JP4618433B2 - Flexible control device and flexible control method for manipulator - Google Patents
Flexible control device and flexible control method for manipulator Download PDFInfo
- Publication number
- JP4618433B2 JP4618433B2 JP2005298278A JP2005298278A JP4618433B2 JP 4618433 B2 JP4618433 B2 JP 4618433B2 JP 2005298278 A JP2005298278 A JP 2005298278A JP 2005298278 A JP2005298278 A JP 2005298278A JP 4618433 B2 JP4618433 B2 JP 4618433B2
- Authority
- JP
- Japan
- Prior art keywords
- manipulator
- flexible control
- detection means
- joint
- force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manipulator (AREA)
Description
本発明は、マニピュレータの柔軟制御装置および柔軟制御方法に関する。 The present invention relates to a flexible control device and a flexible control method for a manipulator.
マニピュレータの柔軟制御を行う従来の装置として、先端部の力センサを用いて、マニピュレータ先端を柔軟制御するものがあった(例えば、特許文献1参照)。
また、柔軟制御の制御ゲインを、物体とマニピュレータとの接触状況に応じて位置制御モードと力制御モードの度合いを可変にし、制御の安定化を図る手法も提案されている(特許文献2参照)。
図4に特許文献1の制御装置のブロック図を示す。101は位置制御演算を、102はコンプライアンス制御演算を行う。104は力検出手段、105はサーボアンプ、106はマニピュレータである。力検出手段104はマニピュレータ107の先端部の接触力を検出し、コンプライアンス制御演算102に送る。102はコンプライアンスモデルに基づき、接触力に応じた位置偏差を演算し、位置制御演算101により演算された目標位置に加算する。位置制御演算101は、この変更された目標値からマニピュレータ106の各関節の駆動量を計算し、これをサーボアンプ105に送る。マニピュレータ106は、サーボアンプ105により各関節の駆動源を駆動され、その結果、力検出手段104により検出された接触力に応じて柔軟な動作を行う。
As a conventional device that performs flexible control of a manipulator, there has been a device that flexibly controls the tip of a manipulator using a force sensor at the tip (for example, see Patent Document 1).
In addition, a method has been proposed in which the control gain of the flexible control is made variable by varying the degree of the position control mode and the force control mode in accordance with the contact state between the object and the manipulator (see Patent Document 2). .
FIG. 4 shows a block diagram of the control device of Patent Document 1. 101 performs position control calculation, and 102 performs compliance control calculation. Reference numeral 104 denotes force detection means, 105 denotes a servo amplifier, and 106 denotes a manipulator. The force detection means 104 detects the contact force at the tip of the manipulator 107 and sends it to the compliance control calculation 102. Based on the compliance model, 102 calculates a position deviation according to the contact force and adds it to the target position calculated by the position control calculation 101. The position control calculation 101 calculates the driving amount of each joint of the manipulator 106 from the changed target value, and sends this to the servo amplifier 105. The manipulator 106 drives the driving source of each joint by the servo amplifier 105, and as a result, performs a flexible operation according to the contact force detected by the force detection means 104.
また、図5に特許文献2の制御装置のブロック図を示す。図において、マニピュレータ201には力検出手段202と位置検出手段206が設けられている。可変ゲイン203は、位置と力の協調の程度に応じてゲインを変化することができるようになっている。トルク変換204は力検出手段202の出力に可変ゲイン203を乗じた信号を関節トルクに変換する。位置偏差検出手段205は位置検出手段206から出力される位置信号と位置指令手段207から出力される指令位置との差を位置偏差として検出する。
位置偏差検出手段205の出力に仮想ばね要素208を乗じてトルクに変換したものとトルク変換204の出力を加減算演算209にて加減算演算し、その出力に比例積分演算手段210にて処理を施し、マニピュレータ各関節の駆動指令値とすれば、フィードバック補償演算が行える。
ここで、可変ゲイン203は、位置制御を行うモードではゲインを下げ、力制御を行うモードではゲインを上げて、位置制御モードと力制御モードの度合いを可変にして動作を安定化させている。
このように従来のマニピュレータの柔軟制御では、力センサを設置して柔軟制御し、さらに、柔軟制御手段のゲインを調整して位置制御モードと力制御モードの度合いを可変にして動作を安定化する手法が提案されていた。
FIG. 5 is a block diagram of the control device disclosed in Patent Document 2. In the figure, the manipulator 201 is provided with force detection means 202 and position detection means 206. The variable gain 203 can change the gain according to the degree of coordination between position and force. The torque converter 204 converts a signal obtained by multiplying the output of the force detector 202 by the variable gain 203 into joint torque. The position deviation detection unit 205 detects a difference between the position signal output from the position detection unit 206 and the command position output from the position command unit 207 as a position deviation.
The output of the position deviation detection means 205 is multiplied by the virtual spring element 208 and converted into torque, and the output of the torque conversion 204 is added and subtracted by the addition / subtraction calculation 209, and the output is processed by the proportional integration calculation means 210, If the drive command value for each joint of the manipulator is used, feedback compensation calculation can be performed.
Here, the variable gain 203 stabilizes the operation by decreasing the gain in the position control mode and increasing the gain in the force control mode to vary the degree of the position control mode and the force control mode.
As described above, in the flexible control of the conventional manipulator, the force sensor is installed for flexible control, and the gain of the flexible control means is adjusted to make the position control mode and the force control mode variable to stabilize the operation. A method was proposed.
ところで、マニピュレータの実作業では、マニピュレータと作業対象物との接触状態が非接触から接触へ、接触から非接触へと頻繁に切り替わる。
柔軟制御によってこの状態の切り替わりを滑らかに制御することができるが、接触力が想定より大きかったり急激に変化したりすると、フィードバック補償演算の特に積分要素の累積分が接触状態の切り替わり時に不安定になり、急激な動作を引き起こすという問題があった。
また、フィードバック補償演算に積分要素がある場合にマニピュレータと作業対象物体とが接触して力が加わると、目標位置とフィードバック位置に偏差が生じる。
柔軟制御は目標位置を変化させて偏差量を小さくするように働き、フィードバック補償は偏差を小さくする方向に駆動指令を変化させるように働くので、通常は積分要素が過大に蓄積されずに動作するが、力が過大で柔軟制御やフィードバック補償が対応しきれない状態が長く続くと、積分要素が過大に蓄積される。この状態で接触状態から非接触状態に移行すると蓄積された積分要素が一気に放出される方向に補償が働くことになるため、累積量が大きいと補償が効きすぎて急激な動作を生じることになる。特許文献2の制御方法で柔軟制御ゲインを可変にしたとしても、この問題は回避することができない。
本発明はこのような問題点に鑑みてなされたものであり、マニピュレータの柔軟制御において、フィードバック補償演算の積分ゲインを状況に応じて減少させ、マニピュレータの動作を安定化させることを目的とする。
By the way, in the actual work of the manipulator, the contact state between the manipulator and the work object is frequently switched from non-contact to contact and from contact to non-contact.
The switching of this state can be controlled smoothly by flexible control.However, if the contact force is larger than expected or changes rapidly, the accumulated amount of the integral element of the feedback compensation calculation becomes unstable when the contact state changes. There was a problem of causing a sudden movement.
Further, when there is an integral element in the feedback compensation calculation, if a force is applied due to contact between the manipulator and the work target object, a deviation occurs between the target position and the feedback position.
The flexible control works to change the target position to reduce the deviation amount, and the feedback compensation works to change the drive command in the direction to make the deviation smaller, so it usually operates without excessive accumulation of integral elements However, if the force is excessive and the state where the flexible control and the feedback compensation cannot be supported continues for a long time, the integral element is excessively accumulated. In this state, when the state is changed from the contact state to the non-contact state, the accumulated integral element is compensated in a direction in which it is released all at once. . Even if the flexible control gain is made variable by the control method of Patent Document 2, this problem cannot be avoided.
The present invention has been made in view of such problems, and an object of the present invention is to stabilize the operation of the manipulator by reducing the integral gain of the feedback compensation calculation according to the situation in the flexible control of the manipulator.
上記問題を解決するため、本発明は、次のようにしたのである。
請求項1に記載の発明は、力検出手段と、各関節の位置検出手段を備えたマニピュレータの柔軟制御装置において、前記関節の目標位置と前記位置検出手段によって検出された位置との偏差を入力とし、前記偏差に対して第1のゲイン値を乗じる演算と前記偏差を積分して第2のゲイン値を乗じる演算とを並列して行い、それらの演算結果を加算する演算部を備え、前記演算部の出力を前記関節へのトルク指令に変換した値を予め設定された閾値と比較し、前記トルク指令が前記閾値以上となった場合に、前記第2のゲイン値を減少させることを特徴とする。
請求項2に記載の発明は、力検出手段と、各関節の位置検出手段を備えたマニピュレータの柔軟制御方法において、前記関節の目標位置と前記位置検出手段によって検出された位置との偏差に対し、第1のゲイン値を乗じる演算と積分して第2のゲイン値を乗じる演算とを並列して行い、それらの演算結果を加算し、前記演算部の出力を前記関節へのトルク指令に変換し、前記トルク指令を予め設定された閾値と比較し、前記トルク指令が前記閾値以上となった場合に、前記第2のゲイン値を減少させることを特徴とする。
In order to solve the above problem, the present invention is as follows.
According to the first aspect of the present invention, in a flexible control device for a manipulator including force detection means and position detection means for each joint, a deviation between the target position of the joint and the position detected by the position detection means is input. A calculation unit that multiplies the deviation by a first gain value and an operation that integrates the deviation and multiplies the second gain value in parallel, and adds the calculation results, A value obtained by converting the output of the calculation unit into a torque command to the joint is compared with a preset threshold value, and the second gain value is decreased when the torque command is equal to or greater than the threshold value. And
According to a second aspect of the present invention, there is provided a flexible control method for a manipulator including a force detection unit and a position detection unit of each joint, and a deviation between a target position of the joint and a position detected by the position detection unit. The calculation of multiplying the first gain value and the calculation of integrating and multiplying the second gain value are performed in parallel, and the calculation results are added to convert the output of the calculation unit into a torque command to the joint Then, the torque command is compared with a preset threshold value, and the second gain value is decreased when the torque command becomes equal to or greater than the threshold value.
本発明によれば、マニピュレータと作業対象物との接触・非接触の切り替わりの際にフィードバック補償の積分要素の悪影響で急激な動作が生じることを防ぎ、安定した動作を行わせることができる。 ADVANTAGE OF THE INVENTION According to this invention, it can prevent that a rapid operation | movement arises by the bad influence of the integral element of feedback compensation at the time of the contact / non-contact switching of a manipulator and a work target, and can perform a stable operation | movement.
以下、本発明の具体的実施例について、図に基づいて説明する。 Hereinafter, specific examples of the present invention will be described with reference to the drawings.
図1は、本発明を適用する制御装置およびマニピュレータの一例を模式的に示す図である。
図1において、マニピュレータ1は作業対象部物20を把持する多指ハンドのうちの一本を抜粋して描いたものであり、各関節に位置検出手段3を備え、各肢の腹部には力検出手段2を備えている。作業対象物20から受ける力を力検出手段2にて検出し、柔軟制御を行うことで作業対象物20を適切な力で把持することができる。
図2は、マニピュレータ1の1つの関節について柔軟制御の方法を示す制御ブロック図である。力検出手段2によって検出された力をもとに、柔軟制御モデル4によってマニピュレータ1の1つの関節の変位量が計算される。柔軟制御モデルとは例えば剛性、粘性、慣性の物理モデルであり、以下に示す式(1)のように表せる。
FIG. 1 is a diagram schematically illustrating an example of a control device and a manipulator to which the present invention is applied.
In FIG. 1, the manipulator 1 is drawn by extracting one of the multi-fingered hands that grip the work target object 20, and is provided with position detection means 3 at each joint, and a force is applied to the abdomen of each limb. Detection means 2 is provided. By detecting the force received from the work object 20 by the force detection means 2 and performing flexible control, the work object 20 can be gripped with an appropriate force.
FIG. 2 is a control block diagram illustrating a flexible control method for one joint of the manipulator 1. Based on the force detected by the force detection means 2, the displacement amount of one joint of the manipulator 1 is calculated by the flexible control model 4. The flexible control model is a physical model of rigidity, viscosity, and inertia, for example, and can be expressed as the following equation (1).
ここで、K、D、Mは、実数であって、それぞれ剛性、粘性、慣性の定数である。また、Δxは変位量、Fは力を表す。式(1)のFに力検出手段2の出力値を代入し、Δxについて式(1)を解くことで、柔軟制御モデル4の出力としてモデル変位量Δxを求める。モデル変位量は位置指令手段5の出力と加減算演算された後、フィードバック補償演算手段7の目標値として入力される。
フィードバック補償演算手段7内において、位置偏差検出手段8は入力された目標値と関節の位置検出手段3の出力との差を位置偏差として検出し、比例・積分演算手段9へ入力する。
比例・積分演算手段9内においては、入力された位置偏差に対して比例ゲイン10を乗じたものと、積分演算手段11にて積分演算した後に可変ゲイン12を乗じたものとを加算した値を出力する。この値がフィードバック演算手段7の出力となり、トルク変換13においてトルクに変換されてマニピュレータ1の関節を駆動するトルク指令となる。また、このトルク指令は閾値判定14において予め設定した閾値と比較され、閾値よりトルク指令が大きくなった場合は、可変ゲイン12を減少させる。閾値としては、柔軟制御モデル4で想定した最大力に相当するトルク値や、フィードバック補償演算手段7で想定する外乱としての最大トルク値を設定する。
Here, K, D, and M are real numbers, and are constants of rigidity, viscosity, and inertia, respectively. Further, Δx represents a displacement amount, and F represents a force. By substituting the output value of the force detection means 2 into F of the equation (1) and solving the equation (1) for Δx, the model displacement amount Δx is obtained as the output of the flexible control model 4. The model displacement amount is added and subtracted with the output of the position command means 5 and then input as a target value for the feedback compensation calculation means 7.
Within the feedback compensation calculation means 7, the position deviation detection means 8 detects the difference between the input target value and the output of the joint position detection means 3 as a position deviation and inputs it to the proportional / integral calculation means 9.
In the proportional / integral calculation means 9, a value obtained by adding the input position deviation multiplied by the proportional gain 10 and the value obtained by integrating the integral calculation means 11 and then multiplying by the variable gain 12 is added. Output. This value becomes the output of the feedback calculation means 7, which is converted into torque by the torque converter 13 and becomes a torque command for driving the joint of the manipulator 1. Further, this torque command is compared with a preset threshold value in the threshold determination 14, and when the torque command becomes larger than the threshold value, the variable gain 12 is decreased. As the threshold value, a torque value corresponding to the maximum force assumed in the flexible control model 4 or a maximum torque value as a disturbance assumed in the feedback compensation calculation means 7 is set.
トルク指令の閾値判定に基づいて積分ゲイン(可変ゲイン12)を減少させることによって、柔軟制御モデルやフィードバック補償演算手段が対応または補償することができないトルクを要求される状況となっても、フィードバック補償の積分要素に誤差が累積されるのを防ぐことができる。
なお、図1に示したマニピュレータ1の形態や軸構成はあくまで一例に過ぎず、本発明はマニピュレータ一般に広く適用できる。例えば、図3に示すように先端に力検出手段2を介して治具21が取り付けられたマニピュレータが、治具21によって作業台上の作業対象物20に対する倣い作業や磨き作業を行う場合である。
図3の場合、例えば柔軟制御モデル4にて、力検出手段2にて検出した力をマニピュレータ1の各関節軸に相当する値へと変換することで上述の制御が適用できる。
さらに、力検出手段は必ずしも力センサには限定されず、力を推定するためのオブザーバなどを構成して力センサレス柔軟制御を施す場合においても本制御方法を適用することができる。また、閾値は固定値とは限らず、作業状況や目的に応じて変化させることもできる。
By reducing the integral gain (variable gain 12) based on the determination of the threshold value of the torque command, feedback compensation can be achieved even when the flexible control model and the feedback compensation calculation means require torque that cannot be handled or compensated for. It is possible to prevent an error from being accumulated in the integral element.
Note that the form and shaft configuration of the manipulator 1 shown in FIG. 1 are merely examples, and the present invention can be widely applied to manipulators in general. For example, as shown in FIG. 3, a manipulator having a jig 21 attached to the tip via the force detection means 2 performs a copying operation or a polishing operation on the work object 20 on the work table by the jig 21. .
In the case of FIG. 3, for example, in the flexible control model 4, the above-described control can be applied by converting the force detected by the force detection unit 2 into a value corresponding to each joint axis of the manipulator 1.
Further, the force detection means is not necessarily limited to a force sensor, and this control method can be applied even when an observer for estimating force is configured to perform force sensorless flexible control. Further, the threshold value is not limited to a fixed value, and can be changed according to the work situation and purpose.
本発明は、柔軟制御を行うマニピュレータに広く適用でき、特に動作環境や作業対象物によって、接触動作時にマニピュレータに想定以上の力が働くことがありうる場合に有用である。 INDUSTRIAL APPLICABILITY The present invention can be widely applied to manipulators that perform flexible control, and is particularly useful when a force greater than expected can be applied to a manipulator during a contact operation depending on the operating environment or work object.
1 マニピュレータ
2 力検出手段
3 位置検出手段
4 柔軟制御モデル
5 位置指令手段
6 加減算演算
7 フィードバック補償演算手段
8 位置偏差検出手段
9 比例・積分演算手段
10 比例ゲイン
11 積分演算手段
12 可変ゲイン
13 トルク変換
14 閾値判定
20 作業対象物
21 治具
DESCRIPTION OF SYMBOLS 1 Manipulator 2 Force detection means 3 Position detection means 4 Flexible control model 5 Position command means 6 Addition / subtraction calculation 7 Feedback compensation calculation means 8 Position deviation detection means 9 Proportional / integral calculation means 10 Proportional gain 11 Integration calculation means 12 Variable gain 13 Torque conversion 14 Threshold judgment 20 Work object 21 Jig
Claims (2)
前記関節の目標位置と前記位置検出手段によって検出された位置との偏差を入力とし、前記偏差に対して第1のゲイン値を乗じる演算と前記偏差を積分して第2のゲイン値を乗じる演算とを並列して行い、それらの演算結果を加算する演算部を備え、
前記演算部の出力を前記関節へのトルク指令に変換した値を予め設定された閾値と比較し、前記トルク指令が前記閾値以上となった場合に、前記第2のゲイン値を減少させることを特徴とするマニピュレータの柔軟制御装置。 In a flexible control device for a manipulator provided with force detection means and position detection means for each joint,
A calculation that takes a deviation between a target position of the joint and a position detected by the position detection means as an input, multiplies the deviation by a first gain value, and integrates the deviation and multiplies a second gain value. Are provided in parallel, and an operation unit for adding the operation results is provided.
A value obtained by converting the output of the calculation unit into a torque command to the joint is compared with a preset threshold value, and when the torque command becomes equal to or greater than the threshold value, the second gain value is decreased. A flexible control device for a manipulator.
前記関節の目標位置と前記位置検出手段によって検出された位置との偏差に対し、第1のゲイン値を乗じる演算と積分して第2のゲイン値を乗じる演算とを並列して行い、
それらの演算結果を加算し、
前記演算部の出力を前記関節へのトルク指令に変換し、
前記トルク指令を予め設定された閾値と比較し、
前記トルク指令が前記閾値以上となった場合に、前記第2のゲイン値を減少させることを特徴とするマニピュレータの柔軟制御方法。 In a flexible control method of a manipulator provided with force detection means and position detection means of each joint,
Performing in parallel the operation of multiplying the deviation between the target position of the joint and the position detected by the position detection means by the first gain value and the operation of integrating and multiplying the second gain value,
Add the calculation results,
Converting the output of the calculation unit into a torque command to the joint;
Comparing the torque command with a preset threshold;
A flexible control method for a manipulator, wherein the second gain value is decreased when the torque command becomes equal to or greater than the threshold value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005298278A JP4618433B2 (en) | 2005-10-13 | 2005-10-13 | Flexible control device and flexible control method for manipulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005298278A JP4618433B2 (en) | 2005-10-13 | 2005-10-13 | Flexible control device and flexible control method for manipulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007105823A JP2007105823A (en) | 2007-04-26 |
JP4618433B2 true JP4618433B2 (en) | 2011-01-26 |
Family
ID=38032083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005298278A Expired - Fee Related JP4618433B2 (en) | 2005-10-13 | 2005-10-13 | Flexible control device and flexible control method for manipulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4618433B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5293039B2 (en) * | 2008-09-19 | 2013-09-18 | 株式会社安川電機 | Robot system and robot control method |
JP5436160B2 (en) * | 2009-11-19 | 2014-03-05 | 三菱電機株式会社 | Force control device |
JP5845311B2 (en) * | 2014-04-30 | 2016-01-20 | ファナック株式会社 | Control device for flexible control of robots |
JP2016190292A (en) | 2015-03-31 | 2016-11-10 | セイコーエプソン株式会社 | Robot control apparatus, robot system, and robot control method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0486190U (en) * | 1990-11-30 | 1992-07-27 | ||
JP2003216243A (en) * | 2002-01-18 | 2003-07-31 | Yaskawa Electric Corp | Robot controller |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH033688A (en) * | 1989-05-30 | 1991-01-09 | Daikin Ind Ltd | Method and apparatus for controlling speed of servo motor of robot |
JPH0443413A (en) * | 1990-06-11 | 1992-02-13 | Toshiba Corp | Position controller |
JPH0468410A (en) * | 1990-07-09 | 1992-03-04 | Fujitsu Ltd | Servo-controller |
JP3283650B2 (en) * | 1993-07-05 | 2002-05-20 | ファナック株式会社 | Robot controller |
JP3460761B2 (en) * | 1995-09-11 | 2003-10-27 | 株式会社安川電機 | Robot control device |
-
2005
- 2005-10-13 JP JP2005298278A patent/JP4618433B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0486190U (en) * | 1990-11-30 | 1992-07-27 | ||
JP2003216243A (en) * | 2002-01-18 | 2003-07-31 | Yaskawa Electric Corp | Robot controller |
Also Published As
Publication number | Publication date |
---|---|
JP2007105823A (en) | 2007-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101801616B (en) | Power assist device and its control method | |
JP5890473B2 (en) | Motor control device for controlling a motor | |
JP5897644B2 (en) | Robot control device | |
JP4760912B2 (en) | Servo control device | |
JP4822063B2 (en) | Robot direct teaching device | |
JP2006172149A (en) | Controller at end point of machine | |
US11305423B2 (en) | Control device for robot having arm | |
CN105159229B (en) | Servo control device reducing deflection of front end point of machine | |
JP4595017B2 (en) | Servo die cushion control device | |
JP4618433B2 (en) | Flexible control device and flexible control method for manipulator | |
US11491666B2 (en) | Control system, control method, and control program | |
US9199377B2 (en) | Method and system for extracting intended torque for wearable robot | |
JP2005293564A (en) | Position control device having sliding mode controller | |
JP2006215626A (en) | Position control device | |
JP5660482B2 (en) | Control method and control device for feed drive system of machine tool | |
JP2005337812A (en) | Material testing machine | |
JP4922954B2 (en) | Position control device | |
JP2005186183A (en) | Industrial robot and its abnormality judging method | |
JP6711536B2 (en) | External force detection method | |
JP2006293624A (en) | Multiaxis controller | |
KR20110017725A (en) | Motor control unit with backlash compensation | |
JP2007136564A (en) | Manipulator control method and device | |
JPH06206185A (en) | Robot controller | |
WO2016199228A1 (en) | Medical manipulator control device | |
KR20110048872A (en) | Cartesian sensorless force control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080912 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100929 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101012 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131105 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4618433 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141105 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |