[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4625306B2 - Fluid machinery performance diagnostic apparatus and system - Google Patents

Fluid machinery performance diagnostic apparatus and system Download PDF

Info

Publication number
JP4625306B2
JP4625306B2 JP2004314091A JP2004314091A JP4625306B2 JP 4625306 B2 JP4625306 B2 JP 4625306B2 JP 2004314091 A JP2004314091 A JP 2004314091A JP 2004314091 A JP2004314091 A JP 2004314091A JP 4625306 B2 JP4625306 B2 JP 4625306B2
Authority
JP
Japan
Prior art keywords
performance
fluid machine
head
pressure
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004314091A
Other languages
Japanese (ja)
Other versions
JP2006125275A (en
JP2006125275A5 (en
Inventor
一浩 武多
信二 萩野
和子 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004314091A priority Critical patent/JP4625306B2/en
Publication of JP2006125275A publication Critical patent/JP2006125275A/en
Publication of JP2006125275A5 publication Critical patent/JP2006125275A5/ja
Application granted granted Critical
Publication of JP4625306B2 publication Critical patent/JP4625306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、流体を圧送する各種ファン、コンプレッサ、ポンプ等の流体機械の性能を診断するための流体機械の性能診断装置及びシステムに関する。   The present invention relates to a fluid machine performance diagnosis apparatus and system for diagnosing the performance of fluid machines such as various fans, compressors, and pumps that pump fluid.

従来、ポンプの性能を診断するのに必要な各種データを同時に採取してポンプの性能診断を容易に行えるようにするものとして、ポンプの性能を診断するのに必要な各種データを同時に計測するよう所要位置に取付けられる測定端子を有する計測器(吸込圧力検出器、吐出圧力検出器、軸封部温度計、ポンプ本体側軸受部温度計、モータ側軸受部温度計、ポンプ本体側軸受部水平方向振動計、ポンプ本体側軸受部上下方向振動計、モータ側軸受部水平方向振動計、モータ側軸受部上下方向振動計、軸方向振動計、流量計、及び監視カメラ)と、これらの計測器の計測データを採取し、採取したデータを任意に設定した時間分記憶する性能診断用レコーダとを備えたものが提案されている(例えば、特許文献1。)。   Conventionally, various data necessary for diagnosing the performance of the pump are measured at the same time as various data necessary for diagnosing the performance of the pump are collected at the same time so that the performance diagnosis of the pump can be easily performed. Measuring instrument with measuring terminal mounted at the required position (suction pressure detector, discharge pressure detector, shaft seal thermometer, pump body bearing thermometer, motor side bearing thermometer, pump body bearing horizontal direction Vibration meter, pump body side bearing part vertical vibration meter, motor side bearing part horizontal vibration meter, motor side bearing part vertical vibration meter, axial vibration meter, flow meter, and monitoring camera) and these measuring instruments There has been proposed one having a performance diagnosis recorder that collects measurement data and stores the collected data for an arbitrarily set time (for example, Patent Document 1).

特開2003−166477公報(要約、及び図1)JP 2003-166477 A (Summary and FIG. 1)

従来のものは、単に計測したデータを記録し、グラフ化して表示するのみであり、技術者が機器の性能を診断するには、更なる分析が必要となる。
そして、主に各場所の振動を計測するものであり、羽根車、インペラの腐食、劣化等に起因する性能そのものの劣化を把握することは困難であるという問題がある。
The conventional one simply records the measured data, displays it in a graph, and further analysis is necessary for the engineer to diagnose the performance of the device.
And it mainly measures vibration at each place, and there is a problem that it is difficult to grasp the deterioration of the performance itself due to the corrosion and deterioration of the impeller and impeller.

本発明は、このような問題点を解決するために提案されたもので、簡単に流体機械の劣化度を評価することが可能な流体機械の性能診断装置或いは、流体機械の性能診断システムを提供することを目的とする。   The present invention has been proposed to solve such a problem, and provides a fluid machine performance diagnosis apparatus or a fluid machine performance diagnosis system capable of easily evaluating the degree of deterioration of a fluid machine. The purpose is to do.

本発明は上記従来の課題を解決するためになされたもので、特許請求の範囲に記載された各発明は、流体機械の性能診断装置及びシステムとして、それぞれ以下の(1)〜(4)に述べる各手段を採用したものである。   The present invention has been made in order to solve the above-described conventional problems, and each of the inventions described in the claims is as a fluid machine performance diagnosis device and system described in (1) to (4) below. Each means described is adopted.

(1)第1の手段に係る流体機械の性能診断装置は、流体機械の圧縮比又は圧力差と入口流量とから特性を複数の流体制御量毎に無次元化して圧力係数と流量係数との関係を示す曲線を求める予想性能曲線演算器と、前記流体機械の運転時の流体制御量、吸入圧力、吐出圧力、吸入温度、圧縮係数、ガス平均分子量、比熱比から実測性能ヘッドを求めると共に、予想性能曲線と流体制御量と入口流量とから予想性能ヘッドを求め、予想性能ヘッドと実測性能ヘッドとの比から性能劣化度を演算する性能診断演算器とを備えたことを特徴とする。   (1) The fluid machine performance diagnosis apparatus according to the first means is characterized in that the characteristics are made dimensionless for each of a plurality of fluid control amounts from the compression ratio or pressure difference of the fluid machine and the inlet flow rate. An expected performance curve calculator for obtaining a curve indicating the relationship and a measured performance head from the fluid control amount, suction pressure, discharge pressure, suction temperature, compression coefficient, gas average molecular weight, specific heat ratio during operation of the fluid machine, A performance diagnosis computing unit is provided that obtains a predicted performance head from a predicted performance curve, a fluid control amount, and an inlet flow rate, and calculates a performance deterioration degree from a ratio between the predicted performance head and the actually measured performance head.

(2)第2の手段に係る流体機械の性能診断装置は、前記第1の手段において、実測性能ヘッドは、吸入圧力をPs、吐出圧力をPd、吸入温度をTs、圧縮係数をZ、ガス平均分子量をMw、比熱比をk、β=(k−1)/kとすると、実測性能ヘッドHrealを次式、
real=Z・1/β・Ts/Mw・{(Pd/Ps)β−1}
により求めるものであることを特徴とする。
(2) In the fluid machine performance diagnostic apparatus according to the second means, in the first means, the actually measured performance head is configured such that the suction pressure is Ps, the discharge pressure is Pd, the suction temperature is Ts, the compression coefficient is Z, and the gas When the average molecular weight is Mw, the specific heat ratio is k, and β = (k−1) / k, the actually measured performance head H real is expressed by the following equation:
H real = Z · 1 / β · Ts / Mw · {(Pd / Ps) β -1}
It is what is calculated | required by.

(3)第3の手段に係る流体機械の性能診断装置は、前記第1又は2の手段において、前記性能劣化度を微分して性能劣化度変化率を算出する性能変化率演算機を備えたことを特徴とする。   (3) The fluid machine performance diagnostic apparatus according to the third means includes a performance change rate calculator that, in the first or second means, calculates the performance deterioration degree change rate by differentiating the performance deterioration degree. It is characterized by that.

(4)第4の手段に係る流体機械の性能診断システムは、前記流体機械の運転時の吸入圧力、吐出圧力、吸入温度、圧縮係数、ガス平均分子量、比熱比を計測又は演算しそのデータを記憶する監視装置と、該監視装置に記憶された前記データをネットワークを介して受信する中央監視コンピュータとを有し、前記中央監視コンピュータは、前記第1、2、3のいずれかの手段に記載の流体機械の性能診断装置を備えていることを特徴とする。   (4) The fluid machine performance diagnosis system according to the fourth means measures or calculates a suction pressure, a discharge pressure, a suction temperature, a compression coefficient, a gas average molecular weight, and a specific heat ratio during operation of the fluid machine, and outputs the data. A monitoring device that stores the data, and a central monitoring computer that receives the data stored in the monitoring device via a network, wherein the central monitoring computer is described in any one of the first, second, and third means. A fluid machine performance diagnostic device is provided.

特許請求の範囲に記載の各請求項に係る発明は、上記の(1)〜(4)に記載の各手段を採用しているので、非常に簡単に機器の性能劣化を評価することが可能になる。   Since the invention according to each claim described in the claims employs the means described in (1) to (4) above, it is possible to evaluate the performance deterioration of the device very easily. become.

以下、本発明の実施の形態を図1〜5を参照して説明する。
図1は、本発明の実施の形態に係る流体機械の性能診断装置が採用されるプラントの概略図、図2は、本発明の実施の形態に係る流体機械の性能診断装置の回路構成図、図3は、本発明の実施の形態に係る流体機械の性能診断装置の演算ブロック図、図4は、本発明の実施の形態に係る流体機械の性能診断装置による表示グラフの例、図5は、本発明の実施の形態に係る流体機械の性能診断装置の評価の基本原理を示す図である。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic diagram of a plant in which a fluid machine performance diagnosis apparatus according to an embodiment of the present invention is employed. FIG. 2 is a circuit configuration diagram of the fluid machine performance diagnosis apparatus according to the embodiment of the present invention. FIG. 3 is a calculation block diagram of the fluid machine performance diagnosis apparatus according to the embodiment of the present invention, FIG. 4 is an example of a display graph by the fluid machine performance diagnosis apparatus according to the embodiment of the present invention, and FIG. It is a figure which shows the basic principle of evaluation of the performance diagnostic apparatus of the fluid machine which concerns on embodiment of this invention.

先ず、本発明の実施の形態に係る流体機械の性能診断装置の評価の基本原理について説明する。
本発明の実施の形態においては、設計性能(或いは予想性能)と実測した性能の特性とを無次元化して、両者を比較し評価することを基本原理とする。
更には、実測した性能の変化率(劣化率)をも算出して、評価が更に容易に行えるようにしている。
First, the basic principle of the evaluation of the fluid machine performance diagnostic apparatus according to the embodiment of the present invention will be described.
In the embodiment of the present invention, the basic principle is to make the design performance (or predicted performance) and the measured performance characteristics dimensionless, and compare and evaluate the characteristics.
Furthermore, the change rate (deterioration rate) of actually measured performance is also calculated so that the evaluation can be performed more easily.

即ち、コンプレッサ等の圧力上昇に有効に使われた単位流量当たりの仕事量であるヘッドを性能評価のパラメータとしている。
所定の吸入温度、比熱比、流体の定数等の条件下におけるヘッド(即ち、予想性能ヘッドHpred)は、次の式(1)で算出することができる。
式(1) 予想性能ヘッド:Hpred=f (N、Qs)
上式において、Nはコンプレッサ等の流体制御量としての回転数、Qsは入口体積流量である。
That is, the head, which is the work amount per unit flow rate effectively used for increasing the pressure of a compressor or the like, is used as a parameter for performance evaluation.
The head (that is, the predicted performance head H pred ) under conditions such as a predetermined suction temperature, a specific heat ratio, and a fluid constant can be calculated by the following equation (1).
Formula (1) Expected performance head: H pred = f p (N, Qs)
In the above equation, N is the number of rotations as a fluid control amount of a compressor or the like, and Qs is an inlet volume flow rate.

この場合、コンプレッサにおける予想性能ヘッドHpredと入口体積流量Qsとの関係は、図5(a)のごとく、複数の流体制御量、即ち各回転数において、入口体積流量Qsが増加するに従って、予想性能ヘッドHpredは減少する曲線となる。
なお、回転数Nが、N01,N02,N03と増加するにしたがっても、予想性能ヘッドHpredは増加する。
In this case, the relationship between the predicted performance head H pred and the inlet volume flow rate Qs in the compressor is predicted as the inlet volume flow rate Qs increases at a plurality of fluid control amounts, that is, at each rotational speed, as shown in FIG. The performance head H pred becomes a decreasing curve.
Note that the expected performance head H pred increases as the rotational speed N increases to N 01 , N 02 , and N 03 .

なお、所定の吸入温度、ガス物性等の条件下における単位流量当たりの仕事量であるヘッド(即ち、実測性能ヘッドHreal)は、次の式(2)で算出することができる。
式(2) 実測性能ヘッド:Hreal=f (Ps、Pd、Ts)
上式において、Psは吸入圧力、Pdは吐出圧力、Tsは吸入温度である。
Note that the head (that is, the actually measured performance head H real ) that is the work amount per unit flow rate under conditions such as a predetermined suction temperature and gas physical properties can be calculated by the following equation (2).
Formula (2) Measured performance head: H real = f r (Ps, Pd, Ts)
In the above equation, Ps is the suction pressure, Pd is the discharge pressure, and Ts is the suction temperature.

そして、予想性能ヘッドHpred、回転数N及び入口体積流量Qsに基づき、次の式(3)、式(4)により、無次元化した圧力係数μ、流量係数φを演算し、データベースとする。
式(3) 圧力係数:μ=2g・Hpred/u=K・(Hpred/N
式(4) 流量係数:φ=Qs/(60π・D・b・u)=K・(Qs/N)
ここで、uはコンプレッサの羽根車の円周速度、Dは羽根車の外径、bは羽根車の出口の幅、K、Kは定数である。
Then, based on the predicted performance head H pred , the rotation speed N, and the inlet volume flow rate Qs, the dimensionless pressure coefficient μ and flow coefficient φ are calculated by the following formulas (3) and (4) to form a database. .
Formula (3) Pressure coefficient: μ = 2 g · H pred / u 2 = K 1 · (H pred / N 2 )
Formula (4) Flow coefficient: φ = Qs / (60π · D · b · u) = K 2 · (Qs / N)
Here, u is the circumferential speed of the impeller of the compressor, D is the outer diameter of the impeller, b is the width of the exit of the impeller, and K 1 and K 2 are constants.

この時、圧力係数μと流量係数φとの関係は、図5(b)に図示のように、流量係数φが増加するに従って、圧力係数μは増加後減少する曲線となっている。
なお、データベースには、複数の流体制御量毎、即ち回転数N01,N02,N03における圧力係数μと流量係数φとの関係を示す曲線が記憶される。
At this time, the relationship between the pressure coefficient μ and the flow coefficient φ is a curve in which the pressure coefficient μ decreases after increasing as the flow coefficient φ increases as shown in FIG. 5B.
The database stores a curve indicating the relationship between the pressure coefficient μ and the flow coefficient φ for each of a plurality of fluid control amounts, that is, the rotation speeds N 01 , N 02 , and N 03 .

そして、実測した実回転数Nx、吐出圧力Pd、吸入圧力Ps、吸入温度Ts、入口体積流量Qx、圧縮係数Z、ガス平均分子量Mw及び比熱比kに基づき、以下の演算が行われる。   Then, the following calculation is performed based on the actually measured actual rotational speed Nx, discharge pressure Pd, suction pressure Ps, suction temperature Ts, inlet volume flow rate Qx, compression coefficient Z, gas average molecular weight Mw, and specific heat ratio k.

先ず、実回転数Nxにおける圧力係数μと流量係数φとの関係を示す曲線は、図5(b)に点線で図示のように、次の式(5)、式(6)により、線形補間して推定される。
式(5) 圧力係数:μ={f(N02、φ)−f(N01、φ)}/(N02−N01)・(N−N01)+f(N01、φ)
式(6) 流量係数:φ={f(N02、μ)−f (N01、μ)}/(N02−N01)・(N−N01)+f (N01、μ)
First, a curve indicating the relationship between the pressure coefficient μ and the flow coefficient φ at the actual rotational speed Nx is linearly interpolated by the following equations (5) and (6) as shown by the dotted line in FIG. Is estimated.
Formula (5) Pressure coefficient: μ = {f 1 (N 02 , φ) −f 1 (N 01 , φ)} / (N 02 −N 01 ) · (N−N 01 ) + f 1 (N 01 , φ )
Formula (6) Flow rate coefficient: φ = {f 2 (N 02 , μ) −f 2 (N 01 , μ)} / (N 02 −N 01 ) · (N−N 01 ) + f 2 (N 01 , μ )

上述の実回転数Nxにおける圧力係数μと流量係数φとを、式(3)、式(4)に代入、逆算して、次の式(7)、式(8)により、図5(a)に点線で図示の実回転数Nxにおける予想性能ヘッドHpredと入口体積流量Qsとの関係を示す曲線を得る。
式(7) 予想性能ヘッド:Hpred=1/K・Nx・μ
式(8) 入口体積流量:Qs=1/K・Nx・φ
The pressure coefficient μ and the flow coefficient φ at the actual rotational speed Nx described above are substituted into the formulas (3) and (4) and back-calculated, and the following formulas (7) and (8) are used to calculate FIG. ) Shows a curve indicating the relationship between the predicted performance head H pred and the inlet volume flow rate Qs at the actual rotational speed Nx shown by the dotted line.
Formula (7) Expected performance head: H pred = 1 / K 1 · Nx 2 · μ
Formula (8) Inlet volume flow rate: Qs = 1 / K 2 · Nx · φ

そして、実測した入口体積流量Qxを、実測した吐出圧力Pd、吸入圧力Ps、吸入温度Tsに基づき所定の条件での入口体積流量Qxに修正し、図5(a)に図示の予想性能ヘッドHpredと入口体積流量Qsとの関係を示す曲線から、実回転数Nxにおける予想性能ヘッドHpredxを求める。 Then, the actually measured inlet volume flow rate Qx is corrected to the inlet volume flow rate Qx under predetermined conditions based on the actually measured discharge pressure Pd, suction pressure Ps, and suction temperature Ts, and the expected performance head H shown in FIG. From the curve indicating the relationship between pred and inlet volume flow rate Qs, the expected performance head H pred x at the actual rotational speed Nx is obtained.

一方、実測性能ヘッドHrealは、次の式(9)により求めることができる。
式(9) Hreal=Z・1/β・Ts/Mw・{(Pd/Ps)β−1}
但し、圧縮係数はZ、ガス平均分子量はMw、kは比熱比、βは(k−1)/k)である。
On the other hand, the actually measured performance head Hreal can be obtained by the following equation (9).
Formula (9) Hreal = Z · 1 / β · Ts / Mw · {(Pd / Ps) β- 1}
However, the compression coefficient is Z, the gas average molecular weight is Mw, k is the specific heat ratio, and β is (k−1) / k).

そして、求められた予想性能ヘッドHpredxと実測性能ヘッドHrealとにより、ヘッド比(性能劣化度)α=実測性能ヘッドHreal/予想性能ヘッドHpredxを算出し、性能劣化度として機器の性能を評価する。
このヘッド比(性能劣化度)αは、全運転領域で定量的に評価することができる。
Then, the head ratio (performance degradation degree) α = measured performance head H real / predicted performance head H pred x is calculated from the calculated expected performance head H pred x and the actually measured performance head H real, and the equipment is used as the performance degradation degree. Evaluate the performance.
This head ratio (performance degradation degree) α can be quantitatively evaluated in the entire operation region.

次に、上述の原理を利用した本発明の実施の形態に係る流体機械の性能診断装置が採用されるプラントの概略を、図1を参照して説明する。
火力発電所、その他各種のプラントには、各種ファン、コンプレッサ、ポンプ等の多数の流体機械1a、1b、1cが配設されている。
そして、流体機械1aがコンプレッサの場合について説明すると、コンプレッサ3は、可変速のタービン2により駆動される。
このタービン2は、図示略のガバナにより回転数が制御されるようになっており、タービン2には、その実回転数Nxを検出する回転計4が連結されている。
Next, an outline of a plant in which the fluid machine performance diagnostic apparatus according to the embodiment of the present invention using the above-described principle is employed will be described with reference to FIG.
A thermal power plant and other various plants are provided with a large number of fluid machines 1a, 1b, and 1c such as various fans, compressors, and pumps.
The case where the fluid machine 1a is a compressor will be described. The compressor 3 is driven by a variable speed turbine 2.
The rotation speed of the turbine 2 is controlled by a governor (not shown), and a tachometer 4 for detecting the actual rotation speed Nx is connected to the turbine 2.

コンプレッサ3の吐出配管9には、吐出圧力Pdを検出する吐出側圧力計5が設けられている。
更に、コンプレッサ3の吸入配管10には、吸入圧力Psを検出する吸入側圧力計6、吸入配管10内を流れる流体の吸入温度Tsを検出する吸入側温度計7、流体の入口体積流量Qxを計測する流量計8も設けられている。
そして、回転計4により検出された実回転数Nx、吐出側圧力計5により検出された吐出圧力Pd、吸入側圧力計6により検出された吸入圧力Ps、吸入側温度計7により検出された吸入温度Ts、流量計8により検出された入口体積流量Qxは、各々監視装置11に送信される。
The discharge pipe 9 of the compressor 3 is provided with a discharge-side pressure gauge 5 that detects the discharge pressure Pd.
Further, the suction pipe 10 of the compressor 3 includes a suction side pressure gauge 6 for detecting the suction pressure Ps, a suction side thermometer 7 for detecting the suction temperature Ts of the fluid flowing through the suction pipe 10, and an inlet volume flow rate Qx of the fluid. A flow meter 8 for measurement is also provided.
Then, the actual rotational speed Nx detected by the tachometer 4, the discharge pressure Pd detected by the discharge side pressure gauge 5, the suction pressure Ps detected by the suction side pressure gauge 6, and the suction pressure detected by the suction side thermometer 7 The temperature Ts and the inlet volume flow rate Qx detected by the flow meter 8 are respectively transmitted to the monitoring device 11.

また、監視装置11或いは中央監視コンピュータ13等には、別途、吸入配管10内を流れる流体の物性値も入力、記憶される。
そして、各監視装置11に入力された実回転数Nx、吐出圧力Pd、吸入圧力Ps、吸入温度Ts、入口体積流量Qs、ガスの物性値(圧縮係数Z、ガス平均分子量Mw、及び比熱比k)等の所定の期間分の各計測値は、各流体機械1a、1b、1cの識別コード及び計測年月日時刻と共に、各監視装置11内の記憶装置に記憶される。
そして、記憶装置に記憶された各識別コード、計測年月日時刻、計測値は、定期的に或いは中央監視コンピュータ13からの要求に応じて、ネットワーク12を通じて中央監視コンピュータ13に送信される。
In addition, the physical property value of the fluid flowing in the suction pipe 10 is separately input and stored in the monitoring device 11 or the central monitoring computer 13 or the like.
The actual rotational speed Nx, the discharge pressure Pd, the suction pressure Ps, the suction temperature Ts, the inlet volume flow rate Qs, the gas physical properties (compression coefficient Z, gas average molecular weight Mw, and specific heat ratio k) input to each monitoring device 11 Each measured value for a predetermined period such as) is stored in a storage device in each monitoring device 11 together with the identification code and the measurement date of each fluid machine 1a, 1b, 1c.
Each identification code, measurement date, time, and measurement value stored in the storage device are transmitted to the central monitoring computer 13 through the network 12 periodically or in response to a request from the central monitoring computer 13.

なお、物性値を入力、演算、推定、記憶する方法としては、次の方法がある。
例1としては、図示略のガス分析計でガスの組成を定期的に計測し、ガス組成を監視装置11或いは中央監視コンピュータ13に入力(例えば、空気の場合は、窒素;79%、酸素21%)し、基準圧力、基準温度から、監視装置11或いは中央監視コンピュータ13等内で、ガス物性値(ガス圧縮係数Z、比熱比k、ガス平均分子量Mw)を推算し記憶する。
例2としては、ガス物性値の内、ガス組成の変動に対してガス圧縮係数Z、比熱比k、がほぼ一定である場合、図示略のガス比重計(空気に対するガス比重)でガスの分子量Mwだけを定期的に計測し、ガス分子量だけを変動データとして使用する。
例3としては、図示略のガス分析計でガスの組成をオフラインで計測し、計測されたガス物性推算プログラムでガス物性値(ガス圧縮係数Z、比熱比k、ガス平均分子量Mw)を推算し、これを監視装置11或いは中央監視コンピュータ13等に入力して使用する。
As a method for inputting, calculating, estimating, and storing physical property values, there are the following methods.
As an example 1, the gas composition is periodically measured by a gas analyzer (not shown), and the gas composition is input to the monitoring device 11 or the central monitoring computer 13 (for example, nitrogen in the case of air; 79%, oxygen 21 The gas property values (gas compression coefficient Z, specific heat ratio k, gas average molecular weight Mw) are estimated and stored in the monitoring device 11 or the central monitoring computer 13 from the reference pressure and the reference temperature.
As an example 2, when the gas compression coefficient Z and the specific heat ratio k are almost constant with respect to the variation of the gas composition among the gas property values, the molecular weight of the gas is measured by a gas hydrometer (gas specific gravity with respect to air) (not shown). Only Mw is measured periodically, and only the gas molecular weight is used as fluctuation data.
In Example 3, the gas composition is measured off-line with a gas analyzer (not shown), and the gas property values (gas compression coefficient Z, specific heat ratio k, gas average molecular weight Mw) are estimated using the measured gas property estimation program. These are input to the monitoring device 11 or the central monitoring computer 13 and used.

この中央監視コンピュータ13は、図2に図示のように、運転データ収集器20、共有メモリ21、性能診断演算器22、諸データ入力器23、予想性能曲線演算器24、性能診断データベース25、性能変化率演算器26、履歴データベース27、表示器28を備えている。
なお、これらの各演算器は、通常、コンピュータのプログラム、シーケンスブロックの形態をなしているが、これに限定されるものではなく、個々の電気演算回路ユニット等により構成した形態のものも含まれる。
As shown in FIG. 2, the central monitoring computer 13 includes an operation data collector 20, a shared memory 21, a performance diagnosis calculator 22, various data input devices 23, an expected performance curve calculator 24, a performance diagnosis database 25, a performance A change rate calculator 26, a history database 27, and a display 28 are provided.
Each of these arithmetic units is usually in the form of a computer program or a sequence block, but is not limited to this, and includes those configured by individual electric arithmetic circuit units. .

次に、図3を参照して、これらの各演算器等での処理内容につき説明する。
先ず、運転データ収集器20では、通信の初期化が行われる(ステップS01)。
タイマーにて時間をカウントし、定期的に各監視装置11に対しデータ送信の要求信号を発信する(ステップS02)。
そして、各監視装置11から、流体機械1a、1b、1cの識別コード、及び所定の期間分の各計測年月日時刻、計測値が入力されると(ステップS03)、そのデータを、共有メモリ21にコピーする(ステップS04)。
その後、タイマーをリセットしタイマーによる時間のカウント(ステップS02)に戻る。
Next, with reference to FIG. 3, the processing content in each of these arithmetic units will be described.
First, the operation data collector 20 initializes communication (step S01).
The timer counts the time, and periodically sends a data transmission request signal to each monitoring device 11 (step S02).
When the identification codes of the fluid machines 1a, 1b, and 1c, the measurement date and time, and the measurement values for a predetermined period are input from each monitoring device 11 (step S03), the data is stored in the shared memory. 21 is copied (step S04).
Thereafter, the timer is reset and the process returns to the time counting by the timer (step S02).

一方、諸データ入力器23より、識別コード毎に、各流体機械1a、1b、1cの容量、性能等が入力される。
この入力された容量、性能等は、予想性能曲線演算器24にて、上述の式(3)、式(4)により、無次元化され所定の回転数毎、例えば、図5(b)のごとく、3つの回転数N01、N02、N03の圧力係数μと流量係数φとの関係を示す曲線が求められる。
求められた圧力係数μと流量係数φとの関係を示す曲線は、各流体機械1a、1b、1cの識別コード、装置の名称と共に、性能診断データベース25に記憶される。
On the other hand, the capacity, performance, etc. of each fluid machine 1a, 1b, 1c are input from the various data input devices 23 for each identification code.
The input capacity, performance, etc. are made dimensionless by the expected performance curve calculator 24 according to the above formulas (3) and (4), for each predetermined number of revolutions, for example, as shown in FIG. Thus, a curve indicating the relationship between the pressure coefficient μ and the flow coefficient φ of the three rotation speeds N 01 , N 02 and N 03 is obtained.
A curve indicating the relationship between the obtained pressure coefficient μ and flow coefficient φ is stored in the performance diagnosis database 25 together with the identification code of each fluid machine 1a, 1b, 1c and the name of the apparatus.

そして、性能診断演算器22では、先ず、性能診断プログラムの初期化が行われる(ステップS11)。
タイマーにて時間をカウントし(ステップS12)、定期的に流体機械の計測されたデータ(識別コード、計測年月日時刻、実回転数Nx、吐出圧力Pd、吸入圧力Ps、吸入温度Ts、入口体積流量Qs、圧縮係数Z、ガス平均分子量Mw及び比熱比k等)を共有メモリ21から入手する(ステップS13)。
そして、これらの入力されたデータに基づき、実測性能ヘッドHrealを、上述の式(9)により演算する。
In the performance diagnosis computing unit 22, first, the performance diagnosis program is initialized (step S11).
Time is counted by a timer (step S12), and periodically measured data of the fluid machine (identification code, measurement date / time, actual rotational speed Nx, discharge pressure Pd, suction pressure Ps, suction temperature Ts, inlet Volume flow rate Qs, compression coefficient Z, gas average molecular weight Mw, specific heat ratio k, etc.) are obtained from shared memory 21 (step S13).
Based on these input data, the actually measured performance head H real is calculated by the above-described equation (9).

一方、実測した実回転数Nx、吐出圧力Pd、吸入圧力Ps、吸入温度Ts、入口体積流量Qx、圧縮係数Z、ガス平均分子量Mw及び比熱比kに基づき、上述の式(5)〜式(8)及び図5(a)の予想性能ヘッドHpredと入口体積流量Qsとの関係を示す曲線から、計測された時の流体機械の実回転数Nxにおける予想性能ヘッドHpredxを算出する。 On the other hand, based on the actually measured actual rotational speed Nx, discharge pressure Pd, suction pressure Ps, suction temperature Ts, inlet volume flow rate Qx, compression coefficient Z, gas average molecular weight Mw, and specific heat ratio k, the above formulas (5) to ( 8) and the predicted performance head H pred x at the actual rotational speed Nx of the fluid machine at the time of measurement are calculated from the curve showing the relationship between the predicted performance head H pred and the inlet volume flow rate Qs in FIG.

そして、ヘッド比(性能劣化度)α=実測性能ヘッドHreal/予想性能ヘッドHpredxを算出して(ステップS14)、履歴データベース27に出力する(ステップS15)。
その後、タイマーをリセットしタイマーによる時間のカウント(ステップS12)に戻る。
Then, the head ratio (performance degradation degree) α = measured performance head H real / predicted performance head H pred x is calculated (step S14) and output to the history database 27 (step S15).
Thereafter, the timer is reset, and the process returns to the time counting by the timer (step S12).

また、性能変化率演算器26では、履歴データベース27からヘッド比αが入力され、微分して変化率が求められ、求められた変化率は履歴データベース27に記憶される。   Further, the performance change rate calculator 26 receives the head ratio α from the history database 27, obtains the change rate by differentiation, and stores the obtained change rate in the history database 27.

表示器28では、先ず、画面表示プログラムの初期化が行われる(ステップS21)。
そして、履歴データベース27より、ヘッド比α及びヘッド比αの変化率を入手し、画面データを作成し(ステップS22)、図4に図示のようなグラフを画面に表示する(ステップS23)。
In the display device 28, first, the screen display program is initialized (step S21).
Then, the head ratio α and the change rate of the head ratio α are obtained from the history database 27, screen data is created (step S22), and a graph as shown in FIG. 4 is displayed on the screen (step S23).

この画面に表示されたグラフは、図4に図示のように、横軸を時間として、ヘッド比(性能劣化度)α(或いは、実測性能ヘッドHreal)、及びヘッド比αの変化率の推移を表したものであり、これによりコンプレッサ3の性能を容易に評価することが可能になる。
そして、非常に簡単に機器の性能劣化を評価し、メインテナンス時期を予想し、トラブルを事前に回避することが可能になる。
As shown in FIG. 4, the graph displayed on this screen is a transition of the head ratio (performance degradation degree) α (or the actually measured performance head H real ) and the change rate of the head ratio α with the horizontal axis as time. Thus, the performance of the compressor 3 can be easily evaluated.
And it becomes possible to evaluate the performance deterioration of the apparatus very easily, predict the maintenance period, and avoid trouble beforehand.

また、上述のものは、流体機械を回転数が可変の原動機(ガスタービン、蒸気タービン、電動モータ等のモータ)により駆動し、その回転数を制御する場合であり、回転数を流体制御量としている。
しかしながら、流体量の制御については、これに限定されるものではない。
例えば、流体機械の回転数を一定とし、流体機械の入口に入口ガイドベーン(IGV、入口案内翼、inlet guide vane)、或いは流量制御弁を設け、ベーン或いは弁の開度を流体制御量として制御するものにも対応可能である。
Further, the above is a case where the fluid machine is driven by a prime mover (motor such as a gas turbine, a steam turbine, and an electric motor) whose rotation speed is variable, and the rotation speed is controlled. Yes.
However, the control of the fluid amount is not limited to this.
For example, the rotational speed of the fluid machine is fixed, an inlet guide vane (IGV, inlet guide vane) or a flow control valve is provided at the inlet of the fluid machine, and the opening of the vane or valve is controlled as a fluid control amount. It is possible to respond to what you do.

以上、本発明の実施の形態をコンプレッサの場合の性能診断につき説明したが、その他のファン、ポンプ等にも適用可能なものであり、本発明は上記の実施の形態に限定されず、本発明の範囲内でその具体的構造に種々の変更を加えてよいことはいうまでもない。   As mentioned above, although the embodiment of the present invention has been described for the performance diagnosis in the case of the compressor, the present invention can be applied to other fans, pumps, etc., and the present invention is not limited to the above embodiment, and the present invention. It goes without saying that various modifications may be made to the specific structure within the scope of.

本発明の実施の形態に係る流体機械の性能診断装置が採用されるプラントの概略図である。1 is a schematic view of a plant in which a fluid machine performance diagnosis apparatus according to an embodiment of the present invention is employed. 本発明の実施の形態に係る流体機械の性能診断装置の回路構成図である。It is a circuit block diagram of the performance diagnosis apparatus of the fluid machine which concerns on embodiment of this invention. 本発明の実施の形態に係る流体機械の性能診断装置の演算ブロック図である。It is a calculation block diagram of the performance diagnosis apparatus of the fluid machine which concerns on embodiment of this invention. 本発明の実施の形態に係る流体機械の性能診断装置による表示グラフの例である。It is an example of the display graph by the performance diagnosis apparatus of the fluid machine which concerns on embodiment of this invention. 本発明の実施の形態に係る流体機械の性能診断装置の評価の基本原理を示す図である。It is a figure which shows the basic principle of evaluation of the performance diagnosis apparatus of the fluid machine which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1a、1b、1c 流体機械
2 タービン
3 コンプレッサ
4 回転計
5 吐出側圧力計
6 吸入側圧力計
7 吸入側温度計
8 流量計
9 吐出配管
10 吸入配管
11 監視装置
12 ネットワーク
13 中央監視コンピュータ
20 運転データ収集器
21 共有メモリ
22 性能診断演算器
23 諸データ入力器
24 予想性能曲線演算器
25 性能診断データベース
26 性能変化率演算器
27 履歴データベース
28 表示器
DESCRIPTION OF SYMBOLS 1a, 1b, 1c Fluid machine 2 Turbine 3 Compressor 4 Tachometer 5 Discharge side pressure gauge 6 Suction side pressure gauge 7 Suction side thermometer 8 Flow meter 9 Discharge pipe 10 Suction pipe 11 Monitoring device 12 Network 13 Central monitoring computer 20 Operation data Collector 21 Shared memory 22 Performance diagnostic computing unit 23 Various data input unit 24 Expected performance curve computing unit 25 Performance diagnostic database 26 Performance change rate computing unit 27 History database 28 Display unit

Claims (4)

流体機械の圧縮比又は圧力差と入口流量とから特性を複数の流体制御量毎に無次元化して圧力係数と流量係数との関係を示す曲線を求める予想性能曲線演算器と、
前記流体機械の運転時の流体制御量、吸入圧力、吐出圧力、吸入温度、圧縮係数、ガス平均分子量、比熱比から実測性能ヘッドを求めると共に、予想性能曲線と流体制御量と入口流量とから予想性能ヘッドを求め、予想性能ヘッドと実測性能ヘッドとの比から性能劣化度を演算する性能診断演算器と
を備えたことを特徴とする流体機械の性能診断装置。
An expected performance curve calculator for obtaining a curve indicating the relationship between the pressure coefficient and the flow coefficient by making the characteristics dimensionless for each of a plurality of fluid control amounts from the compression ratio or pressure difference of the fluid machine and the inlet flow rate;
The measured performance head is obtained from the fluid control amount, suction pressure, discharge pressure, suction temperature, compression coefficient, gas average molecular weight and specific heat ratio during operation of the fluid machine, and predicted from the predicted performance curve, fluid control amount and inlet flow rate. A fluid machine performance diagnosis apparatus comprising: a performance diagnosis computing unit that obtains a performance head and calculates a performance deterioration degree from a ratio of an expected performance head to an actual performance head.
実測性能ヘッドは、
吸入圧力をPs、吐出圧力をPd、吸入温度をTs、圧縮係数をZ、ガス平均分子量をMw、比熱比をk、β=(k−1)/kとすると、実測性能ヘッドHrealを次式、
real=Z・1/β・Ts/Mw・{(Pd/Ps)β−1}
により求めるものであることを特徴とする請求項1に記載の流体機械の性能診断装置。
The measured performance head is
When the suction pressure is Ps, the discharge pressure is Pd, the suction temperature is Ts, the compression coefficient is Z, the gas average molecular weight is Mw, the specific heat ratio is k, and β = (k−1) / k, the measured performance head H real is formula,
H real = Z · 1 / β · Ts / Mw · {(Pd / Ps) β -1}
The fluid machine performance diagnosis apparatus according to claim 1, wherein the performance diagnosis apparatus is obtained by:
前記性能劣化度を微分して性能劣化度変化率を算出する性能変化率演算機を備えたことを特徴とする請求項1又は2に記載の流体機械の性能診断装置。   3. The fluid machine performance diagnosis apparatus according to claim 1, further comprising a performance change rate calculator that differentiates the performance deterioration level to calculate a performance deterioration rate change rate. 4. 前記流体機械の運転時の吸入圧力、吐出圧力、吸入温度、圧縮係数、ガス平均分子量、比熱比を計測又は演算しそのデータを記憶する監視装置と、
該監視装置に記憶された前記データをネットワークを介して受信する中央監視コンピュータとを有し、
前記中央監視コンピュータは、前記請求項1、2、3のいずれかに記載の流体機械の性能診断装置を備えていることを特徴とする流体機械の性能診断システム。
A monitoring device for measuring or calculating suction pressure, discharge pressure, suction temperature, compression coefficient, gas average molecular weight, specific heat ratio during operation of the fluid machine and storing the data;
A central monitoring computer that receives the data stored in the monitoring device via a network;
4. The fluid machine performance diagnosis system according to claim 1, wherein the central monitoring computer includes the fluid machine performance diagnosis apparatus according to claim 1.
JP2004314091A 2004-10-28 2004-10-28 Fluid machinery performance diagnostic apparatus and system Expired - Fee Related JP4625306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314091A JP4625306B2 (en) 2004-10-28 2004-10-28 Fluid machinery performance diagnostic apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314091A JP4625306B2 (en) 2004-10-28 2004-10-28 Fluid machinery performance diagnostic apparatus and system

Publications (3)

Publication Number Publication Date
JP2006125275A JP2006125275A (en) 2006-05-18
JP2006125275A5 JP2006125275A5 (en) 2010-08-12
JP4625306B2 true JP4625306B2 (en) 2011-02-02

Family

ID=36720259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314091A Expired - Fee Related JP4625306B2 (en) 2004-10-28 2004-10-28 Fluid machinery performance diagnostic apparatus and system

Country Status (1)

Country Link
JP (1) JP4625306B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101258017B1 (en) * 2011-07-07 2013-04-25 한전케이피에스 주식회사 A diagnostic apparatus for hydraulic variable pump

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101438060A (en) * 2006-04-18 2009-05-20 三菱重工业株式会社 Apparatus and system for diagnosing fluid machinery performance
EP2039939B2 (en) * 2007-09-20 2020-11-18 Grundfos Management A/S Method for monitoring an energy conversion device
CN101509482B (en) * 2009-03-23 2011-08-31 联合汽车电子有限公司 Oil pump hot oil test desk and its use method
JP5427563B2 (en) * 2009-11-20 2014-02-26 三菱重工業株式会社 Inverter turbo refrigerator performance evaluation system
JP2011174766A (en) * 2010-02-23 2011-09-08 Chugoku Electric Power Co Inc:The Apparatus deterioration evaluation support method and apparatus deterioration evaluation support device
JP5523972B2 (en) 2010-07-29 2014-06-18 三菱重工業株式会社 Turbo refrigerator performance evaluation device
CN102400902B (en) * 2010-09-15 2014-12-24 中国石油天然气股份有限公司 Method for evaluating reliability of performance state of reciprocating compressor
ITCO20120008A1 (en) * 2012-03-01 2013-09-02 Nuovo Pignone Srl METHOD AND SYSTEM FOR MONITORING THE CONDITION OF A GROUP OF PLANTS
CN103821709A (en) * 2014-02-27 2014-05-28 江苏大学 Self-checking device of water pump performance test system
CN104314797B (en) * 2014-10-24 2016-05-25 珠海凌达压缩机有限公司 Control method, control device and control system of compressor
JP2016205237A (en) * 2015-04-23 2016-12-08 株式会社日立製作所 Performance prediction device and method for compressor
CN105864019B (en) * 2016-04-08 2018-07-24 华电电力科学研究院 Pump the efficiency of pump accurate measurement method in thermal performance test efficiency measurement
CN108050053B (en) * 2017-12-04 2020-05-01 广西电网有限责任公司电力科学研究院 Efficiency testing method for condensate pump
CN108019344B (en) * 2017-12-04 2020-06-12 广西电网有限责任公司电力科学研究院 Method for testing efficiency of electric water supply pump set
CN114753995A (en) * 2022-05-06 2022-07-15 核工业北京化工冶金研究院 Device and method for detecting performance of submersible electric pump on ground surface of in-situ leaching uranium mining field

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144199U (en) * 1981-01-16 1982-09-10
JPS5857008A (en) * 1981-09-30 1983-04-05 Hitachi Ltd Diagnosis of anomaly of water feeding pump and driving turbine thereof
JPH029968A (en) * 1988-06-27 1990-01-12 Babcock Hitachi Kk Blower performance diagnostic device
JPH0875508A (en) * 1994-09-06 1996-03-22 Hitachi Ltd Conventient flowmeter with function for detecting deterioration of pump performance
JPH11153371A (en) * 1997-11-21 1999-06-08 Mitsubishi Heavy Ind Ltd Device for diagnosing performance of refrigerating machine
JP2003208220A (en) * 2002-01-11 2003-07-25 Hitachi Industries Co Ltd Method and device for diagnosing deterioration of facility
JP2003269183A (en) * 2002-03-12 2003-09-25 Ishikawajima Harima Heavy Ind Co Ltd Operating condition monitoring device for supercharger of diesel engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144199U (en) * 1981-01-16 1982-09-10
JPS5857008A (en) * 1981-09-30 1983-04-05 Hitachi Ltd Diagnosis of anomaly of water feeding pump and driving turbine thereof
JPH029968A (en) * 1988-06-27 1990-01-12 Babcock Hitachi Kk Blower performance diagnostic device
JPH0875508A (en) * 1994-09-06 1996-03-22 Hitachi Ltd Conventient flowmeter with function for detecting deterioration of pump performance
JPH11153371A (en) * 1997-11-21 1999-06-08 Mitsubishi Heavy Ind Ltd Device for diagnosing performance of refrigerating machine
JP2003208220A (en) * 2002-01-11 2003-07-25 Hitachi Industries Co Ltd Method and device for diagnosing deterioration of facility
JP2003269183A (en) * 2002-03-12 2003-09-25 Ishikawajima Harima Heavy Ind Co Ltd Operating condition monitoring device for supercharger of diesel engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101258017B1 (en) * 2011-07-07 2013-04-25 한전케이피에스 주식회사 A diagnostic apparatus for hydraulic variable pump

Also Published As

Publication number Publication date
JP2006125275A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4625306B2 (en) Fluid machinery performance diagnostic apparatus and system
WO2007122697A1 (en) Performance diagnosing apparatus and system for fluid machine
RU2658869C2 (en) Estimation of health parameters in industrial gas turbines
JP3723866B2 (en) Internal pump performance monitoring method and apparatus
JP4767148B2 (en) Rolling bearing remaining life diagnosis method using normal database, remaining life diagnosis system, and computer program used for remaining life diagnosis
JP5164954B2 (en) Device diagnostic method and device diagnostic device
JP2011090382A (en) Monitoring system
JP3788901B2 (en) Damage diagnosis device for power generation facilities
EP2761188B1 (en) Systems and methods for determining the level of fouling of compressors
KR20180104422A (en) Air Compressor System for Energy Saving
US20210262839A1 (en) Rotary gas meter working condition monitoring system and a rotary gas meter having a rotary gas meter working condition monitoring system
JP6805912B2 (en) Evaluation device, evaluation system, and evaluation method
JP7401327B2 (en) Diagnostic equipment, diagnostic methods, diagnostic programs and diagnostic systems
CN110382878A (en) Determine the method and apparatus and application thereof for predicting instable index in compressor
JP2019148199A (en) Performance evaluation method, performance evaluation device and performance evaluation system
JP4341779B2 (en) Air conditioner abnormality detection device and abnormality detection method
KR101335787B1 (en) Preventive maintenance apparatus of electric motor
JP2005214631A (en) State monitoring/maintaining device and method
JP4105852B2 (en) Remote damage diagnosis system for power generation facilities
CN114526254A (en) Energy consumption evaluation method and device for centrifugal compressor
Bettocchi et al. A multi-stage compressor test facility: uncertainty analysis and preliminary test results
US20240369053A1 (en) Gas compressor
Oladejo Measurement system design for a two-stage dry screw air compressor and a pre-test uncertainty estimation for the measurement system
Udayakumar et al. In Situ Performance Evaluation of Industrial Reciprocating Air Compressors
US20230204451A1 (en) Rotating electrical machine damage diagnostic system and damage diagnostic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees