[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4627700B2 - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP4627700B2
JP4627700B2 JP2005230966A JP2005230966A JP4627700B2 JP 4627700 B2 JP4627700 B2 JP 4627700B2 JP 2005230966 A JP2005230966 A JP 2005230966A JP 2005230966 A JP2005230966 A JP 2005230966A JP 4627700 B2 JP4627700 B2 JP 4627700B2
Authority
JP
Japan
Prior art keywords
wind tunnel
wind
windmill
generator
sunlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005230966A
Other languages
Japanese (ja)
Other versions
JP2007046520A (en
Inventor
律三郎 上中
Original Assignee
東洋セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋セラミックス株式会社 filed Critical 東洋セラミックス株式会社
Priority to JP2005230966A priority Critical patent/JP4627700B2/en
Publication of JP2007046520A publication Critical patent/JP2007046520A/en
Application granted granted Critical
Publication of JP4627700B2 publication Critical patent/JP4627700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Description

本発明は、ビルの屋上または山頂等の高所に設置された風車および発電機を有する風力発電装置に関するものである。   The present invention relates to a wind turbine generator having a windmill and a generator installed at a high place such as a rooftop of a building or a mountain top.

従来、下記特許文献1に示されるように、表面に太陽電池モジュールを貼り付け、または太陽電池モジュールで形成された風洞と、この風洞の内部に設けられた風車と、この風車により駆動される発電機とを設け、太陽電池の発電効率を高い状態に維持した太陽光発電と、太陽光のエネルギー等によって発生する気流エネルギーを利用した風力発電とを複合させた複合発電装置が知られている。
特開2005−83327号公報
Conventionally, as shown in the following Patent Document 1, a solar cell module is attached to the surface or formed by a solar cell module, a windmill provided inside the wind tunnel, and power generation driven by the windmill There is known a combined power generation apparatus that combines a solar power generation system that maintains a high power generation efficiency of a solar cell and a wind power generation that uses airflow energy generated by solar energy or the like.
JP 2005-83327 A

上記特許文献1に開示された複合発電装置では、太陽電池モジュールを利用した太陽光発電と、上昇気流を利用した風力発電との両方を利用することにより、電気エネルギーを安定して供給できるという利点がある。そして、上記特許文献1には、太陽電池モジュールが太陽光により暖められると同時に、発電による発熱で風洞の内部温度が上昇することにより風洞内部の空気が暖められて上昇気流が発生すると記載されている。しかし、上記のように太陽電池モジュールを利用した太陽光発電を行った場合には、太陽光のエネルギーの一部が電気エネルギーに変換されるために、太陽光のエネルギーの全てを風洞の加熱に利用した場合に比べて加熱効率が低下することが避けられず、上記風洞を設けたにも拘わらず、風力発電の発電効率を効果的に向上させることができないという問題がある。   The combined power generation device disclosed in Patent Document 1 has an advantage that electric energy can be stably supplied by using both solar power generation using a solar cell module and wind power generation using an updraft. There is. Patent Document 1 describes that the solar cell module is heated by sunlight, and at the same time, the internal temperature of the wind tunnel rises due to the heat generated by the power generation, so that the air inside the wind tunnel is warmed and an updraft is generated. Yes. However, when solar power generation using a solar cell module is performed as described above, a part of the solar energy is converted into electric energy, so that all of the solar energy is used for heating the wind tunnel. There is a problem that the heating efficiency is inevitably lowered as compared with the case where it is used, and the power generation efficiency of wind power generation cannot be effectively improved despite the provision of the wind tunnel.

本発明は、上記の問題点に鑑みてなされたものであり、太陽光のエネルギーを有効に利用して風力発電の発電効率を向上させることができる風力発電装置を提供することを目的としている。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a wind power generator capable of improving the power generation efficiency of wind power generation by effectively using the energy of sunlight.

請求項1に係る発明は、高所に設置された発電機と、この発電機を回転駆動する風車と、地上付近の外気を上記風車の設置部に案内する風洞とを備え、この風洞に、太陽光を集光するレンズ体と、このレンズ体により集光された太陽光のエネルギーによって加熱される加熱板とを設けたものである。   The invention according to claim 1 includes a generator installed at a high place, a windmill that rotationally drives the generator, and a wind tunnel that guides outside air near the ground to the installation section of the windmill, A lens body that collects sunlight and a heating plate that is heated by the energy of sunlight collected by the lens body are provided.

請求項2に係る発明は、上記請求項1記載の風力発電装置において、風洞内に発生した上昇気流を旋回させるガイド羽根を風洞の内部に設けたものである。   According to a second aspect of the present invention, in the wind turbine generator according to the first aspect, guide vanes for turning the updraft generated in the wind tunnel are provided inside the wind tunnel.

請求項3に係る発明は、上記請求項1または2に記載の風力発電装置において、加熱板に注水する注水手段を備えたものである。   The invention according to claim 3 is the wind power generator according to claim 1 or 2, further comprising water injection means for injecting water into the heating plate.

請求項1に係る発明によれば、風洞に照射された太陽光がレンズ体により集光されて内筒が高温に加熱されるため、風洞内の空気密度が低下して上昇気流が発生するとともに、これに対応して風洞の下端部開口部から風洞内に外気が連続的に導入され、上記風洞を介して風車の設置部に案内されることになる。したがって、高所に吹き付けられた風のエネルギーと、風洞に照射された太陽光のエネルギーとの両方を有効に利用して風車を高速で回転させることにより、発電機の発電効率を効果的に向上できるという利点がある。   According to the first aspect of the present invention, since the sunlight irradiated to the wind tunnel is collected by the lens body and the inner cylinder is heated to a high temperature, the air density in the wind tunnel is reduced and an upward air flow is generated. Correspondingly, outside air is continuously introduced into the wind tunnel from the opening at the lower end of the wind tunnel, and is guided to the wind turbine installation section through the wind tunnel. Therefore, the power generation efficiency of the generator is effectively improved by rotating the windmill at high speed by effectively using both the energy of the wind blown to the high place and the energy of the sunlight irradiated to the wind tunnel. There is an advantage that you can.

請求項2に係る発明によれば、風洞内において発生した上昇気流をスパイラル流に変化させることにより、風洞内をスムーズに流動させて上記風車を効率よく回転駆動することができる。   According to the second aspect of the present invention, the updraft generated in the wind tunnel is changed into a spiral flow, so that the wind turbine can be smoothly rotated and driven efficiently.

請求項3に係る発明によれば、加熱板に注水して風洞内に蒸気を発生させることにより、風洞内における上昇気流を効果的に強化できるという利点がある。   According to the invention which concerns on Claim 3, it has the advantage that the updraft in a wind tunnel can be strengthened effectively by pouring water into a heating plate and generating a vapor | steam in a wind tunnel.

図1は、本発明に係る風力発電装置の実施形態を示している。この風力発電装置は、ビル1の屋上等に設置された発電機2と、この発電機2を回転駆動する風車3と、地上付近の外気を風車3の設置部に案内する風洞4とを備えている。この風洞4は、ビル1の南側に位置する壁面に沿ってビル1の2階部分等から屋上まで設置され、その下端部が南側に向けて開口するとともに、上端部が上記風車3に向けて開口している。   FIG. 1 shows an embodiment of a wind turbine generator according to the present invention. This wind turbine generator includes a generator 2 installed on the roof of the building 1, a windmill 3 that rotationally drives the generator 2, and a wind tunnel 4 that guides outside air near the ground to the installation section of the windmill 3. ing. This wind tunnel 4 is installed from the second floor portion of the building 1 to the rooftop along the wall surface located on the south side of the building 1, and its lower end portion opens toward the south side, and its upper end portion faces the windmill 3. It is open.

上記風洞4は、図2および図3に示すように、太陽光を集光するレンズ体5が設置された外筒6と、その内方側に設置された内筒7からなる加熱板とを有し、これらの直径が上端部に至る程小さくなるように設定されることにより上窄まりに形成されている。レンズ体5は、複数の凸レンズ状部8が一定間隔で設置されたガラス製の板材からなっている。そして、多数のレンズ体5が取付枠体9に嵌め込まれて接着またはボルト止め等の手段で固定されることにより、上記外筒6が構成されている。また、内筒7は、鋼板または銅板等によって形成された円筒状体からなり、その外面が黒色に着色されている。そして、上記凸レンズ状部8により集光された太陽光Aが内筒7上において焦点を結ぶように、上記外筒6と内筒7との間隔Sが設定されている。   As shown in FIGS. 2 and 3, the wind tunnel 4 includes an outer cylinder 6 provided with a lens body 5 for collecting sunlight and a heating plate including an inner cylinder 7 installed on the inner side thereof. It is formed so as to be constricted by setting these diameters to be smaller as they reach the upper end. The lens body 5 is made of a glass plate material in which a plurality of convex lens-shaped portions 8 are installed at regular intervals. The outer cylinder 6 is configured by fitting a large number of lens bodies 5 into the attachment frame body 9 and fixing them by means such as adhesion or bolting. Moreover, the inner cylinder 7 consists of a cylindrical body formed with a steel plate, a copper plate, etc., and the outer surface is colored black. And the space | interval S of the said outer cylinder 6 and the inner cylinder 7 is set so that the sunlight A condensed by the said convex lens-shaped part 8 may focus on the inner cylinder 7. FIG.

上記風車3は、図4および図5に示すように、弓形に湾曲したブレード材からなる3枚のダリウスロータ11と、複数枚の半円筒状体が組み合わされた上下一対のサポニウスロータ12,13とを有し、これらのロータ11〜13がビル1の屋上に吹き付けた風に応じて回転することにより発電を行うように構成されている。すなわち、上記ロータ11〜13がそれぞれ垂直軸10に取り付けられるとともに、その基端部に発電機2が設置され、上記垂直軸10がロータ11〜13と一体に回転駆動されることにより、上記発電機2による発電が行われるようになっている。   As shown in FIGS. 4 and 5, the wind turbine 3 includes a pair of upper and lower Saponius rotors 12 in which three Darrieus rotors 11 made of an arcuate blade material and a plurality of semicylindrical bodies are combined. 13 and these rotors 11-13 are comprised so that it may generate electric power by rotating according to the wind which sprayed on the roof of the building 1. FIG. That is, the rotors 11 to 13 are respectively attached to the vertical shaft 10, the generator 2 is installed at the base end thereof, and the vertical shaft 10 is rotationally driven integrally with the rotors 11 to 13, thereby Power generation by the machine 2 is performed.

また、上記風洞4は、その上端部が下方のサポニウスロータ13の右半部を指向するように設置され、後述するように風洞4内において発生した上昇気流Bが、風洞4の上端開口部からサポニウスロータ13の右半部に吹き付けられることにより、上記風車3が回転駆動されるように構成されている。   Further, the wind tunnel 4 is installed so that the upper end portion thereof is directed to the right half of the lower Saponius rotor 13, and as will be described later, the upward air flow B generated in the wind tunnel 4 is the upper end opening of the wind tunnel 4. The windmill 3 is rotated by being blown to the right half of the saponius rotor 13.

上記構成において、ビル1の南側壁面に沿って設置された風洞4に太陽光Aが照射されると、上記レンズ体5の凸レンズ状部8により集光された太陽光Aが内筒7からなる加熱板上において焦点を結ぶことにより、この内筒7が高温に加熱されて風洞4内の温度が上昇するとともに、この温度が外筒6と内筒7との間において維持される。このため、風洞4内の空気密度が低下し、風洞4の内部と外気との温度差に応じて上昇気流Bが発生し、これに対応して風洞4の下端部開口部から風洞4内に外気が連続的に導入されるとともに、その上端開口部から風車3の設置部に向けて上記上昇気流Bが案内されることになる。   In the above configuration, when sunlight A is applied to the wind tunnel 4 installed along the south side wall surface of the building 1, the sunlight A collected by the convex lens-shaped portion 8 of the lens body 5 is composed of the inner cylinder 7. By focusing on the heating plate, the inner cylinder 7 is heated to a high temperature, the temperature in the wind tunnel 4 rises, and this temperature is maintained between the outer cylinder 6 and the inner cylinder 7. For this reason, the air density in the wind tunnel 4 is reduced, and an ascending air flow B is generated according to the temperature difference between the inside of the wind tunnel 4 and the outside air. Outside air is continuously introduced, and the upward air flow B is guided from the upper end opening toward the installation portion of the wind turbine 3.

そして、上記風車3を構成するダリウスロータ11およびサポニウスロータ12,13がビル1の屋上に吹き付けられた風Cによって回転駆動されるとともに、風洞4により案内された上記上昇気流Bに応じて下方のサポニウスロータ13が回転駆動されることにより、上記垂直軸10が強い力で回転駆動されて上記発電機2による発電が効率よく行われることになる。すなわち、ビル1の屋上に吹き付けられた風Cのエネルギーと、風洞4に照射された太陽光Aのエネルギーとの両方を有効に利用して上記風車3を高速で回転駆動することにより、発電機2の発電効率を効果的に向上させることができる。   The Darrieus rotor 11 and the Saponius rotors 12 and 13 constituting the wind turbine 3 are driven to rotate by the wind C blown on the roof of the building 1 and are moved downward according to the updraft B guided by the wind tunnel 4. The saponius rotor 13 is rotationally driven, so that the vertical shaft 10 is rotationally driven with a strong force, and the power generation by the generator 2 is efficiently performed. That is, the wind turbine 3 is driven to rotate at high speed by effectively using both the energy of the wind C blown on the roof of the building 1 and the energy of the sunlight A irradiated to the wind tunnel 4, thereby generating a generator. The power generation efficiency of 2 can be effectively improved.

特に、上記実施形態に示すように、風洞4を構成する外筒6および内筒7の直径を上端部に至る程小さくして風洞4を上窄まりに形成した場合には、風洞4内において発生した上昇気流Bが上昇するのに伴って流速が早くなるため、上記風車3を、より高速で回転駆動できるという利点がある。また、上記実施形態では、風洞4の下端部を南側に向けて開口したため、ビル1の壁面に向けて吹き付けたビル風を風洞4内に効率よく取り込むことにより、このビル風を有効に利用することができる。   In particular, as shown in the above embodiment, when the diameter of the outer cylinder 6 and the inner cylinder 7 constituting the wind tunnel 4 is reduced so as to reach the upper end portion, As the generated ascending air flow B rises, the flow velocity becomes faster, so there is an advantage that the windmill 3 can be rotationally driven at a higher speed. Moreover, in the said embodiment, since the lower end part of the wind tunnel 4 opened toward the south side, this building wind is effectively utilized by taking in the building wind sprayed toward the wall surface of the building 1 in the wind tunnel 4 efficiently. be able to.

図6に示すように、風洞4内において発生した上昇気流Bを旋回させるスパイラル状のガイド羽根14を、風洞4の内部(具体的には上記加熱板を構成する内筒7の内壁面)に設けた構造としてもよい。このように構成した場合には、上記レンズ体5の凸レンズ状部8により集光された太陽光のエネルギーに応じて発生した上昇気流Bを風洞4内においてスムーズに流動させることにより、上記風車3を効率よく回転駆動することができるという利点がある。   As shown in FIG. 6, spiral guide blades 14 that swirl upward airflow B generated in the wind tunnel 4 are disposed inside the wind tunnel 4 (specifically, the inner wall surface of the inner cylinder 7 that constitutes the heating plate). It is good also as the structure provided. When configured in this way, the wind turbine 3 is caused to flow smoothly in the wind tunnel 4 by the rising air flow B generated according to the energy of sunlight collected by the convex lens-shaped portion 8 of the lens body 5. Can be efficiently rotated.

また、図7に示すように、屋上の貯留槽に貯留された水道水等を、上記内筒7からなる加熱板に向けて注水する注水管および注水ノズル等を有する注水手段15を設け、上記内筒7の温度が充分に高くなったことが図外の温度センサにより検出された時点で、上記注水手段15から加熱板(内筒7)に向けて注水することにより、この注水された水道水等を気化させて風洞4内に蒸気を発生させるように構成してもよい。このように太陽光Aにより加熱された内筒7の温度を利用して水蒸気を発生させるように構成した場合には、この水蒸気の膨張作用により風洞4内における上昇気流Bを充分に強化して、さらに効率よく上記風車3を回転駆動することができる。特に、上記ガイド羽根14と注水手段15との両方を風洞4に設けた構造とした場合には、上記上昇気流Bを、より効果的に強化できるという利点がある。   Moreover, as shown in FIG. 7, the water injection means 15 which has the water injection pipe and water injection nozzle etc. which inject the tap water etc. which were stored by the storage tank of the roof toward the heating plate which consists of the said inner cylinder 7 is provided, When it is detected by a temperature sensor (not shown) that the temperature of the inner cylinder 7 has become sufficiently high, water is poured from the water pouring means 15 toward the heating plate (inner cylinder 7), whereby this water is poured. You may comprise so that water etc. may be vaporized and a vapor | steam may be generated in the wind tunnel 4. FIG. Thus, when it comprises so that water vapor | steam may be generated using the temperature of the inner cylinder 7 heated by sunlight A, the ascending air flow B in the wind tunnel 4 is sufficiently strengthened by the expansion action of this water vapor. Further, the windmill 3 can be driven to rotate more efficiently. In particular, when both the guide blade 14 and the water injection means 15 are provided in the wind tunnel 4, there is an advantage that the updraft B can be strengthened more effectively.

さらに、上記レンズ体5が設置された風洞4の上端部から下端部に至る略全域に亘って複数の注水手段15を一定間隔で配設するとともに、上端または下端の注水手段15から順番に上記水道水等を内筒7に向けて吹き付け、あるいは図外の温度センサの検出信号に応じて温度が高いと判定された個所を選定して水道水等を吹き付けることにより、連続的に水蒸気を発生させるように構成することも可能である。このように構成した場合には、上記風洞4に照射された太陽光Aのエネルギーを有効に利用して長期間に亘り上昇気流Bを強化することができるため、発電効率を効果的に向上させることができる。   Furthermore, a plurality of water injection means 15 are arranged at regular intervals over substantially the entire region from the upper end portion to the lower end portion of the wind tunnel 4 in which the lens body 5 is installed, and the water injection means 15 at the upper end or the lower end are arranged in order from the above. Steam is continuously generated by spraying tap water or the like toward the inner cylinder 7 or by spraying tap water or the like by selecting a location determined to be high according to the detection signal of the temperature sensor (not shown). It is also possible to configure it. When configured in this way, the energy of solar A irradiated to the wind tunnel 4 can be effectively used to strengthen the updraft B over a long period of time, thus effectively improving power generation efficiency. be able to.

なお、上記風洞4を構成する外筒6の南側に位置する壁面にのみ上記レンズ体5を設置した構造としてもよいが、図8に示すように、風洞4の背面側に反射板16を設置するとともに、この風洞4を構成する外筒6の全周に上記レンズ体5を設置し、上記反射板16を利用して風洞4の背面側にも太陽光Aを照射するように構成してもよい。このように構成した場合には、ビル1の壁面等に向けて照射された太陽光のエネルギーを効果的に利用して、より強い上昇気流Bを発生させることができるという利点がある。   Although the lens body 5 may be installed only on the wall surface located on the south side of the outer cylinder 6 constituting the wind tunnel 4, a reflector 16 is installed on the back side of the wind tunnel 4 as shown in FIG. At the same time, the lens body 5 is installed on the entire circumference of the outer cylinder 6 constituting the wind tunnel 4, and the reflector A is used to irradiate the back side of the wind tunnel 4 with sunlight A. Also good. When comprised in this way, there exists an advantage that the stronger upward airflow B can be generated using the energy of the sunlight irradiated toward the wall surface etc. of the building 1 effectively.

また、ビル1の屋上に発電機2および風車3を設置するとともに、ビル1の壁面に沿って風洞4を設置してなる上記実施形態に代え、図9に示すように、風の強い山17の頂に発電機2および風車3を設置するとともに、山17の南側斜面に沿って風洞4aを設置し、この風洞4aにより山麓付近の風を風車3の設置部に向けて案内するように構成してもよい。この場合においても、上記風洞4aに設けられたレンズ体5により集光された太陽光のエネルギーを利用して風洞4aの内部に設けられた加熱板を加熱することにより上昇気流Bを発生させることができる。したがって、この上昇気流Bと、山頂に吹き付けた風Cとの両方で上記風車3を高速で回転させることにより、上記発電機2の発電効率を効果的に向上させることができる。   Further, in place of the above-described embodiment in which the generator 2 and the windmill 3 are installed on the roof of the building 1 and the wind tunnel 4 is installed along the wall surface of the building 1, as shown in FIG. The generator 2 and the windmill 3 are installed on the top of the mountain, and the wind tunnel 4a is installed along the south slope of the mountain 17, and the wind tunnel 4a guides the wind near the foot of the mountain toward the installation section of the windmill 3. May be. Even in this case, the rising airflow B is generated by heating the heating plate provided inside the wind tunnel 4a using the energy of the sunlight collected by the lens body 5 provided in the wind tunnel 4a. Can do. Therefore, the power generation efficiency of the generator 2 can be effectively improved by rotating the windmill 3 at a high speed with both the rising airflow B and the wind C blown on the mountaintop.

なお、上記実施形態では、ダリウスロータ11およびサポニウスロータ12,13を有する風車3を、ビル1の屋上、または山頂等の高所に設置した例について説明したが、これに限らず、通常のプロペラ型風車またはガイドベーン付クロスフロー型風車を用いたり、あるいはこれらを組み合わせたりすることも可能である。例えば、図10に示すように、高所に吹き付ける風Cを利用する風車3の下方にプロペラ型風車18を設置するとともに、このプロペラ型風車18に地上付近の外気を上昇気流Bとして案内する風洞4bを設けた構造としてもよい。   In the above-described embodiment, the example in which the windmill 3 having the Darius rotor 11 and the Saponius rotors 12 and 13 is installed on the rooftop of the building 1 or at a high place such as the top of a mountain has been described. It is also possible to use a propeller type wind turbine or a cross flow type wind turbine with guide vanes, or a combination thereof. For example, as shown in FIG. 10, a propeller type windmill 18 is installed below a windmill 3 that uses a wind C blown at a high place, and a wind tunnel that guides outside air near the ground as an updraft B to the propeller type windmill 18. It is good also as a structure which provided 4b.

本発明に係る風力発電装置の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of the wind power generator which concerns on this invention. レンズ体の具体的構成を示す正面図である。It is a front view which shows the specific structure of a lens body. 風洞の具体的構成を示す部分断面図である。It is a fragmentary sectional view which shows the specific structure of a wind tunnel. 風車の具体的構成を示す説明図である。It is explanatory drawing which shows the specific structure of a windmill. 風車の具体的構成を示す平面断面図である。It is a plane sectional view showing the concrete composition of a windmill. 内筒にガイド羽根を設けた例を示す断面斜視図である。It is a cross-sectional perspective view which shows the example which provided the guide blade | wing in the inner cylinder. 内筒に注水する注水手段を設けた例を示す部分断面図である。It is a fragmentary sectional view which shows the example which provided the water injection means which injects water to an inner cylinder. 本発明に係る風力発電装置の別の実施形態を示す平面断面図である。It is a plane sectional view showing another embodiment of a wind power generator concerning the present invention. 本発明に係る風力発電装置のさらに別の実施形態を示す斜視図である。It is a perspective view which shows another embodiment of the wind power generator which concerns on this invention. 本発明に係る風力発電装置のさらに別の実施形態を示す説明図である。It is explanatory drawing which shows another embodiment of the wind power generator which concerns on this invention.

符号の説明Explanation of symbols

2 発電機
3 風車
4 風洞
5 レンズ体
7 内筒(加熱板)
14 ガイド羽根
15 注水手段
2 Generator 3 Windmill 4 Wind tunnel 5 Lens body 7 Inner tube (heating plate)
14 Guide blade 15 Water injection means

Claims (3)

高所に設置された発電機と、この発電機を回転駆動する風車と、地上付近の外気を上記風車の設置部に案内する風洞とを備え、この風洞に、太陽光を集光するレンズ体と、このレンズ体により集光された太陽光のエネルギーによって加熱される加熱板とを設けたことを特徴とする風力発電装置。   A lens body that includes a generator installed at a high place, a windmill that rotationally drives the generator, and a wind tunnel that guides outside air near the ground to the installation section of the windmill, and collects sunlight in the wind tunnel And a heating plate that is heated by the energy of sunlight collected by the lens body. 風洞内に発生した上昇気流を旋回させるガイド羽根を風洞の内部に設けたことを特徴とする請求項1に記載の風力発電装置。   The wind turbine generator according to claim 1, wherein guide vanes for swirling the rising airflow generated in the wind tunnel are provided inside the wind tunnel. 加熱板に注水する注水手段を備えたことを特徴とする請求項1または2に記載の風力発電装置。   The wind power generator according to claim 1 or 2, further comprising water injection means for injecting water into the heating plate.
JP2005230966A 2005-08-09 2005-08-09 Wind power generator Expired - Fee Related JP4627700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005230966A JP4627700B2 (en) 2005-08-09 2005-08-09 Wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005230966A JP4627700B2 (en) 2005-08-09 2005-08-09 Wind power generator

Publications (2)

Publication Number Publication Date
JP2007046520A JP2007046520A (en) 2007-02-22
JP4627700B2 true JP4627700B2 (en) 2011-02-09

Family

ID=37849546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005230966A Expired - Fee Related JP4627700B2 (en) 2005-08-09 2005-08-09 Wind power generator

Country Status (1)

Country Link
JP (1) JP4627700B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798992B (en) * 2009-02-06 2012-07-18 广州均和纳米新材料科技有限公司 Multiple-wind direction constant velocity wind-driven generator
WO2012073813A1 (en) * 2010-12-01 2012-06-07 Matsuda Isamu Propeller type windmill and wind power generation apparatus
JP2013088054A (en) * 2011-10-19 2013-05-13 Toyo Ceramics Kk Natural air conditioning apparatus
JP6015894B2 (en) * 2012-03-19 2016-10-26 国立大学法人埼玉大学 Protein array production method and protein array
JP5065535B1 (en) * 2012-04-05 2012-11-07 寛 緑間 Solar wind power generator
JP5968570B1 (en) * 2016-05-03 2016-08-10 喜平 伊藤 Solar power plant
JP6461420B1 (en) * 2018-10-29 2019-01-30 喜平 伊藤 Solar power generator
JP6736736B1 (en) * 2019-08-01 2020-08-05 株式会社菊池製作所 Wind power generator
DE102019008014A1 (en) * 2019-11-19 2021-05-20 Edis Kazic Generator / system for the generation of energy through self-generated wind power.
JP7232559B1 (en) * 2022-08-08 2023-03-03 精一 林 Sand thermal storage type wind power generator.
JP7507523B1 (en) 2023-09-15 2024-06-28 精一 林 Sand thermal storage wind power generation equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334040A (en) * 1976-03-30 1978-03-30 Iweka M G O Promotion method of extracted energy from fluid flow by turbine and pump turbine set used for it
JPS5669469A (en) * 1979-11-13 1981-06-10 Mitsui Petrochem Ind Ltd Device utilizing energy of wind force
JPS6185588A (en) * 1984-10-02 1986-05-01 Toshiaki Ichikawa Power generating device utilizing updraft in cylindrical column
JPH0398195U (en) * 1990-01-30 1991-10-11
JP2005076565A (en) * 2003-09-02 2005-03-24 Taiyoko Kenkyusho:Kk Hybrid power generator by combination of solar heat and wind power

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334040A (en) * 1976-03-30 1978-03-30 Iweka M G O Promotion method of extracted energy from fluid flow by turbine and pump turbine set used for it
JPS5669469A (en) * 1979-11-13 1981-06-10 Mitsui Petrochem Ind Ltd Device utilizing energy of wind force
JPS6185588A (en) * 1984-10-02 1986-05-01 Toshiaki Ichikawa Power generating device utilizing updraft in cylindrical column
JPH0398195U (en) * 1990-01-30 1991-10-11
JP2005076565A (en) * 2003-09-02 2005-03-24 Taiyoko Kenkyusho:Kk Hybrid power generator by combination of solar heat and wind power

Also Published As

Publication number Publication date
JP2007046520A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
US5300817A (en) Solar venturi turbine
CN101255852B (en) Solar hot wind power generation method
US8207625B1 (en) Electrical power generating arrangement
JP4627700B2 (en) Wind power generator
US10378519B1 (en) Method for generating electrical power using a solar chimney having an inflatable fresnel lens
KR101636199B1 (en) Compound Generator Using Solar and Wind
KR101236347B1 (en) Turbine for generation of electricity by wind using construction for concentrating wind
KR101073897B1 (en) Multistage aerogenerator
CN113638846B (en) Breeze energy-gathering wind power generation device
RU2415297C1 (en) Aerodynamic plant
EA014198B1 (en) Wind mill electric generating unit (variants)
JP5551748B2 (en) Power generator
AU672701B2 (en) Solar venturi turbine
KR100910583B1 (en) Wind power generator using solar heating
CN201221447Y (en) Wind collecting barrel type horizontal axis power generation system
KR101260379B1 (en) Blocks for wind and solar generators
CN105909298A (en) Tunnel ventilating device
US9897076B1 (en) Solar power tower with spray nozzle and rotating receiver
JP2005083327A (en) Combined power generating device
CN103114968A (en) Natural-energy power generation tower
CN202900555U (en) Solar airflow power generation assembly
KR20120125119A (en) Wind-induced wind and solar power generation devices
CN101315065A (en) Solar energy integration wind power generation device
RU2723538C1 (en) Ventilation power plant
AU780068B2 (en) Improvements to solar heat engines and industrial chimneys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees