[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4630403B2 - Protective element - Google Patents

Protective element Download PDF

Info

Publication number
JP4630403B2
JP4630403B2 JP2008310456A JP2008310456A JP4630403B2 JP 4630403 B2 JP4630403 B2 JP 4630403B2 JP 2008310456 A JP2008310456 A JP 2008310456A JP 2008310456 A JP2008310456 A JP 2008310456A JP 4630403 B2 JP4630403 B2 JP 4630403B2
Authority
JP
Japan
Prior art keywords
lead
melting point
low melting
movable electrode
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008310456A
Other languages
Japanese (ja)
Other versions
JP2009295567A (en
Inventor
嘉明 田中
喜巳郎 金田
尚 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2008310456A priority Critical patent/JP4630403B2/en
Priority to CN 200910005901 priority patent/CN101494134B/en
Publication of JP2009295567A publication Critical patent/JP2009295567A/en
Application granted granted Critical
Publication of JP4630403B2 publication Critical patent/JP4630403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuses (AREA)

Description

本発明は低融点合金の溶融で動作する保護素子に関し、温度ヒューズや抵抗付き温度ヒューズとして有用なものである。   The present invention relates to a protection element that operates by melting a low melting point alloy, and is useful as a thermal fuse or a thermal fuse with resistance.

被保護機器の過熱により低融点合金が溶融して被保護機器への給電を遮断する合金型温度ヒューズとして、一対のリード固定電極間にまたがって可動電極を低融点合金によって接合し、前記可動電極に前記リード固定電極より隔離させる方向の力を作用させる圧縮バネを設け、前記低融点合金の溶融で可動電極を圧縮バネで付勢して前記リード固定電極より隔離させるバネ式合金型温度ヒューズが公知である。(例えば、特許文献1〜3等)   An alloy-type thermal fuse that melts a low-melting-point alloy due to overheating of the protected device and cuts off power supply to the protected device. The movable electrode is joined by a low-melting-point alloy across a pair of lead fixed electrodes. A spring-type alloy type thermal fuse that is provided with a compression spring that applies a force in a direction to be isolated from the lead fixed electrode, and that urges the movable electrode by the compression spring by melting the low melting point alloy and isolates it from the lead fixed electrode. It is known. (For example, Patent Documents 1 to 3 etc.)

実開昭47−10830号公報Japanese Utility Model Publication No. 47-10830 実公昭57−37382号公報Japanese Utility Model Publication No. 57-37382 実公昭59−23340号公報Japanese Utility Model Publication No.59-23340

図7は従来のバネ式合金型温度ヒューズの一例を示している。
図7において、2a’,2b’は一対のリード固定電極、2c’は可動電極、5’は可動電極2c’の各端部を各リード固定電極2a’,2b’の先端に接合している低融点合金、4’は圧縮バネである。1’は絶縁基台を、7’はケースをそれぞれ示している。
このバネ式合金型温度ヒューズにおいては、被保護機器に充分に低い熱的接触抵抗で取付けられ、被保護機器の過熱により低融点合金5’が溶融されると、圧縮バネ4’の圧縮解放弾性力で可動電極2c’がリード固定電極2a’,2b’より隔離されて被保護機器への給電が遮断され、被保護機器の異常発熱ひいては火災の発生が未然に防止される。
FIG. 7 shows an example of a conventional spring type alloy type thermal fuse.
In FIG. 7, 2a ′ and 2b ′ are a pair of lead fixed electrodes, 2c ′ is a movable electrode, and 5 ′ is joining each end of the movable electrode 2c ′ to the tip of each lead fixed electrode 2a ′ and 2b ′. A low melting point alloy, 4 'is a compression spring. Reference numeral 1 'denotes an insulating base, and 7' denotes a case.
In this spring-type alloy-type thermal fuse, it is attached to a protected device with a sufficiently low thermal contact resistance, and when the low melting point alloy 5 ′ is melted by overheating of the protected device, the compression release elasticity of the compression spring 4 ′. The movable electrode 2c ′ is isolated from the lead fixed electrodes 2a ′ and 2b ′ by the force, and the power supply to the protected device is cut off, so that abnormal heat generation of the protected device and thus a fire can be prevented.

前記のバネ式合金型温度ヒューズにおいては、リード固定電極2a’(2b’)と可動電極2c’とを接合している低融点合金5’に常時圧縮バネ4’の圧縮反力が作用し、低融点合金5’が遂にはクリープ破断し、本来の正常な動作を保障し難い畏れがある。また、クリープ応力が低融点合金5’の破断に至らない程度のバネ応力しかもたないバネにすれば、クリープ破断の防止は可能であるが、実際に動作するまでの加熱雰囲気などで劣化する畏れがあり、可動電極を隔離させるだけの解放弾性力が得られる保証がない。
特に、近来、環境保全上はんだ等の低融点合金の鉛フリー化が要請され、その鉛フリー低融点合金としてSn若しくはInのうち少なくとも何れか一方を含み、BiやSbを成分とする低融点合金(以下、Bi系低融点合金、Sb系低融点合金という)が開発されているが、これらの低融点合金に直流電気を通すと陰極側電極と低融点合金との界面にBiやSbが析出し、この析出部分が脆くなることを本発明者等は認識している。
かかるBi系低融点合金またはSb系低融点合金を前記のバネ式合金型温度ヒューズの低融点合金として用い、直流系で使用すると、低融点合金にBiまたはSb析出箇所が発生し、この箇所が圧縮バネの圧縮反力で破断され、バネ式合金型温度ヒューズの早期故障が懸念される。
In the spring type alloy type thermal fuse, the compression reaction force of the compression spring 4 'always acts on the low melting point alloy 5' joining the lead fixed electrode 2a '(2b') and the movable electrode 2c ', The low melting point alloy 5 ′ eventually creep ruptures, and there is a possibility that it is difficult to ensure the original normal operation. In addition, if the spring has only a spring stress that does not cause the low melting point alloy 5 'to break, creep rupture can be prevented, but it may deteriorate in a heating atmosphere until actual operation. There is no guarantee that a release elastic force sufficient to isolate the movable electrode is obtained.
In particular, in recent years, there has been a demand for lead-free low melting point alloys such as solder for environmental protection, and the lead free low melting point alloy includes at least one of Sn and In, and a low melting point alloy containing Bi or Sb as a component. (Hereinafter referred to as Bi-based low melting point alloys and Sb-based low melting point alloys) have been developed, but when DC electricity is passed through these low melting point alloys, Bi and Sb precipitate at the interface between the cathode side electrode and the low melting point alloy. The present inventors have recognized that this deposited portion becomes brittle.
When such a Bi-based low melting point alloy or Sb-based low melting point alloy is used as the low melting point alloy of the spring-type alloy type thermal fuse and used in a direct current system, Bi or Sb precipitates are generated in the low melting point alloy. It is broken by the compression reaction force of the compression spring, and there is concern about the early failure of the spring type alloy type thermal fuse.

本発明の目的は、リード固定電極と可動電極との間を低融点合金で接合し、この可動電極をリード固定電極から離隔する方向に加圧する圧縮バネを付設し、低融点合金の溶融で圧縮バネを圧縮から解放して可動電極をリード固定電極から隔離するバネ式の可溶合金型保護素子において、圧縮バネの圧縮反力による低融点合金のクリープをよく防止して同保護素子の適正な動作を保障することにある。
本発明の更なる目的は、BiまたはSbを合金成分として含有し、直流通電下、陰極側電極に接して低融点合金にBiやSbが析出するBi系低融点合金またはSb系低融点合金を低融点合金として使用しても、脆い前記Bi析出箇所またはSb析出箇所での前記圧縮バネの圧縮反力による破断を良好に排除できるバネ式の可溶合金型保護素子を提供することにある。
The object of the present invention is to join the lead fixed electrode and the movable electrode with a low melting point alloy, attach a compression spring that pressurizes the movable electrode in a direction away from the lead fixed electrode, and compress the melt by melting the low melting point alloy. In a spring-type soluble alloy type protective element that releases the spring from compression and isolates the movable electrode from the lead fixed electrode, the creep of the low melting point alloy due to the compression reaction force of the compression spring is well prevented and the protective element is It is to ensure operation.
A further object of the present invention is to provide a Bi-based low melting point alloy or Sb-based low melting point alloy containing Bi or Sb as an alloy component and depositing Bi or Sb in the low melting point alloy in contact with the cathode side electrode under direct current energization. It is an object of the present invention to provide a spring-type soluble alloy type protective element that can satisfactorily eliminate breakage due to the compression reaction force of the compression spring at the brittle Bi precipitation site or Sb precipitation site even when used as a low melting point alloy.

請求項1に係る保護素子は、一対のリード固定電極を有し、これらのリード固定電極にガイド軸が並設され、可動電極がガイド軸に挿通された状態で前記リード固定電極間にまたがって配設され、各リード固定電極の先端と可動電極との間及び前記ガイド軸と可動電極との間が低融点合金で接合され、前記可動電極に前記リード固定電極より隔離させる方向の力を作用させる圧縮バネが設けられ、前記低融点合金の溶融で可動電極が圧縮バネで付勢されて前記リード固定電極より隔離されることを特徴とする。
請求項2に係る保護素子は、請求項1の保護素子において、抵抗器本体の両端にリード導体が取付けられてなる抵抗器の一方のリード導体がガイド軸として使用され、圧縮バネにコイルバネが使用され、該コイルバネが抵抗器本体と可動電極との間において前記一方のリード導体に挿通され、抵抗器の一方のリード導体と両リード固定電極の何れかとの間に抵抗器通電発熱回路が接続されることを特徴とする。
請求項3に係る保護素子は、請求項1記載の保護素子において、抵抗器本体の両端にリード導体が取付けられてなる抵抗器の一方のリード導体がガイド軸として使用され、圧縮バネにコイルバネが使用され、該コイルバネが前記一方のリード導体に前記可動電極で押えられた状態で挿通され、抵抗器の他方のリード導体と両リード固定電極の何れかとの間に抵抗器通電発熱回路が接続されることを特徴とする。
請求項4に係る保護素子は、請求項3の保護素子において、可動電極と圧縮コイルバネの一端との間または圧縮コイルバネの他端と抵抗器本体端との間の少なくとも一方に絶縁体が介在され、圧縮コイルバネの内側とガイド軸との間に前記とは別の絶縁体が介在されていることを特徴とする。
請求項5に係る保護素子は、請求項1〜4何れかの保護素子において、可動電極に各リード固定電極先端部を受容するすり鉢状孔が設けられ、各リード固定電極の先端部と可動電極との低融点合金による接合がすり鉢状孔への低融点合金の溶融充填・固化により行われていることを特徴とする。
請求項6に係る保護素子は、請求項1〜4何れかの保護素子において、各リード固定電極先端部と可動電極との間が面接触されていることを特徴とする。
請求項7に係る保護素子は、請求項1〜6何れかの保護素子において、低融点合金がSn若しくはInのうち少なくとも何れか一方を含む鉛フリー合金であることを特徴とする。
請求項8に係る保護素子は、請求項1〜7何れかの保護素子において、低融点合金がBiを含有する鉛フリー合金であることを特徴とする。
請求項9に係る保護素子は、請求項1〜7何れかの保護素子において、低融点合金がSbを含有する鉛フリー合金であることを特徴とする。
請求項10に係る保護素子は、請求項2〜9何れか記載の保護素子において、可動電極及び抵抗器本体がケース内に収容され、各リード固定電極及び抵抗器の一方のリード導体がケースから引き出されていることを特徴とする。
請求項11に係る保護素子は、請求項1〜10何れかの保護素子において、直流用であることを特徴とする。
請求項12に係る保護素子は、請求項1〜11何れかの保護素子において、リード固定電極の材質を銅とし、該リード固定電極表面の少なくとも低融点合金に接合される部分に、前記銅の低融点合金への移行を阻止する銅移行阻止膜を設けたことを特徴とする。
請求項13に係る保護素子は、請求項12の保護素子において、可動電極の材質を銅若しくは銅合金とし、該可動電極表面の少なくとも低融点合金に接合される部分に、前記銅の低融点合金への移行を阻止する銅移行阻止膜を設けたことを特徴とする。
請求項14に係る保護素子は、請求項12または13の保護素子において、銅移行阻止膜がNi、Ni−P、Ni−B、Fe、Pd、Pd−Pのうちの少なくとも一層以上の膜であることを特徴とする。
The protection element according to claim 1 includes a pair of lead fixed electrodes, a guide shaft is juxtaposed with the lead fixed electrodes, and the movable electrode is inserted through the guide shaft and spans between the lead fixed electrodes. Arranged, the tip of each lead fixed electrode and the movable electrode and the guide shaft and the movable electrode are joined by a low melting point alloy, and a force in a direction to isolate the movable electrode from the lead fixed electrode acts. A compression spring is provided, and the movable electrode is urged by the compression spring by the melting of the low melting point alloy and is isolated from the lead fixed electrode.
The protection element according to claim 2 is the protection element according to claim 1, wherein one lead conductor of a resistor having lead conductors attached to both ends of the resistor body is used as a guide shaft, and a coil spring is used as a compression spring. The coil spring is inserted into the one lead conductor between the resistor main body and the movable electrode, and a resistor energization heating circuit is connected between one lead conductor of the resistor and either of the lead fixed electrodes. It is characterized by that.
The protection element according to claim 3 is the protection element according to claim 1, wherein one lead conductor of a resistor having lead conductors attached to both ends of the resistor body is used as a guide shaft, and a coil spring is provided as a compression spring. The coil spring is inserted into the one lead conductor while being pressed by the movable electrode, and a resistor energization heating circuit is connected between the other lead conductor of the resistor and either of the lead fixed electrodes. It is characterized by that.
The protection element according to claim 4 is the protection element according to claim 3, wherein an insulator is interposed between the movable electrode and one end of the compression coil spring or between the other end of the compression coil spring and the resistor main body end. An insulator different from the above is interposed between the inside of the compression coil spring and the guide shaft.
The protective element according to claim 5 is the protective element according to any one of claims 1 to 4, wherein the movable electrode is provided with a mortar-shaped hole for receiving each lead fixed electrode tip, and the tip of each lead fixed electrode and the movable electrode The low melting point alloy is joined to the mortar-shaped hole by melt filling and solidification of the low melting point alloy.
According to a sixth aspect of the present invention, in the protective element according to any one of the first to fourth aspects, the lead fixed electrode tip and the movable electrode are in surface contact.
A protective element according to claim 7 is the protective element according to any one of claims 1 to 6, wherein the low melting point alloy is a lead-free alloy containing at least one of Sn and In.
A protective element according to an eighth aspect is the protective element according to any one of the first to seventh aspects, wherein the low melting point alloy is a lead-free alloy containing Bi.
The protective element according to claim 9 is the protective element according to any one of claims 1 to 7, wherein the low melting point alloy is a lead-free alloy containing Sb.
The protection element according to claim 10 is the protection element according to any one of claims 2 to 9, wherein the movable electrode and the resistor main body are accommodated in the case, and one lead conductor of each lead fixed electrode and the resistor is from the case. It is drawn out.
The protective element according to an eleventh aspect is the protective element according to any one of the first to tenth aspects, wherein the protective element is for direct current.
A protection element according to claim 12 is the protection element according to any one of claims 1 to 11, wherein the lead fixing electrode is made of copper, and at least a portion of the lead fixing electrode surface bonded to the low melting point alloy is bonded to the copper. It is characterized by providing a copper transition prevention film that prevents transition to a low melting point alloy.
A protection element according to claim 13 is the protection element according to claim 12, wherein the material of the movable electrode is copper or a copper alloy, and at least a portion of the surface of the movable electrode joined to the low melting point alloy is bonded to the low melting point alloy of copper. It is characterized by providing a copper transition prevention film that prevents the transition to.
According to a fourteenth aspect of the present invention, in the protective element according to the twelfth or thirteenth aspect, the copper migration prevention film is a film of at least one or more of Ni, Ni-P, Ni-B, Fe, Pd, and Pd-P. It is characterized by being.

(1)圧縮バネの圧縮反力が低融点合金に作用する箇所は、可動電極の各端部と各リード固定電極先端部とを接合する低融点合金箇所a、aと可動電極の中間部とガイド軸とを接合する低融点合金箇所bであり、箇所a、aの2ヵ所のみに圧縮バネの圧縮反力を作用させている従来の保護素子に較べ、低融点合金箇所a、aの2ヵ所と箇所bの1ヵ所の合計3ヵ所に圧縮反力を作用させている本発明に係る保護素子の方が低融点合金の圧縮反力作用箇所の応力を小さくできる。従って、低融点合金のクリープを低減でき、保護素子の適格な作動を保障できる。 (1) The location where the compression reaction force of the compression spring acts on the low melting point alloy is the low melting point alloy locations a and a that join each end of the movable electrode and each lead fixed electrode tip and the intermediate portion of the movable electrode. Compared to a conventional protection element in which the compression reaction force of the compression spring is applied to only two places a and a, which is a low melting point alloy part b that joins the guide shaft, two low melting point alloy parts a and a. The protective element according to the present invention in which the compression reaction force is applied to a total of three places, one place and one place b, can reduce the stress at the compression reaction force acting place of the low melting point alloy. Accordingly, creep of the low melting point alloy can be reduced, and proper operation of the protective element can be ensured.

