[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4622007B2 - Defect inspection equipment - Google Patents

Defect inspection equipment Download PDF

Info

Publication number
JP4622007B2
JP4622007B2 JP15405799A JP15405799A JP4622007B2 JP 4622007 B2 JP4622007 B2 JP 4622007B2 JP 15405799 A JP15405799 A JP 15405799A JP 15405799 A JP15405799 A JP 15405799A JP 4622007 B2 JP4622007 B2 JP 4622007B2
Authority
JP
Japan
Prior art keywords
light
optical system
substrate
defect inspection
inspection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15405799A
Other languages
Japanese (ja)
Other versions
JP2000338049A (en
JP2000338049A5 (en
Inventor
健雄 大森
宏一郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP15405799A priority Critical patent/JP4622007B2/en
Priority to KR1020000029549A priority patent/KR20010007152A/en
Publication of JP2000338049A publication Critical patent/JP2000338049A/en
Priority to US10/304,787 priority patent/US20030112428A1/en
Publication of JP2000338049A5 publication Critical patent/JP2000338049A5/ja
Application granted granted Critical
Publication of JP4622007B2 publication Critical patent/JP4622007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、所定の回路パターンを有する液晶基板又はICウエハの傷、膜厚ムラ、塵等の欠陥を検査する欠陥検査装置に関する。
【0002】
【従来の技術】
ICウエハや液晶基板表面の膜厚ムラ、傷等の欠陥検査は、種々の光束の照明光を様々な角度から照射し、被検物を回転又は揺動させながら、被検物からの光を観察者が直接的に目視により観察する場合が多い。また、最近は欠陥の定量化、検査の省力化、高速化に伴い欠陥検査を自動化する要請が強くなっており、この要請に応える形で種々の装置が提案されている。例えば、基板上の繰り返しパターンから発生する回折光による基板の画像を取り込み、画像処理を行い欠陥を検査するものである。
【0003】
【発明が解決しようとする課題】
観察者の目視による基板の通常の外観検査では、基板に白色光のスポットライトを照射し、その反射光の色の付き方を見て基板の良否を判断する。ここで、基板の繰り返しパターンが形成された部分からは回折光が生じ、観察者は回折光のスペクトルを観察することになる。そして、デフォーカスなどの欠陥が存在する露光領域(ショット領域)は、その周囲の欠陥が存在しない正常なショット領域と回折光のスペクトルの色の付き方又は強度が異なるので、目視で欠陥と判断することができる。
【0004】
規則的なパターンから回折光が発生した時には以下の条件式(1)が満たされている。
(1) sinθd−sinθi=mλ/p
ここで、θiは入射角、θdは回折角、mは回折次数、λは波長、pはピッチをそれぞれ表している。上式から明らかなように、同一の角度条件においてより小さなピッチのパターンから回折光を発生させようとすると、次数と波長を小さくすれば良い事が分かる。
【0005】
光源として可視光を用いた場合、λの下限値はh線(405nm)近辺、即ち400nm程度がほぼ限界であり、0次光、即ち正反射光以外の回折光の回折次数は絶対値で1が最小であるから、ピッチが所定値を下回ると回折光が発生せず、検査を行うことが不可能になる。
【0006】
一方、自動検査装置においても目視検査と同様に、欠陥部分と正常部分との回折光の強度差を利用しているので、光源に可視光を用いる限り、上述の問題点を有している。
【0007】
本発明はかかる問題に鑑みてなされたものであり、より微細なピッチの繰り返しパターンが形成された基板において良好に欠陥検査を行うことができる欠陥検査装置及び検査方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決する為に、本発明は、周期パターンが表面に形成されている被検基板の前記周期パターンの欠陥を検査する欠陥検査装置であって、少なくとも1つが400nmより短い紫外光であって、互いに異なる波長の光をそれぞれ供給する複数の光源と、前記複数の光源からそれぞれ照射される光を略平行光に変換する1つの凹面反射鏡を含み、該凹面反射鏡を介して前記略平行光を前記被検基板にそれぞれ所定の角度で照射する照明光学系と、前記照射された光ごとに前記被検基板から発生する、それぞれの複数の回折光のうち所望次数の回折光のみをそれぞれ受光して前記周期パターン像を形成する1つの受光ユニットと、を備えることを特徴とする欠陥検査装置を提供する。
【0011】
また、本発明の好ましい態様では、前記複数の光源からそれぞれ照射される光は、前記光の波長に応じて前記照明光学系を介して前記被検基板への入射角度が異なるように照射されることが望ましい。
【0012】
【発明の実施の形態】
以下、添付図面に基づいて、本発明の実施の形態にかかる欠陥検査装置を説明する。
【0013】
(第1実施形態)
図1は、第1実施形態にかかる欠陥検査装置の概略構成を示す図である。光源ユニットとしての光源11から射出された光は、リレーレンズ21を透過し球面反射鏡31に入射する。なお、光源ユニットとしては、所定の波長を持つ光を発する光源自身のみの構成に限ることなく、光源とその光源からの光を集光する集光部材(集光レンズ、楕円鏡等の反射鏡等)とを含む構成とすることも可能である。リレーレンズ21から球面反射鏡31までの系が照明光学系1を構成する。光源11は、例えば水銀ランプで365nmのi線又は313nmのJ線、YAGレーザの4倍高調波で266nm、KrFエキシマレーザで248nm,ArFのエキシマレーザで193nmの光を射出するもの等を使用することができる。また、光源11の射出端には可変開口絞りが設けられており、欠陥検査測定に不要な光を遮光する。なお、光源11は365nm以下の波長を持つ光を供給するものであることがより一層好ましい。
【0014】
水銀ランプを用いた場合は、光源から射出された白色光の中から不図示の干渉フィルタによって紫外域の光を取り出し、これを照明光として利用する。さらに好ましくは、例えば、透過波長域が異なる複数の干渉フィルタをレボルバ上に備え、レボルバをモータで回転することで、択一的に干渉フィルタを光軸上に挿脱できる構成が望ましい。また、光源11にレーザを用いた場合は、レーザ光の可干渉性を低減させておくことが望ましい。
【0015】
球面反射鏡31で反射された光は略平行光束となってステージ51に載置された基板41に入射する。ステージ51は所定軸を中心とした回転とチルト(傾斜)との両方を行うことができる。基板41で回折された回折光は球面反射鏡32で反射され、カメラレンズ61により撮像素子71のCCD撮像面に像を形成する。ここで、球面反射鏡32とカメラレンズ61とで受光光学系2を構成し、その受光光学系2と撮像素子71とで受光ユニットを構成する。基板41からの回折光は、パターンのピッチにより回折角が異なるので、回折光が受光光学系2に入射するようにステージ51により基板41を適宜チルトする。また、ステージをチルトさせる代わりに、照明光学系1と受光光学系2とのいずれか一方、又は両方をチルト軸を中心に回転させても良い。
【0016】
また、可変開口絞りがカメラレンズ61内に設けられており、測定に不必要な光を遮光すると同時に基板側の開口数を決めている。開口絞りを絞ることで開口数を小さくすれば、基板側の焦点深度を深くできるので、チルトしても周辺の画像がぼやける事がない。
【0017】
カメラレンズ61は単焦点距離レンズに限られない。焦点距離の異なる複数のレンズが交換可能な構成であり、基板像の大きさと撮像素子の撮像面の大きさとを略一致させるようにレンズを選択して結像倍率を変えることが望ましい。基板像の大きさと撮像素子の撮像面の大きさとを略一致させることで画像処理の効率を向上させることができる。さらに好ましくは、カメラレンズ61がバリフォーカルレンズ又はズームレンズであれば、レンズを交換せずに倍率を変更できる。なお、短時間で欠陥検査を行いたい場合は、倍率を変えずに検査を行うことが望ましい。
【0018】
画像処理装置81は、検査中の基板41の像と予め記憶させておいた良品基板の像とを比較することでパターンマッチング又は予め学習させておいた良品基板の特徴と異なる部分が存在するか否か等の画像処理を行う。例えば、デフォーカスによるムラなどの欠陥が基板の所定部分に存在する場合は、この所定部分の明暗差又は特徴の相違などの情報に基づいて、欠陥部分を認識して出力する。
【0019】
特定用途向け集積回路(Application Specific IC,以下「ASIC」という)又はLogic(論理)回路等の異なるピッチのパターンが混在する基板に対しては、それぞれのパターン領域毎に欠陥検査を行う。そして、パターンそれぞれに対して良否判定を行い、さらにそれらの論理和をとって、最終的な良否を判断する。
【0020】
また、通常一つのパターンに対しては一つの条件で欠陥検査を行うことが一般的である。しかし、実際に欠陥が存在しても、薄膜干渉の影響により、得られた画像の欠陥部分と良品部分との明暗差が明確でない場合がある。このため、一つのパターンに対して、波長を変化させること又は角度条件変化させることで複数回検査を行うことが望ましい。
【0021】
基板41のパターンのピッチをp、照明光の波長をλ、回折次数をm、基板41が水平に保持された時の基板の法線と基板と交わる照明光とのなす角度をθi、同様に当該法線と基板と交わる回折光とのなす角度をθd、チルト角をθtとそれぞれしたとき、次式が成立する。
(2) sin(θd−θt)−sin(θi+θt)=mλ/p
符号については図12に示すとおり、照明光の角度θiに関しては入射側に見込む角度方向をプラス、反射側に見込む角度方向をマイナスとし、回折光の角度θdとチルト角θtとに関しては、入射側に見込む角度方向をマイナス、反射側に見込む角度方向をプラスとそれぞれしている。また、回折次数mは基板への入射光の正反射光を基準として入射側に見込む角度方向をマイナス、反射側に見込む角度方向をプラスとそれぞれする。なお、θiの範囲は0度から90度までの範囲である。
【0022】
図14は、可視光として546nm、紫外光として266nmの光を用い、照明光学系と受光光学系とをそれぞれ、ステージの水平位置を基準に入射角が+45度、回折角が−10度となるように配置した場合の、ステージのチルト角(横軸)と検査対象のパターンピッチ(縦軸)との関係を表した図である。図からも明らかな様に、同じチルト角、即ち同じ角度条件なら紫外光を用いた方が細かいピッチのパターンの欠陥検査を行うことができることが分かる。
【0023】
また、基板41は球面反射鏡31の焦点面にほぼ一致するように配置されている。さらに、照明光学系1では光源11が照明光学系1の焦点面に配置され、受光光学系2ではカメラレンズ61の入射瞳面が球面反射鏡32の焦点面に配置されている。かかる配置により本実施形態の装置の光学系はテレセントリックな系を構成している。テレセントリックな光学系では、撮像素子71で取り込んだ画像の見え方を基板全面に渡って同じにすることができる。非テレセントリックな光学系では、基板上の位置に依存して上式(2)における基板への入射角θi+θtと、回折角θd−θtとがそれぞれ異なる。このため、回折光の強度は入射光の入射角に依存して変化するため、同じ欠陥でも基板上の位置により見え方が異なる場合がある。本実施形態にかかる欠陥検査装置(図1)は、テレセントリックな光学系を有しているので、基板全面にわたって入射角θi+θtと、回折角θd−θtとをそれぞれ一定にすることができる。したがって、基板上の欠陥部分の位置にかかわらず同じ欠陥であれば見え方が同じになるので検出感度が等しくなり、欠陥部分をより迅速かつ正確に特定することができる。
【0024】
また、屈折系のテレセントリック光学系を用いると装置が大型化するため、球面反射鏡を用いた反射型のテレセントリック光学系を採用することで装置の小型化を実現している。さらに好ましくは、偏心光学系であるので非点収差を小さくするために、球面反射鏡に対する反射光の入射角を小さくすることが望ましい。
本実施形態では、球面反射鏡に対する反射光の入射角は約10度である。
【0025】
(第2実施形態)
図2は、第2実施形態にかかる欠陥検査装置の概略構成を示す図である。なお、本実施形態を含めて以下に説明する全ての実施形態において、上記第1実施形態と同じ部分には第1実施形態と同一の符号を用い、重複する部分の説明は省略する。
【0026】
本実施形態は、上記第1実施形態の変形例であり、検査基板41に対する入射角の絶対値と回折角の絶対値とが僅かに異なる様に配置して、上記第1実施形態における照明光学系1と受光光学系2とを構成する球面反射鏡を、1つの球面反射鏡31で兼用させている。かかる構成により上記第1実施形態にかかる装置よりもさらに小型化することができ、またより微細なピッチのパターンを欠陥検査できる。
【0027】
(第3実施形態)
図3は、第3実施形態にかかる欠陥検査装置の概略構成を示す図である。第1実施形態にかかる装置に光源ユニット12及び照明光学系3を追加した構成である。照明光学系3は、リレーレンズ22、球面反射鏡33とから構成されている。照明光学系1からの照明光と、照明光学系3からの照明光との角度条件がそれぞれ異なるので、2種類のピッチのパターンを同時に検査することで処理時間を短縮出来る。特に、異なるピッチのパターンが混在するLogic(論理)回路パターンやASIC等を検査する場合に有効である。また、光源11と光源12との波長を変えておく事で、一つのパターンに対して同時に2つの条件で検査する事も可能となる
(第4実施形態)
図4は第4実施形態にかかる欠陥検査装置の概略構成を示す図である。本実施形態は第3実施形態の変形例であり、照明光学系1と照明光学系3とを構成する球面反射鏡を、球面反射鏡31で兼用させている構成である。換言すると、第2実施形態にかかる装置の光源部11の近傍に新たに光源を追加した構成と等価である。2つの光源の波長が同一であれば2種類のピッチパターンを同時に検査でき、また、相互に異なる波長であれば一つのパターンに対して異なる条件での同時に検査でき、更に装置の小型化が可能である。
【0028】
(第5実施形態)
図5は、本発明の第5実施形態にかかる欠陥検査装置の概略構成を示す図である。第3実施形態における照明光学系1又は照明光学系3にライン型のライトガイドファイバ101とシリンドリカルレンズ111とを用いる構成である。また、光源11からの光は反射鏡Mで折り曲げている。なお、かかる構成により、入射角が大きくなる場合でも、照明光量の損失を少なくすることができる。
【0029】
(第6実施形態)
図6は、第6実施形態にかかる欠陥検査装置の概略構成を示す図である。第1実施形態にかかる装置に受光光学系4を一組追加した構成である。受光光学系4は、球面反射鏡33とカメラレンズ62とで構成され、受光光学系4による像は撮像素子72で撮像される。また、光源11からの光は反射鏡Mで折り曲げている。第3、第4実施形態と同様に、それぞれ角度条件が異なるので2種類のピッチのパターンを同時に検査でき、処理時間を短縮できる。更に、水銀ランプ等のように複数のスペクトル線(波長光)を発する光源を用いれば、1つのパターン(被検物)に対して同時に2つの波長条件で被検物の検査を行う事も可能となる。また、Logic回路パターン又はASIC等で特に有効である点も同様である。
【0030】
(第7実施形態)
図7は、第7実施形態にかかる欠陥検査装置の概略構成を示す図である。本実施形態は第6実施形態の変形例であり、受光光学系2と受光光学系4とを構成する球面反射鏡を球面反射鏡32で兼用させた構成である。換言すると、第1実施形態の受光素子の近傍に新たにカメラレンズ62と撮像素子72とを追加した構成と等価である。2種類のピッチパターンを同時に検査、あるいは水銀ランプ等のように複数のスペクトル線(波長光)を発する光源を用いれば1つのパターン(被検物)に対して同時に2つの波長条件で被検物の検査ができるのみならず、装置の小型化が可能である。
【0031】
(第8実施形態)
図8は、第8実施形態にかかる欠陥検査装置の概略構成を示す図である。本実施形態は第6実施形態の変形例であり、照明光学系1と受光光学系4とを構成する球面反射鏡を球面反射鏡31で兼用させたものである。換言すると、第1実施形態の装置の光源の近傍に新たにカメラレンズ62と撮像素子72を追加した構成と等価である。2種類のピッチパターンを同時に検査、あるいは水銀ランプ等のように複数のスペクトル線(波長光)を発する光源を用いれば1つのパターン(被検物)に対して同時に2つの波長条件で被検物の検査ができるのみならず、装置の小型化が可能である。
【0032】
(第9実施形態)
図9は、第9実施形態にかかる欠陥検査装置の概略構成を示す図である。2組の照明光学系1,3と2組の受光光学系2,4とを有している。照明光学系と受光光学系共に凹面反射鏡31,32を兼用させている。照明光学系の光源11と光源12とはそれぞれ使用波長が異なっている。300nmより短い波長では、カメラレンズを色消しに収差補正するのが難しいので、受光光学系を2組設け、異なる波長を用いて検査する。
【0033】
(第10実施形態)
図10、11は第10実施形態にかかる欠陥検査装置の概略構成を示す図である。基本的な構成は上記第1実施形態と同様であり、同じ部分には同一の符号を使用し、重複する説明は省略する。光源光として紫外線領域の光、特にi線よりも短い波長の光を用いる場合、紫外線と空気中のNH4 +やSOX等の不純物とが光化学反応を起こし、例えば(NH4)2SO4を生じ、これが光学部品表面に付着することで光学部品に曇りを発生させる。この結果、反射性の光学部品(反射鏡等)の場合には反射率の低下を招き、屈折性の光学部品(レンズ等)の場合には透過率の低下を招く。また、ArFエキシマレーザのような光源では発光スペクトルが酸素の吸収スペクトル領域と重なる為、酸素の吸収による透過率の低下と、オゾン発生に起因する更なる反射性の光学部品の反射率の低下または屈折性の光学部品(レンズ等)の透過率の低下、光学部品表面との反応による装置内の環境汚染を引き起こす。本実施形態はかかる問題に鑑みたものであり、図10に示すように光学系全体を筐体101で囲い、光が筐体から出入りする部分に窓ガラス102を設けている。そして、筐体101内を窒素などの不活性ガスで満たすことで、(NH4)2SO4の発生やオゾン発生に起因する環境汚染を防止することができる。また、ガラス窓102と基板41との間は空気であるのでガラス窓102に上述の曇りが生じる。このため、ガラス窓102を定期的に交換することが望ましい。なお、全ての光学部品を交換する必要が無いので結果的に安価で済む。また、曇りの発生を軽減するため、基板41とガラス窓102との距離は極力近づけることが望ましい。
【0034】
図11は、第10実施形態の変形例の構成を示す図であり、窓ガラス102の代わりに不活性ガスによるエアカーテン104を用いるものである。不活性ガス供給ユニットGから供給された不活性ガスがバルブ103から勢い良く噴出してエアカーテン104を形成する。この不活性ガスのエアカーテン104が基板41周囲の空気の筒体内への侵入を防いでいる。なお、窓ガラスを設けた上に更にエアカーテンを形成しても良い。その時は、上述の窓ガラスの交換は不要となる。また、光学系だけでなく、装置内全体を不活性ガスで満たしても勿論良い。この場合は基板の交換時に基板の出入り口から汚染された外気が装置内に進入するおそれがあるので、基板の出入り口近傍に不活性ガスによるエアカーテンを形成して外部からの空気の進入を防ぐことが望ましい。
【0035】
また、上記第1〜第10実施形態においては画像処理装置を用いた自動化欠陥検査装置を示したが、画像処理装置81の代わりに基板画像を表示するモニタを設け、検査員がモニタ上の画像を見ながら良否判定を行う目視検査機としても良い。目視検査機の構成例を図13に示す。第1実施形態の欠陥検査装置の画像処理装置81をテレビモニタ91で置き換えたものである。モニタには回折光による基板の画像が表示され、検査員は目視で基板画像を観察し、基板の良否判定を行う。光源からCCD撮像素子までの光学系は筐体(チャンバ)101で囲われている。これは、紫外線が装置外に漏れて人体へ悪影響を及ぼすのを防止すると同時に、上述のように筐体内を化学的に清浄な空気や窒素等の不活性ガスで満たすことで、光学部品の曇りを防止する役割もある。
【0036】
また、上記第2実施形態〜第9実施形態にかかる欠陥検査装置において、第10実施形態と同様に、光学系を筐体101で囲い不活性ガスをその内部に供給することで、光源光の短波長化による光学部品表面の曇りの発生を低減できることは言うまでもない。
【0037】
また、上記各実施形態においては、Logic(論理)回路やASIC等の基板では微細なピッチパターンと比較的粗いピッチパターンとが併存する場合もあり、2種類の波長を用いる、即ち2種類の波長の一方を微細ピッチ用の検査光として紫外光を用い、他方を粗いピッチ用の検査光として可視光を用いても良い。その際、可視光と紫外光との双方に関して受光光学系での色収差補正(色消し)を行うのが困難であるため、可視光専用の受光光学系と紫外光専用の受光光学系とをそれぞれ設けることが好ましい。
【0038】
また、以上の各実施の形態による検査装置を用いて被検物体を検査することにより、被検基板に形成された微細なパターンの良又は不良(合否判定)が行われる。この結果、良品となった被検基板のみがデバイス等を完成させるための次の処理工程に受け渡され(移行し)て、不良品となった被検基板は、再工事、再生工事あるいは廃棄等の処理工程へ移行する。
【0039】
従って、以上の各実施の形態による検査装置を用いて検査工程を実行することにより、微細なパターンの検査を精度良くしかも確実に被検物体(ウエハ等の感光性基板)を検査することができるため、良好なる半導体デバイス(半導体装置、液晶表示装置、薄膜磁気ヘッド等)を製造することができる。
【0040】
なお、本発明は、上記各請求項に記載したものに限ることなく、以下に示す記載の発明とすることもできる。すなわち、例えば、本発明は、感光性基板を検査する検査工程を含む半導体デバイスの製造方法において、前記検査工程は、400nmよりも短い波長を持つ光で被検基板を照明する照明工程と、前記被検基板からの光を受光する受光工程と、前記受光工程にて光電検出して前記被検基板の表面状態を検出する処理工程と、を含むことを特徴とする半導体デバイスを製造する方法を提供することもできる。この場合、照明工程では照明光学系を用い、受光工程でと受光光学系を用いることが好ましく、照明光学系または受光光学系の少なくとも一方の曇りの低下を防止する曇り防止工程をさらに含むことがより望ましい。
【0041】
【発明の効果】
以上説明したように本発明においては、光源に紫外線を用いることで微細なピッチの検査が可能となる。また、光学系を筐体で囲み不活性ガスをその内部に供給することで曇りを除去できる。
【図面の簡単な説明】
【図1】第1実施形態にかかる欠陥検査装置の概略構成を示す図である。
【図2】第2実施形態にかかる欠陥検査装置の概略構成を示す図である。
【図3】第3実施形態にかかる欠陥検査装置の概略構成を示す図である。
【図4】第4実施形態にかかる欠陥検査装置の概略構成を示す図である。
【図5】第5実施形態にかかる欠陥検査装置の概略構成を示す図である。
【図6】第6実施形態にかかる欠陥検査装置の概略構成を示す図である。
【図7】第7実施形態にかかる欠陥検査装置の概略構成を示す図である。
【図8】第8実施形態にかかる欠陥検査装置の概略構成を示す図である。
【図9】第9実施形態にかかる欠陥検査装置の概略構成を示す図である。
【図10】第10実施形態にかかる欠陥検査装置の概略構成を示す図である。
【図11】第10実施形態の変形例を示す図である。
【図12】符号の正負を示す図である。
【図13】第1実施形態の変形例を示す図である。
【図14】チルト角と検査対象のピッチとの関係を示す図である。
【符号の説明】
1,3 照明光学系
2,4 受光光学系
11 光源
31,32,33 凹面反射鏡
41 基板
51 ステージ
61 カメラレンズ
71 撮像素子
81 画像処理装置
91 モニタ
101 筐体
102 窓
103 バルブ
104 エアカーテン
G 不活性ガス供給ユニット
M 反射鏡
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a defect inspection apparatus that inspects defects such as scratches, film thickness unevenness, and dust on a liquid crystal substrate or IC wafer having a predetermined circuit pattern.
[0002]
[Prior art]
