[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4621719B2 - Back-illuminated image sensor - Google Patents

Back-illuminated image sensor Download PDF

Info

Publication number
JP4621719B2
JP4621719B2 JP2007252601A JP2007252601A JP4621719B2 JP 4621719 B2 JP4621719 B2 JP 4621719B2 JP 2007252601 A JP2007252601 A JP 2007252601A JP 2007252601 A JP2007252601 A JP 2007252601A JP 4621719 B2 JP4621719 B2 JP 4621719B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
light
layer
photoelectric conversion
embedded member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007252601A
Other languages
Japanese (ja)
Other versions
JP2009088030A (en
Inventor
康夫 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007252601A priority Critical patent/JP4621719B2/en
Publication of JP2009088030A publication Critical patent/JP2009088030A/en
Application granted granted Critical
Publication of JP4621719B2 publication Critical patent/JP4621719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、半導体基板の裏面側から光を照射し、光に応じて半導体基板内で発生した電荷を、半導体基板の表面側から読み出して撮像を行う裏面照射型撮像素子に関する。   The present invention relates to a backside illuminating type imaging device that irradiates light from the back surface side of a semiconductor substrate, reads out charges generated in the semiconductor substrate in response to light from the front surface side of the semiconductor substrate, and performs imaging.

現在、半導体基板の裏面側から光を照射し、この光に応じて半導体基板内で発生した電荷を半導体基板の表面側に形成された電荷蓄積領域に蓄積し、ここに蓄積された電荷に応じた信号を、CCDやCMOS回路等によって外部に出力して撮像を行う裏面照射型撮像素子が提案されている。以下では、この裏面照射型撮像素子に対し、現在普及している一般的な撮像素子のことを表面照射型撮像素子という。裏面照射型撮像素子としては、例えば下記文献に示すものがある。   Currently, light is irradiated from the back side of the semiconductor substrate, and charges generated in the semiconductor substrate in response to this light are accumulated in a charge accumulation region formed on the front side of the semiconductor substrate, and in accordance with the charges accumulated here A backside-illuminated image sensor is proposed in which a signal is output to the outside by a CCD, a CMOS circuit, or the like for imaging. In the following, a general imaging device that is currently popular with respect to the backside illumination type imaging device is referred to as a front side illumination type imaging device. Examples of the back-illuminated image sensor include those shown in the following documents.

特開2003−338615号公報JP 2003-338615 A 特開2006−261372号公報JP 2006-261372 A 特開2006−173351号公報JP 2006-173351 A 特開2006−80457号公報JP 2006-80457 A

ところで、裏面照射型撮像素子では、裏面から照射された光のうち特に赤色成分の光の吸収率が低くならないようにするため、半導体基板のシリコン層が少なくとも10μm程度の厚さが必要である。しかし、近年、撮像素子の微細化に伴って画素サイズの微細化が進むと、画素の面積が小さくなる一方で、各画素の光電変換領域の深さが深くする必要がある。このような画素構造を有する撮像素子を製造することは技術的に困難であり、また、入射光のうち撮像領域に対して傾斜方向から光が入射する場合、入射光が隣接する他の画素の光電変換部に進入することで混色の原因となってしまう。一方で、光電変換領域の深さがシリコン層に対して浅い場合は、半導体基板の裏面近くで発生した電子が表面の電荷蓄積領域に到達するまでに半導体基板において光が照射される面に対して水平方向に拡散してしまい、これも混色の原因となる。   By the way, in the backside illuminating type imaging device, the silicon layer of the semiconductor substrate needs to have a thickness of at least about 10 μm so that the absorption rate of the light of the red component among the light irradiated from the backside is not lowered. However, in recent years, when the pixel size is further miniaturized with the miniaturization of the image sensor, the area of the pixel is reduced, and the photoelectric conversion region of each pixel needs to be deepened. It is technically difficult to manufacture an image pickup device having such a pixel structure, and when light enters the image pickup region from an inclined direction with respect to the image pickup region, the incident light is incident on other adjacent pixels. Entering the photoelectric conversion unit causes color mixing. On the other hand, when the depth of the photoelectric conversion region is shallower than that of the silicon layer, the surface of the semiconductor substrate irradiated with light before the electrons generated near the back surface of the semiconductor substrate reach the charge storage region on the surface. Diffuse in the horizontal direction, which also causes color mixing.

上記特許文献2では、p型領域を画素間において、裏面近傍まで形成しているが、画素が微細で、シリコン層が10μm程度になると、技術的に困難である。   In Patent Document 2, the p-type region is formed between the pixels up to the vicinity of the back surface, but it is technically difficult if the pixels are fine and the silicon layer is about 10 μm.

上記特許文献1及び3では、シリコン層にp型の不純物濃度プロファイルを形成し、そのポテンシャルの勾配によって、あるいは、外部から電界をかけることによって、光電変換部で生成された電子を表面にドリフトさせることで混色の防止を図るものであるが、傾斜方向から進入する光に対して根本的に解決するものではない。   In Patent Documents 1 and 3, a p-type impurity concentration profile is formed in the silicon layer, and electrons generated in the photoelectric conversion unit are drifted to the surface by the gradient of the potential or by applying an electric field from the outside. This is intended to prevent color mixing, but it does not fundamentally solve the problem of light entering from the tilt direction.

上記特許文献4では、裏面をエッチングして壁状のシリコン膜を形成しそのシリコン膜に反射膜を形成しているが、光電変換領域のシリコン層においては反射膜が形成されていないため、傾斜方向から照射された光の進入に起因する混色の発生を防止できない。   In Patent Document 4, a wall-like silicon film is formed by etching the back surface, and a reflective film is formed on the silicon film. However, since the reflective film is not formed on the silicon layer in the photoelectric conversion region, It is not possible to prevent color mixing due to the entrance of light irradiated from the direction.

また、半導体基板の表面において、画素同士の境界部分に画素分離領域を形成することもできるが、イオン注入等の技術的な制約からシリコン層の厚さは4〜5μm程度となる。この厚さだと、裏面から照射された光を全て吸収することができないため、高い感度を実現できない。また、照射された光が吸収されきらないと、吸収されなかった光が表面側に形成された固体撮像素子における電荷転送部や、CMOSイメージセンサにおける各画素に付随するアンプやフローティングディフュージョン等に進入して電子を発生させ、スミアなどの不具合を引き起こすことが懸念される。さらに、裏面側に遮光膜を形成しても、傾斜方向の入射光に起因する混色の発生を防止することができない。   In addition, although a pixel isolation region can be formed at the boundary between pixels on the surface of the semiconductor substrate, the thickness of the silicon layer is about 4 to 5 μm due to technical restrictions such as ion implantation. If it is this thickness, since all the light irradiated from the back surface cannot be absorbed, high sensitivity cannot be realized. If the irradiated light is not absorbed, the light that has not been absorbed enters the charge transfer section of the solid-state image sensor formed on the surface side, the amplifier or floating diffusion associated with each pixel in the CMOS image sensor, etc. There is a concern that it will generate electrons and cause defects such as smear. Furthermore, even if a light-shielding film is formed on the back side, it is not possible to prevent color mixing due to incident light in the tilt direction.

本発明は、上記事情に鑑みてなされたもので、その目的は、傾斜方向の入射光に起因する混色の発生を防止できる裏面照射型撮像素子を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a back-illuminated image sensor that can prevent color mixing caused by incident light in an inclined direction.

本発明の上記目的は、下記構成によって達成される。
(1)半導体基板の裏面側から光を照射し、前記光に応じて前記半導体基板内で発生した電荷を、前記半導体基板の表面側から読み出して撮像を行う裏面照射型撮像素子であって、
前記半導体基板において裏面側から表面側に向かって電位ポテンシャルが低くなるように積層された複数の不純物拡散層を含む光電変換領域と、
前記光電変換領域によって生成された信号電荷を蓄積する電荷蓄積領域とを備え、
前記光電変換領域と、前記電荷蓄積領域と、前記電荷蓄積領域に蓄積した信号電荷を読み出す読み出し手段とを有する複数の画素が形成され、隣り合う前記画素同士の間の前記光電変換領域に、光反射性材料から構成され、前記半導体基板の裏面側から表面側に延在された埋め込み部材が形成され
前記埋め込み部材の全体を覆うように形成された絶縁膜と、駆動時に前記埋め込み部材に電圧を印加し、該埋め込み部材近傍の不純物拡散層を空乏化する電圧印加手段とを備えていることを特徴とする裏面照射型撮像素子。
)前記埋め込み部材がタングステンから構成されていることを特徴とする()に記載の裏面照射型撮像素子。
The above object of the present invention is achieved by the following configurations.
(1) A backside illuminating type imaging device that irradiates light from the back side of a semiconductor substrate, reads out charges generated in the semiconductor substrate according to the light from the front side of the semiconductor substrate, and performs imaging.
A photoelectric conversion region including a plurality of impurity diffusion layers stacked such that the potential potential decreases from the back surface side to the front surface side in the semiconductor substrate;
A charge storage region for storing the signal charge generated by the photoelectric conversion region,
A plurality of pixels having the photoelectric conversion region, the charge storage region, and a reading unit for reading out signal charges stored in the charge storage region are formed, and light is applied to the photoelectric conversion region between the adjacent pixels. An embedded member made of a reflective material and extending from the back surface side to the front surface side of the semiconductor substrate is formed ,
An insulating film formed so as to cover the entire embedded member, and a voltage applying unit that applies a voltage to the embedded member during driving and depletes an impurity diffusion layer in the vicinity of the embedded member. A back-illuminated image sensor.
( 2 ) The backside illuminating type imaging device according to ( 1 ), wherein the embedded member is made of tungsten.

本発明にかかる裏面照射型撮像素子は、半導体基板の裏面側から表面側に延在された埋め込み部材を備え、この埋め込み部材が光反射性材料から構成されている。裏面側から各画素に傾斜方向に光が入射した場合には、画素同士の間の光電変換領域に埋め込み部材が設けられているため、埋め込み部材表面で入射光が反射されながら半導体基板の表面側へ導かれつつ、光電変換作用によって信号電荷に変換される。このため、入射した画素とは別の位置の画素の光電変換領域に侵入することが埋め込み部材によって回避され、混色の発生を防止することができる。   The backside illumination type image pickup device according to the present invention includes an embedded member extending from the back surface side to the front surface side of the semiconductor substrate, and the embedded member is made of a light reflective material. When light is incident on each pixel in the tilt direction from the back side, the embedded member is provided in the photoelectric conversion region between the pixels, so the incident light is reflected on the surface of the embedded member while the surface of the semiconductor substrate is reflected. Is converted into a signal charge by a photoelectric conversion action. For this reason, the embedding member avoids entering the photoelectric conversion region of a pixel at a position different from the incident pixel, and color mixing can be prevented.

本発明によれば、傾斜方向の入射光に起因する混色の発生を防止できる裏面照射型撮像素子を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the back side illumination type image pick-up element which can prevent generation | occurrence | production of the color mixture resulting from the incident light of an inclination direction can be provided.

以下、本発明の実施形態を図面に基づいて詳しく説明する。本発明にかかる裏面照射型撮像素子は、半導体基板の裏面側から光を照射し、光に応じて半導体基板内で発生した電荷を、半導体基板の表面側から読み出して撮像を行うものである。本明細書では半導体基板のうち光入射側の面を裏面といい、その反対面を表面という。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The backside illuminating type imaging device according to the present invention irradiates light from the back side of the semiconductor substrate, and reads out the charge generated in the semiconductor substrate according to the light from the front side of the semiconductor substrate to perform imaging. In this specification, the surface on the light incident side of the semiconductor substrate is referred to as the back surface, and the opposite surface is referred to as the front surface.

図1は、本発明にかかる裏面照射型撮像素子の画素の配置を示す平面図である。図1は、裏面照射型撮像素子10の半導体基板を平面視した状態における受光部と電極との位置関係を示す図である。半導体基板の裏面には複数の受光部領域PDがマトリクス状に区画されている。半導体基板の表面には、各受光部領域PDから入射した光を後述する光電変換領域で光電変換することで生成され、電荷蓄積領域に蓄積された信号電荷を読み出す際に電圧を印加する読み出し電極6,8が形成されている。なお、図1においては、読み出し電極6を一点鎖線で示し、読み出し電極8を二点鎖線で示している。本実施形態では、読み出し電極6は第1のポリシリコンで形成され、読み出し電極8は第2のポリシリコンで形成されている。   FIG. 1 is a plan view showing the arrangement of pixels of a backside illumination type imaging device according to the present invention. FIG. 1 is a diagram illustrating a positional relationship between a light receiving unit and an electrode in a state where the semiconductor substrate of the backside illumination type imaging device 10 is viewed in plan. On the back surface of the semiconductor substrate, a plurality of light receiving region PD are partitioned in a matrix. A readout electrode for applying a voltage to the surface of the semiconductor substrate to read out signal charges generated by photoelectrically converting light incident from each light receiving region PD in a photoelectric conversion region described later and accumulated in the charge accumulation region 6, 8 are formed. In FIG. 1, the readout electrode 6 is indicated by a one-dot chain line, and the readout electrode 8 is indicated by a two-dot chain line. In the present embodiment, the readout electrode 6 is made of first polysilicon, and the readout electrode 8 is made of second polysilicon.

受光部領域PDごとに、半導体基板に対する厚さ方向に形成された光電変換領域によって信号電荷を生成し、その信号電荷に応じた信号が画像データの一画素を構成する。このため、本明細書では、受光部領域PDを画素ともいう。   For each light receiving area PD, a signal charge is generated by a photoelectric conversion area formed in the thickness direction with respect to the semiconductor substrate, and a signal corresponding to the signal charge constitutes one pixel of image data. For this reason, in the present specification, the light receiving region PD is also referred to as a pixel.

図2は、図1の矢印A−A線方向にみた断面図を示している。裏面照射型撮像素子10は、不純物濃度の低いn型のシリコン層(以下、n−層という。)16と、n−層16の裏面側に積層する、不純物濃度の低いp型のシリコン層(以下、p−層という。)14と、p−層14の裏面側に積層する不純物濃度の高いp型のシリコン層(以下、p+層という。)12とを有する半導体基板を備えている。   FIG. 2 shows a cross-sectional view taken in the direction of the arrow AA in FIG. The back-illuminated image sensor 10 includes an n-type silicon layer (hereinafter referred to as an n-layer) 16 having a low impurity concentration, and a p-type silicon layer having a low impurity concentration (which is laminated on the back side of the n-layer 16). The semiconductor substrate includes a p-type silicon layer (hereinafter referred to as a p + layer) 12 having a high impurity concentration and is stacked on the back surface side of the p− layer 14.

n−層16の表面側には、p型の不純物拡散層からなる画素分離領域28が形成されている。画素分離領域28の下方には、不純物濃度の低いp型のウェル領域34が形成されている。   A pixel isolation region 28 made of a p-type impurity diffusion layer is formed on the surface side of the n − layer 16. A p-type well region 34 having a low impurity concentration is formed below the pixel isolation region 28.

各受光部領域PDの表面側には、不純物濃度の高いp型のシリコン層22が形成され、このシリコン層22の裏面側には、n型の不純物を含むシリコン層(以下、n層ともいう。)24が形成されている。シリコン層24は、信号電荷を蓄積させる電荷蓄積領域として機能する。シリコン層22は、半導体基板の表面に発生する暗電流に起因する電荷がn層24に蓄積されることを防止する機能を奏する。   A p-type silicon layer 22 having a high impurity concentration is formed on the front surface side of each light receiving region PD, and a silicon layer containing n-type impurities (hereinafter also referred to as an n layer) is formed on the back surface side of the silicon layer 22. .) 24 is formed. The silicon layer 24 functions as a charge accumulation region for accumulating signal charges. The silicon layer 22 has a function of preventing charges caused by dark current generated on the surface of the semiconductor substrate from being accumulated in the n layer 24.

半導体基板のp+層12の裏面側には、酸化シリコンや窒化シリコン等の入射光に対して透明な絶縁層42が形成されている。絶縁層42の光照射側の面には、絶縁層42と半導体基板との屈折率差に起因する半導体基板の裏面における光の反射を防止するため、窒化シリコンやダイヤモンド構造炭素膜等の入射光に対して透明な高屈折率透明層44が形成されている。高屈折率透明層44としては、プラズマCVDや光CVD等の400℃以下の低温形成が可能なアモルファス窒化シリコン等のn=1.46を超える屈折率の層とすることが好ましい。   On the back side of the p + layer 12 of the semiconductor substrate, an insulating layer 42 that is transparent to incident light such as silicon oxide or silicon nitride is formed. In order to prevent reflection of light on the back surface of the semiconductor substrate due to the difference in refractive index between the insulating layer 42 and the semiconductor substrate, incident light such as silicon nitride or a diamond structure carbon film is formed on the light irradiation side surface of the insulating layer 42. In contrast, a transparent high refractive index transparent layer 44 is formed. The high refractive index transparent layer 44 is preferably a layer having a refractive index exceeding n = 1.46, such as amorphous silicon nitride which can be formed at a low temperature of 400 ° C. or lower such as plasma CVD or photo-CVD.

高屈折率透明層44の光入射側の面には、複数のカラーフィルタ46を水平方向に配列してなるカラーフィルタ層が形成されている。複数のカラーフィルタ46は、それぞれ異なる波長域の光を透過する複数種類のカラーフィルタであり、ベイヤー配列等の所定のカラーパターンに基づいて配置されている。例えば、カラーフィルタ層は、赤色の波長域の光を透過するRカラーフィルタと、緑色の波長域の光を透過するGカラーフィルタと、青色の波長域の光を透過するBカラーフィルタと、を配列した構成となっている。カラーフィルタ46は、複数の電荷蓄積領域に対応して、それぞれの電荷蓄積領域の裏面側に形成されており、各電荷蓄積領域に1つのカラーフィルタ46が対応するように設けられている。   A color filter layer formed by arranging a plurality of color filters 46 in the horizontal direction is formed on the light incident side surface of the high refractive index transparent layer 44. The plurality of color filters 46 are a plurality of types of color filters that transmit light in different wavelength ranges, and are arranged based on a predetermined color pattern such as a Bayer array. For example, the color filter layer includes an R color filter that transmits light in a red wavelength range, a G color filter that transmits light in a green wavelength range, and a B color filter that transmits light in a blue wavelength range. It has an arranged configuration. The color filter 46 is formed on the back side of each charge storage region corresponding to a plurality of charge storage regions, and one color filter 46 is provided corresponding to each charge storage region.

隣接するカラーフィルタ46同士の間には、混色を防止するための遮光部材48が形成されている。遮光部材48は、光を透過させない機能を持つもつものであればよく、タングステン(W)、モリブデン(Mo)、及び、アルミニウム等の可視光透過率の低い金属やブラックフィルタを用いることができる。   A light shielding member 48 for preventing color mixing is formed between adjacent color filters 46. The light blocking member 48 may be any member having a function of not transmitting light, and a metal having a low visible light transmittance such as tungsten (W), molybdenum (Mo), and aluminum, or a black filter can be used.

各カラーフィルタ46の光入射側には、入射光を集光しつつ、半導体基板の裏面側へ導くマイクロレンズ52が形成されている。マイクロレンズ52は、その表面で屈折した入射光が、遮光部材48遮られることなく、各受光部領域PDの水平方向(図2中左右方向)の略中心を通過するようにその形状が決定されている。   On the light incident side of each color filter 46, a microlens 52 is formed that collects incident light and guides it to the back side of the semiconductor substrate. The shape of the micro lens 52 is determined so that incident light refracted on the surface thereof passes through the approximate center in the horizontal direction (left and right direction in FIG. 2) of each light receiving region PD without being blocked by the light blocking member 48. ing.

半導体基板の表面側には、シリコン層22の水平方向片側に隣接して読み出しゲート32が形成されている。また、シリコン層22に対して読み出しゲート32を介して隣り合うように、n型の不純物拡散層からなる電荷転送チャネル26が形成されている。   A read gate 32 is formed adjacent to one side of the silicon layer 22 in the horizontal direction on the surface side of the semiconductor substrate. In addition, a charge transfer channel 26 made of an n-type impurity diffusion layer is formed so as to be adjacent to the silicon layer 22 via a read gate 32.

半導体基板の表面には、シリコン酸化膜やONO膜等からなるゲート絶縁膜2が形成され、ゲート絶縁膜2を介して、電荷転送チャネル26に電圧を供給して電荷転送動作を制御するため、読み出し電極6と読み出し電極8(図1参照)が形成されている。読み出し電極6及び読み出し電極8の周囲には酸化シリコン等の絶縁膜14が形成されている。ゲート絶縁膜2及び絶縁膜14には、透明な絶縁層1が形成されている。   A gate insulating film 2 made of a silicon oxide film, an ONO film or the like is formed on the surface of the semiconductor substrate, and a voltage is supplied to the charge transfer channel 26 through the gate insulating film 2 to control the charge transfer operation. A read electrode 6 and a read electrode 8 (see FIG. 1) are formed. An insulating film 14 such as silicon oxide is formed around the readout electrode 6 and the readout electrode 8. A transparent insulating layer 1 is formed on the gate insulating film 2 and the insulating film 14.

本実施形態の裏面照射型撮像素子10は、電荷転送チャネル26と読み出し電極6,8とによって、CCD型の電荷読み出し構成である。   The backside illumination type imaging device 10 of the present embodiment has a CCD type charge readout configuration by the charge transfer channel 26 and the readout electrodes 6 and 8.

半導体基板は、駆動電圧が印加されたときに、受光部領域PDから入射した光を光電変換しつつ、表面側のn層24に信号電荷を移動させるため、裏面側から表面側に向かって電位ポテンシャルが低くなるように、順にp+層12、p−層14、n−層16、n層24とが積層された構成である。図3は、本実施形態の裏面照射型撮像素子10の半導体基板の電位プロファイルを示す図である。複数の不純物拡散層の濃度は特に限定されないが、一例としては、表面側からp+層22が1×1019/cm、pウェル領域34が1×1016/cm、p−層14が1×1017/cm、n−層16が5×1016/cm、p+層22が1×1019/cm程度である。これら複数の不純物拡散層が光電変換領域として機能する。 When a driving voltage is applied, the semiconductor substrate photoelectrically converts light incident from the light receiving region PD and moves signal charges to the n layer 24 on the front surface side, so that the potential from the back surface side to the front surface side is increased. In this configuration, the p + layer 12, the p− layer 14, the n− layer 16, and the n layer 24 are sequentially stacked so that the potential is lowered. FIG. 3 is a diagram showing a potential profile of the semiconductor substrate of the backside illumination type imaging device 10 of the present embodiment. The concentration of the plurality of impurity diffusion layers is not particularly limited. For example, the p + layer 22 is 1 × 10 19 / cm 2 , the p well region 34 is 1 × 10 16 / cm 2 , and the p− layer 14 is from the surface side. 1 × 10 17 / cm 2 , the n− layer 16 is about 5 × 10 16 / cm 2 , and the p + layer 22 is about 1 × 10 19 / cm 2 . The plurality of impurity diffusion layers function as a photoelectric conversion region.

本実施形態の裏面照射型撮像素子10において、半導体基板の厚さは、波長毎の光吸収係数の違いに応じて、可視域の光をもれなく吸収できるように、約10μm以上とすることが好ましい。   In the backside illumination type imaging device 10 of the present embodiment, the thickness of the semiconductor substrate is preferably about 10 μm or more so as to be able to absorb all visible light according to the difference in the light absorption coefficient for each wavelength. .

本実施形態の裏面照射型撮像素子10は、駆動時に、一つのマイクロレンズ52に入射した光が、該マイクロレンズ52上方のカラーフィルタ46に入射し、該カラーフィルタ46を透過した光がその位置の上方に対応するn−層16へと入射する。そして、半導体基板の光電変換領域によって光電変換されつつ、n層24に信号電荷が蓄積される。n層24に蓄積された信号電荷は、電荷転送チャネル26に読み出されて転送され、図示しない出力アンプによって電圧信号に変換されて外部に出力される。   In the back-illuminated image sensor 10 of the present embodiment, during driving, light incident on one microlens 52 is incident on the color filter 46 above the microlens 52, and light transmitted through the color filter 46 is positioned at that position. Is incident on the corresponding n− layer 16. Then, signal charges are accumulated in the n layer 24 while being photoelectrically converted by the photoelectric conversion region of the semiconductor substrate. The signal charge accumulated in the n layer 24 is read and transferred to the charge transfer channel 26, converted into a voltage signal by an output amplifier (not shown), and output to the outside.

本実施形態の裏面照射型撮像素子10は、半導体基板の内部に、隣り合う画素同士の間を仕切るように、タングステン等の光反射性材料から構成された埋め込み部材18が形成されている。図4は、半導体基板を平面視した状態で、受光部領域に対する埋め込み部材の位置を示す図である。埋め込み部材18は、受光部領域PDの周囲を囲むように格子状に形成されている。   In the backside illumination type imaging device 10 of the present embodiment, an embedded member 18 made of a light reflective material such as tungsten is formed inside a semiconductor substrate so as to partition adjacent pixels. FIG. 4 is a diagram illustrating the position of the embedded member with respect to the light receiving region in a state where the semiconductor substrate is viewed in plan. The embedding member 18 is formed in a lattice shape so as to surround the periphery of the light receiving portion region PD.

図2に示すように、埋め込み部材18は、pウェル領域34の下方からp+層12の表面にわたって半導体基板の厚さ方向に対して平行に延在する形状である。埋め込み部材18と周囲のシリコン層との間には、酸化シリコン等の絶縁膜19が形成されている。半導体基板の厚さ方向に対する埋め込み部材18の長さは、5μm以上とすることが好ましい。   As shown in FIG. 2, the embedded member 18 has a shape extending in parallel to the thickness direction of the semiconductor substrate from below the p well region 34 to the surface of the p + layer 12. An insulating film 19 such as silicon oxide is formed between the embedded member 18 and the surrounding silicon layer. The length of the embedded member 18 in the thickness direction of the semiconductor substrate is preferably 5 μm or more.

p+層12及び埋め込み部材18は、それぞれ配線を介して図示しない電圧印加手段に電気的に接続されており、駆動時に、負の電圧を印加可能である。また、画素分離領域28がGNDに接続されている。駆動時には、p+層12及び埋め込み部材18に電圧印加手段によって負の電圧を印加し、半導体基板の裏面側のp+層12,p−層14とn−層16とのそれぞれの間、および、埋め込み部材18周囲のシリコン層に空乏層を形成する。こうすることで、半導体基板の表面側及び裏面側から空乏層が拡大させて、n−層16において空乏化していないn−領域がないようにすることができる。光電変換領域で発生した電子は、n層24に蓄積され、正孔は、裏面側のp+層12に集まり、外部に排出される。   The p + layer 12 and the embedded member 18 are electrically connected to voltage application means (not shown) through wirings, respectively, and can apply a negative voltage during driving. Further, the pixel separation region 28 is connected to GND. At the time of driving, a negative voltage is applied to the p + layer 12 and the embedding member 18 by voltage applying means, and the p + layer 12, the p− layer 14 and the n− layer 16 on the back surface side of the semiconductor substrate, and the embedding are performed. A depletion layer is formed in the silicon layer around the member 18. By doing so, the depletion layer can be expanded from the front surface side and the back surface side of the semiconductor substrate, so that there is no n− region not depleted in the n− layer 16. Electrons generated in the photoelectric conversion region are accumulated in the n layer 24, and holes are collected in the p + layer 12 on the back surface side and discharged to the outside.

裏面照射型撮像素子10は、半導体基板の裏面側から各画素に傾斜方向に光が入射した場合に、画素同士の間の光電変換領域に埋め込み部材18が設けられているため、埋め込み部材18表面で入射光が反射されながら半導体基板の表面側へ導かれつつ、光電変換作用によって信号電荷に変換される。このため、入射した画素とは別の位置の画素の光電変換領域に侵入することが埋め込み部材18によって回避され、混色の発生を防止することができる。   The back-illuminated image pickup device 10 has the embedded member 18 provided in the photoelectric conversion region between the pixels when light is incident on each pixel in the tilt direction from the back surface side of the semiconductor substrate. The incident light is reflected and converted to signal charges by the photoelectric conversion action while being guided to the surface side of the semiconductor substrate. For this reason, the embedded member 18 avoids entering the photoelectric conversion region of a pixel at a position different from the incident pixel, and color mixing can be prevented.

なお、埋め込み部材は、タングステンに限定されず、その他に一般的に半導体で使用される高融点金属(例えば、ニッケル、コバルト、プラチナ、モリブデン)や、高融点金属とシリコンとの化合物が使用可能である。また、上記材料の積層膜や、側壁を上記材料で構成して、内部をポリシリコンで構成した積層構造とすることも可能である。   The embedded member is not limited to tungsten, and other refractory metals generally used in semiconductors (for example, nickel, cobalt, platinum, molybdenum) and compounds of refractory metals and silicon can be used. is there. Moreover, it is also possible to have a laminated structure in which a laminated film of the above materials or a side wall is made of the above material and the inside is made of polysilicon.

埋め込み部材18を形成する手法としては、不純物拡散層をエピタキシャル成長せてなるエピタキシャル成長層を形成し、エピタキシャル成長層に溝を形成し、埋め込み部材18を埋め込んだ後、更にエピタキシャル成長させる方法を用いることができる。また、エピタキシャル成長を行う前に埋め込み部材18のパターンを形成してからエピタキシャル成長を行う方法もある。埋め込み部材などのパターンを形成してからエピタキシャル成長させて埋め込む技術としては公知であり、例えば、特開平5−114563号公報や特開平5−123117号公報に示すものがある。   As a method for forming the embedded member 18, a method can be used in which an epitaxially grown layer is formed by epitaxially growing an impurity diffusion layer, a groove is formed in the epitaxially grown layer, the embedded member 18 is embedded, and further epitaxially grown. There is also a method of performing epitaxial growth after forming the pattern of the embedded member 18 before epitaxial growth. A technique for embedding by forming a pattern such as an embedding member and then performing epitaxial growth is known, and examples thereof include those disclosed in Japanese Patent Application Laid-Open Nos. 5-114563 and 5-123117.

本発明にかかる裏面照射型撮像素子の画素の配置を示す平面図である。It is a top view which shows arrangement | positioning of the pixel of the backside illumination type imaging device concerning this invention. 図1の矢印A−A線方向にみた断面図を示している。FIG. 2 shows a cross-sectional view seen in the direction of arrow AA in FIG. 1. 裏面照射型撮像素子10の半導体基板の電位プロファイルを示す図である。3 is a diagram illustrating a potential profile of a semiconductor substrate of the backside illumination type imaging device 10. FIG. 半導体基板を平面視した状態で、受光部領域に対する埋め込み部材の位置を示す図である。It is a figure which shows the position of the embedding member with respect to a light-receiving part area | region in the state which planarly viewed the semiconductor substrate.

符号の説明Explanation of symbols

10 裏面照射型撮像素子
18 埋め込み部材
PD 受光部領域
10 Back-illuminated image sensor 18 Embedded member PD Light receiving area

Claims (2)

半導体基板の裏面側から光を照射し、前記光に応じて前記半導体基板内で発生した電荷を、前記半導体基板の表面側から読み出して撮像を行う裏面照射型撮像素子であって、
前記半導体基板において裏面側から表面側に向かって電位ポテンシャルが低くなるように積層された複数の不純物拡散層を含む光電変換領域と、
前記光電変換領域によって生成された信号電荷を蓄積する電荷蓄積領域とを備え、
前記光電変換領域と、前記電荷蓄積領域と、前記電荷蓄積領域に蓄積した信号電荷を読み出す読み出し手段とを有する複数の画素が形成され、隣り合う前記画素同士の間の前記光電変換領域に、光反射性材料から構成され、前記半導体基板の裏面側から表面側に延在された埋め込み部材が形成され
前記埋め込み部材の全体を覆うように形成された絶縁膜と、駆動時に前記埋め込み部材に電圧を印加し、該埋め込み部材近傍の不純物拡散層を空乏化する電圧印加手段とを備えていることを特徴とする裏面照射型撮像素子。
A backside-illuminated imaging device that irradiates light from the back side of a semiconductor substrate, reads out charges generated in the semiconductor substrate in response to the light from the front side of the semiconductor substrate, and performs imaging,
A photoelectric conversion region including a plurality of impurity diffusion layers stacked such that the potential potential decreases from the back surface side to the front surface side in the semiconductor substrate;
A charge storage region for storing the signal charge generated by the photoelectric conversion region,
A plurality of pixels having the photoelectric conversion region, the charge storage region, and a reading unit for reading out signal charges stored in the charge storage region are formed, and light is applied to the photoelectric conversion region between the adjacent pixels. An embedded member made of a reflective material and extending from the back surface side to the front surface side of the semiconductor substrate is formed ,
An insulating film formed so as to cover the entire embedded member, and a voltage applying unit that applies a voltage to the embedded member during driving and depletes an impurity diffusion layer in the vicinity of the embedded member. A back-illuminated image sensor.
前記埋め込み部材がタングステンから構成されていることを特徴とする請求項に記載の裏面照射型撮像素子。 The backside illumination type image pickup device according to claim 1 , wherein the embedded member is made of tungsten.
JP2007252601A 2007-09-27 2007-09-27 Back-illuminated image sensor Active JP4621719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252601A JP4621719B2 (en) 2007-09-27 2007-09-27 Back-illuminated image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252601A JP4621719B2 (en) 2007-09-27 2007-09-27 Back-illuminated image sensor

Publications (2)

Publication Number Publication Date
JP2009088030A JP2009088030A (en) 2009-04-23
JP4621719B2 true JP4621719B2 (en) 2011-01-26

Family

ID=40661113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252601A Active JP4621719B2 (en) 2007-09-27 2007-09-27 Back-illuminated image sensor

Country Status (1)

Country Link
JP (1) JP4621719B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2502098B2 (en) * 1987-08-12 1996-05-29 株式会社フジクラ Superconducting magnetic shield
JP4816768B2 (en) * 2009-06-22 2011-11-16 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and electronic apparatus
KR101776955B1 (en) 2009-02-10 2017-09-08 소니 주식회사 Solid-state imaging device, method of manufacturing the same, and electronic apparatus
FR2954587B1 (en) * 2009-11-10 2012-07-20 St Microelectronics Sa METHOD FOR FORMING A REAR-SIDE LIGHT IMAGE SENSOR
EP2526566B1 (en) * 2010-01-21 2018-03-07 Roper Scientific, Inc. Solid state back-illuminated photon sensor and its method of fabrication
KR101738532B1 (en) * 2010-05-25 2017-05-22 삼성전자 주식회사 A Backside Illumination Image Sensor Including an Upper High-doped Region and a Method of Fabricating the Same
KR101745638B1 (en) 2011-01-12 2017-06-09 삼성전자 주식회사 Photodiode device based on wide band-gap material layer, and back side illumination(BSI) CMOS image sensor and solar cell comprising the photodiode device
JP2012169530A (en) * 2011-02-16 2012-09-06 Sony Corp Solid state image sensor, manufacturing method therefor, and electronic apparatus
JP6299058B2 (en) * 2011-03-02 2018-03-28 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP5353965B2 (en) * 2011-07-11 2013-11-27 ソニー株式会社 Method for manufacturing solid-state imaging device
JP5246304B2 (en) * 2011-07-11 2013-07-24 ソニー株式会社 Method for manufacturing solid-state imaging device
JP5794068B2 (en) * 2011-09-16 2015-10-14 ソニー株式会社 Solid-state imaging device, manufacturing method, and electronic apparatus
JP5535261B2 (en) * 2012-03-19 2014-07-02 株式会社東芝 Solid-state imaging device
JP6168331B2 (en) * 2012-05-23 2017-07-26 ソニー株式会社 Imaging device and imaging apparatus
JP6065448B2 (en) 2012-08-03 2017-01-25 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP5519827B2 (en) * 2013-05-13 2014-06-11 ソニー株式会社 Solid-state imaging device and electronic device
JP6130221B2 (en) 2013-05-24 2017-05-17 ソニー株式会社 Solid-state imaging device and electronic device
JP5943025B2 (en) * 2014-04-03 2016-06-29 ソニー株式会社 Solid-state imaging device and electronic apparatus
JP2015216187A (en) * 2014-05-09 2015-12-03 ソニー株式会社 Solid state imaging element and electronic apparatus
JP2016001633A (en) 2014-06-11 2016-01-07 ソニー株式会社 Solid state image sensor and electronic equipment
JP2016092178A (en) * 2014-11-04 2016-05-23 株式会社リコー Solid state imaging device
US10139619B2 (en) 2015-02-12 2018-11-27 Optiz, Inc. Back side illumination image sensor with non-planar optical interface
JP6163511B2 (en) * 2015-04-16 2017-07-12 ソニー株式会社 Solid-state imaging device and electronic apparatus
JP6316902B2 (en) * 2016-10-28 2018-04-25 ソニー株式会社 Solid-state imaging device and electronic device
JP6390759B2 (en) * 2017-06-19 2018-09-19 ソニー株式会社 Solid-state imaging device and electronic apparatus
JP6368894B1 (en) * 2017-07-04 2018-08-01 雫石 誠 Photoelectric conversion element and optical measuring device
WO2019093208A1 (en) * 2017-11-07 2019-05-16 江藤 剛治 High-speed image sensor
JP2019161211A (en) * 2017-11-07 2019-09-19 江藤 剛治 High-speed image sensor
JP2018088532A (en) * 2017-12-28 2018-06-07 ソニー株式会社 Solid-state imaging element and electronic device
JP6900969B2 (en) * 2018-03-28 2021-07-14 ソニーグループ株式会社 Solid-state image sensor
JP6607275B2 (en) * 2018-03-28 2019-11-20 ソニー株式会社 Solid-state imaging device and electronic device
KR102662233B1 (en) * 2019-02-28 2024-05-02 삼성전자주식회사 Image sensor
WO2022249575A1 (en) 2021-05-27 2022-12-01 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, method for producing solid-state imaging element, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273679A (en) * 1990-03-23 1991-12-04 Matsushita Electron Corp Solid-state image sensing device
JP2006245535A (en) * 2005-02-04 2006-09-14 Sony Corp Solid-state imaging sensor, method of manufacturing the same, and imaging apparatus
JP2006245499A (en) * 2005-03-07 2006-09-14 Sony Corp Solid state imaging apparatus
JP2007173717A (en) * 2005-12-26 2007-07-05 Fujifilm Corp Solid imaging element, and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273679A (en) * 1990-03-23 1991-12-04 Matsushita Electron Corp Solid-state image sensing device
JP2006245535A (en) * 2005-02-04 2006-09-14 Sony Corp Solid-state imaging sensor, method of manufacturing the same, and imaging apparatus
JP2006245499A (en) * 2005-03-07 2006-09-14 Sony Corp Solid state imaging apparatus
JP2007173717A (en) * 2005-12-26 2007-07-05 Fujifilm Corp Solid imaging element, and method for manufacturing same

Also Published As

Publication number Publication date
JP2009088030A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4621719B2 (en) Back-illuminated image sensor
US11024660B2 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
KR101893325B1 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
US8835981B2 (en) Solid-state image sensor
US9349766B2 (en) Solid-state imaging device
JP5061915B2 (en) Solid-state imaging device and imaging apparatus
US7781715B2 (en) Backside illuminated imaging device, semiconductor substrate, imaging apparatus and method for manufacturing backside illuminated imaging device
JP5055026B2 (en) Image pickup device, image pickup device manufacturing method, and image pickup device semiconductor substrate
US8445950B2 (en) Solid-state imaging device
KR101574878B1 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
TWI387101B (en) Solid-state imaging device and manufacturing method thrreof
JP4599417B2 (en) Back-illuminated solid-state image sensor
JP4751865B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
JP2023017991A (en) Imaging element
JP4649390B2 (en) Manufacturing method of back-illuminated image sensor
US8361824B2 (en) Method for forming lens, method for manufacturing semiconductor apparatus, and electronic information device
JP2009259934A (en) Solid-state imaging device
JP2008103664A (en) Rear irradiation type imaging element, manufacturing method of same and imaging apparatus equipped with same
US20150244951A1 (en) Solid-state imaging device and manufacturing method of solid-state imaging device
JP5962155B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP2015082510A (en) Solid-state imaging element, method of manufacturing the same, and electronic device
JP2015220339A (en) Solid-state image pickup device
JP2003078826A (en) Solid-state imaging device
TW202101743A (en) Imaging element and imaging device
JP2009111118A (en) Rear-surface irradiation type solid-state imaging element, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100618

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4621719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250