(2)本発明に係る保護素子において、低融点合金にBiやSbを合金成分とするBi系低融点合金またはSb系低融点合金を用い、直流系で使用する場合、低融点合金の陰極側電極に接する界面にBiまたはSbが析出し、その析出箇所が脆弱化するが、前記の応力軽減効果によりその脆弱箇所での破断を良好に防止できる。従って、本発明に係る保護素子の低融点合金にBi系やSb系の鉛フリー合金を使用し、その保護素子を直流系で使用しても信頼性のある作動を保障できる。 (2) In the protective element according to the present invention, when using a Bi-based low-melting-point alloy or Sb-based low-melting-point alloy containing Bi or Sb as an alloy component for the low-melting-point alloy, Bi or Sb is deposited on the interface in contact with the electrode, and the deposited portion becomes brittle. However, the fracture at the brittle portion can be satisfactorily prevented by the stress reducing effect. Therefore, even if a Bi-based or Sb-based lead-free alloy is used for the low melting point alloy of the protective element according to the present invention and the protective element is used in a direct current system, reliable operation can be ensured.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1の(イ)は本発明に係る保護素子の一実施例を示す縦断面図、図1の(ロ)は図1の(イ)におけるロ−ロ断面図である。
図1において、1は耐熱性の絶縁基台、例えばセラミックス板である。2a,2bは一対の並行なリード固定電極であり、絶縁基台1に挿通され、例えば耐熱性接着剤により基台1に固定されている。このリード固定電極は例えば銅製とすることができる。リード固定電極の断面形状は角形、円形などにでき、特に制限されない。3はガイド軸であり、金属、絶縁体の何れをも使用でき、前記リード固定電極2a、2bに並行に配され、一端が基台1に接着剤例えばガラスにより固定されている。2cは可動電極、4はコイルバネであり、可動電極2cがガイド軸3に挿通され(20は可動電極2cの孔)、可動電極2cの両端部が各リード固定電極2a,2cの先端面に接触されていると共にコイルバネ4が圧縮され、この状態で各リード固定電極2a,2bの先端面と可動電極2cの各端部との間及び可動電極2cとガイド軸3との間が低融点合金5a,5cにより接合されている。低融点合金5cには、低融点合金5aと同一の合金を使用しても、低融点合金5aよりも低融点の合金を使用してもよい。
図1の(ハ)に示すように、各リード固定電極先端面に段面を設け、可動電極の先端側面を断面の垂直面に、各可動電極端部の裏面を断面の平坦面に接触させて接触面積を可及的に広くし、電気的接触抵抗を充分に低くしてある。30はガイド軸3の先端に設けられたストッパーであり、かぎ状としてある。また、絶縁ケースを装着してもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A is a longitudinal sectional view showing an embodiment of the protective element according to the present invention, and FIG. 1B is a cross-sectional view of FIG.
In FIG. 1, 1 is a heat-resistant insulating base, for example, a ceramic plate. Reference numerals 2a and 2b denote a pair of parallel lead fixing electrodes, which are inserted into the insulating base 1 and fixed to the base 1 with, for example, a heat-resistant adhesive. The lead fixing electrode can be made of, for example, copper. The cross-sectional shape of the lead fixing electrode can be square or circular, and is not particularly limited. Reference numeral 3 denotes a guide shaft, which can use either a metal or an insulator, and is arranged in parallel with the lead fixing electrodes 2a and 2b, and one end is fixed to the base 1 with an adhesive such as glass. 2c is a movable electrode, 4 is a coil spring, the movable electrode 2c is inserted through the guide shaft 3 (20 is a hole of the movable electrode 2c), and both ends of the movable electrode 2c are in contact with the tip surfaces of the lead fixed electrodes 2a and 2c. And the coil spring 4 is compressed, and in this state, the low melting point alloy 5a is formed between the leading end surfaces of the lead fixed electrodes 2a and 2b and the end portions of the movable electrode 2c and between the movable electrode 2c and the guide shaft 3. , 5c. As the low melting point alloy 5c, the same alloy as the low melting point alloy 5a may be used, or an alloy having a lower melting point than the low melting point alloy 5a may be used.
As shown in FIG. 1 (c), a stepped surface is provided on the tip surface of each lead fixed electrode, the tip side surface of the movable electrode is brought into contact with the vertical surface of the cross section, and the back surface of each movable electrode end is brought into contact with the flat surface of the cross section. The contact area is made as wide as possible, and the electrical contact resistance is made sufficiently low. A stopper 30 is provided at the tip of the guide shaft 3 and has a hook shape. An insulating case may be attached.

上記における力学的状態を簡易化すれば、図2の(イ)〔断面図〕及び図2の(ロ)〔図2の(イ)に対する上面図〕のように、圧縮バネ4の圧縮反力のために、各リード固定電極と可動電極とを接合している低融点合金部分5a(5a)の断面S−Sにおいて剪断応力Fが作用し、可動電極とガイド軸とを接合している低融点合金部分5cの界面s−sに剪断応力fが作用している状態とすることができる。
図2において、断面S−Sの面積をS、界面s−sの面積をs、圧縮バネ4の圧縮反力をT、低融点合金部分5cでの剪断力が作用する箇所の厚みをt高さをb、低融点合金の剪断ヤング率をGとすると、
2SF+sf=T
F/G=ft/G
が成立する。
前記界面s−sの面積sは、ガイド軸の半径をrとすれば、s≒2πrbであるから、前記応力Fは
[式1] F≒0.5T/[S+(πrb)/(t)]
で与えられる。
If the mechanical state in the above is simplified, the compression reaction force of the compression spring 4 as shown in FIG. 2 (a) [sectional view] and FIG. 2 (b) [top view with respect to FIG. 2 (a)]. Therefore, the shear stress F acts on the cross-section SS of the low melting point alloy portion 5a (5a) that joins each lead fixed electrode and the movable electrode, and the movable electrode and the guide shaft are joined together. A state in which the shear stress f acts on the interface s-s of the melting point alloy portion 5c can be achieved.
In FIG. 2, the area of the cross section SS is S, the area of the interface s-s is s, the compression reaction force of the compression spring 4 is T, and the thickness of the portion where the shearing force acts on the low melting point alloy portion 5c is t high. Where b is the low melting point alloy and the shear Young's modulus of the low melting point alloy is G,
2SF + sf = T
F / G = ft / G
Is established.
Since the area s of the interface s−s is s≈2πrb, where r is the radius of the guide shaft, the stress F is given by [Expression 1] F≈0.5 T / [S + (πrb) / (t) ]
Given in.

式1において、ガイド軸の半径rが応力Fの減少に寄与するのは、可動電極2cとガイド軸3との間を低融点合金5cで接合したためであり、リード固定電極2aまたは2bと可動電極2cとを接合する低融点合金箇所S−Sに作用する剪断応力Fを前記半径rを増大することにより減少でき、その低融点合金箇所S−Sでのクリープをよく防止できるから、リード固定電極2a,2bと可動電極2cとの電気的接触状態を安定に維持できる。   In Equation 1, the radius r of the guide shaft contributes to the reduction of the stress F because the movable electrode 2c and the guide shaft 3 are joined by the low melting point alloy 5c, and the lead fixed electrode 2a or 2b and the movable electrode Since the shear stress F acting on the low melting point alloy spot SS joining 2c can be reduced by increasing the radius r, the creep at the low melting point alloy spot SS can be well prevented. The electrical contact state between 2a, 2b and the movable electrode 2c can be stably maintained.

可動電極とリード固定電極との低融点合金による接合は、図3に示すように、可動電極にすり鉢状孔200を設け、この孔200にリード固定電極2a(2b)の先端部を受容させ、次いですり鉢状孔200に低融点合金5aを溶融充填・固化する構成とすることもできる。
この構成によれば、接合面積のバラツキを抑え得ると共に低融点合金のすり鉢状孔への楔止め効果による接合の安定化が期待できる。
As shown in FIG. 3, the movable electrode and the fixed lead electrode are joined with a low melting point alloy by providing a mortar-shaped hole 200 in the movable electrode, and receiving the tip of the fixed lead electrode 2a (2b) in the hole 200, Subsequently, the low melting point alloy 5a can be melt filled and solidified into the mortar-shaped hole 200.
According to this configuration, it is possible to suppress the variation in the bonding area and to stabilize the bonding due to the wedge-fastening effect on the mortar-shaped hole of the low melting point alloy.

低融点合金には、環境保全上、鉛フリー合金を使用することが好ましい。
この鉛フリー合金中、Bi系低融点合金やSb系低融点合金を前記保護素子の低融点合金として用いると、保護素子を直流で使用する場合、陰極側電極に接する界面にBiやSbが析出する現象が生じる。BiやSbが析出する理由は、次のように推定できる。
低融点合金には、共晶型合金、固溶体型合金、金属間化合物型合金があり、これらはミクロ的に見ると、二種以上の金属原子が混合して新しい原子配列の結晶格子を造り、格子点のイオン化原子が平衡状態にあると言える。しかしながら、Bi原子やSb原子は平衡位置から飛び出し易く課電によリエネルギーを与えられて格子点から飛び出し、転位原子となって結晶格子内を放浪し、直流の場合は、その転位原子が陰極側に移動し、陰極界面に析出していく。転位原子が飛び出した跡の空孔においては、あたかも、満員の観覧席で或る席が空いたとすると、その空席の隣の客が一人づつ移動して新たな空席をうめていくように移動して結晶の表面に至り、その表面で空孔同志が合体していく。
For the low melting point alloy, it is preferable to use a lead-free alloy for environmental protection.
In this lead-free alloy, when a Bi-based low melting point alloy or an Sb-based low melting point alloy is used as the low melting point alloy of the protective element, Bi or Sb is deposited at the interface in contact with the cathode side electrode when the protective element is used with a direct current. Phenomenon occurs. The reason why Bi and Sb are precipitated can be estimated as follows.
Low melting point alloys include eutectic type alloys, solid solution type alloys, and intermetallic compound type alloys. From a microscopic viewpoint, these two types of metal atoms are mixed to create a crystal lattice with a new atomic arrangement. It can be said that the ionized atoms at the lattice points are in an equilibrium state. However, Bi atoms and Sb atoms are likely to jump out of the equilibrium position, and are given energy by the applied voltage, jump out of the lattice points, dislodge in the crystal lattice as a dislocation atom, and in the case of direct current, the dislocation atom is a cathode. Moves to the side and deposits at the cathode interface. In the vacancies where the dislocation atoms jumped out, as if a certain seat was vacant in the full seat, the passengers next to the vacant seat moved one by one and moved to fill the new vacant seat. Then, it reaches the surface of the crystal, and vacancies coalesce on the surface.

Bi金属やSb金属の析出の例を示せば次の通りである。
[例1]
57重量%Bi−残部Sn,直径1mmφ,長さ5mmの低融点合金片の両端に直径1mmφの銅リード導体を溶接し、直流15アンペアを5000時間通電したところ、陰極側の銅リード導体の端面に接して厚み200μmのBi金属層が析出された。
[例2]
5重量%Sb−残部Sn,直径2mmφ,長さ7mmの低融点合金片の両端に直径2mmφの銅リード導体を溶接し、直流30アンペアを5000時間通電したところ、陰極側の銅リード導体の端面に接して厚み50μmのSb金属層が析出された。
An example of the deposition of Bi metal or Sb metal is as follows.
[Example 1]
A copper lead conductor with a diameter of 1 mmφ was welded to both ends of a 57 wt% Bi-remainder Sn, 1 mmφ diameter, 5 mm length low melting point alloy piece, and a 15 ampere direct current was applied for 5000 hours. A Bi metal layer having a thickness of 200 μm was deposited in contact therewith.
[Example 2]
A copper lead conductor with a diameter of 2 mmφ was welded to both ends of a 5 wt% Sb-remainder Sn, a diameter of 2 mmφ, and a length of 7 mm, and a 30 VDC current was applied for 5000 hours. A Sb metal layer having a thickness of 50 μm was deposited.

本発明に係る保護素子において、低融点合金にBi系低融点合金またはSb系低融点合金を用い、直流のもとで使用すると、陰極側の電極に接する低融点合金界面にBi金属またはSb金属が析出されて脆化するが、本発明に係る保護素子では、圧縮バネの反力に基づきその界面に作用する応力をよく軽減できるから、その脆化にもかかわらず、保護素子の早期誤作動を排除して保護素子の適正な作動を保障できる。
本発明に係る保護素子において、低融点合金にBi系低融点合金またはSb系低融点合金を用い、直流のもとで使用しても、可動電極とリード固定電極との電気的接触面積を前記した段面接触により広くすれば、それだけ低融点合金側へのバイパス電流を少なくできるので、Bi金属またはSb金属の析出をよく抑制できる。
In the protective element according to the present invention, when a Bi-based low-melting-point alloy or an Sb-based low-melting-point alloy is used as the low-melting-point alloy, In the protective element according to the present invention, the stress acting on the interface can be well reduced based on the reaction force of the compression spring. The proper operation of the protection element can be ensured by eliminating the above.
In the protective element according to the present invention, even if the Bi-based low-melting-point alloy or the Sb-based low-melting-point alloy is used as the low-melting-point alloy and used under direct current, the electrical contact area between the movable electrode and the lead fixed electrode is If the step contact is made wider, the bypass current to the low melting point alloy side can be reduced accordingly, so that the precipitation of Bi metal or Sb metal can be well suppressed.

図4−1の(イ)は本発明に係る抵抗付き保護素子の一実施例を示す断面図、図4−1の(ロ)は図4−1の(イ)におけるロ−ロ断面図である。
図4−1において、1は耐熱性の絶縁基台、例えばフェノール樹脂板である。2a,2bは一対の並行なリード固定電極であり、絶縁基台1に挿通され、例えば一体成型により基台1に固定されている。このリード固定電極は銅製とすることができる。リード固定電極の断面形状は角形、円形などにでき、特に制限されない。300は巻線型抵抗器であり、リード導体付きキャップ301が耐熱性絶縁コア302例えばセラミックスコアの両端に装着され、コア302に抵抗線303が巻き付けられ、その巻き付け各端が各キャップ301,301に溶接等により接合されてなり、基台1上においてリード固定電極部2a,2b間に並設され、一方のリード導体3がガイド軸として使用されている。他方のリード導体3’は基台1から引き出され、接着剤例えばガラスで基台1に固定されている。6は必要に応じて介在されたスペーサである。2cは可動電極であり、一方のリード導体3に挿通されている。4はコイルバネであり、例えばステンレスバネを使用でき、可動電極と抵抗器本体との間において一方のリード導体3に挿通され、可動電極2cの両端部と各リード固定電極2a,2bの先端面(段面)との間が低融点合金5a,5aで接合されると共に一方のリード導体3と可動電極2cとの間が低融点合金5cで接合されてコイルバネ4が圧縮状態とされている。
7は絶縁体ケースであり、一方のリード導体3が該ケース内面に接して終端されている。8は必要に応じて設けられた例えばセラミックス等の絶縁套筒や耐熱絶縁塗料等のモールド体であり、モールド体はコイルバネ4を埋めることなく抵抗器本体の周囲を占有している。絶縁套筒やモールド体を設ける場合、ケース7は省略することもできる。この場合、抵抗器300の一方のリード導体3の先端にはストッパーを設ける必要がある。
4A is a cross-sectional view showing an embodiment of a protection element with resistance according to the present invention, and FIG. 4A is a cross-sectional view of FIG. 4A. is there.
In FIG. 4-1, 1 is a heat-resistant insulating base, for example, a phenol resin plate. Reference numerals 2a and 2b denote a pair of parallel lead fixing electrodes which are inserted into the insulating base 1 and fixed to the base 1 by, for example, integral molding. The lead fixing electrode can be made of copper. The cross-sectional shape of the lead fixing electrode can be square or circular, and is not particularly limited. Reference numeral 300 denotes a wire-wound resistor. Caps 301 with lead conductors are attached to both ends of a heat-resistant insulating core 302, for example, a ceramic score, and a resistance wire 303 is wound around the core 302. It is joined by welding or the like, and is arranged in parallel between the lead fixed electrode portions 2a and 2b on the base 1, and one lead conductor 3 is used as a guide shaft. The other lead conductor 3 ′ is drawn from the base 1 and fixed to the base 1 with an adhesive, for example, glass. Reference numeral 6 denotes a spacer interposed as required. Reference numeral 2 c denotes a movable electrode, which is inserted through one lead conductor 3. Reference numeral 4 denotes a coil spring. For example, a stainless steel spring can be used, and is inserted into one lead conductor 3 between the movable electrode and the resistor body, and both end portions of the movable electrode 2c and the leading end surfaces of the lead fixed electrodes 2a and 2b ( And the lead conductor 3 and the movable electrode 2c are joined together by the low melting point alloy 5c so that the coil spring 4 is in a compressed state.
Reference numeral 7 denotes an insulator case, and one lead conductor 3 is terminated in contact with the inner surface of the case. Reference numeral 8 denotes a mold body such as an insulating sleeve such as ceramics or a heat-resistant insulating paint provided as necessary. The mold body occupies the periphery of the resistor body without filling the coil spring 4. The case 7 can be omitted when an insulating sleeve or a mold body is provided. In this case, it is necessary to provide a stopper at the tip of one lead conductor 3 of the resistor 300.

この抵抗付き保護素子においても、前記した保護素子と同様、被保護機器の過熱により低融点合金5a,5cを溶融させて被保護機器への給電を遮断させることができる。
また、別の使用態様では、被保護機器の給電路にリード固定電極2a,2bが接続され、抵抗器の他方のリード導体3’と一方のリード固定電極2aまたは2bとの間が抵抗器通電発熱回路に接続され、この場合、抵抗器通電発熱回路は、常時はオフとされており、被保護機器に異常が生じると、その異常をセンサが感知し、抵抗器通電発熱回路がオンとされて抵抗器本体が発熱され、低融点合金5a,5cが溶融され、圧縮バネ4が解放され、可動電極2cがリード固定電極2a,2b間より隔離されて被保護機器への給電が遮断される。この場合、抵抗器本体から各低融点合金5c,5a,5aに至る熱伝達距離が短く、しかも、絶縁套筒8による放熱抑制効果により抵抗器本体の昇温速度を迅速にできるので、動作速度を速くできる。
In this protective element with resistance, similarly to the protective element described above, the low melting point alloys 5a and 5c can be melted by overheating of the protected device to cut off the power supply to the protected device.
In another use mode, the lead fixing electrodes 2a and 2b are connected to the power supply path of the protected device, and the resistor is energized between the other lead conductor 3 ′ of the resistor and the one lead fixing electrode 2a or 2b. In this case, the resistor energization heat generation circuit is normally turned off. When an abnormality occurs in the protected device, the sensor detects the abnormality and the resistor energization heat generation circuit is turned on. The resistor body generates heat, the low melting point alloys 5a and 5c are melted, the compression spring 4 is released, the movable electrode 2c is isolated from between the lead fixed electrodes 2a and 2b, and the power supply to the protected device is cut off. . In this case, since the heat transfer distance from the resistor main body to each of the low melting point alloys 5c, 5a, 5a is short, and the temperature rise rate of the resistor main body can be increased rapidly due to the heat dissipation suppression effect by the insulating sleeve 8, the operating speed Can be faster.

図4−1に示す保護素子においては、リード固定電極2aまたは2b→可動電極2c→リード導体3→抵抗器本体300→リード導体3’を含む抵抗器通電発熱回路が、被保護機器の異常時に通電されて抵抗器本体300が通電発熱され、その発生熱で低融点可溶材5a,5bが溶融されてリード固定電極2a,2b間が遮断される。而るに、バネ4例えばステンレスバネ4の比抵抗値はリード導体3の比抵抗値に対しそれほど高くなく、抵抗器通電発熱回路のオン後、低融点可溶材が溶融されるまでの間にリード固定電極2aまたは2b→可動電極2c→バネ4→抵抗器キャップ電極301→抵抗器本体300の経路で電流が流れてバネ4が発熱し、そのバネ特性の低下で保護素子の作動に支障をきたす畏れがある。
従って、図4−2に示すように、バネ4と可動電極2cとの間、またはバネ4と抵抗器キャップ電極301との間に絶縁スペーサ901,902を介在させることが好ましい。これらの絶縁スペーサ901,902を双方とも介在させることもできる。また、絶縁スペーサ902に代え、抵抗器キャップ電極301に絶縁膜をコートすることもできる。
更に、バネ4の傾きにより、バネ4の上端内周及び下端内周がリード導体3に接触してバネ4に電流がバイパスする畏れもあるから、バネ4の内側とリード導体3との間に絶縁筒903を介在させることが好ましい。
In the protection element shown in FIG. 4A, the resistor energization heating circuit including the lead fixed electrode 2a or 2b → the movable electrode 2c → the lead conductor 3 → the resistor body 300 → the lead conductor 3 ′ The resistor main body 300 is energized to generate heat and the generated heat melts the low melting point soluble materials 5a and 5b to cut off the lead fixed electrodes 2a and 2b. Accordingly, the specific resistance value of the spring 4, for example, the stainless spring 4 is not so high as the specific resistance value of the lead conductor 3, and the lead is heated after the resistor energization heating circuit is turned on until the low melting point soluble material is melted. Current flows through the path of the fixed electrode 2a or 2b → movable electrode 2c → spring 4 → resistor cap electrode 301 → resistor body 300, the spring 4 generates heat, and the spring characteristics are deteriorated, thereby hindering the operation of the protection element. There is drowning.
Therefore, as shown in FIG. 4B, it is preferable to interpose insulating spacers 901 and 902 between the spring 4 and the movable electrode 2c or between the spring 4 and the resistor cap electrode 301. Both of these insulating spacers 901 and 902 can be interposed. Further, instead of the insulating spacer 902, the resistor cap electrode 301 can be coated with an insulating film.
Further, since the upper end inner periphery and the lower end inner periphery of the spring 4 may come into contact with the lead conductor 3 due to the inclination of the spring 4, current may be bypassed to the spring 4. It is preferable to interpose an insulating cylinder 903.

図4−1、図4−2に示す抵抗付き保護素子においても、圧縮バネ4の圧縮反力を、可動電極2cとリード固定電極2a(2b)との間の低融点合金5aによる接合箇所以外に可動電極2cと抵抗器の一方のリード導体3との間の低融点合金5cによる接合箇所でも支持しているから、それらの各接合箇所に作用する応力を低減でき、低融点合金のクリープを良好に防止できる。
また、低融点合金にBi系低融点合金またはSb系低融点合金を用い、直流下で使用する場合、低融点合金にBi金属またはSb金属析出による脆化が発生しても、前記の応力低減のために低融点合金の破断を良好に防止できる。
更に、ヒューズエレメントの溶融及びフラックスのバックアップによる溶融合金の球状化分断で動作する合金型温度ヒューズとは異なり、必ずしも低融点合金にフラックスを付着させる必要がないので、遮断動作時のアーク熱によるフラックス炭化の問題を回避でき、アーク損傷を防止できると共に遮断動作後の充分な耐電圧性を保障でき、大電流遮断用として好適である。ただし、耐湿等を目的とした表面保護の面から、前記した耐電圧性が問題とならない程度にフラックスやワックスなどを存在させることができる。
Also in the protective element with resistance shown in FIGS. 4-1 and 4-2, the compression reaction force of the compression spring 4 is applied to a portion other than the joint portion by the low melting point alloy 5a between the movable electrode 2c and the lead fixed electrode 2a (2b). In addition, since the low melting point alloy 5c between the movable electrode 2c and the one lead conductor 3 of the resistor is supported at the joints, the stress acting on each joint can be reduced, and the creep of the low melting point alloy can be reduced. It can prevent well.
In addition, when a low melting point alloy is a Bi-based low melting point alloy or an Sb-based low melting point alloy and is used under a direct current, the stress reduction can be achieved even if the low melting point alloy is embrittled due to Bi metal or Sb metal precipitation. Therefore, breakage of the low melting point alloy can be prevented well.
Furthermore, unlike an alloy-type thermal fuse that operates by melting the spheroid of the molten alloy by melting the fuse element and backing up the flux, it is not always necessary to attach the flux to the low melting point alloy. The problem of carbonization can be avoided, arc damage can be prevented, and sufficient voltage resistance after the interruption operation can be ensured, which is suitable for large current interruption. However, from the viewpoint of surface protection for moisture resistance and the like, flux or wax can be present to such an extent that the above-mentioned voltage resistance does not become a problem.

図5の(イ)は本発明に係る抵抗付き保護素子の別実施例を示す断面図である。
図5の(イ)において、1は耐熱性の絶縁基台、例えばポリフェニレンサルファイド板である。2a,2bは一対の並行なリード固定電極であり、絶縁基台1に挿通され、例えば圧入方式により基台1に固定されている。このリード固定電極には銅を使用できる。リード固定電極の断面形状は角形、円形などにでき、特に制限されない。300は巻線型抵抗器であり、リード導体付きキャップが耐熱性絶縁コア例えばセラミックスコアの両端に装着され、コアに抵抗線が巻き付けられ、その巻き付け各端が各キャップに溶接等により結着されてなり、基台1上に配設され、一方のリード導体3が基台1に垂直に接着剤例えばガラス1で基台に固定されてガイド軸として使用されている。2cは可動電極であり、一方のリード導体3に挿通され、可動電極2cの両端部と各リード固定電極2a,2bとの間が低融点合金5a,5aで接合されると共に可動電極2cと一方のリード導体2aまたは2bとの間が低融点合金5cで接合されている。可動電極2cとリード固定電極2a(2b)との低融点合金5aによる接合においては、可動電極2cにすり鉢状孔200が設けられ、この孔200にリード固定電極2a(2b)の先端部が受容され、次いですり鉢状孔に低融点合金5aが溶融充填・固化されている。4はコイルバネであり、一方のリード導体3に挿通され、前記可動電極2cで押えられて圧縮されている。7はケースであり、抵抗器の他方のリード導体3’が引き出されている。
FIG. 5A is a cross-sectional view showing another embodiment of the protective element with resistance according to the present invention.
In FIG. 5A, reference numeral 1 denotes a heat-resistant insulating base such as a polyphenylene sulfide plate. Reference numerals 2a and 2b denote a pair of parallel lead fixing electrodes which are inserted through the insulating base 1 and fixed to the base 1 by, for example, a press-fitting method. Copper can be used for the lead fixing electrode. The cross-sectional shape of the lead fixing electrode can be square or circular, and is not particularly limited. Reference numeral 300 denotes a wire-wound resistor. Caps with lead conductors are attached to both ends of a heat-resistant insulating core such as a ceramic score, resistance wires are wound around the core, and each end of the winding is bonded to each cap by welding or the like. Thus, one lead conductor 3 is arranged on the base 1 and is fixed to the base with an adhesive such as glass 1 perpendicular to the base 1 and used as a guide shaft. Reference numeral 2c denotes a movable electrode, which is inserted into one lead conductor 3, and both ends of the movable electrode 2c and the lead fixed electrodes 2a and 2b are joined by low melting point alloys 5a and 5a, and the movable electrode 2c and one of the movable electrodes 2c are connected to each other. The lead conductor 2a or 2b is joined by a low melting point alloy 5c. In joining the movable electrode 2c and the lead fixed electrode 2a (2b) with the low melting point alloy 5a, a mortar-shaped hole 200 is provided in the movable electrode 2c, and the tip of the lead fixed electrode 2a (2b) is received in the hole 200. Then, the low melting point alloy 5a is melt-filled and solidified in the mortar-shaped hole. A coil spring 4 is inserted into one lead conductor 3 and is pressed and compressed by the movable electrode 2c. Reference numeral 7 denotes a case from which the other lead conductor 3 'of the resistor is drawn.

この抵抗付き保護素子においても、前記した保護素子と同様、被保護機器の過熱により低融点合金を溶融させて被保護機器への給電を遮断させることができる。また、別の使用態様では、被保護機器の給電路にリード固定電極2a,2bが接続され、抵抗器300の他方のリード導体3’と一方のリード固定電極2aまたは2bとの間が抵抗器通電発熱回路に接続され、この場合、抵抗器通電発熱回路は、常時はオフとされ、被保護機器に異常が生じると、その異常をセンサが感知し、抵抗器通電発熱回路がオンとされて抵抗器本体が発熱され、低融点合金5a,5a,5cが溶融され、図5の(ロ)に示すように、圧縮バネ4が解放され、可動電極2cがリード固定電極2a,2b間より隔離されて被保護機器への給電が遮断される。この場合も、被保護機器の過熱により低融点合金5a,5a,5cが溶融されて被保護機器への給電が遮断されるように、低融点合金5a,5bの融点を設定することができる。
図5に示す抵抗付き保護素子においても、圧縮バネの圧縮反力を、可動電極とリード固定電極との間の低融点合金による接合箇所以外に可動電極と抵抗器の一方のリード導体との間の低融点合金による接合箇所でも支持させているから、それらの各接合箇所に作用する応力を低減でき、低融点合金のクリープを良好に防止できる。
また、可動電極2cにすり鉢状孔200を設け、この孔200にリード固定電極2a(2b)の先端部を受容させ、次いですり鉢状孔に低融点合金5aを溶融充填・固化することにより可動電極2cとリード固定電極2a,2bとの低融点合金5aによる接合を行っているから、接合面積のバラツキを抑え得ると共に低融点合金5aのすり鉢状孔200への楔止め効果による接合の安定化が期待できる。
更に、ヒューズエレメントの溶融及びフラックスのバックアップによる溶融合金の球状化分断で動作する合金型温度ヒューズとは異なり、必ずしも低融点合金にフラックスを付着させる必要がないので、遮断動作時のアーク熱によるフラックス炭化の問題を回避でき、アーク損傷を防止できると共に遮断動作後の充分な耐電圧性を保障でき、大電流遮断用として好適である。ただし、耐湿等を目的とした表面保護の面から、前記した耐電圧性が問題とならない程度にフラックスやワックスなどを存在させることができる。
In this protective element with resistance, similarly to the protective element described above, the low melting point alloy can be melted by overheating of the protected device to cut off the power supply to the protected device. In another use mode, the lead fixing electrodes 2a and 2b are connected to the power supply path of the protected device, and a resistor is provided between the other lead conductor 3 'of the resistor 300 and the one lead fixing electrode 2a or 2b. In this case, the resistor energization heat generation circuit is normally turned off. When an abnormality occurs in the protected device, the sensor detects the abnormality and the resistor energization heat generation circuit is turned on. The resistor body generates heat, the low melting point alloys 5a, 5a, 5c are melted, the compression spring 4 is released, and the movable electrode 2c is isolated from between the lead fixed electrodes 2a, 2b as shown in FIG. As a result, the power supply to the protected device is cut off. Also in this case, the melting points of the low melting point alloys 5a and 5b can be set so that the low melting point alloys 5a, 5a and 5c are melted by overheating of the protected device and the power supply to the protected device is interrupted.
In the protection element with resistance shown in FIG. 5 as well, the compression reaction force of the compression spring is applied between the movable electrode and one lead conductor of the resistor other than the joint portion of the low melting point alloy between the movable electrode and the lead fixed electrode. Therefore, the stress acting on each of the joining points can be reduced, and the creep of the low melting point alloy can be satisfactorily prevented.
Further, a mortar-shaped hole 200 is provided in the movable electrode 2c, and the tip of the lead fixed electrode 2a (2b) is received in the hole 200, and then the low-melting point alloy 5a is melt-filled and solidified in the mortar-shaped hole. 2c and the lead fixing electrodes 2a and 2b are joined by the low melting point alloy 5a, so that the variation in the joining area can be suppressed and the stabilization of the joining by the wedge-fastening effect on the mortar-shaped hole 200 of the low melting point alloy 5a is achieved. I can expect.
Furthermore, unlike an alloy-type thermal fuse that operates by melting the spheroid of the molten alloy by melting the fuse element and backing up the flux, it is not always necessary to attach the flux to the low melting point alloy. The problem of carbonization can be avoided, arc damage can be prevented, and sufficient voltage resistance after the interruption operation can be ensured, which is suitable for large current interruption. However, from the viewpoint of surface protection for moisture resistance and the like, flux or wax can be present to such an extent that the above-mentioned voltage resistance does not become a problem.

上記リード固定電極2a,2bの材質は銅とし、表面の酸化防止のためにSn、若しくはSnを基とする合金を被覆することができる。
この銅リード固定電極では、前記低融点合金5aとの接合界面において銅が低融点合金5aに拡散移行し、低融点合金5aの機械的強度が低下され、かつ溶融温度が変動される惧れがあるので、リード固定電極2a,2bの少なくとも低融点合金5aに接合される部分、好ましくはリード固定電極2a,2bの全表面に銅移行阻止膜、例えばNi、Ni−P、Ni−B、Fe、Pd、Pd−Pのうちの少なくとも一層以上の膜をSn若しくはSn基とする合金被覆層との間に設けることができる。
前記可動電極2cの材質は、銅若しくは銅合金例えば真鍮とし、表面の酸化防止のためにSn若しくはSn基とする合金を被覆することができる。この可動電極2cとリード固定電極2a,2bとを接合する低融点合金5aに銅合金可動電極2cから銅が拡散移行するのを阻止するために、可動電極2cの少なくとも低融点合金5aに接合される部分に銅移行阻止膜、例えばNi、Ni−P、Ni−B、Fe、Pd、Pd−Pのうちの少なくとも一層以上の膜をSn若しくはSn基とする合金被覆層との間に設けることができる。更に、可動電極2cの低融点合金5cに接合される部分にも銅移行阻止膜を設けることができる。可動電極2cの全表面に銅移行阻止膜を設けることが好ましい。
前記ガイド軸または抵抗器のリード導体3には、抵抗器の抵抗値とのバランス上、銅線若しくは銅合金線、ニッケル線、鉄線または鋼線上に銅層を被覆した複合線(何れにおいても、表面の酸化防止のためにSn若しくはSn基とする合金を被覆することができる)を使用しても差し支えなく、少なくとも低融点合金5cに接合される部分、好ましくはリード導体の全表面に銅移行阻止膜、例えばNi、Ni−P、Ni−B、Fe、Pd、Pd−Pのうちの少なくとも一層以上の膜をSn若しくはSn基とする合金被覆層との間に設けることもできる。
これらの中間層を設けることにより、リード固定電極の強度が上がるので耐疲労特性が向上する利点もある。また、Sn若しくはSnを基とする合金からSnウィスカが成長することを抑制できる利点もある。
The lead fixing electrodes 2a and 2b are made of copper, and can be coated with Sn or an alloy based on Sn for preventing oxidation of the surface.
In this copper lead fixed electrode, there is a possibility that copper diffuses and migrates to the low melting point alloy 5a at the bonding interface with the low melting point alloy 5a, the mechanical strength of the low melting point alloy 5a is lowered, and the melting temperature is fluctuated. Therefore, a portion of the lead fixing electrodes 2a, 2b to be bonded to at least the low melting point alloy 5a, preferably a copper migration blocking film such as Ni, Ni-P, Ni-B, Fe on the entire surface of the lead fixing electrodes 2a, 2b. , Pd, and Pd—P can be provided between at least one of the films and the Sn or Sn-based alloy coating layer.
The material of the movable electrode 2c can be copper or a copper alloy such as brass, and can be coated with an alloy based on Sn or Sn to prevent oxidation of the surface. In order to prevent copper from diffusing and transferring from the copper alloy movable electrode 2c to the low melting point alloy 5a for joining the movable electrode 2c and the lead fixed electrodes 2a and 2b, the movable electrode 2c is joined to at least the low melting point alloy 5a. At least one layer of Ni, Ni-P, Ni-B, Fe, Pd, and Pd-P is provided between the Sn and Sn-based alloy coating layer. Can do. Furthermore, a copper migration blocking film can also be provided at a portion of the movable electrode 2c that is joined to the low melting point alloy 5c. It is preferable to provide a copper migration blocking film on the entire surface of the movable electrode 2c.
The lead conductor 3 of the guide shaft or the resistor is a composite wire in which a copper layer is coated on a copper wire or a copper alloy wire, a nickel wire, an iron wire, or a steel wire in balance with the resistance value of the resistor (in either case, (It is possible to coat Sn or an alloy based on Sn to prevent oxidation of the surface), and at least the portion bonded to the low melting point alloy 5c, preferably the copper transfer to the entire surface of the lead conductor A blocking film, for example, at least one film of Ni, Ni-P, Ni-B, Fe, Pd, and Pd-P may be provided between the Sn or Sn-based alloy coating layer.
By providing these intermediate layers, the strength of the lead fixing electrode is increased, and there is an advantage that the fatigue resistance is improved. There is also an advantage that Sn whisker growth can be suppressed from Sn or an alloy based on Sn.

前記抵抗付き保護素子はリチウムイオン電池等の二次電池の過熱に対する保護及び過充電・過放電に対する保護に使用でき、図6はその保護回路の一例を示している。
図6において、Eは二次電池、Sは充電用電源(または負荷)、Aは過充電防止スイッチ用FET、Bは過放電防止スイッチ用FET、Cは本発明に係る抵抗器付き保護素子である。DはIC制御部であり、二次電池の充電時、過充電を検知し過充電防止信号を発生して過充電防止スイッチ用FETをスイッチオフさせる(負荷時、二次電池の過放電を検知し過放電防止信号を発生して過放電防止スイッチ用FETをスイッチオフさせる)。これらのFETでは対処できないときに、IC制御部からトランジスタTrにオン信号が送入され、トランジスタTrの導通で抵抗器付き保護素子Cの抵抗器本体が二次電池を電源として通電発熱され、可溶合金5a,5cが溶融され、充電時は二次電池Eと充電用電源Sとの間が遮断される(負荷時は、二次電池Eと負荷Sとの間が遮断される)。
抵抗器付き保護素子は二次電池に熱的に低接触抵抗で取付けられ、二次電池の異常発熱でも可溶合金5a,5cの溶融により二次電池Eと充電用電源Sとの間または二次電池Eと負荷との間が遮断される。
The protective element with resistance can be used for protection against overheating and overcharge / overdischarge of a secondary battery such as a lithium ion battery, and FIG. 6 shows an example of the protection circuit.
In FIG. 6, E is a secondary battery, S is a charging power source (or load), A is an overcharge prevention FET, B is an overdischarge prevention switch FET, and C is a protective element with a resistor according to the present invention. is there. D is an IC control unit that detects overcharge when a secondary battery is charged and generates an overcharge prevention signal to switch off the overcharge prevention switch FET (detects overdischarge of the secondary battery during load). Then, an overdischarge prevention signal is generated to switch off the overdischarge prevention switch FET). When these FETs cannot cope, an ON signal is sent from the IC control unit to the transistor Tr, and the resistor body of the protective element C with a resistor is energized and heated using the secondary battery as a power source due to the conduction of the transistor Tr. The molten alloys 5a and 5c are melted, and the secondary battery E and the charging power source S are disconnected during charging (the secondary battery E and the load S are disconnected during loading).
The protective element with a resistor is attached to the secondary battery with a low thermal contact resistance. Even if the secondary battery is abnormally heated, the fusible alloys 5a and 5c are melted between the secondary battery E and the charging power source S or two. The secondary battery E is disconnected from the load.

本発明に係る保護素子の一実施例を示す図面である。1 is a view showing an embodiment of a protection element according to the present invention. 図1に示す保護素子における応力状態を示す図面である。It is drawing which shows the stress state in the protection element shown in FIG. 本発明に係る保護素子におけるリード固定電極と可動電極との低融点合金による接合構造の一例を示す図面である。It is drawing which shows an example of the joining structure by the low melting-point alloy of the lead fixed electrode and movable electrode in the protection element which concerns on this invention. 本発明に係る抵抗器付き保護素子の一実施例を示す図面である。It is drawing which shows one Example of the protection element with a resistor which concerns on this invention. 本発明に係る抵抗器付き保護素子の前記とは別の実施例の要部を示す図面である。It is drawing which shows the principal part of another Example different from the above of the protection element with a resistor which concerns on this invention. 本発明に係る抵抗器付き保護素子の前記とは別の実施例を示す図面である。It is drawing which shows another Example different from the above of the protection element with a resistor which concerns on this invention. 本発明に係る抵抗器付き保護素子を使用した2次電池保護回路を示す図面である。1 is a diagram illustrating a secondary battery protection circuit using a protection element with a resistor according to the present invention. 従来例を示す図面である。It is drawing which shows a prior art example.

符号の説明Explanation of symbols

1 基台
2a リード固定電極
2b リード固定電極
2c 可動電極
3 ガイド軸
4 圧縮バネ
5a 低融点合金
5c 低融点合金
200 すり鉢状孔
300 抵抗器
3’ 抵抗器の他方のリード導体
7 ケース
8 絶縁耐熱塗料
1 base 2a lead fixed electrode 2b lead fixed electrode 2c movable electrode 3 guide shaft 4 compression spring 5a low melting point alloy 5c low melting point alloy 200 mortar-shaped hole 300 resistor 3 'other lead conductor of resistor 7 case 8 insulating heat resistant paint

Claims (14)

一対のリード固定電極を有し、これらのリード固定電極にガイド軸が並設され、可動電極がガイド軸に挿通された状態で前記リード固定電極間にまたがって配設され、各リード固定電極の先端と可動電極との間及び前記ガイド軸と可動電極との間が低融点合金で接合され、前記可動電極に前記リード固定電極より隔離させる方向の力を作用させる圧縮バネが設けられ、前記低融点合金の溶融で可動電極が圧縮バネで付勢されて前記リード固定電極より隔離されることを特徴とする保護素子。 A pair of lead fixed electrodes, a guide shaft is juxtaposed with these lead fixed electrodes, and a movable electrode is inserted between the lead fixed electrodes in a state of being inserted through the guide shaft. A compression spring is provided between the tip and the movable electrode and between the guide shaft and the movable electrode by a low melting point alloy, and a compression spring is provided to apply a force in a direction to isolate the movable electrode from the lead fixed electrode. A protective element, wherein the movable electrode is urged by a compression spring when the melting point alloy melts and is isolated from the lead fixed electrode. 請求項1記載の保護素子において、抵抗器本体の両端にリード導体が取付けられてなる抵抗器の一方のリード導体がガイド軸として使用され、圧縮バネにコイルバネが使用され、該コイルバネが抵抗器本体と可動電極との間において前記一方のリード導体に挿通され、抵抗器の一方のリード導体と両リード固定電極の何れかとの間に抵抗器通電発熱回路が接続されることを特徴とする保護素子。 2. The protection element according to claim 1, wherein one lead conductor of a resistor having lead conductors attached to both ends of the resistor body is used as a guide shaft, a coil spring is used as a compression spring, and the coil spring is a resistor body. A protective element, wherein a resistor energizing heat generation circuit is connected between one lead conductor of the resistor and either one of the lead fixed electrodes. . 請求項1記載の保護素子において、抵抗器本体の両端にリード導体が取付けられてなる抵抗器の一方のリード導体がガイド軸として使用され、圧縮バネにコイルバネが使用され、該コイルバネが前記一方のリード導体に前記可動電極で押えられた状態で挿通され、抵抗器の他方のリード導体と両リード固定電極の何れかとの間に抵抗器通電発熱回路が接続されることを特徴とする保護素子。 2. The protection element according to claim 1, wherein one lead conductor of a resistor having lead conductors attached to both ends of the resistor body is used as a guide shaft, a coil spring is used as a compression spring, and the coil spring is the one of the ones. A protective element which is inserted into a lead conductor while being pressed by the movable electrode, and a resistor energization heating circuit is connected between the other lead conductor of the resistor and either of the two lead fixing electrodes. 可動電極と圧縮コイルバネの一端との間または圧縮コイルバネの他端と抵抗器本体端との間の少なくとも一方に絶縁体が介在され、圧縮コイルバネの内側とガイド軸との間に前記とは別の絶縁体が介在されていることを特徴とする請求項3記載の保護素子。 An insulator is interposed between the movable electrode and one end of the compression coil spring, or at least one of the other end of the compression coil spring and the resistor main body end, and is separated from the inside of the compression coil spring and the guide shaft. The protection element according to claim 3, wherein an insulator is interposed. 可動電極に各リード固定電極先端部を受容するすり鉢状孔が設けられ、各リード固定電極の先端部と可動電極との低融点合金による接合がすり鉢状孔への低融点合金の溶融充填・固化により行われていることを特徴とする請求項1〜4何れか記載の保護素子。 The movable electrode is provided with a mortar-shaped hole that accepts the tip of each lead fixed electrode, and the tip of each lead-fixed electrode and the movable electrode are joined by a low-melting alloy to the mortar-shaped hole. The protective element according to claim 1, wherein the protective element is formed by: 各リード固定電極先端部と可動電極との間が面接触されていることを特徴とする請求項1〜4何れか記載の保護素子。 The protective element according to any one of claims 1 to 4, wherein each lead fixed electrode tip and the movable electrode are in surface contact. 低融点合金がSn若しくはInのうち少なくとも何れか一方を含む鉛フリー合金であることを特徴とする請求項1〜6何れか記載の保護素子。 The protective element according to any one of claims 1 to 6, wherein the low melting point alloy is a lead-free alloy containing at least one of Sn and In. 低融点合金がBiを含有する鉛フリー合金であることを特徴とする請求項1〜7何れか記載の保護素子。 The protective element according to claim 1, wherein the low melting point alloy is a lead-free alloy containing Bi. 低融点合金がSbを含有する鉛フリー合金であることを特徴とする請求項1〜7何れか記載の保護素子。 The protective element according to claim 1, wherein the low melting point alloy is a lead-free alloy containing Sb. 可動電極及び抵抗器本体がケース内に収容され、各リード固定電極及び抵抗器の一方のリード導体がケースから引き出されていることを特徴とする請求項2〜9何れか記載の保護素子。 The protective element according to claim 2, wherein the movable electrode and the resistor main body are accommodated in a case, and one lead conductor of each lead fixed electrode and the resistor is drawn out from the case. 直流用であることを特徴とする請求項1〜10何れか記載の保護素子。 The protective element according to claim 1, wherein the protective element is for direct current. リード固定電極の材質を銅とし、該リード固定電極表面の少なくとも低融点合金に接合される部分に、前記銅の低融点合金への移行を阻止する銅移行阻止膜を設けたことを特徴とする請求項1〜11何れか記載の保護素子。 The lead fixed electrode is made of copper, and at least a portion of the surface of the lead fixed electrode joined to the low melting point alloy is provided with a copper transition blocking film that prevents the transition of the copper to the low melting point alloy. The protective element according to claim 1. 可動電極の材質を銅若しくは銅合金とし、該可動電極表面の少なくとも低融点合金に接合される部分に、前記銅の低融点合金への移行を阻止する銅移行阻止膜を設けたことを特徴とする請求項12記載の保護素子。 The material of the movable electrode is copper or a copper alloy, and at least a portion of the surface of the movable electrode to be joined to the low melting point alloy is provided with a copper transition prevention film that prevents the transition of the copper to the low melting point alloy. The protective element according to claim 12. 銅移行阻止膜がNi、Ni−P、Ni−B、Fe、Pd、Pd−Pのうちの少なくとも一層以上の膜であることを特徴とする請求項12または13記載の保護素子。 The protection element according to claim 12 or 13, wherein the copper migration blocking film is a film of at least one layer of Ni, Ni-P, Ni-B, Fe, Pd, and Pd-P.
JP2008310456A 2008-01-21 2008-12-05 Protective element Active JP4630403B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008310456A JP4630403B2 (en) 2008-01-21 2008-12-05 Protective element
CN 200910005901 CN101494134B (en) 2008-01-21 2009-01-20 Protective element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008010084 2008-01-21
JP2008120839 2008-05-07
JP2008310456A JP4630403B2 (en) 2008-01-21 2008-12-05 Protective element

Publications (2)

Publication Number Publication Date
JP2009295567A JP2009295567A (en) 2009-12-17
JP4630403B2 true JP4630403B2 (en) 2011-02-09

Family

ID=41543553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310456A Active JP4630403B2 (en) 2008-01-21 2008-12-05 Protective element

Country Status (2)

Country Link
JP (1) JP4630403B2 (en)
CN (1) CN101494134B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241629A1 (en) * 2020-05-29 2021-12-02 デクセリアルズ株式会社 Protective element

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5545721B2 (en) * 2010-03-02 2014-07-09 エヌイーシー ショット コンポーネンツ株式会社 Protective element
JP5779477B2 (en) * 2011-11-04 2015-09-16 内橋エステック株式会社 Protective element
JP6313301B2 (en) * 2013-07-02 2018-04-18 Littelfuseジャパン合同会社 Protective device
WO2015133538A1 (en) 2014-03-07 2015-09-11 タイコエレクトロニクスジャパン合同会社 Protective device
TWI562493B (en) * 2015-07-20 2016-12-11 Amita Technologies Inc Ltd Battery Protection System and Initiative Fuse Protective Devices thereof
CN106410762A (en) * 2015-07-28 2017-02-15 有量科技股份有限公司 Battery charging protection system and active fusing type protection device
CN108110689B (en) * 2018-01-24 2020-07-31 吉林省建研科技有限责任公司 Explosion-proof safe combined cable adapter
CN111250867B (en) * 2020-03-04 2024-06-04 北京凯米迈克科技有限公司 Step-by-step laser welding device for welding resistance wire
KR20240029087A (en) * 2021-09-03 2024-03-05 데쿠세리아루즈 가부시키가이샤 protection element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729428U (en) * 1971-04-27 1972-12-04
JPS49135759U (en) * 1972-11-02 1974-11-21
JPS5138052A (en) * 1974-09-26 1976-03-30 Asahi Seisakusho Kk HOANYOONDOHYUUZU
JPS5729040U (en) * 1980-07-24 1982-02-16
JPH07176249A (en) * 1993-12-21 1995-07-14 Hitachi Ltd Overload protector device
JPH10172404A (en) * 1996-12-11 1998-06-26 Toyo Syst Kk Current temperature complex fuse
JP2002367496A (en) * 2001-06-08 2002-12-20 Anzen Dengu Kk Thermal fuse

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87202571U (en) * 1987-03-02 1988-04-27 尹丹明 Reset temp. limiter
CN2111559U (en) * 1992-03-12 1992-07-29 蔡镜波 Hand reset heat trip protector
JP3017950B2 (en) * 1996-09-09 2000-03-13 東洋システム株式会社 Current / temperature composite fuse
CN2335259Y (en) * 1998-04-22 1999-08-25 致伸实业股份有限公司 Electric circuit load protector
CN2517160Y (en) * 2001-12-26 2002-10-16 宁波天韵通信设备有限公司 Safety unit of main distribution frame
JP4050098B2 (en) * 2002-06-11 2008-02-20 ウチヤ・サーモスタット株式会社 DC current cutoff switch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729428U (en) * 1971-04-27 1972-12-04
JPS49135759U (en) * 1972-11-02 1974-11-21
JPS5138052A (en) * 1974-09-26 1976-03-30 Asahi Seisakusho Kk HOANYOONDOHYUUZU
JPS5729040U (en) * 1980-07-24 1982-02-16
JPH07176249A (en) * 1993-12-21 1995-07-14 Hitachi Ltd Overload protector device
JPH10172404A (en) * 1996-12-11 1998-06-26 Toyo Syst Kk Current temperature complex fuse
JP2002367496A (en) * 2001-06-08 2002-12-20 Anzen Dengu Kk Thermal fuse

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241629A1 (en) * 2020-05-29 2021-12-02 デクセリアルズ株式会社 Protective element
KR20220154201A (en) 2020-05-29 2022-11-21 데쿠세리아루즈 가부시키가이샤 protection element
JP7523951B2 (en) 2020-05-29 2024-07-29 デクセリアルズ株式会社 Protection Device

Also Published As

Publication number Publication date
CN101494134B (en) 2013-07-03
JP2009295567A (en) 2009-12-17
CN101494134A (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4630403B2 (en) Protective element
JP5123624B2 (en) Battery and power supply system using the same
JP2010522420A (en) Fusible gold element, thermal fuse with fusible gold element, and method for manufacturing a thermal fuse
JP3470694B2 (en) Protection element
JP4757931B2 (en) Protective element
JP4630404B2 (en) Protective element
JP4912447B2 (en) Alloy type thermal fuse
JP4943360B2 (en) Protective element
JP4943359B2 (en) Protective element
JP4269264B2 (en) Thin thermal fuse
JP2007059295A (en) Circuit protective element and protection method of circuit
JP4757895B2 (en) Protective element
JP2012129124A (en) Circuit protective element and battery pack device using the same
JP4757898B2 (en) Protective element
JP5346705B2 (en) Current fuse
JP2006221919A (en) Fuse with substrate type resistor and battery pack
JP4697462B2 (en) Circuit breaker
JP4940366B1 (en) Thermal fuse and method of manufacturing the thermal fuse
JP4387229B2 (en) Method of using alloy-type thermal fuse and alloy-type thermal fuse
JP4717655B2 (en) How to use an alloy-type thermal fuse
JP4112297B2 (en) Thermo protector and method of manufacturing thermo protector
JPH07192593A (en) Alloy type thermal fuse and its manufacture
JP4267332B2 (en) Protective element
JP2006155974A (en) Thermoprotector
JPH07105813A (en) Thermal fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100922

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20101029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250