For defect inspections such as film thickness unevenness and scratches on the surface of IC wafers and liquid crystal substrates, the illumination light of various light beams is irradiated from various angles, and the light from the test object is rotated or swung. In many cases, an observer observes directly by visual observation. Recently, with the quantification of defects, the labor saving of inspection, and the increase in speed, there has been a strong demand for automating defect inspection, and various apparatuses have been proposed in response to this request. For example, an image of a substrate is captured by diffracted light generated from a repetitive pattern on the substrate, image processing is performed, and defects are inspected.
[0003]
[Problems to be solved by the invention]
In a normal appearance inspection of the substrate visually observed by an observer, the substrate is irradiated with white light spotlight, and the quality of the substrate is judged by seeing how the reflected light is colored. Here, diffracted light is generated from the portion of the substrate where the repeated pattern is formed, and the observer observes the spectrum of the diffracted light. The exposure area (shot area) where defects such as defocus are present differs from the normal shot area where the surrounding defects do not exist and the coloration or intensity of the spectrum of the diffracted light is different. can do.
[0004]
When diffracted light is generated from a regular pattern, the following conditional expression (1) is satisfied.
(1) sinθd−sinθi = mλ / p
Here, θi represents an incident angle, θd represents a diffraction angle, m represents a diffraction order, λ represents a wavelength, and p represents a pitch. As is apparent from the above equation, it is understood that the order and wavelength should be reduced if diffracted light is generated from a pattern having a smaller pitch under the same angle condition.
[0005]
When visible light is used as the light source, the lower limit value of λ is almost in the vicinity of the h-line (405 nm), that is, about 400 nm, and the diffraction order of diffracted light other than zero-order light, that is, specularly reflected light is 1 in absolute value. Therefore, when the pitch falls below a predetermined value, diffracted light is not generated, and inspection cannot be performed.
[0006]
On the other hand, the automatic inspection apparatus uses the difference in the intensity of the diffracted light between the defective portion and the normal portion as in the visual inspection, and therefore has the above-mentioned problems as long as visible light is used as the light source.
[0007]
The present invention has been made in view of such problems, and an object of the present invention is to provide a defect inspection apparatus and an inspection method capable of performing good defect inspection on a substrate on which a repetitive pattern with a finer pitch is formed. .
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a defect inspection apparatus for inspecting a defect of the periodic pattern of a substrate to be tested on which a periodic pattern is formed, at least one of which is ultraviolet light shorter than 400 nm. A plurality of light sources that respectively supply light of different wavelengths, and one concave reflecting mirror that converts light emitted from each of the plurality of light sources into substantially parallel light, and through the concave reflecting mirror, An illumination optical system that irradiates the test substrate with parallel light at a predetermined angle, respectively, and only a desired order of diffracted light among a plurality of diffracted lights generated from the test substrate for each of the irradiated lights. There is provided a defect inspection apparatus comprising: one light receiving unit that receives light to form the periodic pattern image.
[0011]
Further, in a preferred aspect of the present invention, the light irradiated from each of the plurality of light sources is irradiated through the illumination optical system so that the incident angle to the test substrate differs according to the wavelength of the light. It is desirable.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a defect inspection apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
[0013]
(First embodiment)
FIG. 1 is a diagram showing a schematic configuration of the defect inspection apparatus according to the first embodiment. The light emitted from the light source 11 as the light source unit passes through the relay lens 21 and enters the spherical reflecting mirror 31. Note that the light source unit is not limited to the configuration of the light source itself that emits light having a predetermined wavelength, but a light collecting member that collects the light from the light source and the light source (a reflecting mirror such as a condensing lens or an elliptical mirror). Etc.). The system from the relay lens 21 to the spherical reflecting mirror 31 constitutes the illumination optical system 1. The light source 11 uses, for example, a 365-nm i-line or 313-nm J-ray with a mercury lamp, 266 nm with a YAG laser 4th harmonic, 248 nm with a KrF excimer laser, and 193 nm with an ArF excimer laser. be able to. In addition, a variable aperture stop is provided at the emission end of the light source 11 to shield light unnecessary for defect inspection measurement. It is even more preferable that the light source 11 supplies light having a wavelength of 365 nm or less.
[0014]
When a mercury lamp is used, light in the ultraviolet region is extracted from white light emitted from the light source by an interference filter (not shown) and used as illumination light. More preferably, for example, a configuration in which a plurality of interference filters having different transmission wavelength ranges are provided on the revolver and the revolver is rotated by a motor so that the interference filter can be selectively inserted into and removed from the optical axis is desirable. When a laser is used as the light source 11, it is desirable to reduce the coherence of the laser light.
[0015]
The light reflected by the spherical reflecting mirror 31 enters the substrate 41 placed on the stage 51 as a substantially parallel light beam. The stage 51 can perform both rotation and tilt (tilt) about a predetermined axis. The diffracted light diffracted by the substrate 41 is reflected by the spherical reflecting mirror 32 and forms an image on the CCD image pickup surface of the image pickup device 71 by the camera lens 61. Here, the spherical reflecting mirror 32 and the camera lens 61 constitute the light receiving optical system 2, and the light receiving optical system 2 and the image sensor 71 constitute a light receiving unit. Since the diffraction angle of the diffracted light from the substrate 41 varies depending on the pattern pitch, the stage 41 is appropriately tilted by the stage 51 so that the diffracted light is incident on the light receiving optical system 2. Further, instead of tilting the stage, either one or both of the illumination optical system 1 and the light receiving optical system 2 may be rotated about the tilt axis.
[0016]
A variable aperture stop is provided in the camera lens 61 to block light unnecessary for measurement and at the same time determine the numerical aperture on the substrate side. If the numerical aperture is reduced by reducing the aperture stop, the depth of focus on the substrate side can be increased, so that peripheral images are not blurred even when tilted.
[0017]
The camera lens 61 is not limited to a single focal length lens. A plurality of lenses having different focal lengths can be exchanged, and it is desirable to change the imaging magnification by selecting a lens so that the size of the substrate image and the size of the imaging surface of the imaging device are substantially matched. Image processing efficiency can be improved by making the size of the substrate image substantially coincide with the size of the imaging surface of the imaging device. More preferably, if the camera lens 61 is a varifocal lens or a zoom lens, the magnification can be changed without replacing the lens. If it is desired to perform defect inspection in a short time, it is desirable to perform inspection without changing the magnification.
[0018]
The image processing apparatus 81 compares the image of the substrate 41 being inspected with the image of the non-defective substrate stored in advance, so that there is a part that is different from the feature of the non-defective substrate that has been subjected to pattern matching or learning in advance. Image processing such as NO is performed. For example, when a defect such as unevenness due to defocusing exists in a predetermined portion of the substrate, the defective portion is recognized and output based on information such as a difference in brightness or a difference in characteristics of the predetermined portion.
[0019]
For substrates with different pitch patterns, such as application specific ICs (hereinafter referred to as “ASIC”) or logic (logic) circuits, defect inspection is performed for each pattern region. Then, pass / fail judgment is performed for each pattern, and further logical OR is performed to determine final pass / fail.
[0020]
In general, defect inspection is performed on one pattern under one condition. However, even if a defect actually exists, the difference in brightness between the defective portion and the non-defective portion of the obtained image may not be clear due to the influence of thin film interference. For this reason, it is desirable to inspect a single pattern a plurality of times by changing the wavelength or changing the angle condition.
[0021]
The pitch of the pattern of the substrate 41 is p, the wavelength of the illumination light is λ, the diffraction order is m, the angle between the normal line of the substrate when the substrate 41 is held horizontally and the illumination light intersecting the substrate is θi, and similarly When the angle between the normal line and the diffracted light intersecting the substrate is θd and the tilt angle is θt, the following equation is established.
(2) sin (θd−θt) −sin (θi + θt) = mλ / p
Regarding the sign, as shown in FIG. 12, regarding the angle θi of the illumination light, the angle direction expected on the incident side is positive, the angle direction expected on the reflection side is negative, and regarding the angle θd and tilt angle θt of the diffracted light, The angle direction that is expected on the reflection side is negative, and the angle direction that is expected on the reflection side is positive. For the diffraction order m, the angle direction expected on the incident side with respect to the specularly reflected light of the incident light on the substrate is minus, and the angle direction expected on the reflection side is plus. The range of θi is a range from 0 degrees to 90 degrees.
[0022]
In FIG. 14, 546 nm light is used as visible light and 266 nm light is used as ultraviolet light. The illumination optical system and the light receiving optical system have an incident angle of +45 degrees and a diffraction angle of −10 degrees with respect to the horizontal position of the stage. FIG. 6 is a diagram showing the relationship between the tilt angle (horizontal axis) of the stage and the pattern pitch (vertical axis) to be inspected when arranged as described above. As is apparent from the figure, it can be seen that, when the same tilt angle, that is, the same angle condition is used, a defect inspection of a fine pitch pattern can be performed by using ultraviolet light.
[0023]
Further, the substrate 41 is arranged so as to substantially coincide with the focal plane of the spherical reflecting mirror 31. Further, in the illumination optical system 1, the light source 11 is disposed on the focal plane of the illumination optical system 1 , and in the light receiving optical system 2, the entrance pupil plane of the camera lens 61 is disposed on the focal plane of the spherical reflector 32. With this arrangement, the optical system of the apparatus of this embodiment forms a telecentric system. In the telecentric optical system, the appearance of the image captured by the image sensor 71 can be made the same over the entire surface of the substrate. In the non-telecentric optical system, the incident angle θi + θt to the substrate and the diffraction angle θd−θt in the above formula (2) differ depending on the position on the substrate. For this reason, since the intensity of the diffracted light changes depending on the incident angle of the incident light, the appearance of the same defect may differ depending on the position on the substrate. Since the defect inspection apparatus according to the present embodiment (FIG. 1) has a telecentric optical system, the incident angle θi + θt and the diffraction angle θd−θt can be made constant over the entire surface of the substrate. Therefore, since the appearance is the same for the same defect regardless of the position of the defect portion on the substrate, the detection sensitivity becomes equal, and the defect portion can be identified more quickly and accurately.
[0024]
Further, since the apparatus becomes large when a refractive telecentric optical system is used, downsizing of the apparatus is realized by adopting a reflective telecentric optical system using a spherical reflector. More preferably, since it is a decentered optical system, it is desirable to reduce the incident angle of the reflected light with respect to the spherical reflecting mirror in order to reduce astigmatism.
In this embodiment, the incident angle of the reflected light with respect to the spherical reflector is about 10 degrees.
[0025]
(Second Embodiment)
FIG. 2 is a diagram illustrating a schematic configuration of the defect inspection apparatus according to the second embodiment. In all the embodiments described below including this embodiment, the same portions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description of the overlapping portions is omitted.
[0026]
The present embodiment is a modification of the first embodiment, and is arranged so that the absolute value of the incident angle with respect to the inspection substrate 41 is slightly different from the absolute value of the diffraction angle, so that the illumination optics in the first embodiment is used. The spherical reflecting mirror constituting the system 1 and the light receiving optical system 2 is shared by one spherical reflecting mirror 31. With this configuration, it is possible to further reduce the size of the apparatus according to the first embodiment, and it is possible to inspect a pattern with a finer pitch.
[0027]
(Third embodiment)
FIG. 3 is a diagram showing a schematic configuration of the defect inspection apparatus according to the third embodiment. It is the structure which added the light source unit 12 and the illumination optical system 3 to the apparatus concerning 1st Embodiment. The illumination optical system 3 includes a relay lens 22 and a spherical reflecting mirror 33. Since the angle conditions of the illumination light from the illumination optical system 1 and the illumination light from the illumination optical system 3 are different from each other, the processing time can be shortened by simultaneously inspecting two types of pitch patterns. This is particularly effective when inspecting a Logic (logic) circuit pattern in which patterns having different pitches are mixed, an ASIC, or the like. In addition, by changing the wavelengths of the light source 11 and the light source 12, it is possible to inspect one pattern simultaneously under two conditions (fourth embodiment).
FIG. 4 is a diagram showing a schematic configuration of the defect inspection apparatus according to the fourth embodiment. The present embodiment is a modification of the third embodiment, in which the spherical reflector 31 constituting the illumination optical system 1 and the illumination optical system 3 is also used as the spherical reflector 31. In other words, this is equivalent to a configuration in which a light source is newly added in the vicinity of the light source unit 11 of the apparatus according to the second embodiment. If the two light sources have the same wavelength, two types of pitch patterns can be inspected at the same time. If the wavelengths are different from each other, one pattern can be inspected at the same time under different conditions. It is.
[0028]
(Fifth embodiment)
FIG. 5 is a diagram showing a schematic configuration of a defect inspection apparatus according to the fifth embodiment of the present invention. This is a configuration in which a line type light guide fiber 101 and a cylindrical lens 111 are used in the illumination optical system 1 or the illumination optical system 3 in the third embodiment. The light from the light source 11 is bent by the reflecting mirror M. Note that with this configuration, it is possible to reduce the loss of illumination light amount even when the incident angle increases.
[0029]
(Sixth embodiment)
FIG. 6 is a diagram showing a schematic configuration of the defect inspection apparatus according to the sixth embodiment. It is the structure which added one set of the light reception optical system 4 to the apparatus concerning 1st Embodiment. The light receiving optical system 4 includes a spherical reflecting mirror 33 and a camera lens 62, and an image obtained by the light receiving optical system 4 is picked up by the image sensor 72. The light from the light source 11 is bent by the reflecting mirror M. Similar to the third and fourth embodiments, since the angle conditions are different, two types of pitch patterns can be inspected simultaneously, and the processing time can be shortened. Furthermore, if a light source that emits multiple spectral lines (wavelength light), such as a mercury lamp, is used, it is possible to inspect a test object simultaneously under two wavelength conditions for one pattern (test object). It becomes. This also applies to points that are particularly effective for Logic circuit patterns or ASICs.
[0030]
(Seventh embodiment)
FIG. 7 is a diagram showing a schematic configuration of the defect inspection apparatus according to the seventh embodiment. The present embodiment is a modification of the sixth embodiment, in which the spherical reflecting mirror 32 constituting the light receiving optical system 2 and the light receiving optical system 4 is also used as the spherical reflecting mirror 32. In other words, this is equivalent to a configuration in which a camera lens 62 and an image sensor 72 are newly added in the vicinity of the light receiving element of the first embodiment. Inspecting two types of pitch patterns at the same time, or using a light source that emits multiple spectral lines (wavelength light) such as a mercury lamp, the test object is simultaneously subjected to two wavelength conditions for one pattern (test object). This makes it possible to reduce the size of the apparatus.
[0031]
(Eighth embodiment)
FIG. 8 is a diagram showing a schematic configuration of a defect inspection apparatus according to the eighth embodiment. This embodiment is a modification of the sixth embodiment, in which the spherical reflecting mirror 31 constituting the illumination optical system 1 and the light receiving optical system 4 is also used as the spherical reflecting mirror 31. In other words, this is equivalent to a configuration in which a camera lens 62 and an image sensor 72 are newly added in the vicinity of the light source of the apparatus of the first embodiment. Inspecting two types of pitch patterns at the same time, or using a light source that emits multiple spectral lines (wavelength light) such as a mercury lamp, the test object is simultaneously subjected to two wavelength conditions for one pattern (test object). This makes it possible to reduce the size of the apparatus.
[0032]
(Ninth embodiment)
FIG. 9 is a diagram showing a schematic configuration of the defect inspection apparatus according to the ninth embodiment. Two sets of illumination optical systems 1 and 3 and two sets of light receiving optical systems 2 and 4 are provided. Both the illumination optical system and the light receiving optical system share the concave reflecting mirrors 31 and 32. The light source 11 and the light source 12 of the illumination optical system have different use wavelengths. At wavelengths shorter than 300 nm, it is difficult to achromatically correct the camera lens achromatically, so two sets of light receiving optical systems are provided, and inspection is performed using different wavelengths.
[0033]
(10th Embodiment)
10 and 11 are diagrams showing a schematic configuration of the defect inspection apparatus according to the tenth embodiment. The basic configuration is the same as that of the first embodiment, and the same reference numerals are used for the same parts, and duplicate descriptions are omitted. When light in the ultraviolet region, particularly light with a wavelength shorter than i-line, is used as the light source light, the ultraviolet light and impurities such as NH 4 + and SO X in the air cause a photochemical reaction, for example, (NH 4 ) 2 SO 4 This occurs and adheres to the surface of the optical component, thereby causing fogging of the optical component. As a result, in the case of a reflective optical component (reflecting mirror or the like), the reflectance is lowered, and in the case of a refractive optical component (lens or the like), the transmittance is lowered. In addition, since the emission spectrum overlaps with the absorption spectrum region of oxygen in a light source such as an ArF excimer laser, a decrease in transmittance due to absorption of oxygen and a decrease in reflectance of additional reflective optical components due to ozone generation or This causes a decrease in the transmittance of refractive optical components (such as a lens) and environmental contamination in the apparatus due to a reaction with the surface of the optical components. The present embodiment has been made in view of such a problem. As shown in FIG. 10, the entire optical system is surrounded by a casing 101, and a window glass 102 is provided at a portion where light enters and exits the casing. Then, by filling the inside of the housing 101 with an inert gas such as nitrogen, it is possible to prevent environmental pollution caused by generation of (NH 4 ) 2 SO 4 and generation of ozone. Further, since the space between the glass window 102 and the substrate 41 is air, the above-described fogging occurs in the glass window 102. For this reason, it is desirable to replace the glass window 102 periodically. In addition, since it is not necessary to replace all the optical components, the cost can be reduced as a result. Further, in order to reduce the occurrence of fogging, it is desirable that the distance between the substrate 41 and the glass window 102 be as close as possible.
[0034]
FIG. 11 is a diagram showing a configuration of a modified example of the tenth embodiment, in which an air curtain 104 made of an inert gas is used instead of the window glass 102. The inert gas supplied from the inert gas supply unit G is ejected vigorously from the valve 103 to form the air curtain 104. This inert gas air curtain 104 prevents the air around the substrate 41 from entering the cylinder. An air curtain may be further formed on the window glass. At that time, it is not necessary to replace the above window glass. Of course, not only the optical system but also the entire apparatus may be filled with an inert gas. In this case, since the contaminated outside air may enter the device from the substrate entrance / exit when replacing the substrate, an air curtain with an inert gas is formed near the substrate entrance / exit to prevent the entry of air from the outside. Is desirable.
[0035]
In the first to tenth embodiments, the automated defect inspection apparatus using the image processing apparatus is shown. However, instead of the image processing apparatus 81, a monitor for displaying a substrate image is provided, and the inspector displays an image on the monitor. It is good also as a visual inspection machine which performs pass / fail judgment while watching. A configuration example of the visual inspection machine is shown in FIG. The image processing apparatus 81 of the defect inspection apparatus according to the first embodiment is replaced with a television monitor 91. An image of the substrate by the diffracted light is displayed on the monitor, and the inspector visually observes the substrate image to determine the quality of the substrate. An optical system from the light source to the CCD image sensor is surrounded by a casing (chamber) 101. This prevents ultraviolet rays from leaking out of the device and adversely affecting the human body. At the same time, as described above, the housing is filled with an inert gas such as chemically clean air or nitrogen, so that the optical components are clouded. There is also a role to prevent.
[0036]
Moreover, in the defect inspection apparatus according to the second to ninth embodiments, as in the tenth embodiment, the optical system is surrounded by the casing 101 and an inert gas is supplied to the interior thereof, so that Needless to say, the occurrence of fogging on the surface of the optical component due to the shorter wavelength can be reduced.
[0037]
In each of the above embodiments, a fine pitch pattern and a relatively coarse pitch pattern may coexist on a substrate such as a logic (logic) circuit or an ASIC, and two types of wavelengths are used, that is, two types of wavelengths. One of the above may use ultraviolet light as inspection light for fine pitches, and the other may use visible light as inspection light for coarse pitches. At that time, it is difficult to correct chromatic aberration (achromatization) in the light receiving optical system for both visible light and ultraviolet light. Therefore, a light receiving optical system dedicated to visible light and a light receiving optical system dedicated to ultraviolet light are respectively used. It is preferable to provide it.
[0038]
In addition, by inspecting an object to be inspected using the inspection apparatus according to each of the above embodiments, a fine pattern formed on the substrate to be inspected is good or bad (pass / fail judgment). As a result, only the non-defective test substrate is transferred (shifted) to the next processing step to complete the device, etc., and the defective test substrate is reconstructed, regenerated or discarded. Etc.
[0039]
Therefore, by executing the inspection process using the inspection apparatus according to each of the above embodiments, it is possible to accurately inspect a minute pattern with high accuracy and reliably inspect an object to be inspected (photosensitive substrate such as a wafer). Therefore, a favorable semiconductor device (semiconductor device, liquid crystal display device, thin film magnetic head, etc.) can be manufactured.
[0040]
In addition, this invention can also be set as the invention of the description shown below, without restricting to what was described in said each claim. That is, for example, the present invention provides a semiconductor device manufacturing method including an inspection step of inspecting a photosensitive substrate, wherein the inspection step includes an illumination step of illuminating the substrate to be tested with light having a wavelength shorter than 400 nm, and A method of manufacturing a semiconductor device, comprising: a light receiving step for receiving light from a test substrate; and a processing step for detecting a surface state of the test substrate by performing photoelectric detection in the light receiving step. It can also be provided. In this case, it is preferable to use the illumination optical system in the illumination process, and to use the light reception optical system in the light reception process, and further includes a fog prevention process for preventing a decrease in fogging of at least one of the illumination optical system and the light reception optical system. More desirable.
[0041]
【The invention's effect】
As described above, in the present invention, it is possible to inspect a fine pitch by using ultraviolet rays as a light source. Further, fogging can be removed by enclosing the optical system in a casing and supplying an inert gas therein.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a defect inspection apparatus according to a first embodiment.
FIG. 2 is a diagram showing a schematic configuration of a defect inspection apparatus according to a second embodiment.
FIG. 3 is a diagram showing a schematic configuration of a defect inspection apparatus according to a third embodiment.
FIG. 4 is a diagram showing a schematic configuration of a defect inspection apparatus according to a fourth embodiment.
FIG. 5 is a diagram showing a schematic configuration of a defect inspection apparatus according to a fifth embodiment.
FIG. 6 is a diagram showing a schematic configuration of a defect inspection apparatus according to a sixth embodiment.
FIG. 7 is a diagram showing a schematic configuration of a defect inspection apparatus according to a seventh embodiment.
FIG. 8 is a diagram showing a schematic configuration of a defect inspection apparatus according to an eighth embodiment.
FIG. 9 is a diagram showing a schematic configuration of a defect inspection apparatus according to a ninth embodiment.
FIG. 10 is a diagram showing a schematic configuration of a defect inspection apparatus according to a tenth embodiment.
FIG. 11 is a diagram showing a modification of the tenth embodiment.
FIG. 12 is a diagram showing the sign of a sign.
FIG. 13 is a diagram showing a modification of the first embodiment.
FIG. 14 is a diagram illustrating a relationship between a tilt angle and a pitch to be inspected.
[Explanation of symbols]
1, 3 Illumination optical system 2, 4 Light receiving optical system 11 Light source 31, 32, 33 Concave reflector 41 Substrate 51 Stage 61 Camera lens 71 Image sensor 81 Image processing device 91 Monitor 101 Case 102 Window 103 Valve 104 Air curtain G Not Active gas supply unit M Reflector

Claims (2)

周期パターンが表面に形成されている被検基板の前記周期パターンの欠陥を検査する欠陥検査装置であって、
少なくとも1つが400nmより短い紫外光であって、互いに異なる波長の光をそれぞれ供給する複数の光源と、
前記複数の光源からそれぞれ照射される光を略平行光に変換する1つの凹面反射鏡を含み、該凹面反射鏡を介して前記略平行光を前記被検基板にそれぞれ所定の角度で照射する照明光学系と、
前記照射された光ごとに前記被検基板から発生する、それぞれの複数の回折光のうち所望次数の回折光のみをそれぞれ受光して前記周期パターン像を形成する1つの受光ユニットと、
を備えることを特徴とする欠陥検査装置。
A defect inspection apparatus for inspecting a defect of the periodic pattern of a test substrate on which a periodic pattern is formed,
A plurality of light sources each supplying at least one light having a wavelength different from each other, wherein at least one is ultraviolet light shorter than 400 nm;
Illumination that includes one concave reflecting mirror that converts light emitted from each of the plurality of light sources into substantially parallel light, and that irradiates the substantially parallel light at a predetermined angle through the concave reflecting mirror, respectively. Optical system,
One light receiving unit that receives only the diffracted light of a desired order among the plurality of diffracted lights generated from the test substrate for each of the irradiated light, and forms the periodic pattern image,
A defect inspection apparatus comprising:
前記複数の光源からそれぞれ照射される光は、前記光の波長に応じて前記照明光学系を介して前記被検基板への入射角度が異なるように照射されることを特徴とする請求項1記載の欠陥検査装置。  The light emitted from each of the plurality of light sources is emitted so as to have different incident angles to the test substrate via the illumination optical system according to the wavelength of the light. Defect inspection equipment.
JP15405799A 1999-06-01 1999-06-01 Defect inspection equipment Expired - Lifetime JP4622007B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15405799A JP4622007B2 (en) 1999-06-01 1999-06-01 Defect inspection equipment
KR1020000029549A KR20010007152A (en) 1999-06-01 2000-05-31 Apparatus and method for defect inspection
US10/304,787 US20030112428A1 (en) 1999-06-01 2002-11-27 Method and apparatus for surface inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15405799A JP4622007B2 (en) 1999-06-01 1999-06-01 Defect inspection equipment

Publications (3)

Publication Number Publication Date
JP2000338049A JP2000338049A (en) 2000-12-08
JP2000338049A5 JP2000338049A5 (en) 2007-04-26
JP4622007B2 true JP4622007B2 (en) 2011-02-02

Family

ID=15575979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15405799A Expired - Lifetime JP4622007B2 (en) 1999-06-01 1999-06-01 Defect inspection equipment

Country Status (1)

Country Link
JP (1) JP4622007B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529108B2 (en) * 2000-12-25 2010-08-25 株式会社ニコン Defect inspection equipment
JP4635939B2 (en) * 2006-03-30 2011-02-23 株式会社ニコン Surface inspection device
JP2009097988A (en) * 2007-10-17 2009-05-07 Nikon Corp Surface inspection apparatus
JP2010019639A (en) * 2008-07-09 2010-01-28 Lasertec Corp Irregularity detection device and pattern inspection device
JP2012189544A (en) * 2011-03-14 2012-10-04 Toray Eng Co Ltd Apparatus and method for inspecting film thickness unevenness
CN112309885A (en) * 2020-11-11 2021-02-02 西安奕斯伟硅片技术有限公司 Device, equipment and method for visually detecting silicon wafer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165641A (en) * 1990-10-30 1992-06-11 Nec Corp Inspecting device for external appearance of wafer
JPH08162511A (en) * 1994-10-07 1996-06-21 Hitachi Ltd Manufacture of semiconductor substrate, and method of inspecting defect of pattern on object of inspection and its device
JPH08254464A (en) * 1995-03-15 1996-10-01 Yokogawa Electric Corp Spectrographic device
JPH0961365A (en) * 1995-08-22 1997-03-07 Olympus Optical Co Ltd Surface defect inspecting device
JPH10232122A (en) * 1997-02-19 1998-09-02 Nikon Corp Defect-inspecting device
JPH1130589A (en) * 1997-07-10 1999-02-02 Nikon Corp Device and method for surface inspection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165641A (en) * 1990-10-30 1992-06-11 Nec Corp Inspecting device for external appearance of wafer
JPH08162511A (en) * 1994-10-07 1996-06-21 Hitachi Ltd Manufacture of semiconductor substrate, and method of inspecting defect of pattern on object of inspection and its device
JPH08254464A (en) * 1995-03-15 1996-10-01 Yokogawa Electric Corp Spectrographic device
JPH0961365A (en) * 1995-08-22 1997-03-07 Olympus Optical Co Ltd Surface defect inspecting device
JPH10232122A (en) * 1997-02-19 1998-09-02 Nikon Corp Defect-inspecting device
JPH1130589A (en) * 1997-07-10 1999-02-02 Nikon Corp Device and method for surface inspection

Also Published As

Publication number Publication date
JP2000338049A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
US8345232B2 (en) Optical inspection system and method
US7372557B2 (en) Surface defect inspection apparatus and surface defect inspection method
JP6030616B2 (en) Objective optical system and sample inspection device
JP3692685B2 (en) Defect inspection equipment
JPH05118994A (en) Method and device for inspecting defect of surface having repeating pattern
JP4622007B2 (en) Defect inspection equipment
JP7274312B2 (en) Optical system for automated optical inspection
JPS6321855B2 (en)
KR20010007152A (en) Apparatus and method for defect inspection
US6989904B2 (en) Method of determining local structures in optical crystals
JP4736629B2 (en) Surface defect inspection equipment
JP2001289794A (en) Defect inspection device
JPS6153511A (en) Apparatus for inspecting flaw
JP2002311332A (en) Microscope for examination and objective lens for this purpose
JP2008008777A (en) Surface inspection system
JP2007163553A (en) Microscope, objective lens unit for microscope, and adaptor for objective lens
JP2001228096A (en) Flaw inspection device
JP4521548B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JP4883817B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JPH05224294A (en) Reflected illumination type projecting device
JPH11118725A (en) Defect inspecting device
JPH0340802B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term