JP4629249B2 - 半導体記憶装置及びその情報読み出し方法 - Google Patents
半導体記憶装置及びその情報読み出し方法 Download PDFInfo
- Publication number
- JP4629249B2 JP4629249B2 JP2001051889A JP2001051889A JP4629249B2 JP 4629249 B2 JP4629249 B2 JP 4629249B2 JP 2001051889 A JP2001051889 A JP 2001051889A JP 2001051889 A JP2001051889 A JP 2001051889A JP 4629249 B2 JP4629249 B2 JP 4629249B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- word line
- information
- cell
- dummy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management
- G11C7/227—Timing of memory operations based on dummy memory elements or replica circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/4076—Timing circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/408—Address circuits
- G11C11/4087—Address decoders, e.g. bit - or word line decoders; Multiple line decoders
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4091—Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2207/00—Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
- G11C2207/22—Control and timing of internal memory operations
- G11C2207/2281—Timing of a read operation
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Dram (AREA)
Description
【発明の属する技術分野】
本発明は半導体記憶装置及びその情報読み出し方法に関するものである。
近年のDRAMでは、ますます高集積化及び大容量化が進み、かつ低消費電力化が図られている。メモリセルアレイの高集積化にともなって、そのメモリセルアレイを構成するメモリセルはますます微細化され、各メモリセルのセル容量にセル情報として蓄えられる電荷量が少なくなる傾向にある。
【0002】
このようなDRAMでは、セルフリフレッシュ動作あるいは外部からのリフレッシュ動作の周期を長くして、消費電力の低減を図りながら、メモリセルから出力される微少電圧に基づいて、正常なセル情報を確実に読み出すために、ダミーワード線及びカップリング容量を備えたものがある。すなわち、そのダミーワード線とビット線との間にカップリング容量が備えられ、セル情報を読み出す場合には、ダミーワード線を選択することにより、容量の電荷に基づいてビット線の電位を昇圧して、ビット線に読み出される微少電圧を補うようにしている。このようなDRAMにおいて、リフレッシュ特性の向上や高集積化を図る必要がある。
【0003】
【従来の技術】
図21は、従来のダミーワード線によるセル情報の補完機能を備えた半導体記憶装置(DRAM)の一部を示す回路図である。
【0004】
セルアレイ1には多数(図では2つ)のメモリセル2a,2bがレイアウトされ、メモリセル2aはビット線BLとワード線WL0の交点に接続され、メモリセル2bは反転ビット線・バーBL(/BLと記載する)とワード線WL1の交点に接続される。メモリセル2aを代表としてその構成を説明すると、メモリセル2aは、セル・トランジスタTrと容量C1とから構成される。セル・トランジスタTrは、ビット線BLに接続された第1端子と、容量C1に接続された第2端子と、ワード線WL0に接続されたゲートとを有する。容量C1は、セル・トランジスタTrに接続された第1電極と、所定レベルのセルプレート電圧(例えばセルアレイ1に供給するセル電源ViiC の2分の1であり、以下「ViiC /2」と記し、図22には「1/2 ViiC 」と表す)が供給される第2電極とを有する。
【0005】
セルアレイ1の一側には各ビット線BL,バーBLに接続され、各ビット線BL,バーBLに読み出されたセル情報を増幅するセンスアンプ3がレイアウトされる。センスアンプ3にはセンスアンプ電源発生回路4にて生成された活性化電源SAP,SANが供給される。センスアンプ電源発生回路4にはラッチイネーブル信号(センスアンプ活性化信号)LEが供給され、その信号LEに応答して活性化電源SAP,SANを生成する。この構成により、センスアンプ3は、ラッチイネーブル信号LEに基づいて活性化/非活性化する。
【0006】
また、ビット線BL,バーBLの各対のうち、ビット線BLとダミーワード線DWL0との交点にはダミーセル5aが接続され、反転ビット線/BLとダミーワード線DWL0との交点にはダミーセル5bが接続される。ダミーセル5a,5bは、メモリセル2aと同様に構成されている。
【0007】
ワード線WL0,WL1の選択は、ロウアドレス信号の入力に基づいて動作するロウアドレスデコーダ及びワードドライバ(図示しない)により制御される。ダミーワード線DWL0,DWL1の選択は、ロウアドレス信号の入力に基づいて動作するロウアドレスデコーダ及びダミーワードドライバ(図示しない)により制御される。
【0008】
そして、例えばビット線BLに接続されたメモリセル2aが選択されると、ダミーワード線DWL0が選択されて、電源Vssレベルから電源Viiレベルに引き上げられ、反転ビット線/BLに接続されたメモリセル2bが選択されると、ダミーワード線DWL0が選択されて、電源Vssレベルから電源Viiレベルに引き上げられる。尚、電源ViiはDRAM外部から供給される電源であり、この電源はロウアドレスデコーダ、ワードドライバ、ダミーワードドライバなどの周辺回路に供給される。また、電源Viiを降圧して安定したセル電源ViiC が生成される。
【0009】
このように構成されたDRAMの読み出し動作を図22に従って説明する。尚、図22は、ビット線BL,/BLなどの電圧波形を判りやすくするために同じ符号を付してある。
【0010】
先ず、メモリセル2aにデータが「0」のセル情報(以下、0情報という)が記憶されている場合を、図22(a)に従って説明する。この場合、メモリセル2aのセル・トランジスタTrと容量C1との間のストレージノードの電位は、0情報に従って低電位側電源Vssレベルになっている。
【0011】
セル情報の読み出し動作に先立って、ビット線BL,/BLはプリチャージ回路によりViiC /2レベルにプリチャージされる。また、ダミーワード線DWL0,DWL1は電源Vssレベルにリセットされる。
【0012】
次いで、ロウアドレス信号に基づいてワード線WL0が選択されて電源Vssレベルから昇圧電圧Vppレベルまで引き上げられる。このとき、ワード線WL0の電位が低電位側電源Vssからセル・トランジスタTrのしきい値電圧Vthcell分高い電位(=Vss+Vthcell)になると、メモリセル2aからビット線BLに0情報が読み出され、そのビット線BLの電位がViiC /2から僅かに下降する。
【0013】
この状態で、ダミーワード線DWL0が選択されて、そのダミーワード線DWL0が電源Vssレベルから電源Viiレベルに引き上げられると、ダミーセル5aの電荷により、ビット線BLの電位が引き上げられる。その引き上げ後の電位はセンスアンプ3がLレベルと認識し得るレベルとなるように、ダミーセル5aを構成する容量の容量値が設定されている。また、ダミーセル5bについても同様である。そして、ビット線BL,/BLの電位差がラッチイネーブル信号LEにより活性化したセンスアンプ3で増幅されて、セル情報として出力される。
【0014】
次に、メモリセル2aにデータが「1」のセル情報(以下、1情報という)が記憶されている場合を、図22(b)に従って説明する。この場合、メモリセル2aのセル・トランジスタTrと容量C1との間のストレージノードの電位は、1情報に従って高電位電源ViiC レベルになっている。
【0015】
同様に、セル情報の読み出し動作に先立って、ビット線BL,/BLはプリチャージ回路によりViiC /2レベルにプリチャージされる。また、ダミーワード線DWL0,DWL1は電源Vssレベルにリセットされる。
【0016】
次いで、ロウアドレス信号に基づいてワード線WL0が選択されて電源Vssレベルから昇圧電圧Vppレベルまで引き上げられる。このとき、ワード線WL0の電位がプリチャージ電圧Vpr(=ViiC /2)からセル・トランジスタTrのしきい値電圧Vthcell分高い電位(=ViiC /2+Vthcell)になると、メモリセル2aからビット線BLに1情報が読み出され、そのビット線BLの電位がプリチャージレベル(=ViiC /2)から僅かに上昇する。
【0017】
この状態で、ダミーワード線DWL0が選択されて、そのダミーワード線DWL0が電源Vssレベルから電源Viiレベルに引き上げられると、ダミーセル5aの電荷により、ビット線BLの電位が引き上げられる。この動作により、ビット線対BL,/BLの差電圧を大きくし、実効的にセルの電荷が増加したように見えるため、メモリセル2a,2bへのリフレッシュ間隔を広げることができる。そして、ビット線BL,/BLの電位差がラッチイネーブル信号LEにより活性化したセンスアンプ3で増幅されて、セル情報として出力される。
【0018】
尚、情報「0」を読み出す場合のセル・トランジスタTrのしきい値電圧Vthcellと、情報「1」を読み出す場合のそれは、詳細には異なる電圧であるが、動作的には同じであるため、同じ符号を付して説明している。
【0019】
【発明が解決しようとする課題】
しかしながら、上記の従来方式においては、以下の問題点がある。
(1)メモリセル2a,2bの「1」情報であるストレージノード(容量C1)の電荷量がリークなどにより減少し、セルストレージ電圧(ストレージノードの電圧)がビット線BL,/BLのプリチャージレベル(=ViiC /2)以下になると、「1」情報を読み出せなくなる。
【0020】
(2)上記(1)によるメモリセル2a,2bのデータ保持時間=リフレッシュ周期(tREF)により、セルフリフレッシュの消費電流が画定する。そのリフレッシュ周期tREFが短いと、セルデータ保持のためのリフレッシュ周期を短くする必要があるので、セルフリフレッシュ電流が増大する。
【0021】
(3)ワード線活性化からセンスアンプ活性化までの時間はメモリセル2a,2bからの情報「1」がビット線BL,/BLに出てくる時間によって律則される。これは、セル・トランジスタTrのしきい値電圧Vthcellも大きく影響する。ワード線WL0,WL1の電位が1情報の読み出しに必要な電位(=ViiC /2+Vthcell)まで上昇しないとデータが出てこないので、ワード線電位の波形がなまっているとデータが出てくるまでの時間も長くなり、データを読み出すサイクルの時間も長くなってしまう。ワード線電位の波形をなまらないようにするためには、その時定数を小さくする必要があり、そのためワード線を駆動するために必要なアドレスデコーダ及びワードドライバの数が増加しチップサイズが大きくなってしまう。
【0022】
本発明は上記問題点を解決するためになされたものであって、その目的は特性の向上を図ることができる半導体記憶装置及びその情報読み出し方法を提供することにある。
【0023】
【課題を解決するための手段】
上記目的を達成するため、請求項1,2に記載の発明によれば、前記0情報の読み出しは前記ワード線の活性化により前記ビット線に伝達される前記メモリセルの電荷にて行われ、前記1情報の読み出しは前記ダミーワード線の活性化により前記ビット線に伝達される前記ダミーセルの電荷にて行われる。従って、メモリセルから1情報を読み出す場合に比べてセンスアンプを早く活性化することができ、サイクルタイムが短くなる。また、サイクルタイムを短くしなければ、ワード線の活性化をゆっくりと行う、即ちワード線を長くすることが可能になる。
【0024】
請求項3に記載の発明によれば、前記ワード線を活性化させる第1ステップと、前記メモリセルの0情報を前記ビット線に読み出す第2ステップと、前記ダミーワード線を活性化させる第3ステップと、前記センスアンプを活性化させる第4ステップとを備え、前記第4ステップを前記メモリセルから1情報が前記ビット線に読み出される前に実行される。従って、メモリセルから1情報を読み出す場合に比べてセンスアンプを早く活性化することができ、サイクルタイムが短くなる。また、サイクルタイムを短くしなければ、ワード線の活性化をゆっくりと行う、即ちワード線を長くすることが可能になる。
【0025】
請求項4に記載の発明によれば、前記メモリセルのセル・トランジスタのしきい値電圧を第1電圧とし、前記プリチャージ電圧を第2電圧とし、前記第1電圧+前記第2電圧を第3電圧とし、前記メモリセルへの1情報の書き込み電圧を第4電圧とし、前記第4電圧+前記第1電圧を第5電圧とし、前記ワード線を基準電圧から前記第1電圧以上、前記第3電圧未満まで活性化させる第1ステップと、0情報を前記ビット線に読み出す第2ステップと、前記ダミーワード線を活性化させる第3ステップと、前記センスアンプを活性化させる第4ステップと、前記ワード線を前記第5電圧以上まで活性化させる第5ステップとを備え、前記第4ステップを前記メモリセルから1情報が前記ビット線に読み出される前に実行される。従って、メモリセルから1情報が読み出されない状態で確実にセンスアンプを活性化することができる。
【0026】
【発明の実施の形態】
(第一実施形態)
以下、本発明を具体化した第一実施形態を図1〜図8に従って説明する。
【0027】
尚、説明の便宜上、従来技術と同様の構成については同一の符号を付してその説明を一部省略する。
図1は、本実施形態のSDRAMのブロック回路図であり、ワード線及びダミーワード線の駆動にかかる部分を示す。
【0028】
SDRAM10には、アドレス信号ADD、外部コマンド信号CMDが供給される。アドレス信号ADDはアドレスバッファ11に入力され、外部コマンド信号CMDは内部動作判定回路12に入力される。
【0029】
外部コマンド信号CMDは複数の信号からなり、内部動作判定回路12は、複数の信号のレベルの組み合わせにより指定されるアクティブコマンドやリードコマンドなどの各種コマンドをデコードする。そして、内部動作判定回路12は、ロウアドレスを受け取るための制御信号RCTをアドレスバッファ11に出力する。また、内部動作判定回路12は、アクティブコマンドをデコードしたときに生成するアクティブ信号ACTをロウアドレスプリデコーダ13、ロウアドレスメインデコーダ14に出力する。
【0030】
アドレスバッファ11は、制御信号RCTに応答して動作し、入力するアドレス信号ADDをバッファしたロウアドレス信号RAをロウアドレスプリデコーダ13に出力する。ロウアドレスプリデコーダ13は、アクティブ信号ACTに応答してロウアドレス信号RAをデコードしたプリデコード信号PDを内部動作判定回路12、ロウアドレスメインデコーダ14、サブワードドライバ15に出力する。また、ロウアドレスプリデコーダ13は、ロウアドレス信号RAのうちの1つのアドレス信号RA0をダミーワードドライバ16に出力する。
【0031】
ロウアドレスメインデコーダ14は複数設けられ、各ロウアドレスメインデコーダ14にはメインワード線MWLがそれぞれ接続されている。ロウアドレスメインデコーダ14は、アクティブ信号ACTに応答してプリデコード信号PDをデコードし、そのプリデコード信号PDに対応するロウアドレスメインデコーダ14がメインワード線MWLを活性化する。メインワード線MWLには複数(図1では2つのみ示す)の第1及び第2サブワードデコーダ17a,17bが接続され、第1及び第2サブワードデコーダ17a,17bには第1及び第2サブワード線(単にワード線とよぶ)WL0,WL1がそれぞれ接続されている。
【0032】
サブワードドライバ15はサブワードドライバの数に対応して複数設けられ、各サブワードドライバ15は、入力するプリデコード信号PDに応答してワード線WL0,WL1を駆動する駆動信号を生成し第1及び第2サブワードデコーダ17a,17bに出力する。第1及び第2サブワードデコーダ17a,17bは、メインワード線MWLが活性化されると、サブワードドライバ15から供給される駆動信号に応答して第1又は第2ワード線WL0,WL1を活性化する。
【0033】
第1及び第2ワード線WL0,WL1と、それと直交する第1及び第2ビット線BL0,/BL0,BL1,/BL1との交点にはそれぞれメモリセル18a,18b,19a,19bが接続されている。これらメモリセル18a〜19bは、図21に示すメモリセル2aと同様に構成されている。そして、第1及び第2ワード線WL0,WL1、第1及び第2ビット線対BL0,/BL0,BL1,/BL1メモリセル18a〜19bからメモリブロックが構成される。
【0034】
各ビット線BL0,/BL0,BL1,/BL1の電位は、活性化された第1及び第2ワード線WL0,WL1に接続されたメモリセル18a〜19bに保持されたセル情報に応じて変化する。例えば、第1ワード線WL0が活性化した場合、それに接続されたメモリセル18a,19aのセル情報に応じてビット線BL0,BL1の電位が変化する。即ち、活性化したワード線に接続された複数のメモリセルのセル情報が複数のビット線にそれぞれ読み出される。
【0035】
尚、各ビット線BL0〜/BL1の電位が変化するタイミングは、それぞれに接続されたメモリセル18a〜19bのセル情報に対応する。例えば、メモリセル18aに0情報が保持され、メモリセル19aに1情報が保持されているとする。この場合、先ず、第1ワード線WL0の電位が電源Vssレベルからセル・トランジスタTrのしきい値Vthcell高い電位まで上昇すると、メモリセル18aの0情報によりビット線BL0の電位が下降する。次に、第1ワード線WL0の電位がプリチャージ電圧Vpr(=ViiC /2)からセル・トランジスタTrのしきい値Vthcell高い電位まで上昇すると、メモリセル19aの1情報によりビット線BL1の電位が上昇する。つまり、第1ワード線WL0が活性化された場合、ワード線電圧がセルトランジスタのしきい値電圧以上になると0情報がメモリセルからビット線BL0,BL1に読み出され、次にワード線電圧がプリチャージ電圧+セルトランジスタのしきい値電圧以上になると1情報がメモリセルからビット線BL0,BL1に読み出される。
【0036】
尚、0情報を読み出す場合のセル・トランジスタTrのしきい値電圧Vthcellと、1情報を読み出す場合のそれは、詳細には異なる電圧であるが、動作的には同じであるため、同じ符号を付して説明している。
【0037】
各ビット線対BL0,/BL0、BL1,/BL1の一端はスイッチ回路25a,25bに接続されている。スイッチ回路25a,25bはセンスアンプ20a,20bが接続された各ビット線対の一端側に接続され、各ビット線対の他端側にはスイッチ回路22a,22bが接続されている。各スイッチ回路22a,22bにはビット線対BL3,/BL3、BL4,/BL4が接続されている。ビット線BL3,/BL3、BL4,/BL4と第3及び第4ワード線WL2,WL3との交点にはメモリセル(符号略)が接続されている。尚、第3及び第4ワード線WL2,WL3、ビット線BL3,/BL3、BL4,/BL4及びそれらに接続されたメモリセルからメモリブロックが構成される。そして、第3及び第4ワード線WL3,WL4は、第1及び第2ワード線WL0,WL1を駆動する回路と同様な回路(図示略)によって駆動される。
【0038】
各スイッチ回路25a,25bは内部動作判定回路12からのブロック選択信号BSRに応答してオン・オフし、各スイッチ回路22a,22bは内部動作判定回路12からのブロック選択信号BSLに応答してオン・オフする。従って、センスアンプ20a,20bには、オンしたスイッチ回路25a,25b又はスイッチ回路22a,22bを介してビット線対BL0,/BL0、BL1,/BL1又はビット線対BL3,/BL3、BL4,/BL4が接続される。
【0039】
センスアンプ20a,20bは、センスアンプドライバ21から供給される活性化電圧により動作し、接続されたビット線対BL0,/BL0、BL1,/BL1又はビット線対BL3,/BL3、BL4,/BL4の電位差を増幅する。
【0040】
センスアンプ20a,20bの近傍には、センスアンプ20a,20bが接続されたビット線と、それらと直交するダミーワード線DWL0,DWL1との交点にダミーセル23a,23b,24a,24bがそれぞれ接続されている。
【0041】
各ダミーセル23a〜24bは、メモリセル18a〜19bと同様に、トランジスタと容量とから構成されている(図22参照)。各ダミーセル23a〜24bのトランジスタは、各メモリセル18a〜19bのセル・トランジスタTrと同じ電気的特性を持つように形成されている。ダミーセル23a〜24bの容量は、各メモリセル18a〜19bの容量よりもその容量値が小さく形成され、本実施形態では各メモリセル18a〜19bの容量値の半分に設定されている。従って、各ダミーセル23a〜24bには、各メモリセル18a〜19bの1/2(2分の1)の電荷が蓄積される。
【0042】
ダミーセル23a,23b,24a,24bのトランジスタと容量の間のノード(ストレージノード)には、高電位側電源ViiC 以下の電圧が供給されている。
【0043】
第1及び第2ダミーワード線DWL0,DWL1はダミーワードドライバ16に接続されている。そのダミーワードドライバ16には、ロウアドレスプリデコーダ13からアドレス信号RA0が供給され、内部動作判定回路12から活性化信号DACTが供給される。ダミーワードドライバ16は、活性化信号DACTに応答して活性化すると、アドレス信号RA0に基づいて第1ダミーワード線DWL0または第2ダミーワード線DWL1を活性化する。
【0044】
第1ダミーワード線DWL0が活性化されると、それに接続されたダミーセル23a,24aの電荷によりビット線BL0,BL1の電位が引き上げられる。同様に、第2ダミーワード線DWL1が活性化されると、それに接続されたダミーセル23b,24bの電荷により反転ビット線/BL0,/BL1の電位が引き上げられる。
【0045】
ダミーワードドライバ16は、プリデコード信号PDに応答し、第1及び第2ワード線WL0,WL1の活性化によりメモリセル18a〜19bのセル情報が読み出されたビット線BL0〜/BL1の電位を引き上げるように構成されている。
【0046】
例えば、メモリセル18aに1情報が記憶されている場合、第1ワード線WL0が活性化しても、その第1ワード線WL0の電圧がビット線のプリチャージ電圧+セルトランジスタのしきい値電圧以下の場合ではビット線BL0の電位は変わらない。この時、ダミーワードドライバ16は、第1ダミーワード線DWL0を活性化する。この動作によりダミーセル23aの電荷によって第1ビット線BL0の電位を引き上げる。これにより第1ビット線BL0と第1反転ビット線/BLの電位差がセンスアンプ20aの感度以上となる。
【0047】
一方、メモリセル18aに0情報が記憶されている場合、第1ワード線WL0が活性化すると第1ビット線BL0の電位は僅かに下降する。そして、同様に、ダミーワードドライバ16が第1ダミーワード線DWL0を活性化すると、ダミーセル23aの電荷により第1ビット線BL0の電位が引き上げられる。
【0048】
この引き上げられた第1ビット線BL0の電位は、ダミーセル23aがメモリセル18aの1/2の容量値を持つため、第1ビット線対BL0,/BL0のプリチャージ電位(セルプレート電圧と等しく、ViiC /2レベル)と0情報により降下した電位との略中間電位となる。尚、他のダミーセル23b〜24bによるビット線BL0,/BL0,BL1,/BL1の電位変化も同様である。
【0049】
内部動作判定回路12は、デコードしたコマンドがアクティブコマンドであるとき、アクティブ信号ACTを出力した後の所定のタイミングにてダミーワードドライバ16とセンスアンプドライバ21を活性化する活性化信号DACT,LEをそれぞれ出力する。
【0050】
ダミーワードドライバ16を活性化する信号DACTを出力する第1のタイミングは、0情報が読み出されるタイミングと、1情報が読み出されるタイミングとの間に設定されている。
【0051】
センスアンプドライバ21を活性化する信号LEを出力する第2のタイミングは、第1のタイミングと、1情報が読み出されるタイミングとの間に設定されている。
【0052】
図2は、内部動作判定回路12の構成と、周辺回路との接続を示すブロック回路図である。
SDRAM10には、上記した外部アドレス信号ADD及び外部コマンド信号CMDとともに、外部クロック信号CLK,クロックイネーブル信号CKEが入力される。SDRAM10は、各信号ADD,CMD,CLK,CKEをバッファする入力バッファ11,26,27,28を備える。内部動作判定回路12は、上記の入力バッファ26と、コマンドデコーダ31、センスアンプ活性化信号発生回路32、ブロック選択回路33を含む。
【0053】
入力バッファ27は外部クロック信号CLKをバッファした内部クロック信号を各入力バッファ11,26,28に出力し、各入力バッファ11,26,28は内部クロック信号により外部入力信号を取り込み、コマンドデコーダへ出力する。
【0054】
入力バッファ28はクロックイネーブル信号CKEをバッファした入力活性化信号IEを入力バッファ11,26に出力し、イネーブル信号ENをコマンドデコーダ31に出力する。入力バッファ11,26は、入力活性化信号IEに応答して活性化し、外部アドレス信号ADD、外部コマンド信号CMDをバッファして出力する。
【0055】
外部コマンド信号CMDは、ロウアドレスストローブ信号/RAS、コラムアドレスストローブ信号/CAS、ライトイネーブル信号/WE、チップセレクト信号/CSの信号レベルからなり、入力バッファ26はそれら信号/RAS,/CAS,/WE,/CSをバッファしてコマンドデコーダ31に出力する。
【0056】
コマンドデコーダ31は、外部コマンド信号CMD、即ち、各信号/RAS,/CAS,/WE,/CSの状態(Hレベル又はLレベル)の組み合わせにより指定される各種コマンドをデコードする。そして、コマンドデコーダ31はデコードしたアクティブコマンドに対応するアクティブ信号ACTをセンスアンプ活性化信号発生回路32、ブロック選択回路33、プリデコーダ13、メインデコーダ14に出力する。尚、アクティブコマンドはセル情報の読み出し(リード)/書き込み(ライト)を行うメモリセルが含まれるブロック(又はバンク)を活性化するためのコマンドである。コマンドデコーダ31は、メモリセルからセル情報を読み出すときに、先ずアクティブコマンドを発行(アクティブ信号ACTを出力)する。
【0057】
センスアンプ活性化信号発生回路32は、アクティブ信号ACTに応答して生成したセンスアンプ活性化信号LEをセンスアンプ電源発生回路34に出力する。センスアンプ活性化信号発生回路32は遅延回路を含み、アクティブ信号ACTを遅延させて上記した第2のタイミングでセンスアンプ活性化信号LEをアクティブにする。
【0058】
センスアンプ電源発生回路34は、アクティブなセンスアンプ活性化信号LEに応答して所定電圧の活性化電圧SAP,SANを生成し、活性化電源SAP,SANをセンスアンプ20aに供給する。例えば、活性化電圧SAPはセル電源ViiC の電圧であり、活性化電圧SANは低電位側電圧Vssである。センスアンプ20aは、これら活性化電圧SAP,SANの供給を受け活性化する。
【0059】
ブロック選択回路33は、アクティブ信号ACTとプリデコード信号PDに応答して第1又は第2のブロック選択信号BSR,BSLを活性化する。そして、ブロック選択回路33は、第1及び第2のブロック選択信号BSR,BSLをスイッチ回路25a,22aに出力する。
【0060】
スイッチ回路25aはビット線対BL0,/BL0にそれぞれ接続されたNチャネルMOSトランジスタからなり、それらトランジスタはブロック選択信号BSRに応答してオン・オフする。スイッチ回路22aはビット線対BL3,/BL3にそれぞれ接続されたNチャネルMOSトランジスタからなり、それらトランジスタはブロック選択信号BSLに応答してオン・オフする。そして、オンしたトランジスタにより異なるブロックのビット線対BL0,/BL0又はビット線対BL3,/BL3がセンスアンプ20aに接続される。
【0061】
図3は、センスアンプ電源発生回路34とセンスアンプ20a,20bの回路図である。
センスアンプ電源発生回路34は、インバータ回路41、PチャネルMOSトランジスタTp11 、NチャネルMOSトランジスタTn11 〜Tn13 を含む。
【0062】
PチャネルMOSトランジスタTp11 及びNチャネルMOSトランジスタTn11 〜Tn13 はセル電源ViiC と低電位側電源Vssとの間で直列に接続されている。そして、トランジスタTp11 のゲートにはセンスアンプ活性化信号LEがインバータ回路41を介して入力され、トランジスタTn13 のゲートにはセンスアンプ活性化信号LEが入力される。また、トランジスタTn11 ,Tn12 のゲートには、イコライズ信号EQが入力される。
【0063】
そして、トランジスタTp11 ,Tn11 のドレインからセンスアンプ20a,20bの高電位側電源SAPが出力され、トランジスタTn13 のドレインから低電位側電源SANが出力される。また、トランジスタTn11 ,Tn12 の接続点からビット線対BL0,/BL0、BL1,/BL1をプリチャージするプリチャージ電圧Vpr(=ViiC /2)が出力される。
【0064】
このように構成されたセンスアンプ電源発生回路34では、センスアンプ活性化信号LEがHレベルとなると、トランジスタTp11 ,Tn13 がオンされる。この時イコライズ信号EQはLレベルに維持される。すると、SAPとしてセル電源ViiC が出力され、SANとし低電位側電源Vssが出力されて、センスアンプ20a,20bが活性化される。
【0065】
一方、センスアンプ活性化信号LEがLレベルとなると、トランジスタTp11 ,Tn13 がオフされる。このとき、イコライズ信号EQはHレベルとなってトランジスタTn11 ,Tn12 がオンされる。すると、プリチャージ電圧Vprとして電源ViiC ,Vssの中間レベル(=ViiC /2)が出力される。
【0066】
センスアンプ20a,20bは、PチャネルMOSトランジスタTp12 ,Tp13 とNチャネルMOSトランジスタTn14 ,Tn15 とから構成される。PMOSトランジスタTp12 とNMOSトランジスタTn14 、PMOSトランジスタTp13 とNMOSトランジスタTn15 は高電位側電源SAPと低電位側電源SANの間で直列に接続されている。トランジスタTp12 ,Tn14 のゲートはトランジスタTp13 ,Tn15 のドレインと反転ビット線/BLに接続され、トランジスタTp13 ,Tn15 のゲートはトランジスタTp12 ,Tn14 のドレインとビット線BLに接続されている。
【0067】
センスアンプ20aは、ビット線対BL0,/BL0の電位差を、供給される高電位側電源SAPと低電位側電源SANのレベル差、即ちセル電源ViiC と低電位側電源Vssの電位差に増幅する。同様に、センスアンプ20bは、ビット線対BL1,/BL1の電位差をセル電源ViiC と低電位側電源Vssの電位差に増幅する。
【0068】
図4は、ダミーワードドライバ16の回路図である。
ダミーワードドライバ16は、インバータ回路42〜44、ナンド回路45,46から構成される。第1ナンド回路45にはダミーワード活性化信号DACTとアドレス信号RA0が入力され、第2ナンド回路46にはダミーワード活性化信号DACTとアドレス信号RA0を第1インバータ回路42により反転した信号が入力される。第1及び第2ナンド回路45,46の出力端子は第2及び第3インバータ回路43,44の入力端子に接続され、第2及び第3インバータ回路43,44の出力端子には第1及び第2ダミーワード線DWL0,DLW1が接続されている。ダミーワードドライバ16には動作電源として高電位側電源Viiと低電位側電源Vssとが入力される。
【0069】
このように構成されたダミーワードドライバ16は、アドレス信号RA0の論理に応じて、セル情報を読み出すメモリセルが接続されたビット線を駆動するようにダミーセルが接続された第1又は第2ダミーワード線DWL0,DWL1を選択する。そして、ダミーワードドライバ16は、ダミーワード活性化信号DACTに応答して活性化すると、選択した第1又は第2ダミーワード線DWL0,DLW1の電位を高電位側電源Viiレベルから低電位側電源Vssレベルに引き下げる。
【0070】
例えば、図1に示すメモリセル18aのセル情報を読み出す場合、ダミーワードドライバ16は、そのメモリセル18aが接続されたビット線BL0を駆動するようにダミーセル23aが接続された第1ダミーワード線DWL0を選択する。そして、ダミーワード活性化信号DACTに応答して活性化すると、第1ダミーワード線DWL0の電位を低電位側電源Vssレベルから高電位側電源Viiレベルに引き上げる。
【0071】
次に、上記のように構成されたSDRAMの作用を図5〜図8に従って説明する。
図5は、SDRAMの動作波形図である。
【0072】
今、図1のメモリセル18aからセル情報を読み出す場合について説明する。
先ず、メモリセル18aに0情報が保持されている場合を、図5(a)に従って説明する。この場合、メモリセル18aのセル・トランジスタTrと容量C1との間のストレージノードの電位は、0情報に従って低電位電源Vssレベルになっている。
【0073】
セル情報の読み出し動作に先立って、ビット線BL0,/BL0は図3のセンスアンプ電源発生回路34にて生成したプリチャージ電源VprによりViiC /2レベルにプリチャージされる。また、ダミーワード線DWL0,DWL1は電源Vssレベルにリセットされる。
【0074】
次いで、ロウアドレス信号RAに基づいて選択されたワード線WL0の電位が引き上げられる(時刻t0)。そして、ワード線WL0の電位が低電位側電源Vssからセル・トランジスタTrのしきい値電圧Vthcell分高い電位(=Vss+Vthcell)(時刻t1)になると、メモリセル18aからビット線BL0に0情報が読み出され、そのビット線BL0の電位がViiC /2から下降する。
【0075】
この状態で、ダミーワード線DWL0が選択されて、そのダミーワード線DWL0が電源Vssレベルから電源Viiレベルに引き上げられる(時刻t2)と、ダミーセル23aの電荷により、ビット線BL0の電位が引き上げられる。その引き上げ後の電位はセンスアンプ20aがLレベルと認識し得るレベルとなるように、ダミーセル23aを構成する容量の容量値が設定されている。そして、センスアンプ活性化信号LEによりセンスアンプ20aが活性化される(時刻t3)と、そのセンスアンプ20aによりビット線BL0,/BL0の電位差が増幅されて、セル情報として出力される。
【0076】
ワード線WL0の電位は、所定の昇圧電圧Vppまで上昇する。この昇圧電圧Vppの電位によって、1情報をリフレッシュする(再書き込みを行う)。
尚、ワード線WL0の電位を引き上げるときのトランジェントタイムtT(ワード線電圧遷移時間であり、ワード線電圧の振幅の10パーセントから90パーセントまで上昇するのに要する時間)は、規定値であるロウアドレスストローブ信号/RASのアクティブタイムtRAS期間程度に設定されている。
【0077】
次に、メモリセル18aに1情報が記憶されている場合を、図5(b)に従って説明する。この場合、メモリセル18aのセル・トランジスタTrと容量C1との間のストレージノードの電位は、1情報に従って高電位電源ViiC レベルになっている。
【0078】
同様に、セル情報の読み出し動作に先立って、ビット線BL0,/BL0はプリチャージ回路によりViiC /2レベルにプリチャージされる。また、ダミーワード線DWL0,DWL1は電源Vssレベルにリセットされる。
【0079】
次いで、ロウアドレス信号RAに基づいて選択されたワード線WL0の電位が引き上げられる(時刻t0)。そして、ワード線WL0の電位が低電位側電源Vssからセル・トランジスタTrのしきい値電圧Vthcell分高い電位(=Vss+Vthcell)(時刻t1)より遅い第2のタイミングでダミーワード線DWL0が電源Vssレベルから電源Viiレベルに引き上げられる(時刻t2)と、ダミーセル23aの電荷により、ビット線BL0の電位が引き上げられる。その引き上げ後の電位はセンスアンプ20aがHレベルと認識し得るレベルとなるように、ダミーセル23aを構成する容量の容量値が設定されている。そして、センスアンプ活性化信号LEによりセンスアンプ20aが活性化される(時刻t3)と、そのセンスアンプ20aによりビット線BL0,/BL0の電位差が増幅されて、セル情報として出力される。
【0080】
ワード線WL0の電位は、所定の昇圧電圧Vppまで上昇する。この昇圧電圧Vppの電位によって、1情報をリフレッシュする(再書き込みを行う)。
このダミーセル23aにより電位が引き上げられるビット線BL0は、ワード線WL0の電位がプリチャージ電圧Vpr(=ViiC /2)からセル・トランジスタTrのしきい値電圧Vthcell分高い電位(=ViiC /2+Vthcell)(時刻t4)になればメモリセル18aの1情報にて引き上げられるビット線である。従って、ダミーワード線DWL0の活性化によってビット線BL0の電位を引き上げることは、メモリセル18aから1情報を読み出すことと同等の意味を持つ。これにより、ワード線WL0の引き上げ(時刻t0)からセンスアンプ20aの活性化(時刻t3)までを短くする、即ち読み出しのサイクルタイムを短くすることができる。また、同様の理由により、データを出力するまでのアクセス時間(tRAC)を早くできる。
【0081】
尚、メモリセル18bのセル情報を読み出す場合、第2ダミーワード線DWL1の活性化及びセンスアンプ20aの活性化を上記と同様のタイミングで行うことで、同様の効果を得ることができる。また、メモリセル19a,19bのセル情報を読み出す場合も同様である。
【0082】
次に、リフレッシュ間隔について説明する。
図6は、セルストレージ電圧Vstと、1情報を読み出す時にダミーセルにより昇圧されたビット線の電圧Vblの波形図であり、図6(a)は従来方式における波形図、図6(b)は本実施形態における波形図を示す。横軸は1情報を書き込んでからの経過時間である。
【0083】
図6(a)は、従来方式による読み出しを行うSDRAMにおけるセルストレージ電圧Vstと、1情報を読み出す時にダミーセルにより昇圧されたビット線の電圧Vblの波形図である。横軸は1情報を書き込んでからの経過時間である。
【0084】
従来方式の場合、図6(a)に示すように、セルストレージ電圧Vstは、リフレッシュ後に時間経過に従って所定の割合で減少する。それに伴い、ダミーセルにより昇圧されたビット線の電圧Vblも時間経過に従って減少する。このビット線電圧Vblとセル情報が読み出されないビット線の電圧(プリチャージ電圧Vpr=ViiC /2)との差電圧がセンスアンプの感度以下になると、センスアンプはビット線電圧を増幅できない。従って、1情報を書き込んでからこの差電圧がセンスアンプの感度以下になるまでの時間がセル電荷保持時間となり、その時間に応じてリフレッシュ間隔tREFが設定される。
【0085】
一方、本実施形態の場合、図6(b)に示すように、セルストレージ電圧Vstは、従来と同様に減少する。しかし、本実施形態の場合、ビット線電圧Vblは、セル情報がビット線に読み出されていない段階でダミーセルにより昇圧されるため、セルストレージ電圧Vstがプリチャージ電圧Vpr以下に下がってもセンスアンプの感度以上にビット線対の差電圧が保持されるため、リフレッシュ間隔tREFを従来よりも長くすることができる。
【0086】
ところで、セル・トランジスタTrはNチャネルMOSトランジスタからなるため、ビット線に接続されたノードに対してストレージノードはセルストレージ電圧Vstがプリチャージ電圧Vprより高いときにはドレインとして機能する。しかし、セルストレージ電圧Vstがプリチャージ電圧Vprより低い時にはソースとして機能する。
【0087】
そして、セルストレージ電圧Vstが、ワード線電圧VWLからセル・トランジスタTrのしきい値電圧Vthcellだけ低い電圧(=VWL−Vthcell)よりも低くなると、セル・トランジスタTrがオンする。そして、その時のセルストレージ電圧Vstがビット線のプリチャージ電圧Vpr(=ViiC /2)より低いと、オンしたセル・トランジスタTrによってメモリセルが接続されたビット線の電位を引き下げてしまう。この状態は、メモリセルから0情報を読み出した状態と等しい。従って、リフレッシュ間隔tREFは、1情報を書き込んでからセルストレージ電圧Vstがワード線電圧VWLからセル・トランジスタTrのしきい値電圧Vthcellだけ低い電圧(=VWL−Vthcell)よりも低くなるまでとなる。
【0088】
センスアンプを活性化する時のワード線の電圧VWLは極力低い(ゆっくりと立ち上げる)方が、よりリフレッシュ間隔tREFを延ばすことが可能である。但し、あまり下げると0情報の読み出し時にビット線の差電圧がつくのが遅くなってしまい、セル情報の読み出しが遅くなる。従って、センスアンプを活性化する時のワード線電圧VWLは、セル情報の読み出し速度(ワード線の立ち上げからセンスアンプの活性化までの時間)と、リフレッシュ間隔tREFに基づいて決定される。
【0089】
尚、メモリセルの0情報は、ワード線電圧VWLが低電位側電源Vssよりセル・トランジスタTrのしきい値電圧Vthcellだけ高い電圧(=Vss+Vthcell)以上になると読み出される。従って、基本的にリフレッシュ間隔tREFを延ばすのに有効な、センスアンプ活性化時のワード線電圧はVss+Vthcell以上、ViiC /2+Vthcell以下である。
【0090】
次に、ワード線電位の波形とチップサイズ削減について説明する。
図7は、ワード線電圧VWLの波形図である。
ワード線電圧VWLの波形は、そのワード線の時定数(寄生抵抗と寄生容量の値)により決定される。ワード線の線長が長い場合、それが短い場合に比べてワード線電圧VWLはゆっくりと上昇する。
【0091】
本実施形態のSDRAMでは、1情報を読み出した状態と等価な状態を、それよりも早いワード線電圧VWLが低電位側電源Vssよりセル・トランジスタTrのしきい値電圧Vthcellだけ高い電圧になるタイミングに基づいて作り出すことができる。このタイミングのワード線の長短によるズレ(ワード線が短い時のタイミングに対するワード線が長い場合のタイミングの遅延)Δt1は、1情報を読み出すときのズレΔt2よりも小さい。従って、本実施形態の読み出し方法を用いる場合、ワード線の線長は、タイミングのズレ、ひいてはサイクルタイムに与える影響が少ない。即ち、ワード線の線長を長くしても、従来(ワード線が短い場合)とほぼ同様のタイミングで読み出しを行う、即ち同様のサイクルタイムで読み出しを行う事ができる。これにより、サブワードデコーダの数を少なくすることができる。
【0092】
上記したように、ワード線電位の引き上げ、即ちワード線電位の波形は、そのワード線の時定数(抵抗値と容量値)により決まる。ワード線の時定数が大きい(抵抗値、容量値が大きい)ほどワード線電位の引き上げが緩やかになる。従って、1つのサブワードデコーダにて駆動するワード線の長さを従来のそれよりも長くできる。
【0093】
即ち、図8(b)に示す従来例のように、メインワードデコーダ48が駆動するメインワード線に接続された各サブワードデコーダ49a〜49dにて駆動するワード線の長さをそれぞれL1とした場合、図8(a)に示すように、時定数によってその2倍の長さL2(=L1×2)のワード線を駆動することができるとすれば、2つサブワードデコーダ17a,17bにてそれらを駆動することができる。従って、サブワードデコーダに必要な面積を従来の1/2にすることができ、これによってチップサイズの縮小を図ることができる。
【0094】
また、メインワードデコーダ14の負荷が小さくなる(メインワード線MWLが短くなる)ので、ドライバサイズの縮小と消費電流の削減を図ることができる。
【0095】
以上記述したように、本実施形態によれば、以下の効果を奏する。
(1)ワード線WL0,WL1の電圧がメモリセル18a〜19bから0情報を読み出す電圧以上になるとダミーワード線DWL0,DWL1を活性化させ、そのダミーワード線DWL0,DWL1に接続されたダミーセル23a〜24bによりビット線BL0,/BL0,BL1,/BL1の電位を引き上げるようにした。その結果、従来に比べてセンスアンプ20a,20bを早く活性化することができ、サイクルタイムを短くすることができる。
【0096】
(2)ダミーワード線DWL0,DWL1をメモリセル18a〜19bから1情報が読み出されるまえに活性化することで、ダミーセル23a〜24bにより1情報の読み出しと等価な状態にビット線BL0,/BL0,BL1,/BL1の差電圧を作り出すことができる。その時のワード線の電まで上昇するのに要する時間は、ワード線WL0,WL1の長さに対する時間の遅れがメモリセル18a〜19bから1情報を読み出す電圧の時間の遅れに比べて少ない。その結果、ワード線の時定数を大きくすることができ、それによりワード線を駆動するサブワードデコーダの数を少なくしてチップサイズを削減することができる。
【0097】
(3)ワード線WL0,WL1の電圧がメモリセル18a〜19bから0情報を読み出す電圧まで上昇すればセンスアンプ20a,20bを活性化することができる。その結果、従来に比べてビット線がはやく増幅されるため、ワード線WL0,WL1を上げてからスイッチ回路22a,22bにてビット線BL0,/BL0,BL1,/BL1をデータバス線DB,/DBに接続するまでの時間を早くすることができる。
【0098】
(4)ダミーセル23a〜24bにてビット線BL0,/BL0,BL1,/BL1の電圧を変化させて1情報を読み出している。従って、メモリセル18a〜19bのセルストレージ電圧Vstがビット線BL0,/BL0,BL1,/BL1のプリチャージ電圧Vprより低くなってもビット線BL0,/BL0,BL1,/BL1の電圧をセンスアンプ20a,20bにて正しく増幅することができる。その結果、リフレッシュ間隔を長くすることができ、消費電力を低減することができる。
【0099】
(第二実施形態)
以下、本発明を具体化した第二実施形態を図9〜図11に従って説明する。
尚、説明の便宜上、第一実施形態と同様の構成については同一の符号を付してその説明を一部省略する。
【0100】
図9は、本実施形態のダミーワードドライバ16の回路図である。
このダミーワードドライバ50は、図1のダミーワードドライバ16と置き換えて用いられる。
【0101】
ダミーワードドライバ50は、インバータ回路51〜55、ナンド回路56,57から構成される。第1ナンド回路56にはダミーワード活性化信号DACTとアドレス信号RA0を第1インバータ回路51により反転した信号が入力され、第2ナンド回路57にはダミーワード活性化信号DACTとアドレス信号RA0が入力される。
【0102】
第1ナンド回路56の出力端子は直列に接続された第2及び第3インバータ回路52,53を介して第1ダミーワード線DWL0に接続されている。第2ナンド回路57の出力端子は直列に接続された第4及び第5インバータ回路54,55を介して第2ダミーワード線DLW1に接続されている。ダミーワードドライバ50には動作電源として高電位側電源Viiと低電位側電源Vssとが入力される。
【0103】
このように構成されたダミーワードドライバ50は、アドレス信号RA0の論理に応じて、セル情報を読み出すメモリセルが接続されたビット線と対となるビット線を駆動するようにダミーセルが接続された第1又は第2ダミーワード線DWL0,DWL1を選択する。そして、ダミーワードドライバ50は、ダミーワード活性化信号DACTに応答して活性化すると、選択した第1又は第2ダミーワード線DWL0,DLW1の電位を高電位側電源Viiレベルから低電位側電源Vssレベルに引き下げる。
【0104】
例えば、図10に示すメモリセル18aのセル情報を読み出す場合、ダミーワードドライバ50は、そのメモリセル18aが接続されたビット線BL0と対となる反転ビット線/BL0を駆動するようにダミーセル23bが接続された第2ダミーワード線DWL1を選択する。そして、ダミーワード活性化信号DACTに応答して活性化すると、第2ダミーワード線DWL0の電位を高電位側電源Viiレベルから低電位側電源Vssレベルに引き下げる。
【0105】
次に、上記のように構成されたSDRAM(ダミーワードドライバ50)の作用を図11に従って説明する。
本実施形態のダミーワードドライバ50は、プリデコード信号PDに応答し、第1及び第2ワード線WL0,WL1の活性化によりメモリセル18a〜19b(図1参照)のセル情報が読み出されたビット線BL0〜/BL1と対となるビット線の電位を引き下げる。
【0106】
例えば、メモリセル18aに1情報が記憶されている場合、第1ワード線WL0が活性化し、そのワード線WL0の電圧がプリチャージ電圧+セルトランジスタのしきい値電圧以下では、ビット線BL0の電位は変わらない。この時、ダミーワードドライバ50は、第2ダミーワード線DWL1を活性化する。この動作によりダミーセル23bの電荷により第1反転ビット線/BL0の電位を引き下げる。これにより第1ビット線BL0と第1反転ビット線/BLの電位差が、第一実施形態の電位差と同等となる。
【0107】
一方、メモリセル18aに0情報が記憶されている場合、第1ワード線WL0が活性化すると第1ビット線BL0の電位は僅かに下降する。そして、同様に、ダミーワードドライバ50が第2ダミーワード線DWL1を活性化すると、ダミーセル23bの電荷により第1反転ビット線/BL0の電位が引き下げられる。
【0108】
以上記述したように、本実施形態によれば、以下の効果を奏する。
(1)第1及び第2ワード線WL0,WL1の活性化によりメモリセル18a〜19bのセル情報が読み出されるビット線と対となるビット線の電位を、ダミーワード線DWL0,DWL1の活性化によりダミーセル23a〜24bの電荷により引き下げるようにした。その結果、ビット線対BL0,/BL0,BL1,/BL1の電位差をメモリセル18a〜19bから情報を読み出す時と同様とすることができる。
【0109】
(第三実施形態)
以下、本発明を具体化した第三実施形態を図12,図13に従って説明する。
尚、説明の便宜上、第一実施形態と同様の構成については同一の符号を付してその説明を一部省略する。
【0110】
図12は、本実施形態のSDRAMのブロック回路図であり、ワード線及びダミーワード線の駆動にかかる部分を示す。
本実施形態のSDRAM60は、第一実施形態のセンスアンプドライバ21がセンスアンプドライバ61に置き換えられている。また、本実施形態のSDRAM60は、モニタロウアドレスメインデコーダ62とモニタサブワードデコーダ63とワード線電圧検出回路64を備えている。
【0111】
モニタロウアドレスメインデコーダ62とワード線電圧検出回路64には内部動作判定回路12からアクティブ信号ACTが入力される。
モニタロウアドレスメインデコーダ62にはモニタメインワード線MMWが接続されている。モニタロウアドレスメインデコーダ62は、アクティブ信号ACTに応答してモニタメインワード線MMWを活性化する。
【0112】
モニタメインワード線MMWにはモニタサブワードデコーダ63が接続され、モニタサブワードデコーダ63にはモニタサブワード線MSWが接続されている。モニタサブワードデコーダ63は、モニタメインワード線MMWが活性化されると、モニタサブワード線MSWを活性化する。
【0113】
モニタサブワードデコーダ63は、各サブワードデコーダ17a,17bと同じ電気的特性を持つように形成されている。モニタサブワード線MSWは、メモリセルが接続された通常のワード線WL0,WL1と同じ電気的特性(寄生抵抗、寄生容量)を持つように形成されている。従って、モニタサブワードデコーダ63により活性化するモニタサブワード線MSWの電位は、各ワード線WL0,WL1の電位と同様に変化する。
【0114】
モニタサブワード線MSWにはワード線電圧検出回路64が接続されている。
ワード線電圧検出回路64は、モニタサブワード線MSWの電圧を検出し、その電圧が所定のモニタ電圧以上になった場合に第2のセンスアンプ活性化信号SACTを活性化する。モニタ電圧はセンスアンプ20aを活性化するタイミングに基づいて決定され、本実施形態ではプリチャージ電圧Vpr(=ViiC /2)よりセル・トランジスタTrのしきい値電圧Vthcellだけ高い電圧に設定されている。ワード線電圧検出回路64は、モニタサブワード線MSWの電圧がモニタ電圧よりも低いときにはLレベルの第2のセンスアンプ活性化信号SACTを出力し、モニタサブワード線MSWの電圧がモニタ電圧以上になるとHレベルの第2のセンスアンプ活性化信号SACTを出力する。
【0115】
センスアンプドライバ61は、Hレベルのセンスアンプ活性化信号LEとHレベルの第2のセンスアンプ活性化信号SACTに応答して生成した所定電圧の活性化電圧SAP,SANをセンスアンプ20aに供給する。センスアンプ20aは供給される活性化電圧SAP,SANに基づいて動作し、ビット線対BL0,/BL0の電位差を増幅する。
【0116】
上記したように、モニタサブワード線MSWの電位は、各ワード線WL0,WL1の電位と同様に変化する。従って、センスアンプ20aは、各ワード線WL0,WL1の電位がモニタ電圧以上になると活性化する。
【0117】
ワード線WL0,WL1の電位の変化は、電圧条件や温度条件などにより変化する。従って、ワード線WL0,WL1(実際にはモニタサブワード線MSW)の電圧変化を検出することで、ワード線WL0,WL1の電圧に対してリフレッシュ特性が好適なタイミングでセンスアンプ20aが活性化する。
【0118】
図13は、ワード線電圧検出回路64の回路図である。
ワード線電圧検出回路64は、差動増幅回路65、モニタ電圧生成回路66、ナンド回路67、インバータ回路68を含む。
【0119】
モニタサブワード線MSWは差動増幅回路65に接続されている。差動増幅回路65はPチャネルMOSトランジスタTp21 ,Tp22 とNチャネルMOSトランジスタTn21 〜Tn23 から構成されている。PMOSトランジスタTp21 ,Tp22 はソースに高電位側電源Viiが供給され、ドレインがNMOSトランジスタTn21 ,Tn22 のドレインにそれぞれ接続され、PMOSトランジスタTp21 のゲートはPMOSトランジスタTp21 のゲート及びドレインに接続されている。
【0120】
NMOSトランジスタTn21 のゲートにはモニタサブワード線MSWが接続され、NMOSトランジスタTn22 のゲートにはモニタ電圧生成回路66が接続されている。NMOSトランジスタTn21 ,Tn22 のソースは互いに接続され、その接続点にはNMOSトランジスタTn23 のドレインが接続されている。
【0121】
NMOSトランジスタTn23 はゲートに活性化信号EN2が供給され、ソースは低電位側電源Vssが供給されている。
モニタ電圧生成回路66は、抵抗R1とモニタ・トランジスタとしてのNチャネルMOSトランジスタTn24 から構成されている。抵抗R1は高電位側電源ViiとNMOSトランジスタTn24 のドレインとの間に接続されている。NMOSトランジスタTn24 は、ドレインがそのトランジスタTn24 のゲートと差動増幅回路65に接続され、ソースにはプリチャージ電圧Vpr(=ViiC /2)が供給されている。
【0122】
NMOSトランジスタTn24 はメモリセル18a,18b(図12参照)を構成するセル・トランジスタTrと同一形状に形成され、同じ電気的特性を持つ。従って、NMOSトランジスタTn24 のドレイン電圧は、プリチャージ電圧Vpr(=ViiC /2)からしきい値電圧Vthcellだけ高い電圧となる。この電圧がモニタ電圧Vmon として差動増幅回路65に供給される。
【0123】
差動増幅回路65のNMOSトランジスタTn21 のドレインはナンド回路67の入力端子に接続されている。差動増幅回路65はHレベルの活性化信号に応答して活性化すると、モニタサブワード線MSWの電圧とモニタ電圧Vmon の差電圧を増幅したレベルを持つ検出信号S1をインバータ回路69を介してナンド回路67に出力する。この検出信号S1は、モニタサブワード線MSWの電圧がモニタ電圧Vmon より低い場合にはHレベルを持ち、モニタサブワード線MSWの電圧がモニタ電圧Vmon 以上の場合にはLレベルを持つ。
【0124】
ナンド回路67は3入力素子であり、活性化信号EN2とワード線活性化信号WACTが入力される。ナンド回路67の出力端子はインバータ回路68の入力端子に接続され、そのインバータ回路68から第2のセンスアンプ活性化信号SACTが出力される。
【0125】
このように構成されたワード線電圧検出回路64は、活性化信号EN2とワード線活性化信号WACTがHレベルの時に、モニタサブワード線MSWの電圧とモニタ電圧Vmon を比較した結果に基づくレベルを持つ第2のセンスアンプ活性化信号SACTを出力する。
【0126】
以上記述したように、本実施形態によれば、以下の効果を奏する。
(1) 本実施形態のSDRAM60はモニターワード線MSWを備え、その電圧をモニタ電圧検出回路64にて検出してセンスアンプ20aを活性化するタイミングを決定するようにした。その結果、確実にワード線WL0,WL1の電圧がVss+Vthcell程度でセンスアンプ20aを活性化することができる。
【0127】
尚、上記第三実施形態は、以下の態様に変更してもよい。
・上記第三実施形態において、ワード線電圧検出回路64はワード線活性化信号WACTを用いずにセンスアンプ活性化信号SACTを生成するように構成する、即ち図13のナンド回路67を2入力素子として実施してもよい。この構成にしても、上記実施形態と同様の効果を得ることができる。
【0128】
・上記第三実施形態において、活性化信号EN2を省略し、NMOSトランジスタTn23 をオンするようにゲートに例えば高電位側電源Viiを供給するようにしてもよい。この場合、差動増幅回路65が常に動作するが、センスアンプ活性化信号LEを生成する動作には支障がない。
【0129】
(第四実施形態)
以下、本発明を具体化した第四実施形態を図14,図15に従って説明する。
尚、説明の便宜上、第一実施形態と同様の構成については同一の符号を付してその説明を一部省略する。
【0130】
図14は、本実施形態のサブワードドライバ70の回路図である。
サブワードドライバ70には、ロウアドレスプリデコーダ13にてデコードされたプリデコード信号PDに含まれ、このドライバ70に対応するアドレス信号AD0が供給される。また、サブワードドライバ70には、電圧切替信号φが入力されるとともに、インバータ回路71により電圧切替信号φを反転した反転切替信号/φが入力される。
【0131】
電圧切替信号φは、センスアンプ活性化信号LE、またはそれ以降の信号が用いられる。センスアンプ活性化信号LE以降の信号はセンスアンプ活性化信号LEによりセンスアンプが活性化するより時間的に後に変化する信号であり、コラム選択信号、セルプリチャージ信号、センスアンプ活性化信号LEを遅延して生成した信号などを含む。本実施形態ではセンスアンプ活性化信号LEを用いることにする。
【0132】
サブワードドライバ70は、PチャネルMOSトランジスタTp31 〜Tp35 、NチャネルMOSトランジスタTn31 ,Tn32 から構成されている。
第1PMOSトランジスタTp31 は、ソースに昇圧電圧Vppが供給され、ゲートに反転切替信号/φが入力され、ドレインは第2PMOSトランジスタTp32 のソースに接続されている。第2PMOSトランジスタTp32 のゲートにはアドレス信号AD0が入力され、ドレインは第1NMOSトランジスタTn31 のドレインに接続されている。第1NMOSトランジスタTn31 は、ゲートにアドレス信号AD0が入力され、ソースに低電位側電源Vssが供給されている。
【0133】
第3PMOSトランジスタTp33 は、ソースに高電位電源ViiC が供給され、ゲートに電圧切替信号φが入力され、ドレインは第4PMOSトランジスタTp34 のソースに接続されている。第4PMOSトランジスタTp34 は、ゲートにアドレス信号AD0が入力され、ドレインは第2PMOSトランジスタTp32 のドレインと第1NMOSトランジスタTn31 のドレインとの接続点に接続されている。また、その接続点は、第5PMOSトランジスタTp35 と第2NMOSトランジスタTn32 のゲートに接続されている。
【0134】
第5PMOSトランジスタTp35 はソースに昇圧電圧Vppが供給され、ドレインが第2NMOSトランジスタTn32 のドレインに接続され、第2NMOSトランジスタTn32 はソースに低電位側電源Vssが供給されている。
【0135】
そして、サブワードドライバ70は、第2PMOSトランジスタTp32 と第1NMOSトランジスタTn31 のドレインの接続点からサブワードデコーダ17aに駆動信号S11を出力する。また、サブワードドライバ70は、第5PMOSトランジスタTp35 と第2NMOSトランジスタTn32 のドレインの接続点からサブワードデコーダ17aに制御信号S12を出力する。
【0136】
昇圧電圧Vppはセル電源ViiC を昇圧した電圧であり、そのセル電源ViiC よりセル・トランジスタTrのしきい値電圧Vthcellだけ高い電圧である。セル電源ViiC は、プリチャージ電圧Vpr(=ViiC /2)からセル・トランジスタTrのしきい値電圧Vthcellだけ高い電圧より低い。
【0137】
電圧切替信号φがLレベル(反転切替信号/φがHレベル)の場合、第1PMOSトランジスタTp31 がオフし、第3PMOSトランジスタTp33 がオンする。オンした第3トランジスタTp33 を介して第4PMOSトランジスタTp34 のソースにセル電源ViiC が供給される。従って、第4PMOSトランジスタTp34 と第1NMOSトランジスタTn31 により構成されるインバータ回路によってアドレス信号AD0を反転し、セル電源ViiC レベル又は低電位側電源Vssレベルを持つ駆動信号S11をサブワードデコーダ17aに出力する。
【0138】
電圧切替信号φがHレベル(反転切替信号/φがLレベル)の場合、第1PMOSトランジスタTp31 がオンし、第3PMOSトランジスタTp33 がオフする。オンした第1トランジスタTp31 を介して第2PMOSトランジスタTp32 のソースに昇圧電圧Vppが供給される。従って、第2PMOSトランジスタTp32 と第1NMOSトランジスタTn31 により構成されるインバータ回路によってアドレス信号AD0を反転し、昇圧電圧Vppレベル又は低電位側電源Vssレベルを持つ駆動信号S11をサブワードデコーダ17aに出力する。
【0139】
従って、サブワードドライバ70は、アドレス信号AD0がHレベルの場合、低電位側電源Vssレベルを持つ駆動信号S11をサブワードデコーダ17aに出力する。そして、サブワードドライバ70は、アドレス信号AD0がLレベルの場合、電圧切替信号φ(反転切替信号/φ)に基づいてセル電源ViiC レベル又は昇圧電圧Vppレベルを持つ駆動信号S11をサブワードデコーダ17aに出力する。
【0140】
また、サブワードドライバ70は、アドレス信号AD0がHレベルの場合には昇圧電圧Vppレベルを持つ制御信号S12を、アドレス信号AD0がLレベルの場合には低電位側電源Vssレベルを持つ制御信号S12をサブワードデコーダ17aに出力する。
【0141】
サブワードデコーダ17aは、PチャネルMOSトランジスタTp36 とNチャネルMOSトランジスタTn33 ,Tn34 から構成されている。PMOSトランジスタTp36 は、ソースに駆動信号S11が供給され、ドレインが第1NMOSトランジスタTn33 のドレインに接続され、第1NMOSトランジスタTn33 はソースに低電位側電源Vssが供給されている。PMOSトランジスタTp36 とNMOSトランジスタTn33 のドレインは互いに接続されるとともにメインワード線MWLに接続されている。
【0142】
PMOSトランジスタTp36 とNMOSトランジスタTn33 のドレイン間の接続点はワード線WL0に接続されている。そのワード線WL0には第2NMOSトランジスタTn34 のドレインが接続されている。第2NMOSトランジスタTn34 は、ゲートに制御信号S12が供給され、ソースは低電位側電源Vssが供給されている。
【0143】
メインワード線MWLがHレベルの場合、PMOSトランジスタTp36 はオフし、第1NMOSトランジスタTn33 はオンする。このオンした第1NMOSトランジスタTn33 はワード線WL0を低電位側電源Vssに接続する。また、アドレス信号AD0がHレベルの場合、そのアドレス信号AD0に応答してオンした第2NMOSトランジスタTn34 がワード線WL0を低電位側電源Vssに接続する。従って、サブワードデコーダ17aは、メインワード線MWLがHレベル、又はアドレス信号AD0がHレベルの場合にワード線WL0の電位を低電位側電源Vssレベルにする。
【0144】
一方、メインワード線MWLがLレベル、且つアドレス信号AD0がLレベルの場合、PMOSトランジスタTp36 はオンし、第1及び第2NMOSトランジスタTn33 ,Tn34 が共にオフする。この時、メインワード線MWLには、オンしたPMOSトランジスタTp36 を介して駆動信号S11が供給される。従って、サブワードデコーダ17aは、メインワード線MWLがLレベル、且つアドレス信号AD0がLレベルの場合、駆動信号S11に基づいてワード線WL0の電位をセル電源ViiC レベル又は昇圧電圧Vppレベルにする。
【0145】
電圧切替信号φ、即ちセンスアンプ活性化信号LEは、センスアンプ20a(図1参照)を活性化するまでLレベルである。従って、ワード線WL0は、センスアンプ20aが活性化するまでセル電源ViiC レベルに保持される。センスアンプ活性化信号LEがHレベルになると、センスアンプ20aが活性化する。従って、ワード線WL0は、センスアンプ20aの活性化後に昇圧電圧Vppまで上昇する。
【0146】
即ち、サブワードドライバ70は、ワード線WL0の電位を2段階で上昇させるよう駆動信号S11をサブワードデコーダ17aに供給する。そして、センスアンプ20aは、ワード線WL0の電圧が、ビット線対に0情報が読み出され、1情報が読み出されない電圧で活性化する。
【0147】
次に、上記のように構成されたSDRAMの作用を図15に従って説明する。
今、図1のメモリセル18aからセル情報を読み出す場合について説明する。
先ず、メモリセル18aに0情報が保持されている場合を、図15(a)に従って説明する。この場合、メモリセル18aのセル・トランジスタTrと容量C1との間のストレージノードの電位は、0情報に従って低電位側電源Vssレベルになっている。
【0148】
セル情報の読み出し動作に先立って、ビット線BL0,/BL0(図1参照)はプリチャージ電源VprによりViiC /2レベルにプリチャージされる。また、ダミーワード線DWL0,DWL1は電源Vssレベルにリセットされる。
【0149】
次いで、ロウアドレス信号RAに基づいて選択されたワード線WL0の電位がセル電源ViiC レベルまで引き上げられる。この時、ワード線WL0の電位が低電位側電源Vssからセル・トランジスタTrのしきい値電圧Vthcell分高い電位(=Vss+Vthcell)より高くなると、メモリセル18aからビット線BL0に0情報が読み出される。その読み出されたセル情報によりビット線BL0の電位がViiC /2から下降する。
【0150】
この状態で、ダミーワード線DWL0が選択されて、そのダミーワード線DWL0が電源Vssレベルから電源Viiレベルに引き上げられると、ダミーセル23aの電荷により、ビット線BL0の電位が引き上げられる。その引き上げ後の電位はセンスアンプ20aがLレベルと認識し得るレベルとなるように、ダミーセル23aを構成する容量の容量値が設定されている。そして、センスアンプ活性化信号LEによりセンスアンプ20aが活性化されると、そのセンスアンプ20aによりビット線BL0,/BL0の電位差が増幅されて、セル情報として出力される。
【0151】
ワード線WL0の電位は、センスアンプ20aが活性化するまでセル電源ViiC レベルに保持され、その後、昇圧電圧Vppレベルまで上昇する。この昇圧電圧Vppの電位によって、他のメモリセルの1情報をリフレッシュする(再書き込みを行う)。
【0152】
次に、メモリセル18aに1情報が記憶されている場合を、図15(b)に従って説明する。この場合、メモリセル18aのセル・トランジスタTrと容量C1との間のストレージノードの電位は、1情報に従って高電位電源ViiC レベルになっている。
【0153】
同様に、セル情報の読み出し動作に先立って、ビット線BL0,/BL0はViiC /2レベルにプリチャージされる。また、ダミーワード線DWL0,DWL1は電源Vssレベルにリセットされる。
【0154】
次いで、ロウアドレス信号RAに基づいて選択されたワード線WL0の電位がセル電源ViiC レベルまで引き上げられる。この時、ワード線WL0の電位が低電位側電源Vssからセル・トランジスタTrのしきい値電圧Vthcell分高い電位(=Vss+Vthcell)より高くなったタイミングより遅い第2のタイミングでダミーワード線DWL0が電源Vssレベルから電源Viiレベルに引き上げられると、ダミーセル23aの電荷により、ビット線BL0の電位が引き上げられる。その引き上げ後の電位はセンスアンプ20aがHレベルと認識し得るレベルとなるように、ダミーセル23aを構成する容量の容量値が設定されている。そして、センスアンプ活性化信号LEによりセンスアンプ20aが活性化されると、そのセンスアンプ20aによりビット線BL0,/BL0の電位差が増幅されて、セル情報として出力される。
【0155】
ワード線WL0の電位はセンスアンプ20aが活性化するまでセル電源ViiC レベルに保持され、その後、昇圧電圧Vppまで上昇する。この昇圧電圧Vppの電位によって、メモリセル18aの1情報をリフレッシュする(再書き込みを行う)。
【0156】
上記したように、本実施形態のサブワードドライバ70は、ワード線WL0の電圧を2段階に上昇させる。低電位側電源Vssから一気に昇圧電圧Vppレベルまで上昇させる場合に比べて、サブワードドライバ70の駆動能力が小さくてすみ、消費電流が少なくなる。
【0157】
以上記述したように、本実施形態によれば、以下の効果を奏する。
(1)ワード線WL0,WL1の電位を先ずビット線BL0,/BL0,BL1,/BL1にメモリセル18a〜19bから0情報が読み出され1情報が読み出されない電圧まで上昇させ、センスアンプ20aを活性化するようにした。その結果、センスアンプ20aの活性化タイミングを、ビット線BL0,/BL0,BL1,/BL1に0情報が読み出されてから1情報が読み出される前に確実に行うことができる。
【0158】
(2)ワード線WL0の電位を一旦セル電源ViiC レベルまで上昇した後、昇圧電圧Vppまで上昇させるようにした。その結果、低電位側電源Vssから一気に昇圧電圧Vppレベルまで上昇させる場合に比べて、サブワードドライバ70の駆動能力が小さくてすみ、消費電流を少なくすることができる。
【0159】
尚、前記各実施形態は、以下の態様に変更してもよい。
・上記第四実施形態では、第1ステップ目のワード線WL0の電圧VWLをセル電源ViiC レベルとしたが、ワード線WL0の電位はプリチャージ電圧Vpr(=ViiC /2)以上、プリチャージ電圧Vprよりセル・トランジスタTrのしきい値電圧Vthcellだけ高い電圧以下(ViiC /2≦VWL≦ViiC /2+Vthcell)を満たす電圧に適宜変更して実施しても良い。
【0160】
・上記第一及び第二実施形態では、内部動作判定回路12は活性化信号DACTを出力する第1のタイミングが0情報が読み出されるタイミングより後に設定したが、その第1のタイミングをワード線を活性化すると同時、またはワード線を活性化より前に設定しても良い。このようにしても、上記各実施形態と同様の効果を得ることができる。
【0161】
・上記各実施形態では、センスアンプ活性化信号発生回路32はアクティブ信号ACTを遅延させて第2のタイミングでセンスアンプ活性化信号LEをアクティブにした。これを、プリデコード信号PD及びブロック選択信号BSの少なくとも一方とアクティブ信号ACTとを論理合成してセンスアンプ活性化信号LEをアクティブにするように発生回路32を構成してもよい。このようにすれば、アクティブ信号ACTのみからセンスアンプ活性化信号LEをアクティブにする場合に比べて、周辺回路や配線遅延等の要因に基づくタイミングズレを少なくすることができる。
【0162】
・上記各実施形態を、ビット線とセンスアンプの接続形態を適宜変更したSDRAMに適用してもよい。
例えば、図16に示すように、オープンビット線方式のSDRAM81に適用する。
【0163】
また、図17に示すように、シェアードセンスアンプ方式のSDRAM82に適用する。尚、この場合、センスアンプ83は、メモリセル領域のビット線BL1,/BL1,BL2,/BL2とビット線分離トランジスタからなるスイッチ回路84a,84bにて分離されたビット線BLa,/BLa間に接続されている。そして、ダミーセル23a,23bを、この分離ビット線BLa,/BLaを接続する。このように構成すれば、2組のビット線対BL1,/BL1、BL2,/BL2に対してダミーセル23a,23b及びダミーワード線DWL0,DLW1を設けるだけでよく、チップサイズを縮小することができる。
【0164】
尚、シェアードセンスアンプ方式以外のSDRAMにおいて、メモリセルが接続されたビット線とセンスアンプが接続されたビット線とをスイッチ回路(ビット線分離トランジスタ)により分離する。そして、ダミーセルをセンスアンプが接続されたビット線に接続してもよい。
【0165】
また、図18(a)(b)に示すように、階層構造のビット線を持つSDRAM90a,90bに適用する。図18(a)に示すSDRAM90aはビット線対BL,/BLにスイッチ回路91a,91bを介して接続された複数(図では1対のみ示す)サブビット線対SBL,/SBLを備え、このサブビット線SBLとダミーワード線DWL0との交点にダミーセル92が接続されている。図18(b)に示すSDRAM90bはビット線対BL,/BLにスイッチ回路91a,91bを介して接続された複数(図では1対のみ示す)サブビット線対SBL,/SBLを備え、ビット線BLとダミーワード線DWL0との交点にダミーセル92が接続されている。これらの場合、SDRAM90aに比べてSDRAM90bの方が、ダミーセル92とダミーワード線DWL0の数が少なく、チップサイズが小さい利点を持つ。
【0166】
・上記実施形態では、メインワード線とサブワード線を持つSDRAMに具体化したが、ワード線の時定数を少なくするように構成したSDRAMに適用しても良い。例えば、平行な複数のワード線をチップの垂直方向に形成し、それらを適当な間隔で接続するコンタクトを形成することで、抵抗値と寄生容量を少なくしたSDRAMがある。このSDRAMに上記各実施形態を適用した場合、コンタクトの数を少なくすることができ、それによりチップサイズを縮小することができる。
【0167】
・上記各実施形態では、ダミーセルの容量をメモリセルの容量の半分としたが、これを同じ容量とし、ストレージ電極に供給する電圧を3/4・ViiC や1/4・ViiC 等のようにしてもよい。
【0168】
・上記各実施形態のダミーセル23a〜24bの構造を適宜変更して実施してもよい。図19(a)はメモリセル18aの構成図であり、図19(b)はダミーセル23Aの構成図である。このダミーセルを、図19(c)に示すように固定キャパシタからなるダミーセルを用いて実施してもよい。この容量の電荷により、ビット線電圧を上昇又は下降させる。容量値は、ビット線電圧の変化量が、センスアンプの感度以上、セル情報の読み出しによりビット線対に現れる差電圧以下となるように設定する。尚、ダミーワード線の振幅を調整して設定しても良い。
【0169】
また、図19(d),(e)に示すようにNチャネルMOSトランジスタを用いて実施してもよい。この場合、図19(d)に示すように、トランジスタのゲートをダミーワード線DWLに接続し、ソース及びドレインをビット線BL(又は反転ビット線/BL)に接続する。また、図19(e)に示すように、トランジスタのゲートをビット線BL(又は反転ビット線/BL)に接続し、ソース及びドレインをダミーワード線DWLに接続する。何れでもよい。
【0170】
また、図19(f),(g)に示すようにPチャネルMOSトランジスタを用いて実施してもよい。この場合も同様に、図19(f)トランジスタのゲートをダミーワード線DWLに接続し、ソース及びドレインをビット線BL(又は反転ビット線/BL)に接続する。また、図19(g)に示すように、トランジスタのゲートをビット線BL(又は反転ビット線/BL)に接続し、ソース及びドレインをダミーワード線DWLに接続する。何れでもよい。
【0171】
・上記各実施形態では、SDRAM10,60に具体化したが、FCRAM等その他各種RAMや、ROM、EEPROM等の半導体記憶装置に具体化してもよい。例えば、図20は、メモリセルとして電流駆動型セルを用いたフラッシュメモリ95を示す。この場合、ダミーセル96は、メモリセル97の電流の半分の電流を流すように設定されている。
【0172】
・上記各実施形態のセンスアンプに、差動型センスアンプ等、他の形式のセンスアンプを用いて実施してもよい。
以上の様々な実施の形態をまとめると、以下のようになる。
(付記1) ワード線に接続されたメモリセルの0情報又は1情報を、該メモリセルが接続されたビット線に読み出し、前記ビット線にはダミーセルを介してダミーワード線を接続し、前記ダミーワード線の電位を制御することにより前記ダミーセルから前記ビット線に伝達した電荷により前記メモリセル情報に基づくビット線の電位を補完し、該ビット線の電位をセンスアンプにて増幅する半導体記憶装置において、
前記0情報の読み出しは前記ワード線の活性化により前記ビット線に伝達される前記メモリセルの電荷にて行われ、前記1情報の読み出しは前記ダミーワード線の活性化により前記ビット線に伝達される前記ダミーセルの電荷にて行われることを特徴とする半導体記憶装置。(1)
(付記2) ワード線に接続された複数のメモリセルの0情報又は1情報を、該複数のメモリセルが接続された複数のビット線にそれぞれ読み出し、前記複数のビット線にはダミーセルを介してダミーワード線を接続し、前記ダミーワード線の電位を制御することにより前記複数のダミーセルから各ビット線に伝達した電荷により、前記メモリセル情報に基づくビット線の電位を補完し、該ビット線の電位をセンスアンプにて増幅する半導体記憶装置において、
前記0情報の読み出しは前記ワード線の活性化により前記ビット線に伝達される前記メモリセルの電荷にて行われ、前記1情報の読み出しは前記ダミーワード線の活性化により前記ビット線に伝達される前記ダミーセルの電荷にて行われることを特徴とする半導体記憶装置。(2)
(付記3) 前記ダミーセルの電荷が伝達された前記ビット線の電圧変化は前記センスアンプの感度以上であることを特徴とする付記1又は2記載の半導体記憶装置。
(付記4) 前記1情報の読み出しを補完する前記ダミーセルは前記情報を読み出す前記メモリセルが接続されたビット線と対をなす反転ビット線に接続されていることを特徴とする付記1〜3のうちの何れか一項記載の半導体記憶装置。
(付記5) ワード線に接続された複数のメモリセルの0情報又は1情報を、該複数のメモリセルが接続された複数のビット線にそれぞれ読み出し、前記複数のビット線にはダミーセルを介してダミーワード線を接続し、前記ダミーワード線の電位を制御することにより、前記メモリセル情報に基づくビット線の電位を補完し、該ビット線の電位をセンスアンプにて増幅する半導体記憶装置において、
前記ワード線を活性化させる第1ステップと、
前記メモリセルの0情報を前記ビット線に読み出す第2ステップと、
前記ダミーワード線を活性化させる第3ステップと、
前記センスアンプを活性化させる第4ステップとを備え、
前記第4ステップを前記メモリセルから1情報が前記ビット線に読み出される前に実行する、
ことを特徴とする半導体記憶装置の情報読み出し方法。(3)
(付記6) 複数のビット線をプリチャージ電圧とした後、ワード線に接続された複数のメモリセルの0情報又は1情報を、該複数のメモリセルが接続された前記複数のビット線にそれぞれ読み出し、前記複数のビット線にはダミーセルを介してダミーワード線を接続し、前記ダミーワード線の電位を制御することにより、前記メモリセル情報に基づくビット線の電位を補完し、該ビット線の電位をセンスアンプにて増幅する半導体記憶装置において、
前記メモリセルのセル・トランジスタのしきい値電圧を第1電圧とし、前記プリチャージ電圧を第2電圧とし、前記第1電圧+前記第2電圧を第3電圧とし、前記メモリセルへの1情報の書き込み電圧を第4電圧とし、前記第4電圧+前記第1電圧を第5電圧とし、
前記ワード線を基準電圧から前記第1電圧以上、前記第3電圧未満まで活性化させる第1ステップと、
0情報を前記ビット線に読み出す第2ステップと、
前記ダミーワード線を活性化させる第3ステップと、
前記センスアンプを活性化させる第4ステップと、
前記ワード線を前記第5電圧以上まで活性化させる第5ステップとを備え、
前記第4ステップを前記メモリセルから1情報が前記ビット線に読み出される前に実行する、ことを特徴とする半導体記憶装置の情報読み出し方法。(4)
(付記7) 前記第3ステップを前記第1ステップと同時に実行する、ことを特徴とする付記5又は6記載の半導体記憶装置の情報読み出し方法。(5)
(付記8) 前記第3ステップを前記第1ステップの前に実行する、ことを特徴とする付記5又は6記載の半導体記憶装置の情報読み出し方法。(6)
(付記9) 前記ワード線の活性化時における該ワード線電圧の遷移時間を、規定値であるロウアドレスストローブ信号のアクティブ時間程度に設定したことを特徴とする付記5〜8のうちの何れか一項記載の半導体記憶装置の情報読み出し方法。(7)
(付記10) 前記第4ステップを、前記メモリセルから1情報がビット線に伝達される前に実行することを特徴とする付記5〜8のうちの何れか一項記載の半導体記憶装置の情報読み出し方法。(8)
(付記11) 前記第3ステップには、前記ダミーワード線と前記ビット線間に接続され、前記メモリセルの電荷量未満を供給するキャパシタの活性化を含むことを特徴とする付記5〜8のうちの何れか一項記載の半導体記憶装置の情報読み出し方法。(9)
(付記12) 前記ビット線は前記メモリセルが接続された第1のノードと前記センスアンプが接続された第2のノードとにスイッチ回路にて分離され、
前記ダミーセルは前記第2のノードに接続されていることを特徴とすることを特徴とする付記11記載の半導体記憶装置の情報読み出し方法。(10)
(付記13) 前記センスアンプは一対のビット線間に接続され、
前記第3ステップにおいて、前記ダミーセルは、前記メモリセルの1情報の電位と同方向の電位差を前記ビット線に与えることを特徴とする付記11記載の半導体記憶装置の情報読み出し方法。(11)
(付記14) 前記センスアンプは一対のビット線間に接続され、
前記メモリセルと前記ダミーセルは同一のビット線に接続され、
前記ダミーワード線の活性化時に該ダミーワード線の電位を引き上げることを特徴とする付記13記載の半導体記憶装置の情報読み出し方法。(12)
(付記15) 前記センスアンプは一対のビット線間に接続され、
前記メモリセルと前記ダミーセルは同一センスアンプに接続された異なるビット線に接続され、
前記ダミーワード線の活性化時に該ダミーワード線の電位を引き下げることを特徴とする付記13記載の半導体記憶装置の情報読み出し方法。(13)
(付記16) 前記第1ステップをワード線活性化制御信号に基づいて実行し、前記第5ステップをセンスアンプ活性化信号に基づいて実行することを特徴とする付記6〜8のうちの何れか一項記載の半導体記憶装置の情報読み出し方法。(14)
(付記17) 前記第1ステップにおいて、前記ワード線の電圧をセンスアンプ電源の中間電圧まで活性化させることを特徴とする付記6〜8のうちの何れか一項記載の半導体記憶装置の情報読み出し方法。(15)
(付記18) 前記第1ステップにおいて、前記ワード線の電圧をセンスアンプ電源まで活性化させることを特徴とする付記6〜8のうちの何れか一項記載の半導体記憶装置の情報読み出し方法。(16)
(付記19) 前記第1ステップにおいて、前記ワード線の電圧をセンスアンプ電源よりセル・トランジスタのしきい値電圧分低い電圧まで活性化させることを特徴とする付記6〜8のうちの何れか一項記載の半導体記憶装置の情報読み出し方法。(17)
(付記20) 前記センスアンプを、前記ワード線の電圧を検出する回路により生成した検出信号に基づいて活性化させることを特徴とする付記5〜8のうちの何れか一項記載の半導体記憶装置の情報読み出し方法。(18)
(付記21) 前記センスアンプを、前記ワード線の電圧を検出する回路により生成した検出信号と、アクティブ信号とに基づいて活性化させることを特徴とする付記5〜8のうちの何れか一項記載の半導体記憶装置の情報読み出し方法。
(付記22) 前記ワード線電圧検出回路は、プリチャージ電圧+セル・トランジスタのしきい値電圧を検出電圧とし、前記ワード線の電圧と前記検出電圧とを比較して前記検出信号を生成し、
前記センスアンプを、前記ワード線の電圧が前記検出電圧以上になったときに活性化させることを特徴とする付記21又は22記載の半導体記憶装置の情報読み出し方法。(19)
(付記23) 前記センスアンプを活性化するときの前記ワード線の電圧VWLは、プリチャージ電圧Vprとセル・トランジスタのしきい値電圧Vthcellに対して、
VWL≦Vpr+Vthcell
を満たすことを特徴とする付記5〜8のうちの何れか一項記載の半導体記憶装置の情報読み出し方法。(20)
【0173】
【発明の効果】
以上詳述したように、本発明によれば、メモリセルから1情報を読み出す場合に比べてセンスアンプを早く活性化することができ、サイクルタイムを短くすることができる。
【0174】
また、サイクルタイムを短くしなければ、ワード線の活性化をゆっくりと行う、即ちワード線を長くすることが可能になり、ワード線の駆動回路の数を少なくしてチップサイズを削減することができる。
【0175】
また、リフレッシュ時間も長くすることができ、セルフリフレッシュ電流を削減することができる。
【図面の簡単な説明】
【図1】 第一実施形態のSDRAMの概略ブロック回路図である。
【図2】 内部動作判定回路のブロック回路図である。
【図3】 センスアンプドライバ及びセンスアンプの回路図である。
【図4】 ダミーワードドライバの回路図である。
【図5】 第一実施形態の動作波形図である。
【図6】 セルストレージ電圧とビット線電圧を示す波形図である。
【図7】 ワード線電圧の波形図である。
【図8】 ワード線及びサブワード線の関係を示す説明図である。
【図9】 第二実施形態のSDRAMの一部ブロック回路図である。
【図10】 SDRAMの一部ブロック回路図である。
【図11】 第二実施形態の動作波形図である。
【図12】 第三実施形態のSDRAMの概略ブロック回路図である。
【図13】 ワード線電圧検出回路の回路図である。
【図14】 第四実施形態のサブワードドライバの回路図である。
【図15】 第四実施形態の動作波形図である。
【図16】 別のSDRAMの一部ブロック回路図である。
【図17】 別のSDRAMの一部ブロック回路図である。
【図18】 別のSDRAMの一部ブロック回路図である。
【図19】 別のダミーセルの説明図である。
【図20】 別の半導体記憶装置の一部ブロック回路図である。
【図21】 従来例を示す回路図である。
【図22】 従来例の動作波形図である。
【符号の説明】
18a〜19b メモリセル
20a,20b センスアンプ
23a〜24b ダミーセル
BL0〜/BL4 ビット線
DWL0,DWL1 ダミーワード線
WL0〜WL3 ワード線
Claims (4)
- ワード線に接続されたメモリセルの0情報又は1情報を、該メモリセルが接続されたビット線に読み出し、前記ビット線にはダミーセルを介してダミーワード線を接続し、前記ダミーワード線の電位を制御することにより前記ダミーセルから前記ビット線に伝達した電荷により前記メモリセル情報に基づくビット線の電位を補完し、該ビット線の電位をセンスアンプにて増幅する半導体記憶装置において、
前記0情報の読み出しは前記ワード線の活性化により前記ビット線に伝達される前記メモリセルの電荷にて行われ、前記1情報の読み出しは前記ダミーワード線の活性化により前記ビット線に伝達される前記ダミーセルの電荷にて行われることを特徴とする半導体記憶装置。 - ワード線に接続された複数のメモリセルの0情報又は1情報を、該複数のメモリセルが接続された複数のビット線にそれぞれ読み出し、前記複数のビット線にはダミーセルを介してダミーワード線を接続し、前記ダミーワード線の電位を制御することにより前記複数のダミーセルから各ビット線に伝達した電荷により、前記メモリセル情報に基づくビット線の電位を補完し、該ビット線の電位をセンスアンプにて増幅する半導体記憶装置において、
前記0情報の読み出しは前記ワード線の活性化により前記ビット線に伝達される前記メモリセルの電荷にて行われ、前記1情報の読み出しは前記ダミーワード線の活性化により前記ビット線に伝達される前記ダミーセルの電荷にて行われることを特徴とする半導体記憶装置。 - ワード線に接続された複数のメモリセルの0情報又は1情報を、該複数のメモリセルが接続された複数のビット線にそれぞれ読み出し、前記複数のビット線にはダミーセルを介してダミーワード線を接続し、前記ダミーワード線の電位を制御することにより、前記メモリセル情報に基づくビット線の電位を補完し、該ビット線の電位をセンスアンプにて増幅する半導体記憶装置において、
前記ワード線を活性化させる第1ステップと、
前記メモリセルの0情報を前記ビット線に読み出す第2ステップと、
前記ダミーワード線を活性化させる第3ステップと、
前記センスアンプを活性化させる第4ステップとを備え、
前記第4ステップを前記メモリセルから1情報が前記ビット線に読み出される前に実行する、
ことを特徴とする半導体記憶装置の情報読み出し方法。 - 複数のビット線をプリチャージ電圧とした後、ワード線に接続された複数のメモリセルの0情報又は1情報を、該複数のメモリセルが接続された前記複数のビット線にそれぞれ読み出し、前記複数のビット線にはダミーセルを介してダミーワード線を接続し、前記ダミーワード線の電位を制御することにより、前記メモリセル情報に基づくビット線の電位を補完し、該ビット線の電位をセンスアンプにて増幅する半導体記憶装置において、
前記メモリセルのセル・トランジスタのしきい値電圧を第1電圧とし、前記プリチャージ電圧を第2電圧とし、前記第1電圧+前記第2電圧を第3電圧とし、前記メモリセルへの1情報の書き込み電圧を第4電圧とし、前記第4電圧+前記第1電圧を第5電圧とし、
前記ワード線を基準電圧から前記第1電圧以上、前記第3電圧未満まで活性化させる第1ステップと、
0情報を前記ビット線に読み出す第2ステップと、
前記ダミーワード線を活性化させる第3ステップと、
前記センスアンプを活性化させる第4ステップと、
前記ワード線を前記第5電圧以上まで活性化させる第5ステップとを備え、
前記第4ステップを前記メモリセルから1情報が前記ビット線に読み出される前に実行する、
ことを特徴とする半導体記憶装置の情報読み出し方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001051889A JP4629249B2 (ja) | 2001-02-27 | 2001-02-27 | 半導体記憶装置及びその情報読み出し方法 |
US09/968,803 US6525979B2 (en) | 2001-02-27 | 2001-10-03 | Semiconductor memory device and method for reading information of therefrom |
TW090124433A TW529033B (en) | 2001-02-27 | 2001-10-03 | Semiconductor memory device and method for reading information of therefrom |
KR1020010063855A KR100718898B1 (ko) | 2001-02-27 | 2001-10-17 | 반도체 기억 장치 및 그 정보 독출 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001051889A JP4629249B2 (ja) | 2001-02-27 | 2001-02-27 | 半導体記憶装置及びその情報読み出し方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002251881A JP2002251881A (ja) | 2002-09-06 |
JP4629249B2 true JP4629249B2 (ja) | 2011-02-09 |
Family
ID=18912606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001051889A Expired - Fee Related JP4629249B2 (ja) | 2001-02-27 | 2001-02-27 | 半導体記憶装置及びその情報読み出し方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US6525979B2 (ja) |
JP (1) | JP4629249B2 (ja) |
KR (1) | KR100718898B1 (ja) |
TW (1) | TW529033B (ja) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003338176A (ja) * | 2002-05-21 | 2003-11-28 | Fujitsu Ltd | 半導体メモリ |
JP4406527B2 (ja) * | 2002-09-03 | 2010-01-27 | Okiセミコンダクタ株式会社 | 半導体集積回路装置 |
US6760268B2 (en) * | 2002-11-26 | 2004-07-06 | Freescale Semiconductor, Inc. | Method and apparatus for establishing a reference voltage in a memory |
JP3878573B2 (ja) * | 2003-04-16 | 2007-02-07 | 株式会社東芝 | 不揮発性半導体記憶装置 |
EP1492126A1 (en) * | 2003-06-27 | 2004-12-29 | Dialog Semiconductor GmbH | Analog or multilevel DRAM cell having natural transistor |
JP4245147B2 (ja) * | 2003-10-28 | 2009-03-25 | エルピーダメモリ株式会社 | 階層ワード線方式の半導体記憶装置と、それに使用されるサブワードドライバ回路 |
KR100546396B1 (ko) * | 2003-11-17 | 2006-01-26 | 삼성전자주식회사 | 오프전류에 영향을 받는 커패시터를 갖는 감지 증폭기드라이버를 구비하는 반도체 장치 |
KR100704025B1 (ko) * | 2005-09-09 | 2007-04-04 | 삼성전자주식회사 | 셀스트링에 배치되는 더미셀을 가지는 불휘발성 반도체메모리 장치 |
US7519846B2 (en) * | 2005-12-28 | 2009-04-14 | Intel Corporation | Detection of an in-band reset |
US7362640B2 (en) * | 2005-12-29 | 2008-04-22 | Mosaid Technologies Incorporated | Apparatus and method for self-refreshing dynamic random access memory cells |
KR20090090330A (ko) * | 2006-11-14 | 2009-08-25 | 램버스 인코포레이티드 | 저 에너지 메모리 컴포넌트 |
US7551477B2 (en) * | 2007-09-26 | 2009-06-23 | Sandisk Corporation | Multiple bit line voltages based on distance |
KR101338384B1 (ko) * | 2007-12-10 | 2013-12-06 | 삼성전자주식회사 | 메모리 셀 어레이 및 이를 포함하는 반도체 메모리 장치 |
US9030863B2 (en) | 2013-09-26 | 2015-05-12 | Qualcomm Incorporated | Read/write assist for memories |
US9336862B2 (en) * | 2014-05-28 | 2016-05-10 | Oracle International Corporation | Sense amp activation according to word line common point |
TWI648736B (zh) * | 2017-12-27 | 2019-01-21 | 華邦電子股份有限公司 | 動態隨機存取記憶體 |
JP2022126406A (ja) * | 2021-02-18 | 2022-08-30 | キオクシア株式会社 | 半導体記憶装置 |
US11676649B2 (en) * | 2021-07-22 | 2023-06-13 | Micron Technology, Inc. | Sense timing coordination for memory |
WO2024035561A1 (en) * | 2022-08-09 | 2024-02-15 | Rambus Inc. | Memory with interleaved preset |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5022009A (en) * | 1988-06-02 | 1991-06-04 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device having reading operation of information by differential amplification |
US5062079A (en) * | 1988-09-28 | 1991-10-29 | Kabushiki Kaisha Toshiba | MOS type random access memory with interference noise eliminator |
JPH02146179A (ja) * | 1988-11-28 | 1990-06-05 | Nec Corp | 半導体メモリ |
US5841720A (en) * | 1997-08-26 | 1998-11-24 | International Business Machines Corporation | Folded dummy world line |
JP2001236798A (ja) * | 2000-02-18 | 2001-08-31 | Fujitsu Ltd | 半導体記憶装置及びストレス電圧設定方法 |
-
2001
- 2001-02-27 JP JP2001051889A patent/JP4629249B2/ja not_active Expired - Fee Related
- 2001-10-03 US US09/968,803 patent/US6525979B2/en not_active Expired - Lifetime
- 2001-10-03 TW TW090124433A patent/TW529033B/zh not_active IP Right Cessation
- 2001-10-17 KR KR1020010063855A patent/KR100718898B1/ko not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US20020118588A1 (en) | 2002-08-29 |
KR20020070076A (ko) | 2002-09-05 |
KR100718898B1 (ko) | 2007-05-17 |
JP2002251881A (ja) | 2002-09-06 |
US6525979B2 (en) | 2003-02-25 |
TW529033B (en) | 2003-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4629249B2 (ja) | 半導体記憶装置及びその情報読み出し方法 | |
KR101622922B1 (ko) | 개선된 로컬 입출력라인 프리차아지 스킴을 갖는 반도체 메모리 장치 | |
KR101596283B1 (ko) | 개선된 로컬 입출력라인 프리차아지 스킴을 갖는 반도체 메모리 장치 | |
US7986578B2 (en) | Low voltage sense amplifier and sensing method | |
US8559254B2 (en) | Precharging circuit and semiconductor memory device including the same | |
US5859799A (en) | Semiconductor memory device including internal power supply circuit generating a plurality of internal power supply voltages at different levels | |
US7599238B2 (en) | Semiconductor memory device and driving method thereof | |
KR100776612B1 (ko) | 반도체 기억 장치 | |
KR20040038449A (ko) | 계층구조의 데이터 입출력 라인을 갖는 반도체 메모리장치및 그 프리차지방법 | |
KR20100052885A (ko) | 반도체 메모리 장치 | |
US10529392B2 (en) | Input buffer circuit | |
KR101551775B1 (ko) | 개선된 글로벌 입출력라인 프리차아지 스킴을 갖는 반도체 메모리 장치 | |
US20100008129A1 (en) | Semiconductor memory device and method of controlling the same | |
JP3447640B2 (ja) | 半導体記憶装置 | |
US10726907B2 (en) | Electronic device with a sense amp mechanism | |
JP4031206B2 (ja) | 半導体記憶装置 | |
KR100724517B1 (ko) | 반도체 기억 장치 | |
JPH07192463A (ja) | 半導体記憶装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050830 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071219 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101109 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |