[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4622185B2 - Encoder and rolling bearing unit with encoder - Google Patents

Encoder and rolling bearing unit with encoder Download PDF

Info

Publication number
JP4622185B2
JP4622185B2 JP2001235311A JP2001235311A JP4622185B2 JP 4622185 B2 JP4622185 B2 JP 4622185B2 JP 2001235311 A JP2001235311 A JP 2001235311A JP 2001235311 A JP2001235311 A JP 2001235311A JP 4622185 B2 JP4622185 B2 JP 4622185B2
Authority
JP
Japan
Prior art keywords
encoder
permanent magnet
thickness
attached
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001235311A
Other languages
Japanese (ja)
Other versions
JP2003042803A (en
Inventor
俊秋 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001235311A priority Critical patent/JP4622185B2/en
Publication of JP2003042803A publication Critical patent/JP2003042803A/en
Application granted granted Critical
Publication of JP4622185B2 publication Critical patent/JP4622185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明に係るエンコーダ及びエンコーダ付転がり軸受ユニットは、例えば自動車の車輪の回転速度、或は工作機械の主軸の回転速度や回転角度を検出する為に利用する。
【0002】
【従来の技術】
自動車の車輪を懸架装置に対して回転自在に支持する為に、転がり軸受ユニットを使用する。又、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)を制御する為には、上記車輪の回転速度を検出する必要がある。この様な目的で車輪の回転速度を検出する為に従来から、各種構造のエンコーダ付転がり軸受ユニットが知られている。車輪の回転速度検出を磁気的に行なう場合、上記エンコーダとして、円周方向に関して磁気特性が交互に変化するものを使用する。この様に円周方向に関して磁気特性が交互に変化するエンコーダとして、円周方向に関してS極とN極とを交互に配置した永久磁石を使用するエンコーダは、センサ側の構造を簡単に構成し、しかも低速時の検出値の信頼性を確保する面から、近年使用される場合が増大している。
【0003】
図4〜6は、上述の様な目的で使用されるエンコーダ及びエンコーダ付転がり軸受ユニットの従来構造の1例を示している。回転輪であるハブ1は、ハブ本体2と内輪3とを結合固定して成る。このハブ本体2の外端(自動車への組み付け状態で幅方向外側となる端を言い、図4の左端)部外周面には、車輪を取付固定する為のフランジ4を、中間部外周面には、上記ハブ1の外周面に設ける複列の内輪軌道5a、5bのうちの外側(図4の左側)の内輪軌道5aを、内端(自動車への組み付け状態で幅方向中央側となる端を言い、図4の右端)部には小径の段部6を、それぞれ形成している。
【0004】
上記内輪3は、この段部6に外嵌し、更に上記ハブ本体2の内端部に形成した雄ねじ部7に螺着したナット8により、このハブ本体2の内端部に固定している。この様な内輪3の外周面には、上記ハブ1の外周面に設ける複列の内輪軌道5a、5bのうちの内側(図4の右側)の内輪軌道5bを設けている。そして、これら両内輪軌道5a、5bと、静止輪である外輪9の内周面に設けた複列の外輪軌道10、10との間に、それぞれ複数個ずつの転動体11、11を、保持器12、12により保持した状態で設け、上記外輪9の径方向内側に上記ハブ1を回転自在に支持している。この外輪9の外周面には外向フランジ状の取付部13を設け、この外輪9を、ナックル等の懸架装置に結合支持自在としている。尚、図示の例では、転動体11、11として玉を使用しているが、重量の嵩む自動車用の転がり軸受ユニットの場合には、これら転動体としてテーパころを使用する場合もある。
【0005】
又、上記内輪3の内端部で上記内輪軌道5bよりも軸方向(図1、3〜6の左右方向)内方に位置する肩部14には、円環状のエンコーダ15を固定している。このエンコーダ15は、芯金16と永久磁石17とから成る。このうちの芯金16は、SPCCの如き軟鋼板等の強磁性金属板にプレス加工を施す事により、断面L字形で全体を円環状に形成して成り、円筒部18と、この円筒部18の軸方向一端(図1、3〜6の右端)縁から径方向外方に折れ曲がった円輪部19とを有する。又、上記永久磁石17は、ゴム等の高分子弾性材中に、フェライト等の強磁性材の粉末を混入したもので、軸方向に着磁されている。着磁方向は、円周方向に関して交互に且つ等間隔で変化させている。従って、上記永久磁石17の軸方向側面には、S極とN極とが交互に且つ等間隔で配置されている。この様なエンコーダ15は、上記円筒部18を上記肩部14に、締り嵌めで外嵌する事により、上記内輪3に対し固定している。尚、図示の例の場合、上記永久磁石17の外周縁部に形成した鈎部20を上記円輪部19の外周縁に係止する事により、上記永久磁石17と上記芯金16との接合強度の向上を図っている。
【0006】
又、上記外輪9の外端(図4の左端)開口部と上記ハブ1の中間部外周面との間の隙間は、シールリング21により塞いでいる。一方、上記外輪9の内端(図4の右端)開口部は、カバー22により塞いでいる。このカバー22は、ステンレス鋼板、軟鋼板等の金属板を、絞り加工等により塑性変形させて、或は合成樹脂を成形加工して、全体を略有底円筒状に形成したもので、その外端開口部を上記外輪9の内端部に、締まり嵌めで内嵌固定する事により、この外輪9の内端開口部を塞いでいる。尚、上記カバー22に代えて、エンコーダを組み付けたスリンガとシールリングとを組み合わせた周知の組み合わせシールリングを使用する場合もある。この場合、上記シールリングを上記外輪9の内端部内周面に内嵌し、上記スリンガを上記内輪3の内端部外周面に外嵌する。そして、上記シールリングを構成するシールリップを上記エンコーダを組み付けたスリンガ(芯金)に摺接させる事により、上記外輪9の内端開口部を塞ぐ。
【0007】
図示の例の場合には、上記カバー22を構成する底板部23の一部で、上記エンコーダ15の被検出面である上記永久磁石17の片側面(図4の右側面)と対向する部分に形成した通孔24部分に、センサ25を支持している。尚、上記カバー22に代えて上記組み合わせシールリングを使用する場合には、上記センサ25は懸架装置を構成する図示しないナックル等に支持する。このセンサ25は、ホール素子、磁気抵抗素子等の磁気検知素子と、この磁気検知素子の出力信号を整形する為の波形整形回路を組み込んだICとを備えた周知構造を有するもので、その先端面(図4の左端面)を、検出面としている。この様なセンサ25は、この検出面を上記エンコーダ15の被検出面に、例えば0.5〜1mm程度の微小隙間を介して対向させている。上述の様なセンサ25は、上記検出面が、上記永久磁石の片側面に配置されたS極に対向する瞬間とN極に対向する瞬間とで、上記磁気検知素子の特性が変化する事を利用して、出力信号を得る。
【0008】
上述の様に構成するエンコーダ及びエンコーダ付転がり軸受ユニットは、次の様にして、車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度、回転量等の回転状態を検出する。即ち、自動車への組み付け時には、上記外輪9を、この外輪9の外周面に固設した取付部13により、懸架装置を構成する図示しないナックルに対し取付固定する。又、前記ハブ1の外端部外周面に設けたフランジ4に、車輪を固定する。
【0009】
この状態でこの車輪と共に上記ハブ1が回転し、このハブ1に支持された前記エンコーダ15が回転すると、上記センサ25の検出面の近傍を、上記エンコーダ15を構成する永久磁石17の片側面に配置したS極とN極とが交互に通過する。この結果、上記磁気検知素子の特性が変化する。即ち、この磁気検知素子を通過する磁束の方向が変化する事により、この磁気検知素子の特性が変化し、この磁気検出素子を組み込んだ上記センサ25の出力信号も変化する。そして、この様なセンサ25の出力信号が変化する周波数は、上記エンコーダ15の回転速度に比例する。そこで、この様なセンサ25の出力信号を図示しない制御器に送れば、ABSやTCSを適切に制御できる。
【0010】
【発明が解決しようとする課題】
センサ25のコスト上昇を抑えつつ回転速度検出の信頼性を確保する為には、磁気検知素子の出力信号の変化の振幅を所定以上の大きさとする必要がある。この為には、上記磁気検知素子の出力を変化させる為のエンコーダ15の被検出部のうち、特に上記センサ25の検出部が対向する部分の磁束の変化を大きくする必要がある。そして、この磁束の変化を大きくする為には、上記センサ25の検出部が対向する部分での、上記エンコーダ15の磁束密度を大きくする必要がある。
【0011】
これに対して、上記エンコーダ15の側面から出る磁束の密度は、図7に示す様に、このエンコーダ15の径方向位置によって異なる。即ち、このエンコーダ15の内径側では外径側に比べて磁束密度が低くなる。この理由に就いて図8により説明する。上記エンコーダ15を構成する永久磁石17は、同図に示す様に、全体を円輪状に形成し、S極とN極とを円周方向に関して交互に配置している為、これらS極及びN極の形状は、それぞれ扇形になる。従って、S極とN極との面積は、それぞれ外径側に比べて内径側が小さくなる為、上記永久磁石17を添着したエンコーダ15の内径側では外径側に比べて磁束密度が低くなる。又、外周縁に近い部分では、この外周縁に近づくに従って、磁束密度が低下する。
【0012】
この結果、上記エンコーダ15の側面で磁束密度が高い部分の、径方向に関する幅は小さくなる。前記センサ25の検出部は、上記エンコーダ15の径方向に関しても幅を有する。従って、図7に示す様に、エンコーダ15の磁束密度の分布が径方向に関して不均一である事は、回転速度検出を安定して行なう面からは好ましくない。
本発明は、この様な事情に鑑みて、エンコーダの側面で磁束密度が高い部分の範囲を広くすべく発明したものである。
【0013】
【課題を解決するための手段】
本発明のエンコーダ及びエンコーダ付転がり軸受ユニットのうち、請求項1に記載したエンコーダは、前述した従来構造と同様に、全体を円輪状に形成し、円周方向に関してS極とN極とを交互に配置した永久磁石を備える。
特に、本発明のエンコーダに於いては、上記永久磁石の軸方向の厚さを、外径側で薄く、内径側で厚くなる様に、この厚さを径方向に関して漸次変化させている。
【0014】
又、請求項4に記載したエンコーダ付転がり軸受ユニットは、従来構造と同様に、静止側周面に静止側軌道を有し、使用時にも回転しない静止輪と、この静止側周面と対向する回転側周面に回転側軌道を有し、使用時に回転する回転輪と、この回転側軌道と上記静止側軌道との間に転動自在に設けられた複数個の転動体と、上記回転輪に支持された芯金と、この芯金に永久磁石を支持する事により構成されるエンコーダとを備える。
特に、本発明のエンコーダ付転がり軸受ユニットに於いては、上記エンコーダは、上述した様に、上記永久磁石の厚さを、外径側で薄く、内径側で厚くなる様に、この厚さを径方向に関し漸次変化させている。
【0015】
【作用】
上述の様に構成される本発明のエンコーダ及びエンコーダ付転がり軸受ユニットにより、回転速度を検出する為の基本的な作用は、前述した従来構造と同様である。
特に、本発明のエンコーダ及びエンコーダ付転がり軸受ユニットのうち、請求項1に記載したエンコーダは、このエンコーダを構成する永久磁石の軸方向の厚さを、外径側で薄く、内径側で厚くなる様に、この厚さを径方向に関して漸次変化させている為、従来構造のエンコーダと比べて磁束密度が高い部分の幅を広くできる。即ち、磁束密度は、永久磁石の面積以外に、厚さにも影響される為、面積の小さい内径側部分で永久磁石の厚さを厚くすればこの内径側の磁束密度を高くできる。この結果、センサの検出部が対向する部分のほぼ全幅で磁束密度を高くし、回転速度検出の信頼性確保を図れる。
【0016】
【発明の実施の形態】
図1は、請求項1〜2に対応する、本発明の実施の形態の第1例を示している。本例のエンコーダ15aは、前述した従来構造と同様に、芯金16aと永久磁石17aとを組み合わせて成る。このうちの芯金16aは、SPCCの如き軟鋼板等の強磁性金属板にプレス加工を施す事により、断面L字形で全体を円環状に形成して成り、円筒部18と、この円筒部18の軸方向(図1の左右方向)一端縁(図1の右端縁)から径方向外方に直角に折れ曲がった円輪部19aとを有する。又、上記永久磁石17aは、ゴム等の高分子弾性材中に、フェライト等の強磁性材の粉末を混入したもので、軸方向に着磁されている。着磁方向は、円周方向に関して交互に且つ等間隔で変化させている。従って、上記永久磁石17aの軸方向側面には、S極とN極とが交互に且つ等間隔で配置されている。この様なエンコーダ15aは、上記円筒部18を肩部14に、締り嵌めで外嵌する事により、内輪3(図4参照)に対し固定する。尚、図示の例の場合、上記永久磁石17aの外周縁部に形成した鈎部20を上記円輪部19aの外周縁に係止する事により、上記永久磁石17aと上記芯金16aとの接合強度の向上を図っている。
【0017】
特に、本例の場合には、上記永久磁石17aの軸方向の厚さを、外径側で薄く、内径側で厚くなる様に、この厚さを径方向に関して漸次変化させている。即ち、上記永久磁石17aの軸方向両側面のうち、被検出面となる、上記円輪部19aと反対側面(図1の右面)を、中心軸に対し直角方向に存在する平面としている。これに対して、上記円輪部19aに添着する面である他側面(図1の左面)を、軸方向の厚さが外径側で薄く、内径側で厚くなる方向に傾斜した、円すい凸面状の傾斜面26としている。又、上記芯金16aを構成する上記円輪部19aの軸方向の厚さも、径方向に関して漸次変化させている。即ち、上記円輪部19aの永久磁石17aを添着する面に、上記傾斜面26と同じ角度で傾斜した円すい凹面状の傾斜面27を形成して、円輪部19aの軸方向の厚さを、外径側で厚く、内径側で薄くしている。
【0018】
上述の様に構成する本例のエンコーダ15aは、例えば前述した図4に示す様な転がり軸受ユニットに組み込んで、エンコーダ付転がり軸受ユニットを構成する。この様なエンコーダ付転がり軸受ユニットにより、懸架装置に対して車輪を回転自在に支持すると共に、この車輪の回転速度を検出する為の作用は、前述した従来のエンコーダ付転がり軸受ユニットと同様である。
【0019】
特に、本発明のエンコーダ15aは、このエンコーダ15aを構成する永久磁石17aの軸方向の厚さを、外径側で薄く、内径側で厚くなる様に、この厚さを径方向に関して漸次変化させている為、従来構造のエンコーダ15と比べて内径側の磁束密度を高くできる。図2は、上記エンコーダ15aの径方向に関する磁束密度の分布を示す。この図2と前述した図7とを比べると、本例のエンコーダ15aは従来構造のエンコーダ15と比べて、内径側に於いて磁束密度が高く、磁束密度が高い部分の幅が広くなっている事が分かる。即ち、磁束密度の強さは、永久磁石17aの面積以外に、永久磁石17aの厚さにも影響される為、面積の小さい内径側部分で永久磁石17aの厚さを厚くすれば、この内径側の磁束密度を高くできる。この結果、エンコーダ15aの側面で、センサ25(図4)の検出部が対向する部分の磁束密度を、この部分の大部分で高くして、回転速度検出の信頼性を確保できる。
【0020】
又、本例の場合、上記円輪部19aの永久磁石17aを添着する面を凹ませる事により、前記傾斜面27を形成している為、上記永久磁石17aの内径側を厚くしても、上記エンコーダ15aの軸方向が大きくなる事を防止できる。この為、上記センサ25(図4)との距離が短くなる様な小型の転がり軸受ユニットに組み込んだ場合でも、上記永久磁石17aとセンサ25とが干渉する事はない。
【0021】
次に、図3は、請求項1、3に対応する、本発明の実施の形態の第2例を示している。本例のエンコーダ15bの場合には、芯金16bに永久磁石17aを添着した状態でこの永久磁石17aの片側面(図2の右面)が軸方向に直交する平面となる様に、円輪部19bをこの片側面に対し傾斜させている。即ち、上記芯金16bは上記円輪部19bを円筒部18の一端縁から直角にまでは折り曲げず、上記永久磁石17aの他側面を構成する傾斜面26と平行になる角度まで折り曲げている。そして、この円輪部19bの側面に上記永久磁石17aの傾斜面26を添着する事により、上記エンコーダ15bを構成している。本例の場合、この様に構成する為、前述した第1例の場合よりも芯金の構造を簡単にでき、製造コストの上昇を抑える事ができる。但し、第1例のエンコーダ15aと比べて軸方向の寸法が多少嵩む為、センサ25(図4)との距離が短くなる様な小型の転がり軸受ユニットには適さない場合もある。その他の構成及び作用は、前述した第1例の場合と同様である。
【0022】
尚、上述した本発明の実施の形態の第1、2例に示したエンコーダ15a、15bを構成する永久磁石17aの径方向各部の軸方向の厚さを求める為に、SNRの磁束密度計算プログラムを用いると、最適な厚さを求める事ができる。即ち、このプログラムにより、センサの検出部が対向する部分の磁束密度が均一となる様な、上記永久磁石の断面形状を求めれば、無駄がなく、且つ、信頼性の高い回転速度検出を行なえるエンコーダを得られる。
【0023】
又、本発明のエンコーダは、回転輪が外輪である外輪回転型の転がり軸受ユニットに就いても、適用する事ができる。この場合、芯金の円輪部を、円筒部の軸方向一端縁から径方向内方に折り曲げる。そして、上述した内輪回転の転がり軸受ユニットと同様に、円輪部の側面に全周に亙って永久磁石を添着し、上記円筒部を上記外輪に内嵌する。その他の構成及び作用は、上述した本発明の実施の形態の第1、2例の場合と同様である。
【0024】
【発明の効果】
本発明のエンコーダ及びエンコーダ付転がり軸受ユニットは、以上に述べた通り構成され作用する為、コストの上昇を抑えつつ、回転速度の検出精度の信頼性向上を図れる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1例を示す、図5のA部に相当する断面図。
【図2】本発明のエンコーダの径方向に関する磁束密度の分布を示す線図。
【図3】本発明の実施の形態の第2例を示す、図1と同様の図。
【図4】従来構造のエンコーダ付転がり軸受ユニットの1例を示す断面図。
【図5】図4のエンコーダのみを取り出して示す部分断面図。
【図6】図5のA部拡大図。
【図7】従来構造のエンコーダの径方向に関する磁束密度の分布を示す線図。
【図8】図5のB矢視図。
【符号の説明】
1 ハブ
2 ハブ本体
3 内輪
4 フランジ
5、5a、5b 内輪軌道
6 段部
7 雄ねじ部
8 ナット
9 外輪
10 外輪軌道
11 転動体
12 保持器
13 取付部
14 肩部
15、15a、15b エンコーダ
16、16a、16b 芯金
17、17a 永久磁石
18 円筒部
19、19a、19b 円輪部
20 鈎部
21 シールリング
22 カバー
23 底板部
24 通孔
25 センサ
26 傾斜面
27 傾斜面
[0001]
BACKGROUND OF THE INVENTION
The encoder and the rolling bearing unit with an encoder according to the present invention are used for detecting, for example, the rotational speed of a wheel of an automobile or the rotational speed or rotational angle of a spindle of a machine tool.
[0002]
[Prior art]
A rolling bearing unit is used to rotatably support the wheels of the automobile with respect to the suspension system. Further, in order to control the anti-lock brake system (ABS) and the traction control system (TCS), it is necessary to detect the rotational speed of the wheel. In order to detect the rotational speed of a wheel for such a purpose, rolling bearing units with an encoder having various structures are conventionally known. When the rotational speed of the wheel is detected magnetically, an encoder whose magnetic characteristics alternately change in the circumferential direction is used as the encoder. As described above, an encoder using permanent magnets in which S poles and N poles are alternately arranged in the circumferential direction as an encoder in which the magnetic characteristics change alternately in the circumferential direction has a simple structure on the sensor side, Moreover, in recent years, the use of the detection value at a low speed is increasing in terms of ensuring the reliability of the detection value.
[0003]
4 to 6 show an example of a conventional structure of an encoder and a rolling bearing unit with an encoder used for the above-described purpose. A hub 1 that is a rotating wheel is formed by coupling and fixing a hub body 2 and an inner ring 3. A flange 4 for mounting and fixing a wheel is provided on the outer peripheral surface of the hub main body 2 on the outer peripheral surface (the left end in FIG. 4, which is the outer end in the width direction when assembled to the automobile). The inner ring raceway 5a on the outer side (the left side in FIG. 4) of the double row inner ring raceways 5a and 5b provided on the outer peripheral surface of the hub 1 is the inner end (the end that is the central side in the width direction when assembled to the automobile). In the right end portion of FIG.
[0004]
The inner ring 3 is fixed to the inner end portion of the hub main body 2 by a nut 8 that is externally fitted to the stepped portion 6 and screwed to a male screw portion 7 formed at the inner end portion of the hub main body 2. . The inner ring raceway 5b on the inner side (right side in FIG. 4) of the double row inner ring raceways 5a and 5b provided on the outer peripheral face of the hub 1 is provided on the outer peripheral face of the inner ring 3 as described above. A plurality of rolling elements 11, 11 are held between the inner ring raceways 5a, 5b and the double row outer ring raceways 10, 10 provided on the inner peripheral surface of the outer ring 9 which is a stationary ring. The hub 1 is provided in a state of being held by the vessels 12 and 12, and the hub 1 is rotatably supported inside the outer ring 9 in the radial direction. An outer flange 9 is provided on the outer peripheral surface of the outer ring 9 so that the outer ring 9 can be connected to and supported by a suspension device such as a knuckle. In the illustrated example, balls are used as the rolling elements 11, 11, but in the case of a rolling bearing unit for automobiles that is heavy in weight, tapered rollers may be used as these rolling elements.
[0005]
An annular encoder 15 is fixed to a shoulder portion 14 located inward of the inner end of the inner ring 3 in the axial direction (left and right direction in FIGS. 1 and 3-6) from the inner ring raceway 5b. . The encoder 15 includes a cored bar 16 and a permanent magnet 17. Of these, the core 16 is formed by pressing a ferromagnetic metal plate such as a mild steel plate such as SPCC to form an entire ring shape with an L-shaped cross section, and a cylindrical portion 18 and the cylindrical portion 18. And an annular portion 19 that is bent radially outward from the edge in one axial direction (the right end in FIGS. 1 and 3 to 6). The permanent magnet 17 is made of a polymer elastic material such as rubber mixed with a powder of a ferromagnetic material such as ferrite, and is magnetized in the axial direction. The magnetization direction is changed alternately and at equal intervals in the circumferential direction. Therefore, the south pole and the north pole are alternately arranged at equal intervals on the side surface in the axial direction of the permanent magnet 17. Such an encoder 15 is fixed to the inner ring 3 by fitting the cylindrical portion 18 to the shoulder portion 14 by an interference fit. In the case of the illustrated example, the flange 20 formed on the outer peripheral edge of the permanent magnet 17 is engaged with the outer peripheral edge of the annular ring 19 so that the permanent magnet 17 and the core metal 16 are joined. The strength is improved.
[0006]
Further, a gap between the outer end (left end in FIG. 4) opening of the outer ring 9 and the outer peripheral surface of the intermediate portion of the hub 1 is closed by a seal ring 21. On the other hand, the inner end (right end in FIG. 4) opening of the outer ring 9 is closed by a cover 22. The cover 22 is formed by plastically deforming a metal plate such as a stainless steel plate or a mild steel plate by drawing or the like, or molding a synthetic resin to form a substantially bottomed cylindrical shape. The inner opening of the outer ring 9 is closed by fixing the end opening to the inner end of the outer ring 9 with an interference fit. In place of the cover 22, a known combination seal ring in which a slinger with an encoder and a seal ring are combined may be used. In this case, the seal ring is fitted on the inner peripheral surface of the inner end portion of the outer ring 9, and the slinger is fitted on the outer peripheral surface of the inner end portion of the inner ring 3. The seal lip constituting the seal ring is slidably contacted with a slinger (core metal) assembled with the encoder, thereby closing the inner end opening of the outer ring 9.
[0007]
In the case of the illustrated example, a part of the bottom plate portion 23 constituting the cover 22 is opposed to a portion facing the one side surface (the right side surface in FIG. 4) of the permanent magnet 17 that is the detection surface of the encoder 15. The sensor 25 is supported by the formed through-hole 24 portion. When the combination seal ring is used instead of the cover 22, the sensor 25 is supported by a knuckle (not shown) constituting the suspension device. The sensor 25 has a well-known structure including a magnetic detection element such as a Hall element or a magnetoresistive element, and an IC incorporating a waveform shaping circuit for shaping the output signal of the magnetic detection element. The surface (left end surface in FIG. 4) is the detection surface. In such a sensor 25, the detection surface is opposed to the detection surface of the encoder 15 through a minute gap of about 0.5 to 1 mm, for example. The sensor 25 as described above indicates that the characteristics of the magnetic sensing element change between the moment when the detection surface faces the south pole and the moment when it faces the north pole arranged on one side of the permanent magnet. Use it to get the output signal.
[0008]
The encoder and the rolling bearing unit with the encoder configured as described above support the wheel rotatably with respect to the suspension device as follows, and detect the rotation state such as the rotation speed and the rotation amount of the wheel. . That is, at the time of assembling to the automobile, the outer ring 9 is fixedly attached to a knuckle (not shown) constituting the suspension device by means of a mounting portion 13 fixed to the outer peripheral surface of the outer ring 9. The wheel is fixed to a flange 4 provided on the outer peripheral surface of the outer end of the hub 1.
[0009]
When the hub 1 rotates together with the wheel in this state, and the encoder 15 supported by the hub 1 rotates, the vicinity of the detection surface of the sensor 25 is placed on one side of the permanent magnet 17 constituting the encoder 15. The arranged S poles and N poles pass alternately. As a result, the characteristics of the magnetic sensing element change. That is, when the direction of the magnetic flux passing through the magnetic detection element changes, the characteristics of the magnetic detection element change, and the output signal of the sensor 25 incorporating the magnetic detection element also changes. The frequency at which the output signal of the sensor 25 changes is proportional to the rotational speed of the encoder 15. Therefore, if such an output signal of the sensor 25 is sent to a controller (not shown), ABS and TCS can be controlled appropriately.
[0010]
[Problems to be solved by the invention]
In order to ensure the reliability of rotation speed detection while suppressing an increase in the cost of the sensor 25, it is necessary to make the amplitude of the change in the output signal of the magnetic detection element larger than a predetermined value. For this purpose, it is necessary to increase the change in the magnetic flux in the portion of the detected portion of the encoder 15 for changing the output of the magnetic sensing element, particularly the portion of the sensor 25 facing the detecting portion. In order to increase the change in the magnetic flux, it is necessary to increase the magnetic flux density of the encoder 15 at the portion where the detection unit of the sensor 25 faces.
[0011]
On the other hand, the density of the magnetic flux emitted from the side surface of the encoder 15 varies depending on the radial position of the encoder 15 as shown in FIG. That is, the magnetic flux density is lower on the inner diameter side of the encoder 15 than on the outer diameter side. This reason will be described with reference to FIG. As shown in the figure, the permanent magnet 17 constituting the encoder 15 is formed in an annular shape as a whole, and the S poles and N poles are alternately arranged in the circumferential direction. Each pole has a fan shape. Accordingly, since the area of the S pole and the N pole is smaller on the inner diameter side than on the outer diameter side, the magnetic flux density is lower on the inner diameter side of the encoder 15 attached with the permanent magnet 17 than on the outer diameter side. Moreover, in the part close | similar to an outer periphery, magnetic flux density falls as this outer periphery is approached.
[0012]
As a result, the width in the radial direction of the portion where the magnetic flux density is high on the side surface of the encoder 15 is reduced. The detection part of the sensor 25 has a width also in the radial direction of the encoder 15. Therefore, as shown in FIG. 7, the non-uniform distribution of the magnetic flux density of the encoder 15 in the radial direction is not preferable from the viewpoint of stably detecting the rotational speed.
In view of such circumstances, the present invention was invented to widen the range of the portion where the magnetic flux density is high on the side surface of the encoder.
[0013]
[Means for Solving the Problems]
Of the encoder and the rolling bearing unit with an encoder according to the present invention, the encoder described in claim 1 is formed in a ring shape as a whole and has S poles and N poles alternately in the circumferential direction. With a permanent magnet.
In particular, in the encoder of the present invention, the thickness of the permanent magnet is gradually changed with respect to the radial direction so that the thickness in the axial direction is thin on the outer diameter side and thicker on the inner diameter side.
[0014]
In addition, the rolling bearing unit with an encoder according to claim 4 has a stationary side track on the stationary side circumferential surface as in the conventional structure, and a stationary wheel that does not rotate during use, and faces the stationary side circumferential surface. A rotating wheel having a rotating side track on the rotating side peripheral surface and rotating during use, a plurality of rolling elements provided between the rotating side track and the stationary side track, and the rotating wheel And an encoder configured by supporting a permanent magnet on the metal core.
In particular, in the rolling bearing unit with an encoder of the present invention, as described above, the encoder has the thickness of the permanent magnet so that it is thin on the outer diameter side and thick on the inner diameter side. It is gradually changed in the radial direction.
[0015]
[Action]
The basic operation for detecting the rotational speed by the encoder and the rolling bearing unit with the encoder of the present invention configured as described above is the same as that of the conventional structure described above.
In particular, of the encoder and the rolling bearing unit with an encoder of the present invention, the encoder according to claim 1 is such that the axial thickness of the permanent magnet constituting the encoder is thin on the outer diameter side and thick on the inner diameter side. Similarly, since the thickness is gradually changed in the radial direction, the width of the portion where the magnetic flux density is high can be widened as compared with the encoder of the conventional structure. That is, since the magnetic flux density is affected by the thickness in addition to the area of the permanent magnet, the magnetic flux density on the inner diameter side can be increased by increasing the thickness of the permanent magnet in the inner diameter side portion having a small area. As a result, it is possible to increase the magnetic flux density over almost the entire width of the portion where the detection portion of the sensor opposes, thereby ensuring the reliability of rotation speed detection.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a first example of an embodiment of the present invention corresponding to claims 1 and 2. The encoder 15a of this example is formed by combining a cored bar 16a and a permanent magnet 17a in the same manner as the conventional structure described above. Of these, the core metal 16a is formed by pressing a ferromagnetic metal plate such as a mild steel plate such as SPCC to form an entire ring shape with an L-shaped cross section. And an annular portion 19a bent at a right angle outward from the one end edge (right end edge in FIG. 1) in the axial direction (left and right direction in FIG. 1). The permanent magnet 17a is a polymer elastic material such as rubber mixed with a powder of a ferromagnetic material such as ferrite, and is magnetized in the axial direction. The magnetization direction is changed alternately and at equal intervals in the circumferential direction. Therefore, S poles and N poles are alternately arranged at equal intervals on the axial side surface of the permanent magnet 17a. Such an encoder 15a is fixed to the inner ring 3 (see FIG. 4) by fitting the cylindrical portion 18 to the shoulder portion 14 by an interference fit. In the case of the illustrated example, the flange 20 formed on the outer peripheral edge of the permanent magnet 17a is locked to the outer peripheral edge of the circular ring portion 19a, thereby joining the permanent magnet 17a and the cored bar 16a. The strength is improved.
[0017]
In particular, in the case of this example, the thickness of the permanent magnet 17a is gradually changed in the radial direction so that the thickness in the axial direction is thin on the outer diameter side and thick on the inner diameter side. That is, of the both side surfaces in the axial direction of the permanent magnet 17a, the side surface (the right surface in FIG. 1) opposite to the annular portion 19a, which is the detection surface, is a plane that exists in a direction perpendicular to the central axis. On the other hand, the other side surface (the left surface in FIG. 1) attached to the circular ring portion 19a is a conical convex surface inclined in a direction in which the axial thickness is thin on the outer diameter side and thicker on the inner diameter side. A slanted surface 26 is formed. Further, the thickness in the axial direction of the annular portion 19a constituting the cored bar 16a is also gradually changed in the radial direction. That is, a conical concave inclined surface 27 that is inclined at the same angle as the inclined surface 26 is formed on the surface of the annular portion 19a to which the permanent magnet 17a is attached, so that the axial thickness of the annular portion 19a is increased. The outer diameter is thicker and the inner diameter is thinner.
[0018]
The encoder 15a of the present example configured as described above is incorporated into a rolling bearing unit as shown in FIG. 4 described above, for example, to constitute a rolling bearing unit with an encoder. By such a rolling bearing unit with an encoder, the wheel is supported rotatably with respect to the suspension device, and the operation for detecting the rotational speed of the wheel is the same as that of the conventional rolling bearing unit with an encoder described above. .
[0019]
In particular, the encoder 15a of the present invention gradually changes the thickness in the radial direction so that the axial thickness of the permanent magnet 17a constituting the encoder 15a is thin on the outer diameter side and thicker on the inner diameter side. Therefore, the magnetic flux density on the inner diameter side can be increased as compared with the encoder 15 having the conventional structure. FIG. 2 shows the distribution of magnetic flux density in the radial direction of the encoder 15a. Comparing FIG. 2 with FIG. 7 described above, the encoder 15a of this example has a higher magnetic flux density on the inner diameter side and a wider width at the portion where the magnetic flux density is higher than the encoder 15 of the conventional structure. I understand that. That is, the strength of the magnetic flux density is influenced by the thickness of the permanent magnet 17a in addition to the area of the permanent magnet 17a. Therefore, if the thickness of the permanent magnet 17a is increased at the inner diameter side portion having a small area, the inner diameter is increased. The magnetic flux density on the side can be increased. As a result, on the side surface of the encoder 15a, the magnetic flux density of the portion where the detection portion of the sensor 25 (FIG. 4) faces is increased in most of this portion, and the reliability of rotation speed detection can be ensured.
[0020]
In the case of this example, the inclined surface 27 is formed by denting the surface to which the permanent magnet 17a of the annular ring portion 19a is attached. Therefore, even if the inner diameter side of the permanent magnet 17a is increased, An increase in the axial direction of the encoder 15a can be prevented. Therefore, the permanent magnet 17a and the sensor 25 do not interfere with each other even when incorporated in a small rolling bearing unit that shortens the distance from the sensor 25 (FIG. 4).
[0021]
Next, FIG. 3 shows a second example of an embodiment of the present invention corresponding to claims 1 and 3. In the case of the encoder 15b of this example, the annular portion is arranged such that one side surface (the right surface in FIG. 2) of the permanent magnet 17a is a plane orthogonal to the axial direction in a state where the permanent magnet 17a is attached to the cored bar 16b. 19b is inclined with respect to this one side surface. That is, the metal core 16b does not bend the annular ring portion 19b at a right angle from one end edge of the cylindrical portion 18, but bends to an angle parallel to the inclined surface 26 constituting the other side surface of the permanent magnet 17a. The encoder 15b is configured by attaching the inclined surface 26 of the permanent magnet 17a to the side surface of the ring portion 19b. In this example, since it is configured in this way, the structure of the cored bar can be simplified as compared with the case of the first example described above, and an increase in manufacturing cost can be suppressed. However, since the axial dimension is somewhat larger than that of the encoder 15a of the first example, it may not be suitable for a small rolling bearing unit in which the distance from the sensor 25 (FIG. 4) is shortened. Other configurations and operations are the same as those of the first example described above.
[0022]
In order to obtain the axial thickness of each part in the radial direction of the permanent magnet 17a constituting the encoders 15a and 15b shown in the first and second examples of the embodiment of the present invention described above, an SNR magnetic flux density calculation program Can be used to determine the optimum thickness. That is, if the cross-sectional shape of the permanent magnet is determined by this program so that the magnetic flux density of the portion where the sensor detection portion faces is uniform, the rotation speed can be detected without waste and with high reliability. An encoder can be obtained.
[0023]
The encoder of the present invention can also be applied to an outer ring rotating type rolling bearing unit in which the rotating wheel is an outer ring. In this case, the annular portion of the core metal is bent radially inward from one axial end edge of the cylindrical portion. In the same manner as the above-described rolling bearing unit for rotating the inner ring, a permanent magnet is attached to the side surface of the ring portion over the entire circumference, and the cylindrical portion is fitted into the outer ring. Other configurations and operations are the same as those in the first and second examples of the embodiment of the present invention described above.
[0024]
【The invention's effect】
Since the encoder and the rolling bearing unit with an encoder of the present invention are configured and operate as described above, it is possible to improve the reliability of the rotational speed detection accuracy while suppressing an increase in cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first example of an embodiment of the present invention and corresponding to part A of FIG.
FIG. 2 is a diagram showing the distribution of magnetic flux density in the radial direction of the encoder of the present invention.
FIG. 3 is a view similar to FIG. 1, showing a second example of an embodiment of the present invention.
FIG. 4 is a cross-sectional view showing an example of a conventional rolling bearing unit with an encoder.
5 is a partial cross-sectional view showing only the encoder of FIG.
6 is an enlarged view of part A in FIG.
FIG. 7 is a diagram showing a distribution of magnetic flux density in the radial direction of an encoder having a conventional structure.
FIG. 8 is a view taken in the direction of arrow B in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hub 2 Hub main body 3 Inner ring 4 Flange 5, 5a, 5b Inner ring raceway 6 Step part 7 Male thread part 8 Nut 9 Outer ring 10 Outer ring raceway 11 Rolling body 12 Cage 13 Mounting part 14 Shoulder part 15, 15a, 15b Encoder 16, 16a , 16b Core 17, 17a Permanent magnet 18 Cylindrical part 19, 19a, 19b Circular part 20 Gutter part 21 Seal ring 22 Cover 23 Bottom plate part 24 Through hole 25 Sensor 26 Inclined surface 27 Inclined surface

Claims (4)

全体を円輪状に形成し、円周方向に関してS極とN極とを交互に配置した永久磁石を備えたエンコーダに於いて、この永久磁石の軸方向の厚さを、外径側で薄く、内径側で厚くなる様に、この厚さを径方向に関して漸次変化させている事を特徴とするエンコーダ。In an encoder having a permanent magnet that is formed in a ring shape as a whole and in which S poles and N poles are alternately arranged in the circumferential direction, the axial thickness of the permanent magnet is thin on the outer diameter side, The encoder is characterized in that the thickness is gradually changed in the radial direction so as to increase in thickness on the inner diameter side. 永久磁石と、全体を円環状に形成し、円筒部と、この円筒部の一端縁から直角に折れ曲がった円輪部とから構成される芯金とを備え、上記永久磁石を上記円輪部の側面に全周に亙って添着支持して成るエンコーダに於いて、上記永久磁石を添着した状態で永久磁石の片側面が軸方向に直交する仮想平面と平行となる様に、上記円輪部の軸方向の厚さを径方向に関して漸次変化させた、請求項1に記載したエンコーダ。A permanent magnet, and a core formed of a cylindrical portion and a circular ring portion bent at a right angle from one end edge of the cylindrical portion; and the permanent magnet is attached to the circular ring portion. In the encoder that is attached and supported on the entire side surface of the encoder, the annular portion is arranged such that one side surface of the permanent magnet is parallel to a virtual plane orthogonal to the axial direction with the permanent magnet attached. The encoder according to claim 1, wherein the axial thickness of the encoder is gradually changed in the radial direction. 永久磁石と、全体を円環状に形成し、円筒部と、この円筒部の一端縁から折れ曲がった円輪部とから構成される芯金とを備え、上記永久磁石を上記円輪部の側面に添着支持して成るエンコーダに於いて、上記永久磁石を添着した状態で永久磁石の片側面が軸方向に直交する仮想平面と平行となる様に、上記円輪部をこの仮想平面に対して傾斜させた、請求項1に記載したエンコーダ。A permanent magnet is formed in a ring shape, and includes a cylindrical part and a metal core composed of a circular ring part bent from one end edge of the cylindrical part, and the permanent magnet is disposed on a side surface of the circular ring part. In the encoder that is attached and supported, the annular portion is inclined with respect to the virtual plane so that one side surface of the permanent magnet is parallel to the virtual plane orthogonal to the axial direction with the permanent magnet attached. The encoder according to claim 1. 静止側周面に静止側軌道を有し、使用時にも回転しない静止輪と、この静止側周面と対向する回転側周面に回転側軌道を有し、使用時に回転する回転輪と、この回転側軌道と上記静止側軌道との間に転動自在に設けられた複数個の転動体と、上記回転輪に支持された芯金と、この芯金に永久磁石を支持する事により構成されるエンコーダとを備えたエンコーダ付転がり軸受ユニットに於いて、このエンコーダは請求項1〜3の何れかに記載したエンコーダである事を特徴とするエンコーダ付転がり軸受ユニット。A stationary wheel that has a stationary side track on the stationary side circumferential surface and does not rotate during use, a rotating wheel that has a rotational side track on the rotating side circumferential surface opposite to the stationary side circumferential surface and rotates during use, and A plurality of rolling elements provided between a rotating side track and the stationary side track so as to roll freely, a core supported by the rotating wheel, and a permanent magnet supported by the core. A rolling bearing unit with an encoder comprising the encoder according to claim 1, wherein the encoder is the encoder according to claim 1.
JP2001235311A 2001-08-02 2001-08-02 Encoder and rolling bearing unit with encoder Expired - Fee Related JP4622185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001235311A JP4622185B2 (en) 2001-08-02 2001-08-02 Encoder and rolling bearing unit with encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235311A JP4622185B2 (en) 2001-08-02 2001-08-02 Encoder and rolling bearing unit with encoder

Publications (2)

Publication Number Publication Date
JP2003042803A JP2003042803A (en) 2003-02-13
JP4622185B2 true JP4622185B2 (en) 2011-02-02

Family

ID=19066778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235311A Expired - Fee Related JP4622185B2 (en) 2001-08-02 2001-08-02 Encoder and rolling bearing unit with encoder

Country Status (1)

Country Link
JP (1) JP4622185B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956940B2 (en) * 2005-09-06 2012-06-20 日本精工株式会社 State quantity measuring device
JP4607049B2 (en) * 2006-02-23 2011-01-05 株式会社デンソー Rotation angle detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281018A (en) * 1993-01-19 1994-10-07 Snr Roulements Coder built-in sealing structure
JPH1048230A (en) * 1996-08-07 1998-02-20 Koyo Seiko Co Ltd Bearing assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281018A (en) * 1993-01-19 1994-10-07 Snr Roulements Coder built-in sealing structure
JPH1048230A (en) * 1996-08-07 1998-02-20 Koyo Seiko Co Ltd Bearing assembly

Also Published As

Publication number Publication date
JP2003042803A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
JP3968857B2 (en) Seal structure of rotation speed detector
JP4333259B2 (en) Rolling bearing unit with rotational speed detector
JP4206550B2 (en) Rolling bearing unit with rotational speed detector
US5332964A (en) Rolling bearing unit with permanent magnet, coil and back yoke for sensing rotational speed of automotive wheel
JP2005042866A5 (en)
US5938346A (en) Rolling bearing unit with rotating speed sensor
JP4311091B2 (en) Rolling bearing unit for wheel support with rotational speed detector
JP2001241435A (en) Rolling bearing unit with encoder for automobile
JPH11118816A (en) Rolling bearing unit with rotating speed detector
JP6349954B2 (en) Bearing unit with rotation speed detector
JP5521696B2 (en) Rolling bearing unit for wheel support with encoder
JP4622185B2 (en) Encoder and rolling bearing unit with encoder
KR20050085616A (en) Roller bearing with encoder and its manufacturing method
JP2004076752A (en) Rolling bearing device
JPH1048230A (en) Bearing assembly
JP2004354102A (en) Encoder, and rolling bearing unit having the same
JP2003130075A (en) Rolling bearing unit with tone wheel
JPH1123597A (en) Bearing provided with rotating speed sensor
JP2011179536A (en) Bearing unit for supporting sensor-provided wheel
JP4742796B2 (en) Rolling bearing unit with rotation detector
JP3948053B2 (en) Rolling bearing unit with rotational speed detector
JPH11118817A (en) Rolling bearing unit with rotating speed detector
JPH1144702A (en) Combinational seal ring with encoder
JP6372379B2 (en) Bearing cap and rolling bearing unit
JP2017203515A (en) Rolling bearing unit with encoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees