started at a cooling rate of 100 ° C / h or higher after slow cooling to a temperature at which precipitation does not occur significantly. Can be obtained. For example, when homogenization is performed at a temperature of 500 ° C. or higher, cooling to 500 ° C. may be slow.
[0030]
Hot rolling: Hot rolling is performed by cooling to a temperature of less than 350 ° C., reheating to a temperature of 350 to 500 ° C., and starting hot rolling . After cooling to a temperature of less than 300 ° C. and further cooling to room temperature, hot rolling may be started by reheating to a temperature of 300 to 500 ° C.
[0031]
A hot rolling start temperature of 300 ° C. or lower is not preferable because deformation resistance increases and rolling efficiency deteriorates. If the temperature exceeds 500 ° C., the crystal grains during rolling become coarse and a ridging mark is likely to be generated. Therefore, the rolling start temperature must be regulated to 300 to 500 ° C. In consideration of deformation resistance and uniformity of the processed structure, the rolling start temperature is preferably 380 to 450 ° C.
[0032]
When the hot rolling finish temperature exceeds 300 ° C, Mg-Si compounds are likely to precipitate, formability is likely to deteriorate, and recrystallized grains become coarse, which may cause ridging marks. The finishing temperature is preferably 300 ° C. or lower, and is preferably 200 ° C. or higher in consideration of deformation resistance of the material during hot rolling, oil stainless residue due to coolant, and the like.
[0033]
Solution treatment: The preferred solution treatment temperature is 450 ° C or higher. Below 450 ° C, Mg-Si-based precipitates are not sufficiently dissolved, and sufficient strength and formability cannot be obtained, or very long heat treatment is required to obtain the required strength and formability. Industrially unfavorable. The solution treatment time is not particularly limited as long as it is performed within a range in which strength can be obtained, but in general, it is generally held within 120 s.
[0034]
Cooling rate during quenching: It is necessary to cool from the solution treatment temperature to 120 ° C or lower at 5 ° C / s or higher, and it is desirable to cool at a cooling rate of 10 ° C / s or higher. If the quenching speed is too slow, the eluted elements are precipitated, and the strength, BH property and moldability are deteriorated and the corrosion resistance is also lowered.
[0035]
Final heat treatment: Within 60 minutes after quenching, heat treatment is performed at 40 to 120 ° C. for 50 hours. This treatment improves the BH property. If the temperature is lower than 40 ° C, the BH property is not sufficiently improved. If the temperature exceeds 120 ° C or the time exceeds 50 hours, the initial yield strength becomes too high, and the moldability may deteriorate or the paint bake hardenability may decrease.
[0036]
By applying the above manufacturing process to the aluminum alloy having the above composition, the anisotropy of the Rankford value r exceeds 0.4 after solution treatment and quenching, and has excellent bending workability. Is obtained. More preferably, the anisotropy of the Rankford value is set to 0.6 or more by adjusting the amounts of alloy components, particularly Si and Mg, and adjusting the manufacturing conditions. The aluminum alloy plate is suitably used as an automobile member having a complicated shape and light weight, such as an automobile hood, a trunk lid, a door, etc. where hemming is performed, and is used for a fender, a roof, etc. where hemming is not performed. Even when applied, the excellent bending workability allows for severe processing with a small bending radius after pressing into a complex shape, expanding the range of application of aluminum materials to automotive materials, It becomes possible to contribute to weight reduction.
[0037]
【Example】
Examples of the present invention will be described below in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited thereto.
[0038]
Example 1
An aluminum alloy having the composition shown in Table 1 was formed by DC casting, and the resulting ingot was homogenized at 550 ° C. for 6 hours, and then cooled to 200 ° C. at a cooling rate of 600 ° C./h. Furthermore, it cooled to room temperature, reheated to the temperature of 420 degreeC, the hot rolling was started, and it rolled to thickness 4.5mm. The end temperature of hot rolling was 250 ° C.
[0039]
Subsequently, cold rolling was performed to obtain a plate having a thickness of 1 mm, followed by solution treatment at 540 ° C. for 20 s, and quenching to 120 ° C. at a cooling rate of 30 ° C./s. After quenching, 3 minutes later, heat treatment was performed at 100 ° C. for 3 hours.
[0040]
About the aluminum alloy plate 10 days after the final heat treatment, the tensile performance, the anisotropy of the Rankford value, the paint bake hardenability (BH property), and the bending workability were evaluated by the following methods. The results are shown in Table 2.
[0041]
Tensile performance: Tensile test specimens are taken from three directions (0 °, 45 °, 90 ° with respect to the rolling direction) and subjected to a tensile test, and the average values of tensile strength, yield strength, and elongation are obtained as tensile performance.
Rankford value anisotropy: Tensile test specimens are taken from three directions (0 °, 45 °, 90 ° with respect to the rolling direction) and subjected to a tensile test to determine the Rankford value r at 15% deformation. The anisotropy is calculated.
[0042]
Paint bake hardenability (BH property): Apply 2% tensile deformation in the rolling direction, heat treatment at 170 ° C for 20 min, measure the proof stress, and pass 200 MPa or more.
Bending workability: After 15% tensile pre-strain, a 180 ° bending test was conducted to investigate the limit bending radius, and an inner limit bending radius of 0.1 mm or less was accepted.
[0043]
[Table 1]
[0044]
[Table 2]
[0045]
As can be seen in Table 2, the test material No. Each of Nos. 1 to 7 is excellent in strength and BH properties, and the anisotropy of the Rankford value exceeds 0.4, and has excellent limit bending characteristics.
[0046]
Comparative Example 1
An aluminum alloy having the composition shown in Table 3 was ingoted by DC casting, and the resulting ingot was treated in the same process as in Example 1. For the aluminum alloy plate 10 days after the final heat treatment, In the same manner, tensile performance, anisotropy of Rankford value, paint bake hardenability (BH property), and bending workability were evaluated. The results are shown in Table 4.
[0047]
[Table 3]
[0048]
[Table 4]
[0049]
As shown in Table 4, the test material No. No. 8 has a small amount of Si. Since No. 10 has a small amount of Mg, all have low strength and inferior BH properties. Test material No. Since No. 9 has a large amount of Si, the strength is high, the anisotropy of the Rankford value is small, and the bending workability is inferior. Test material No. No. 11 has a value of (Si% −0.58 Mg%) smaller than 0.1%, so that the anisotropy of the Rankford value becomes small and the limit bending workability is inferior.
[0050]
Test material No. 12 has a value of (0.7 Si% + Mg%) exceeding 2.2%, and the test materials 13 to 17 have too much Cu, Mn, Cr, V, and Zr, respectively. The anisotropy of the Rankford value is reduced and bending workability is inferior.
[0051]
Example 2 and Comparative Example 2
Alloy B shown in Table 1 was DC cast, and the resulting ingot was homogenized at 540 ° C. for 10 hours, then cooled to 250 ° C. at the cooling rate shown in Table 5, and then cooled to room temperature. Then, it heated to the temperature shown in Table 5, and performed hot rolling, and rolled to thickness 4.2mm. The end temperature of hot rolling was 280 ° C. Furthermore, it cold-rolled and set it as the board of thickness 1mm. Only condition 27 was subjected to intermediate annealing at 450 ° C. to 30 s after cold rolling to a thickness of 3.0 mm.
[0052]
Thereafter, solution treatment was performed at 550 ° C. for 10 s, and quenched to 120 ° C. at a cooling rate of 30 ° C./s. 3 minutes after quenching, heat treatment was performed at 100 ° C. for 3 hours. About the aluminum alloy plate manufactured by the above process, the tensile performance, the anisotropy of the Rankford value, the BH property, and the bending workability were evaluated in the same manner as in Example 1.
[0053]
Furthermore, as an evaluation of the ridging mark, a tensile test piece was taken in the 90 ° direction of rolling, and 10% tensile deformation was applied to determine the presence or absence of the ridging mark after electrodeposition coating.
These results are shown in Table 6.
[0054]
[Table 5]
[0055]
[Table 6]
[0056]
As shown in Table 6, the test material No. 18 to 22 are all excellent in strength and BH properties, the anisotropy of the Rankford value exceeds 0.4, and have excellent limit bending characteristics.
[0057]
In contrast, test material No. In No. 24 , ridging marks were generated because the anisotropy of the Rankford value was small, the bending workability was poor, and the hot rolling temperature was high. Test material No. No. 25 has a low cooling rate after the homogenization treatment, so that the anisotropy of the Rankford value becomes small and the bending workability is inferior. Test material No. No. 26 has a high hot rolling temperature and a low cooling rate after the homogenization treatment, so that ridging marks are generated, the anisotropy of the Rankford value is reduced, and the bending workability is inferior. Test material No. No. 27 was subjected to intermediate annealing, so the anisotropy of the Rankford value was reduced and the bending workability was inferior.
[0058]
Example 3
Alloy B shown in Table 1 was DC cast, and the resulting ingot was homogenized at 550 ° C. for 8 h, and then cooled to 200 ° C. at a cooling rate of 500 ° C./h. Furthermore, it cooled to room temperature, reheated to 400 degreeC, the hot rolling was started, and it rolled to thickness 4.2mm. The end temperature of hot rolling was 260 ° C.
[0059]
Subsequently, cold rolling was performed to obtain a plate having a thickness of 1 mm. Further, a solution treatment for 4 s was performed at 550 ° C., and quenched at 40 ° C./s to 120 ° C. 2 minutes after quenching, heat treatment was performed at 100 ° C. for 2 hours.
[0060]
After 7 days from the final heat treatment, the aluminum alloy plate produced by the above process was subjected to the same tensile strength, proof stress and elongation in the directions of 0 °, 45 ° and 90 ° with respect to the rolling direction in the same manner as in Example 1. Rankford value r, yield strength after BH and limit bending radius were obtained, anisotropy of Rankford value r was calculated, and the presence or absence of ridging marks was determined. The results are shown in Table 7. As shown in Table 7, excellent characteristics are obtained in any direction.
[0061]
[Table 7]
[0062]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy plate which has the outstanding bending workability which can perform flat hem processing, paint bake hardenability, and was excellent also in corrosion resistance, and its manufacturing method are provided. The aluminum alloy plate is suitably used as an automobile member having a complicated shape and a light weight, such as an automobile hood, a trunk lid, and a door that are hemmed.
Claims (8)
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002077794A JP4633993B2 (en) | 2002-03-20 | 2002-03-20 | Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method |
KR1020077028761A KR100833145B1 (en) | 2001-03-28 | 2002-03-26 | Method for producing aluminum alloy sheet with excellent bendability and paint bake hardenability |
KR1020077028760A KR100861036B1 (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet with excellent formability and paint bake hardenability |
PCT/JP2002/002900 WO2002079533A1 (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof |
US10/468,971 US20040094249A1 (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof |
KR1020077028759A KR100870164B1 (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet with excellent formability and paint bake hardenability |
DE60236771T DE60236771D1 (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet with excellent formability and bake hardenability, and manufacturing method therefor |
CA2712316A CA2712316C (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof |
EP08157604A EP1967599B1 (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof |
EP20020705498 EP1375691A4 (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof |
CA2440666A CA2440666C (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof |
EP08157601.9A EP1967598B2 (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof |
CN2008100912011A CN101260491B (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet with excellent formability and paint bake hardenability, and method for production thereof |
CA2712356A CA2712356C (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof |
DE60239088T DE60239088D1 (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet with excellent ductility and bake hardenability, and manufacturing method therefor |
KR1020037012489A KR100831637B1 (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet having excellent formability and paint bake hardenability |
CN2008100916008A CN101302592B (en) | 2001-03-28 | 2002-03-26 | Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof |
US12/077,862 US20080178973A1 (en) | 2001-03-28 | 2008-03-21 | Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof |
US12/077,853 US20080178967A1 (en) | 2001-03-28 | 2008-03-21 | Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof |
US12/077,854 US20080178968A1 (en) | 2001-03-28 | 2008-03-21 | Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002077794A JP4633993B2 (en) | 2002-03-20 | 2002-03-20 | Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003277869A JP2003277869A (en) | 2003-10-02 |
JP4633993B2 true JP4633993B2 (en) | 2011-02-16 |
Family
ID=29228119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002077794A Expired - Fee Related JP4633993B2 (en) | 2001-03-28 | 2002-03-20 | Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4633993B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4499369B2 (en) * | 2003-03-27 | 2010-07-07 | 株式会社神戸製鋼所 | Al-Mg-Si-based alloy plate with excellent surface properties with reduced generation of ridging marks |
JP4588338B2 (en) * | 2004-03-10 | 2010-12-01 | 株式会社神戸製鋼所 | Aluminum alloy sheet with excellent bending workability and press formability |
JP2007169699A (en) * | 2005-12-21 | 2007-07-05 | Toyota Motor Corp | High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component |
CN101365818B (en) | 2006-03-31 | 2011-03-23 | 株式会社神户制钢所 | Aluminum alloy forging member and process for producing the same |
JP5432439B2 (en) * | 2007-06-27 | 2014-03-05 | 株式会社神戸製鋼所 | Aluminum alloy sheet for warm forming |
ES2426226T3 (en) | 2009-06-30 | 2013-10-22 | Hydro Aluminium Deutschland Gmbh | AlMgSi band for applications with high conformation requirements |
KR101103290B1 (en) * | 2011-09-29 | 2012-01-11 | 주식회사동양강철 | Aluminium alloy for extrusion forming having enhanced strength and workability |
JP5476452B2 (en) * | 2012-11-27 | 2014-04-23 | トヨタ自動車株式会社 | High strength, high toughness aluminum alloy forging material with excellent corrosion resistance, its manufacturing method, and suspension parts |
JP6301095B2 (en) * | 2013-09-27 | 2018-03-28 | 株式会社Uacj | Al-Mg-Si aluminum alloy plate for automobile panel and method for producing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3490955A (en) * | 1967-01-23 | 1970-01-20 | Olin Mathieson | Aluminum base alloys and process for obtaining same |
JPH06136478A (en) * | 1992-10-23 | 1994-05-17 | Kobe Steel Ltd | Baking hardening type al alloy sheet excellent in formability and its production |
JP2823797B2 (en) * | 1994-02-16 | 1998-11-11 | 住友軽金属工業株式会社 | Manufacturing method of aluminum alloy sheet for forming |
JP2000239811A (en) * | 1999-02-24 | 2000-09-05 | Kobe Steel Ltd | Manufacture for aluminum alloy sheet excellent in formability |
-
2002
- 2002-03-20 JP JP2002077794A patent/JP4633993B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003277869A (en) | 2003-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100833145B1 (en) | Method for producing aluminum alloy sheet with excellent bendability and paint bake hardenability | |
CA2690472A1 (en) | Aluminum alloy sheet for press forming | |
JP6301095B2 (en) | Al-Mg-Si aluminum alloy plate for automobile panel and method for producing the same | |
JP5148930B2 (en) | Method for producing Al-Mg-Si aluminum alloy plate for press forming, and Al-Mg-Si aluminum alloy plate for press forming | |
JPH05263203A (en) | Production of rolled sheet of aluminum alloy for forming | |
JP3590685B2 (en) | Manufacturing method of aluminum alloy sheet for automobile outer panel | |
JP4633993B2 (en) | Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method | |
JP4633994B2 (en) | Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method | |
JP2003105471A (en) | Aluminum alloy sheet, and production method therefor | |
JP4248796B2 (en) | Aluminum alloy plate excellent in bending workability and corrosion resistance and method for producing the same | |
JP3740086B2 (en) | A method for producing an aluminum alloy plate that is excellent in hemmability after aging at room temperature and is hemmed after stretch forming | |
JP2003105472A (en) | Aluminum alloy sheet, and production method therefor | |
JP2004238657A (en) | Method of manufacturing aluminum alloy plate for outer panel | |
JP4175818B2 (en) | Aluminum alloy plate excellent in formability and paint bake hardenability and method for producing the same | |
JP2001262265A (en) | Hot rolling stock of high formability aluminum alloy sheet | |
JP2006257475A (en) | Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL | |
JP2006241548A (en) | Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET | |
JPH0547615B2 (en) | ||
JP2678404B2 (en) | Manufacturing method of aluminum alloy sheet for forming | |
JP2000160272A (en) | Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY | |
JPH0247234A (en) | High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture | |
JP4588338B2 (en) | Aluminum alloy sheet with excellent bending workability and press formability | |
JP2006307241A (en) | Al-Mg-Si ALLOY SHEET SUPERIOR IN DEEP-DRAWABILITY AND MANUFACTURING METHOD THEREFOR | |
JP2000178673A (en) | Intermediate material of high formability aluminum alloy sheet | |
JP4050344B2 (en) | Quenching simultaneous precipitation hardening type Al-Mg-Cu based T4 alloy plate and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080428 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101025 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4633993 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |