[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4613597B2 - Analysis equipment - Google Patents

Analysis equipment Download PDF

Info

Publication number
JP4613597B2
JP4613597B2 JP2004356368A JP2004356368A JP4613597B2 JP 4613597 B2 JP4613597 B2 JP 4613597B2 JP 2004356368 A JP2004356368 A JP 2004356368A JP 2004356368 A JP2004356368 A JP 2004356368A JP 4613597 B2 JP4613597 B2 JP 4613597B2
Authority
JP
Japan
Prior art keywords
solution
inspected
test piece
speed
inspection target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004356368A
Other languages
Japanese (ja)
Other versions
JP2006162496A (en
Inventor
竜彦 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004356368A priority Critical patent/JP4613597B2/en
Publication of JP2006162496A publication Critical patent/JP2006162496A/en
Application granted granted Critical
Publication of JP4613597B2 publication Critical patent/JP4613597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は、血液等の被検査溶液を適用してクロマト展開を行なう試験片を用い、被検査溶液中に含まれる成分を光学的に分析する分析装置に関するものであり、特に被検査溶液が試験片を展開する速度に応じて分析のタイミングを変更する事で、測定精度を向上させる分析装置に属するものである。 The present invention relates to an analyzer for optically analyzing components contained in a test solution using a test piece that is subjected to chromatographic development by applying a test solution such as blood, and in particular, the test solution is tested. It belongs to an analyzer that improves measurement accuracy by changing the timing of analysis in accordance with the speed at which a piece is developed.

近年では、在宅医療および医院や診療所などの地域医療の充実、さらには早期診断および緊急性の高い臨床検査の増加などに伴い、臨床検査の専門家でなくとも、簡易かつ迅速に高精度の測定が実施可能な分析装置が要望されるようになり、煩雑な操作を伴わず、短時間で信頼性の高い測定ができる、POCT(Point of Care Testing)向けの分析装置が脚光をあびている。
POCTとは、一般的に開業医、専門医の診察室、病棟および外来患者向け診療所などの「患者の近いところ」で行われる検査の総称であり、検査結果を即座に医師が判断し、迅速な処置を施し、治療の過程や予後のモニタリングまでを行なうという診療の質の向上に大きく役立つとして注目されている方法である。中央検査室での検査に比べて、検体の運搬や設備にかかるコストや、不要な検査にかかる費用を抑えることができ、トータルな検査費用の削減が可能になるといわれており、POCT市場は、病院経営合理化の進む米国では急速に拡大してきており、日本をはじめ世界的にみても成長市場となっていくことが予想されている。
免疫センサとして、クロマトセンサに代表されるような乾式分析素子は、試薬の調整を必要とせず、測定対象となる血液や尿などの液体試料を分析素子上に滴下するなどの簡単な操作のみにより、被検査溶液の分析対象物を分析することが可能であり、簡便かつ迅速に分析するのに非常に有用なため、POCTの代表として今日多数実用化されている。また、市場からは、いつでもどこでも誰でも測定できることに加え、より素早い測定時間で、より高い精度が要求されており、上記の分析素子を光学的に読み取る専用の分析装置も提案されている(例えば、特許文献1参照)。
In recent years, with the improvement of home medical care and regional medical care such as clinics and clinics, as well as the increase in early diagnosis and urgent clinical tests, even non-clinical specialists can easily and quickly achieve high accuracy. An analyzer capable of performing measurement has come to be demanded, and an analyzer for POCT (Point of Care Testing), which can perform highly reliable measurement in a short time without complicated operation, is in the spotlight.
POCT is a general term for tests performed in “close to patients” such as general practitioners, specialists' examination rooms, wards, and clinics for outpatients. It is a method that has been attracting attention as it greatly helps to improve the quality of medical treatment by performing treatment and monitoring the treatment process and prognosis. Compared to testing in the central laboratory, it is said that the cost of transporting and installing specimens and the cost of unnecessary testing can be reduced, and the total cost of testing can be reduced. In the United States, where hospital management rationalization is progressing, it is expanding rapidly and is expected to become a growing market in Japan and other countries.
As an immunosensor, dry analytical elements such as chromatographic sensors do not require reagent adjustment, and only by simple operations such as dropping a liquid sample such as blood or urine to be measured onto the analytical element. Since it is possible to analyze an analysis object of a solution to be inspected and it is very useful for simple and rapid analysis, it is put into practical use as a representative of POCT today. In addition to being able to measure anyone anytime and anywhere from the market, higher accuracy is required with faster measurement time, and dedicated analyzers that optically read the above-described analytical elements have also been proposed (for example, , See Patent Document 1).

図6において、従来の試験片7aの構成を説明する。被検査溶液を点着する点着部8aと、被検査溶液を展開するための流路9zと、流路9zの一部に被検査溶液中の測定対象物に対する試薬を固定化することにより形成された試薬固定化部11aと、流路9zの他の一部に、被検査溶液の展開により溶出可能な標識試薬を保持することにより形成された標識試薬保持部10aと、流路9zから試薬固定化部13a、及び標識試薬保持部10aを除いた部分である生地から構成されている。
図6において、従来の装置構成を説明する。光源の半導体レーザから出射された光は、並行ビームへ変換されビームとして、試験片7aへ照射される。6zはビームの照射位置を示す。この時、参照光2aとして第1のフォトダイオード4aで受光する。一方、試験片7の表面からは散乱光3aが発生し、第2のフォトダイオード5aで受光する。第1のフォトダイオード4aと第2のフォトダイオード5aで受光した出力を、それぞれLog変換し、第1のフォトダイオード4のLog変換値から第2のフォトダイオード5のLog変換値を減算して、光学的な信号レベルの吸光度値として出力する。
図7において、具体的な操作方法を説明する。図7(a)は、試験片と被検査溶液の展開の関係図を示し、図7(b)は、被検査溶液のクロマト展開する際に変化する試薬固定化部における吸光度値(試薬固定化部の標識試薬の固定化量)の変化を示した図である。
図7(a)において、試験片7aの点着部8aに被検査溶液12eを点着すると、被検査溶液12eはクロマト展開を開始する。クロマト展開の過程において、被検査溶液12eの分析対象物と結合する標識薬を保持する標識試薬保持部10aを通過する事で、標識試薬も被検査溶液12eと共に試験片7aを展開する。この時、分析対象物と標識試薬は結合する。分析対象物と結合された標識試薬は試験片7aの途中にある試薬固定化部11aに固定される。分析対象物と結合されなかった標識試薬は試薬固定化部11aに固定されずに下流へと展開する。
そして全ての被検査溶液12eが試験片7aの最下流へ展開完了する時間は、すなわち図7(b)に示す吸光度値が安定するのに必要な時間であるとして、被検査溶液12eが流路9z内の所定位置24に到達後、予め定めた所定時間21a(照射開始時間)待機する。所定時間21aの待機後、試薬固定化部11aにビームを照射し、呈色した吸光度値を測定し、分析対象物濃度を表示する。
特開2003−4743号公報
In FIG. 6, the structure of the conventional test piece 7a will be described. Formed by fixing a spotting portion 8a for spotting a solution to be tested, a channel 9z for developing the solution to be tested, and a reagent for a measurement object in the solution to be tested in a part of the channel 9z. The reagent immobilization unit 11a thus formed, the labeled reagent holding unit 10a formed by holding the labeling reagent that can be eluted by the development of the solution to be inspected in the other part of the channel 9z, and the reagent from the channel 9z. It is comprised from the material | dough which is a part except the fixing | fixed part 13a and the labeling reagent holding | maintenance part 10a.
In FIG. 6, a conventional apparatus configuration will be described. The light emitted from the semiconductor laser as the light source is converted into a parallel beam and irradiated onto the test piece 7a as a beam. 6z indicates the irradiation position of the beam. At this time, the light is received by the first photodiode 4a as the reference light 2a. On the other hand, scattered light 3a is generated from the surface of the test piece 7, and is received by the second photodiode 5a. Log conversion is performed on the outputs received by the first photodiode 4a and the second photodiode 5a, and the Log conversion value of the second photodiode 5 is subtracted from the Log conversion value of the first photodiode 4. Output as an optical signal level absorbance value.
In FIG. 7, a specific operation method will be described. FIG. 7A shows the relationship between the development of the test piece and the solution to be inspected, and FIG. 7B shows the absorbance value (reagent immobilization) in the reagent immobilization unit that changes when the test solution is chromatographed. It is the figure which showed the change of the fixed amount of the labeling reagent of a part.
In FIG. 7A, when the test solution 12e is spotted on the spotting portion 8a of the test piece 7a, the test solution 12e starts chromatographic development. In the process of chromatographic development, the labeling reagent also develops the test piece 7a together with the test solution 12e by passing through the labeling reagent holding unit 10a that holds the labeling drug that binds to the analyte of the test solution 12e. At this time, the analyte and the labeling reagent are combined. The labeled reagent combined with the analysis object is fixed to the reagent fixing part 11a in the middle of the test piece 7a. The labeling reagent that has not been bound to the analysis target is developed downstream without being fixed to the reagent immobilization unit 11a.
The time for completing the development of all the solutions to be tested 12e to the most downstream side of the test piece 7a, that is, the time required for stabilizing the absorbance value shown in FIG. After reaching the predetermined position 24 in 9z, it waits for a predetermined time 21a (irradiation start time). After waiting for a predetermined time 21a, the reagent immobilization unit 11a is irradiated with a beam, the colored absorbance value is measured, and the analyte concentration is displayed.
Japanese Patent Laid-Open No. 2003-4743

ところで、上記従来の分析装置においては、被検査溶液12eが所定位置24に到達した後に、被検査溶液12eが最下流まで到達するまで待機する所定時間は、すべて一定の時間(所定時間21a)に調整されていた。   By the way, in the above-described conventional analysis apparatus, after the solution 12e to be inspected reaches the predetermined position 24, all the predetermined times for waiting until the solution 12e to be inspected reaches the most downstream is a certain time (predetermined time 21a). It was adjusted.

しかしながら現実に、被検査溶液に血液を用いた場合では、血中成分の影響により個人によって血液の粘性が異なる。それによって試験片に同一量の血液を点着した場合に、血液の展開速度は異なる。展開速度は、粘性の低い方が粘性の高い方に比べて速くなる。そのため、試験片を展開する待ち時間が一定の場合では、下記のような課題が発生することが判明した。 However, in reality, when blood is used as the solution to be inspected, the viscosity of blood varies depending on the individual due to the influence of blood components. Accordingly, when the same amount of blood is spotted on the test piece, the blood development speed is different. The deployment speed is faster when the viscosity is lower than when the viscosity is higher. Therefore, it was found that the following problems occur when the waiting time for developing the test piece is constant.

その課題について、図8を用いて説明する。 The problem will be described with reference to FIG.

図8は、予め等しい濃度の分析対象物を有し、粘性の異なる3種類の血液をクロマト展開させた場合において、図7(a)の所定位置24を血液が通過してからの展開待ち時間の経過にしたがって得られえる試薬固定化部での吸光度値の変化を示した図である。 FIG. 8 shows a development waiting time after blood passes through the predetermined position 24 in FIG. 7A in the case where three types of blood having different analytes and having different concentrations are chromatographed in advance. It is the figure which showed the change of the light absorbency value in the reagent fixed part which can be obtained according to progress of this.

3種類の粘性は主に血液中の赤血球(ヘマトクリット値)やタンパクの違いによるものであり、粘性の低い順に粘性A、粘性B、粘性Cである。 The three types of viscosity are mainly due to differences in red blood cells (hematocrit value) and proteins in blood, and are viscosity A, viscosity B, and viscosity C in order of increasing viscosity.

従来の分析装置は、粘性Bに合わせた待ち時間21aが設定されている。ここで粘性の低い粘性Aは、待ち時間22aにおいて既に血液の展開が完了し呈色反応が安定している。しかしながら粘性Bの血液の待ち時間21aまで待つと、必要以上に無駄な待ち時間25が生じ、分析時間が長くなる課題を有する。具体的に、25℃の温度においてヘマトクリット値40%の血液の待ち時間21aが240秒とした時に、早く展開する血液においは約60秒の待ち時間が発生すると想定される。 In the conventional analyzer, a waiting time 21a according to the viscosity B is set. Here, the low-viscosity viscosity A is already developed in the waiting time 22a and the color reaction is stable. However, waiting until the waiting time 21a for the blood of viscosity B causes the unnecessary waiting time 25 to occur, and the analysis time becomes longer. Specifically, when the waiting time 21a hematocrit value of 40% of the blood and 240 seconds at a temperature of 25 ° C., the Te blood smell to deploy earlier is assumed that a delay of approximately 60 seconds occurs.

次に粘性の高い粘性Cは、血液の展開速度は遅いため、待ち時間21aにおいて展開が完了していない。実際に展開が完了するのは待ち時間23aである。したがって、待ち時間21aで測定すると吸光度値に約5%の誤差26が発生し、分析精度が低下する課題を有する。 Next, the viscosity C, which has the next highest viscosity, is not completely developed in the waiting time 21a because the blood deployment speed is slow. The deployment is actually completed in the waiting time 23a. Therefore, when measured at the waiting time 21a, an error 26 of about 5% is generated in the absorbance value, and there is a problem that analysis accuracy is lowered.

また上記の課題は、被検査溶液の粘性が同一の場合であっても、試験片に点着する被検査溶液の量が測定の規定量に満たさない場合には発生する。これは、流路内を展開する被検査溶液の量が少ないため、展開の前線に供給される被検査の検体量が少なくなり規定量に比べて展開速度は遅くなる。そのため粘性の高い時(粘性C)と同様に、展開が完了していない時点で測定をする課題を有する。 Further, the above-described problem occurs when the amount of the solution to be inspected that is spotted on the test piece does not satisfy the prescribed amount of measurement even when the viscosity of the solution to be inspected is the same. This is because the amount of the solution to be inspected that develops in the flow path is small, the amount of the sample to be inspected supplied to the front of the development is small, and the development speed is slower than the prescribed amount. For this reason, as in the case of high viscosity (viscosity C), there is a problem of performing measurement when the development is not completed.

以上の課題に加えて、本発明者らの鋭意研究の結果、従来、吸光度値の安定化領域とみていた待ち時間21a以降の値であるが、吸光度値をより詳しく測定すると、ある一定時間内でしか安定しない事が分かった。 In addition to the above problems, as a result of intensive studies by the present inventors, it is a value after the waiting time 21a that has been conventionally regarded as a stabilization region of the absorbance value. When the absorbance value is measured in more detail, it is within a certain period of time. I understood that it was only stable.

その課題について、図9を用いて説明する。 The problem will be described with reference to FIG.

図9は、図8から粘性Cの変化を除いた図で、図9(b)は更にその一部を拡大した図である。粘性Aにおいて、時間22が経過後、被検査溶液の展開は完了して安定した吸光度値20aの値になる。しかしながら、図9(a)の部分27を拡大した図9(b)に示すように、吸光度値の単位の精度を上げた場合に吸光度値20aが変化する。そのため、共通の待ち時間21a経過した後に測定したのでは、差28が高い精度を求める際に約5〜10%の測定誤差になる課題を有する。 FIG. 9 is a diagram obtained by removing the change in the viscosity C from FIG. 8, and FIG. 9B is a diagram further enlarging a part thereof. In the viscosity A, after the elapse of time 22, the development of the solution to be inspected is completed and becomes a stable absorbance value 20a. However, as shown in FIG. 9B in which the portion 27 of FIG. 9A is enlarged, the absorbance value 20a changes when the accuracy of the unit of the absorbance value is increased. Therefore, if the measurement is performed after the common waiting time 21a has elapsed, there is a problem that the difference 28 becomes a measurement error of about 5 to 10% when high accuracy is obtained.

このように、従来の分析装置においては吸光度測定を行なう際に、展開速度の相違により測定値に大きな誤差が含まれ、展開完了後においては吸光度値が安定しないことによる誤差が含まれるという課題が存在していた。 As described above, when performing absorbance measurement in the conventional analyzer, there is a problem that the measurement value includes a large error due to the difference in the deployment speed, and an error due to the absorbance value being unstable after the deployment is completed. Existed.

従来課題を解決するために、本発明の分析装置は、被検査溶液が点着された試験片に展開された前記被検査溶液を固定する試薬固定化部を設け前記試薬固定化部に分析光を照射し前記被検査溶液と前記分析光との反応を光学的に分析する分析装置において、前記被検査溶液が試験片に展開される展開速度を検出する検出手段と、前記検出手段が検出した展開速度と前記試験片の性能に基づいて前記分析光の照射開始時間を設定する設定手段と、を備えたことを特徴とする。 In order to solve the conventional problems, the analyzer of the present invention, the analysis light to the reagent immobilization part is provided a reagent immobilization part that fixes the inspection target solution developed on the test piece inspection target solution is spotted in reaction analyzer which optically analyzes the the irradiated the inspection target solution and the analyzing light, and detecting means for detecting the deployment speed of the inspection target solution is developed in the specimen, said detecting means detects And setting means for setting the irradiation start time of the analysis light based on the development speed and the performance of the test piece .

さらに、前記設定手段によって設定する照射開始時間は、試験片上の所定位置を前記被検査溶液が通過後から計時する時間である、ことを特徴とする。 Further, the irradiation start time set by the setting means is a time for measuring the time after the solution to be inspected passes through a predetermined position on the test piece.

さらに、前記検出手段によって検出する前記展開速度は、被検査溶液が展開することで到着した異なる2点における前記被検査溶液の到着時間の差に基づいている、ことを特徴とする。 Further, the developing speed detected by the detecting means is based on a difference in arrival time of the solution to be inspected at two different points arrived by developing the solution to be inspected.

さらに、前記検出手段によって検出する前記展開速度は、被検査溶液が一定時間内に展開した距離に基づいている、ことを特徴とする。 Further, the developing speed detected by the detecting means is based on a distance that the solution to be inspected is developed within a predetermined time.

さらに、前記試験片は短冊状の多孔質担体からなり、血液をクロマトグラフィーにより展開させることを特徴とする。 Furthermore, the test piece is made of a strip-shaped porous carrier, and blood is developed by chromatography.

さらに、前記試験片は標識試薬を備え、前記標識試薬の呈色を光学的に分析することを特徴とする。 Further, the test piece is provided with a labeling reagent, characterized by optically analyzing the color of the labeled reagent.

さらに、前記試験片における被検査溶液の展開方向に分析光を照射し被検査溶液の到達位置を検出する走査手段と、前記被検査溶液が点着された試験片装着後または前記展開速度の検出前に前記走査手段が分析光を照射し所定位置に被検査溶液が到達しているとき前記展開速度の検出または前記試薬固定化部への分析光の照射を禁止する第1禁止手段と、を備えたことを特徴とする。 Further, a scanning means for detecting the arrival position of the irradiated specimen solution analysis light to the deployment direction of the inspection target solution in the specimen, the specimen solution is spotted specimens mounted or after the deployment speed detection A first prohibiting means for prohibiting the detection of the development speed or the irradiation of the analysis light to the reagent immobilization unit when the scanning means previously irradiates the analysis light and the solution to be inspected has reached a predetermined position; It is characterized by having.

さらに、前記試験片における被検査溶液の展開方向に分析光を照射し被検査溶液の到達位置を検出する走査手段と、前記被検査溶液が点着された試験片装着後または前記展開速度の検出前に前記走査手段が分析光を照射し被検査溶液の到達位置を検出できないとき前記展開速度の検出または前記試薬固定化部への分析光の照射を禁止する第2禁止手段と、を備えたことを特徴とする。 Further, a scanning means for detecting the arrival position of the irradiated specimen solution analysis light to the deployment direction of the inspection target solution in the specimen, the specimen solution is spotted specimens mounted or after the deployment speed detection A second prohibiting unit for prohibiting the detection of the development speed or the irradiation of the analysis light to the reagent immobilization unit when the scanning unit previously irradiates the analysis light and the arrival position of the solution to be inspected cannot be detected; It is characterized by that.

さらに、被検査溶液の到達位置を検出する走査手段でもちいる分析光の照射方向が、前記試験片を展開する被検査溶液の下流から上流方向とする、ことを特徴とする。 Furthermore, the irradiation direction of the analysis light used by the scanning means for detecting the arrival position of the solution to be inspected is from the downstream to the upstream of the solution to be inspected for developing the test piece.

さらに、前記検出手段が検出する展開速度が所定速度を満たさない場合、前記試薬固定化部への分析光の照射を禁止する第3禁止手段を備えたことを特徴とする。 Furthermore, when the expansion | deployment speed | velocity which the said detection means detects does not satisfy | fill predetermined speed, the 3rd prohibition means which prohibits irradiation of the analysis light to the said reagent fixing | fixed part is provided.

以上のように本発明は、被検査溶液が点着された試験片に展開された前記被検査溶液を固定する試薬固定化部を設け前記試薬固定化部に分析光を照射し前記被検査溶液と前記分析光との反応を光学的に分析する分析装置において、前記被検査溶液が試験片に展開される展開速度を検出する検出手段と、前記検出手段が検出した展開速度と前記試験片の性能に基づいて前記分析光の照射開始時間を設定する設定手段と、を備えたものであるので、吸光度測定を行なう際に、展開速度と前記試験片の性能の相違により測定値に大きな誤差が含まれ、展開完了後においては吸光度値が安定しないということはなくなり、その結果として検出精度を高めることができる。As described above, the present invention provides a reagent immobilization unit for immobilizing the test solution developed on the test piece on which the test solution is spotted, and irradiates the reagent immobilization unit with analysis light to thereby provide the test solution. In the analyzer for optically analyzing the reaction between the analysis light and the analyzing light, a detecting means for detecting a developing speed at which the solution to be inspected is developed on the test piece, a developing speed detected by the detecting means, and the test piece And setting means for setting the irradiation start time of the analysis light based on the performance.Therefore, when performing the absorbance measurement, there is a large error in the measurement value due to the difference in the development speed and the performance of the test piece. In other words, the absorbance value is not stabilized after the completion of the development, and as a result, the detection accuracy can be improved.

以下に、本発明における分析装置の実施例を図面とともに詳細に説明する。
(実施例1)
図1は、本発明における分析装置の概略構成を示した図である。
Hereinafter, embodiments of the analyzer according to the present invention will be described in detail with reference to the drawings.
Example 1
FIG. 1 is a diagram showing a schematic configuration of an analyzer according to the present invention.

図1において、試験片7の被検査溶液の点着部8に被検査溶液を点着すると、試験片7の矢印9aで示される幅の流路9を被検査溶液は展開する。展開方向は、試験片7の点着部8側を上流側として、反対側の下流側に向かって展開する。被検査溶液が展開する中で、最初に標識試薬保持部10を通過することで標識試薬も被検査溶液と共に展開する。展開された標識試薬は流路9にある試薬固定化部11に、被検査溶液の分析対象物の濃度に応じて固定される。また、試験片7は装置から取り外し可能で、且つ試験片7を取り外した状態で被検査溶液を点着し、試験片7が装置に取り付けられたことを装置内で検知することによって、測定開始の合図とする。 In FIG. 1, when the solution to be inspected is spotted on the spotted portion 8 of the solution to be inspected of the test piece 7, the solution to be inspected develops in the channel 9 having a width indicated by the arrow 9a of the test piece 7. The deployment direction is developed toward the downstream side on the opposite side, with the spotted portion 8 side of the test piece 7 as the upstream side. While the solution to be inspected develops, the labeling reagent also develops together with the solution to be inspected by first passing through the labeling reagent holding unit 10. The developed labeling reagent is fixed to the reagent immobilization unit 11 in the flow path 9 in accordance with the concentration of the analyte in the test solution. In addition, the test piece 7 can be removed from the apparatus, and the test solution is spotted with the test piece 7 removed, and the measurement is started by detecting that the test piece 7 is attached to the apparatus. The signal is

また、図1において、光源の半導体レーザから出射された光は、平行ビームへ変換されビームとして、試験片7へ照射される。照射位置6はビームの照射位置を示す。この時、参照光2として第1のフォトダイオード4で受光する。一方、試験片7の表面からは散乱光3(反射光)が発生し、第2のフォトダイオード5で受光する。或いは、試験片7の表面からの散乱光3を受光するのではなく、試験片7を透過した透過光をフォトダイオードで受光したのでも良い。第1のフォトダイオード4と第2のフォトダイオード5で受光した出力を、それぞれLog変換し、第1のフォトダイオード4のLog変換値から第2のフォトダイオード5のLog変換値を減算して、光学的な信号レベルの吸光度値として出力する。標識試薬や被検査溶液によって光は吸光されるため、標識試薬や被検査溶液が展開している部分の吸光度値は、標識試薬や被検査溶液が展開していない部分に比べて高くなる。また、被検査溶液中の分析対象物の吸光度値として試薬固定化部の吸光度値を用いる。 In FIG. 1, light emitted from a semiconductor laser as a light source is converted into a parallel beam and irradiated onto the test piece 7 as a beam. An irradiation position 6 indicates a beam irradiation position. At this time, light is received by the first photodiode 4 as reference light 2. On the other hand, scattered light 3 (reflected light) is generated from the surface of the test piece 7 and is received by the second photodiode 5. Alternatively, instead of receiving the scattered light 3 from the surface of the test piece 7, the transmitted light that has passed through the test piece 7 may be received by a photodiode. Log conversion is performed on the outputs received by the first photodiode 4 and the second photodiode 5, and the Log conversion value of the second photodiode 5 is subtracted from the Log conversion value of the first photodiode 4, Output as an optical signal level absorbance value. Since light is absorbed by the labeling reagent and the test solution, the absorbance value of the portion where the labeling reagent and the test solution are developed is higher than that of the portion where the labeling reagent and the test solution are not developed. Further, the absorbance value of the reagent immobilization unit is used as the absorbance value of the analyte in the test solution.

次に、図2は、被検査溶液の到達位置と測定終了条件の関係を示した図である。 Next, FIG. 2 is a diagram showing the relationship between the arrival position of the solution to be inspected and the measurement end condition.

検査溶液12の展開速度を検出する範囲である所定位置14は下流側の試験片エッジから8mm上流に設定し、更に所定位置13は所定位置14から4mm上流に設定する。 The predetermined position 14 which is a range in which the development speed of the test solution 12 is detected is set 8 mm upstream from the downstream test piece edge, and the predetermined position 13 is set 4 mm upstream from the predetermined position 14.

また、所定位置14と展開待ち開始(レーザ照射開始時間までのカウント開始)のための予め定めた所定位置を同じ位置とすることで、所定位置14から移動する処理が必要なくなるので処理効率が良くなる。また所定位置14は、展開速度の違いが大きくなる下流側に設定するのが望ましい。下流側において展開速度の違いが大きくなる理由は、粘性や点着された検体量の違いによって、展開中の被検査溶液12の先頭まで供給される量が異なることが要因に挙げられる。   Further, by making the predetermined position 14 and the predetermined predetermined position for starting unfolding waiting (starting counting until the laser irradiation start time) the same position, it is not necessary to move from the predetermined position 14, so that the processing efficiency is improved. Become. The predetermined position 14 is desirably set on the downstream side where the difference in the deployment speed becomes large. The reason why the difference in the development speed becomes large on the downstream side is that the amount supplied up to the head of the solution 12 to be inspected varies depending on the difference in viscosity and the amount of the deposited sample.

測定開始の合図を検知後、所定位置14から上流側に向かってビーム6aを移動しながら吸光度値の取得を行ない、現在の被検査溶液12の到達位置を走査する。移動にはステッピングモータを使用する。 After detecting the measurement start signal, the absorbance value is acquired while moving the beam 6a from the predetermined position 14 toward the upstream side, and the current arrival position of the solution 12 to be inspected is scanned. A stepping motor is used for movement.

被検査溶液12の到達の判定は、被検査溶液12が展開していない部分における吸光度値に所定の閾値を加えた値を取得した吸光度値が越えた時とする。 The determination of the arrival of the solution to be inspected 12 is made when the absorbance value obtained by adding a predetermined threshold value to the absorbance value in the portion where the solution to be inspected 12 is not developed exceeds.

例えば、図2(a)の所定位置14から所定位置13まで走査する間に、位置15に被検査溶液12が到達したことが検知されると、既に被検査溶液12が所定位置13より下流側へ展開しているため、展開速度を求めることが出来ないので測定を終了する。これは、ユーザが試験片に被検査溶液を点着してから、装置へ試験片を取り付けるまでに時間を要した事を示す。 For example, when it is detected that the test solution 12 has reached the position 15 while scanning from the predetermined position 14 to the predetermined position 13 in FIG. 2A, the test solution 12 is already downstream of the predetermined position 13. Since the expansion speed cannot be obtained, the measurement is terminated. This indicates that it took time until the test piece was attached to the apparatus after the user spotted the test solution on the test piece.

したがって、所定位置13を更に上流側に設定して、所定位置14との間の距離を長くすれば、展開速度の測定する距離が長くなるため精度は向上するが、被検査溶液を点着してから装置に試験片を取り付けるまでのゆとり時間が短くなり、ユーザの操作性が悪くなる。そのため、展開速度の精度とユーザの操作性を考慮して、所定位置13の設定位置は所定位置14から上流に4〜6mm以内にするのが望ましい。 Therefore, if the predetermined position 13 is further set on the upstream side and the distance from the predetermined position 14 is increased, the distance for measuring the development speed is increased, so that the accuracy is improved, but the solution to be tested is spotted. After that, the time required for attaching the test piece to the apparatus is shortened, and the operability for the user is deteriorated. Therefore, in consideration of the accuracy of the deployment speed and the user operability, it is desirable that the set position of the predetermined position 13 is within 4 to 6 mm upstream from the predetermined position 14.

また、図2(b)に示す流路9の最上流位置16まで走査しても被検査溶液12の到達を検知しない場合には、被検査溶液12が点着されていないとして測定を終了する。所定位置13から最上流位置16までの間に被検査溶液12の到達を検知した場合には、ビーム照射位置を所定位置13へ移動して次の動作に備える。 If the arrival of the solution to be inspected 12 is not detected even after scanning up to the most upstream position 16 of the flow path 9 shown in FIG. 2B, the measurement is terminated as the solution to be inspected 12 is not spotted. . When the arrival of the solution to be inspected 12 is detected between the predetermined position 13 and the most upstream position 16, the beam irradiation position is moved to the predetermined position 13 to prepare for the next operation.

次に、図3は、被検査溶液の展開と展開速度の測定範囲との関係を示した図である。 Next, FIG. 3 is a diagram showing the relationship between the development of the solution to be inspected and the measurement range of the development speed.

被検査溶液12aの展開速度を検出する範囲17で上流に位置する所定位置13aに、ビーム6bを照射して被検査溶液12aの到達を検出する(図3(a))。到達を検出すると、ビーム6cで示す所定位置14aへビーム照射位置を移動する。また移動開始と同時に、装置内に設けられたCPUにおいて時間カウンタAのカウントアップを0から開始する。次に、所定位置14aにおいて被検査溶液12bの到達を検出すると(図3(b))、時間カウンタAのカウントアップを停止する。   The arrival of the solution to be inspected 12a is detected by irradiating the beam 6b to a predetermined position 13a located upstream in the range 17 in which the development speed of the solution to be inspected 12a is detected (FIG. 3 (a)). When arrival is detected, the beam irradiation position is moved to a predetermined position 14a indicated by the beam 6c. Simultaneously with the start of movement, the CPU provided in the apparatus starts counting up the time counter A from zero. Next, when arrival of the solution to be inspected 12b is detected at the predetermined position 14a (FIG. 3B), the time counter A stops counting up.

また、所定位置13a、あるいは所定位置14aまで被検査溶液が到達しない場合を考慮して、到達検知を実行する制限時間を設ける。制限時間は、所定位置13aへビーム6bを移動した際に、時間カウンタAと別の時間カウンタBを0からカウントアップ開始し、所定のカウンタ値に達するまでとする。制限時間内に被検査溶液の到達を検出しない場合には、展開に必要な被検査溶液の量が不足しているとして測定を終了する。次に、算出したカウンタ値Aと範囲17の距離から被検査溶液の展開速度を算出する。算出方法は、範囲17÷カウンタ値A=展開速度(mm/s)とする。 In consideration of the case where the solution to be inspected does not reach the predetermined position 13a or the predetermined position 14a, a time limit for executing the arrival detection is provided. The time limit is set so that when the beam 6b is moved to the predetermined position 13a, the time counter A and another time counter B start counting up from 0 and reach a predetermined counter value. If the arrival of the solution to be inspected is not detected within the time limit, the measurement is terminated because the amount of the solution to be inspected necessary for development is insufficient. Next, the development speed of the solution to be inspected is calculated from the calculated counter value A and the distance between the range 17. The calculation method is set to range 17 ÷ counter value A = deployment speed (mm / s).

あるいは、展開速度を求める別の方法として、図4は、図3と同様に被検査溶液の展開と展開速度の測定範囲との関係を示した図である。 Alternatively, as another method for obtaining the development speed, FIG. 4 is a diagram showing the relationship between the development of the solution to be tested and the measurement range of the development speed, as in FIG.

所定位置18は、下流側の試験片エッジから12mm上流に設定する。上流に設定すると、被検査溶液を点着してから装置に試験片を取り付けるまでの時間が短くなり、ユーザが取り扱うときに不便になるため、8〜14mm以内に設定するのが望ましい。 The predetermined position 18 is set 12 mm upstream from the downstream test piece edge. If it is set upstream, the time from when the solution to be inspected is applied to when the test piece is attached to the apparatus is shortened, which is inconvenient when handled by the user.

最初に所定位置18へビーム6dを照射して被検査溶液12cの到達を検出する(図4(a))。到達を検出すると、次にビーム6dの照射位置をビームが移動出来る最小移動距離(0.0125mm)だけ下流側へ移動する。最小移動距離はステッピングモータの制御1STEPとなり、リードースクリュのピッチ幅に比例する。   First, the beam 6d is irradiated to the predetermined position 18 to detect the arrival of the solution to be inspected 12c (FIG. 4A). When arrival is detected, the irradiation position of the beam 6d is moved downstream by a minimum moving distance (0.0125 mm) at which the beam can move. The minimum moving distance is the stepping motor control 1 STEP, which is proportional to the pitch width of the lead screw.

この時、被検査溶液の展開速度よりビームの移動が速くなければならない。ビームが移動した位置において、被検査溶液の到達を検知すると再度ビームを移動する。以上の動作を所定位置18へ被検査溶液12cが到達してから一定時間経過するまで繰り返す。一定時間経過後、所定位置18からビーム6eの現在位置までの展開距離19を算出し、一定時間と展開距離19から被検査溶液12dの展開速度を算出する。算出方法は、展開距離19÷一定時間=展開速度(mm/s)とする。 At this time, the beam movement must be faster than the developing speed of the solution to be inspected. When the arrival of the solution to be inspected is detected at the position where the beam has moved, the beam is moved again. The above operation is repeated until a predetermined time elapses after the solution 12c to be inspected reaches the predetermined position 18. After a certain time elapses, the development distance 19 from the predetermined position 18 to the current position of the beam 6e is calculated, and the development speed of the solution 12d to be inspected is calculated from the constant time and the development distance 19. The calculation method is: deployment distance 19 ÷ constant time = deployment speed (mm / s).

上記方法で算出した展開速度が、予め検討で求めた所定速度内に収まっていない場合には、被検査溶液に異常があるとして測定を終了する。被検査溶液の異常内容としては、展開速度が所定速度より遅い場合には、分析装置の想定外である高い粘性をもった被検査溶液、あるいは展開に必要な被検査溶液の量が不足している場合がある。また、展開速度が所定速度より速い場合には、分析装置の想定外である低い粘性をもった被検査溶液である。 If the development speed calculated by the above method does not fall within the predetermined speed determined in advance, the measurement is terminated because there is an abnormality in the solution to be inspected. As the abnormal content of the solution to be inspected, if the development speed is slower than the predetermined speed, the amount of the solution to be inspected having a high viscosity that is not assumed by the analyzer or the amount of the solution to be inspected necessary for development is insufficient. There may be. Further, when the development speed is higher than a predetermined speed, the solution to be inspected has a low viscosity that is not assumed by the analyzer.

次に、算出した展開速度を用いて、基準となる待ち時間Bを補正する事で、展開に必要な待ち時間Aを求める。この時の待ち時間が、レーザを照射開始時間となる。 Next, the waiting time A necessary for the development is obtained by correcting the reference waiting time B using the calculated development speed. The waiting time at this time becomes the laser irradiation start time.

待ち時間Bは、被検査溶液の平均の粘性を用いて、実験により求めた展開完了に必要な待ち時間とする。被検査溶液が血液の場合には、ヘマトクリット40%で実験する。 The waiting time B is a waiting time required for completion of the development obtained by an experiment using the average viscosity of the solution to be inspected. When the test solution is blood, the hematocrit is 40%.

補正式は、
待ち時間A=待ち時間B÷{1+PalaA×Log(展開速度)+PalaB} =待ち時間B+調整時間
とし、PalaA、及びPalaBは試験片の性能に応じて変更可能とする。PalaAで展開速度に対する試験片の性能における待ち時間を調整し、PalaBで調整値をオフセットさせ微調整する。
The correction formula is
Waiting time A = waiting time B ÷ {1 + PalaA × Log (development speed) + PalaB} = waiting time B + adjustment time, and ParaA and PalaB can be changed according to the performance of the test piece. The waiting time in the performance of the test piece with respect to the deployment speed is adjusted with PalaA, and the adjustment value is offset and finely adjusted with PalaB.

或いは、算出した展開速度から予め容易しておいたテーブル表を用いて、展開速度に対応した待ち時間を決定したのでも良い。この場合においても、試験片の性能に応じてテーブル表を変更可能とする。   Alternatively, the waiting time corresponding to the development speed may be determined using a table that has been facilitated in advance from the calculated development speed. Even in this case, the table can be changed according to the performance of the test piece.

次に、算出した待ち時間A待機した後、試験片の試薬固定化部に呈色した吸光度値を求め、被検査溶液中の分析対象物の濃度を求める。   Next, after waiting for the calculated waiting time A, the absorbance value colored on the reagent immobilization part of the test piece is obtained, and the concentration of the analyte in the solution to be examined is obtained.

以上の発明による効果を、図5を用いて説明する。   The effect by the above invention is demonstrated using FIG.

図5は、被検査溶液の分析対象物の濃度が等しい3種類の異なる粘性における吸光度値の変化図である。   FIG. 5 is a graph showing changes in absorbance values at three different viscosities having the same concentration of the analyte in the test solution.

被検査溶液の粘性の低い順に粘性A、粘性B、粘性Cであり、粘性Bの展開速度と補正式から求めた待ち時間Aを待ち時間21とする。待ち時間21は基準となる待ち時間Bと等しく、更に従来発明の一定の待ち時間と等しいとする。また、粘性A、及び粘性Cの展開速度と補正式から求めた待ち時間をそれぞれ待ち時間22、及び待ち時間23とする。   The viscosity A, the viscosity B, and the viscosity C are in descending order of the viscosity of the solution to be inspected, and the waiting time A obtained from the developing speed of the viscosity B and the correction formula is set as the waiting time 21. The waiting time 21 is equal to the reference waiting time B, and is further assumed to be equal to the constant waiting time of the conventional invention. In addition, the waiting time obtained from the developing speed of the viscosity A and the viscosity C and the correction formula are referred to as a waiting time 22 and a waiting time 23, respectively.

粘性に応じた待ち時間に補正した事で、粘性が低い粘性Aにおいて、従来発明より短い待ち時間22になり測定時間を早くする事ができる。また、それぞれの粘性において安定した吸光度値20の値(標識試薬と試薬固定化部の結合が完了した時の値)が取得できる。 By correcting the waiting time according to the viscosity, the viscosity A having a low viscosity has a waiting time 22 shorter than that of the conventional invention, and the measurement time can be shortened. Further, a stable absorbance value 20 at each viscosity (a value when the binding between the labeling reagent and the reagent immobilization part is completed) can be acquired.

本発明にかかる分析装置は、被検査溶液の粘性による測定への影響を除去する機能を有し、高い精度の測定結果が求められる技術分野に有用である。 The analyzer according to the present invention has a function of removing the influence on the measurement due to the viscosity of the solution to be inspected, and is useful in a technical field where a highly accurate measurement result is required.

本発明にかかる分析装置は、被検査溶液の粘性に対応した測定時間へ補正する機能を有し、分析対象物の測定に素早い測定時間が求められる技術分野に有用である。 The analysis apparatus according to the present invention has a function of correcting the measurement time corresponding to the viscosity of the solution to be inspected, and is useful in a technical field where a quick measurement time is required for measurement of an analysis object.

本発明における、分析装置の概略構成図The schematic block diagram of the analyzer in this invention 本発明における、被検査溶液の到達位置と測定終了の関係図In the present invention, the relationship between the arrival position of the solution to be tested and the end of measurement 本発明における、被検査溶液の展開と展開速度の測定範囲の関係図In the present invention, the relationship between the development range of the solution to be tested and the measurement range of the development speed 本発明における、被検査溶液の展開と展開速度の測定範囲の関係図In the present invention, the relationship between the development range of the solution to be tested and the measurement range of the development speed 本発明における、異なる粘性における吸光度値の変化図In the present invention, changes in absorbance values at different viscosities 従来発明における、分析装置の概略構成図Schematic configuration diagram of the analyzer in the conventional invention 従来発明における、被検査溶液の展開と展開待ち時間における吸光度値の変 化図Changes in absorbance values during the development of the solution to be tested and the waiting time for development in the conventional invention 従来発明における、異なる粘性における課題図Problem diagram of different viscosities in the conventional invention 従来発明における、異なる粘性における課題図Problem diagram of different viscosities in the conventional invention

1、1a 半導体レーザ(光源)
2、2a 参照光
3、3a 散乱光
4、4a 第1のフォトダイオード
5、5a 第2のフォトダイオード
6、6a、6b、6c、6d、6e ビーム照射位置
7、7a 試験片
8、8a 点着部
9、9z 流路
9a 流路の幅
10、10a 標識薬保持部
11、11a 試薬固定化部
12、12a、12b、12c、12d 被検査溶液
13、13a、18 展開速度の測定範囲の上流側所定位置
14、14a 展開速度の測定範囲の下流側所定位置
16 流路の最上流位置
17、19 展開速度の測定範囲
20、20a 展開後の安定した吸光度値
21、21a、22、22a、23、23a 展開の待ち時間
24 展開待ち開始位置
25 余分な待ち時間
26、28 誤差
27 拡大部分
1, 1a Semiconductor laser (light source)
2, 2a Reference light 3, 3a Scattered light 4, 4a First photodiode 5, 5a Second photodiode 6, 6a, 6b, 6c, 6d, 6e Beam irradiation position 7, 7a Test piece 8, 8a Portions 9 and 9z Channel 9a Channel width 10, 10a Labeling agent holding portion 11, 11a Reagent immobilization portion 12, 12a, 12b, 12c, 12d Solution to be tested 13, 13a, 18 Upstream of measurement range of development speed Predetermined positions 14, 14a Predetermined positions downstream of the development speed measurement range 16 Uppermost stream positions 17, 19 of the flow path Measurement speed ranges 20, 20a Stable absorbance values 21, 21a, 22, 22a, 23 after deployment, 23a Deployment waiting time 24 Deployment waiting start position 25 Extra waiting time 26, 28 Error 27 Enlarged portion

Claims (10)

被検査溶液が点着された試験片に展開された前記被検査溶液を固定する試薬固定化部を設け前記試薬固定化部に分析光を照射し前記被検査溶液と前記分析光との反応を光学的に分析する分析装置において、前記被検査溶液が試験片に展開される展開速度を検出する検出手段と、前記検出手段が検出した展開速度と前記試験片の性能に基づいて前記分析光の照射開始時間を設定する設定手段と、を備えたことを特徴とする分析装置。 The reaction of the irradiated analysis light to the reagent immobilization part is provided a reagent immobilization part that fixes the inspection target solution developed on the test piece inspection target solution is spotted the inspection target solution and the analyzing light in the analyzer which optically analyzes the detection means for detecting the deployment speed of the inspection target solution is developed in the specimen, the analysis light based on the performance of the test piece and development speed detected by the detection means An analyzer comprising: setting means for setting an irradiation start time. 前記設定手段によって設定する照射開始時間は、試験片上の所定位置を前記被検査溶液が通過後から計時する時間である、ことを特徴とする請求項1記載の分析装置。 2. The analyzer according to claim 1, wherein the irradiation start time set by the setting means is a time measured after the solution to be inspected passes through a predetermined position on the test piece. 前記検出手段によって検出する前記展開速度は、被検査溶液が展開することで到着した異なる2点における前記被検査溶液の到着時間の差に基づいている、ことを特徴とする請求項1記載の分析装置。 2. The analysis according to claim 1, wherein the developing speed detected by the detecting means is based on a difference in arrival time of the solution to be inspected at two different points arrived by developing the solution to be inspected. apparatus. 前記検出手段によって検出する前記展開速度は、被検査溶液が一定時間内に展開した距離に基づいている、ことを特徴とする請求項1記載の分析装置。 2. The analyzer according to claim 1, wherein the developing speed detected by the detecting means is based on a distance that the solution to be inspected is developed within a predetermined time. 前記試験片は短冊状の多孔質担体からなり、血液をクロマトグラフィーにより展開させることを特徴とする請求項1記載の分析装置。 The analyzer according to claim 1, wherein the test piece is made of a strip-shaped porous carrier, and blood is developed by chromatography. 前記試験片は標識試薬を備え、前記標識試薬の呈色を光学的に分析することを特徴とする請求項1記載の分析装置。 The test strip comprises a labeled reagent, analyzer according to claim 1, wherein the optically analyzing a color of the labeled reagent. 前記試験片における被検査溶液の展開方向に分析光を照射し被検査溶液の到達位置を検出する走査手段と、前記被検査溶液が点着された試験片装着後または前記展開速度の検出前に前記走査手段が分析光を照射し所定位置に被検査溶液が到達しているとき前記展開速度の検出または前記試薬固定化部への分析光の照射を禁止する第1禁止手段と、を備えたことを特徴とする請求項1記載の分析装置。 A scanning means for detecting the arrival position of the irradiated specimen solution analysis light to the deployment direction of the inspection target solution in the specimen, the prior detection of the inspection target solution is spotted specimens mounted or after the development speed A first prohibiting unit that prohibits detection of the development speed or irradiation of the analysis light to the reagent immobilization unit when the scanning unit irradiates analysis light and the solution to be inspected reaches a predetermined position; The analyzer according to claim 1. 前記試験片における被検査溶液の展開方向に分析光を照射し被検査溶液の到達位置を検出する走査手段と、前記被検査溶液が点着された試験片装着後または前記展開速度の検出前に前記走査手段が分析光を照射し被検査溶液の到達位置を検出できないとき前記展開速度の検出または前記試薬固定化部への分析光の照射を禁止する第2禁止手段と、を備えたことを特徴とする請求項1記載の分析装置。 A scanning means for detecting the arrival position of the irradiated specimen solution analysis light to the deployment direction of the inspection target solution in the specimen, the prior detection of the inspection target solution is spotted specimens mounted or after the development speed A second prohibiting unit for prohibiting the detection of the development speed or the irradiation of the analysis light to the reagent immobilization unit when the scanning unit irradiates the analysis light and the arrival position of the solution to be tested cannot be detected. The analyzer according to claim 1, wherein 被検査溶液の到達位置を検出する走査手段でもちいる分析光の照射方向が、前記試験片を展開する被検査溶液の下流から上流方向とする、ことを特徴とする請求項7または請求項8のいずれかに記載の分析装置。 9. The irradiation direction of the analysis light used by the scanning means for detecting the arrival position of the solution to be inspected is from the downstream to the upstream of the solution to be inspected for developing the test piece. The analyzer in any one of. 前記検出手段が検出する展開速度が所定速度を満たさない場合、前記試薬固定化部への分析光の照射を禁止する第3禁止手段を備えたことを特徴とする請求項1記載の分析装置。 The analyzer according to claim 1, further comprising a third prohibiting unit that prohibits irradiation of the analysis light to the reagent immobilization unit when a deployment speed detected by the detection unit does not satisfy a predetermined speed.
JP2004356368A 2004-12-09 2004-12-09 Analysis equipment Expired - Fee Related JP4613597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356368A JP4613597B2 (en) 2004-12-09 2004-12-09 Analysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356368A JP4613597B2 (en) 2004-12-09 2004-12-09 Analysis equipment

Publications (2)

Publication Number Publication Date
JP2006162496A JP2006162496A (en) 2006-06-22
JP4613597B2 true JP4613597B2 (en) 2011-01-19

Family

ID=36664679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356368A Expired - Fee Related JP4613597B2 (en) 2004-12-09 2004-12-09 Analysis equipment

Country Status (1)

Country Link
JP (1) JP4613597B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581898B2 (en) * 2005-08-05 2010-11-17 パナソニック株式会社 Test piece measuring device
JP4860489B2 (en) 2007-01-09 2012-01-25 浜松ホトニクス株式会社 Method for measuring immunochromatographic test strip
JP5026090B2 (en) * 2007-01-09 2012-09-12 浜松ホトニクス株式会社 Immunochromatographic test piece measuring device
JP4750052B2 (en) * 2007-02-07 2011-08-17 パナソニック株式会社 Measuring method using biosensor
JP4811380B2 (en) * 2007-09-28 2011-11-09 パナソニック株式会社 Measuring method using biosensor
JP5410292B2 (en) * 2007-10-26 2014-02-05 アークレイ株式会社 SAMPLE DETECTING DEVICE AND MEASURING DEVICE HAVING THE SAME
JP4812742B2 (en) * 2007-12-27 2011-11-09 パナソニック株式会社 Solution measuring method and solution measuring apparatus
TW201447272A (en) * 2013-06-14 2014-12-16 Chieh Jui Technology Co Ltd Measuring system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395431A (en) * 1989-09-08 1991-04-19 Terumo Corp Measuring apparatus
JP2001066310A (en) * 1999-06-21 2001-03-16 Matsushita Electric Ind Co Ltd Chromatographic quantitative measuring apparatus
JP2001215223A (en) * 2000-02-02 2001-08-10 Otsuka Pharmaceut Co Ltd Measuring instrument for test paper
JP2003004743A (en) * 2001-06-22 2003-01-08 Matsushita Electric Ind Co Ltd Chromatographic quantitative measurement apparatus
JP2003014764A (en) * 2001-04-27 2003-01-15 Matsushita Electric Ind Co Ltd Bio-device, quantitative measuring device using the same and quantitative measuring method
JP2003098078A (en) * 2001-09-20 2003-04-03 Matsushita Electric Ind Co Ltd Sample concentration measuring device
WO2004081554A1 (en) * 2003-03-14 2004-09-23 Nec Corporation Diagnosis supporting system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395431A (en) * 1989-09-08 1991-04-19 Terumo Corp Measuring apparatus
JP2001066310A (en) * 1999-06-21 2001-03-16 Matsushita Electric Ind Co Ltd Chromatographic quantitative measuring apparatus
JP2001215223A (en) * 2000-02-02 2001-08-10 Otsuka Pharmaceut Co Ltd Measuring instrument for test paper
JP2003014764A (en) * 2001-04-27 2003-01-15 Matsushita Electric Ind Co Ltd Bio-device, quantitative measuring device using the same and quantitative measuring method
JP2003004743A (en) * 2001-06-22 2003-01-08 Matsushita Electric Ind Co Ltd Chromatographic quantitative measurement apparatus
JP2003098078A (en) * 2001-09-20 2003-04-03 Matsushita Electric Ind Co Ltd Sample concentration measuring device
WO2004081554A1 (en) * 2003-03-14 2004-09-23 Nec Corporation Diagnosis supporting system

Also Published As

Publication number Publication date
JP2006162496A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
EP3008449B1 (en) Calibration method for photometry and associated analysis system
Hulzebos et al. Diagnostic methods for neonatal hyperbilirubinemia: benefits, limitations, requirements, and novel developments
US8570495B2 (en) Whole blood immunity measuring device and whole blood immunity measuring method
EP1840559A1 (en) Blood analyzer and blood analyzing method
JP2009109196A (en) Dilution ratio deriving method, quantity determination method and analyzer
JP2007322208A (en) Biochemical analyzer
JP4613597B2 (en) Analysis equipment
JP2009115470A (en) Chromatographic inspection apparatus and method for determining degradation of chromatographic test piece
US10222324B1 (en) Dried blood sample analysis
EP3361238B1 (en) Optical measuring device
WO2009090861A1 (en) Method for analyzing sample solution and apparatus for analyzing sample solution
WO1998039634A1 (en) Method and apparatus for measurement of blood substitutes
JP2009098080A (en) Immunochromatographic measurement apparatus
JP5946776B2 (en) Automatic analyzer
JP5312834B2 (en) Blood coagulation analyzer, blood coagulation analysis method, and computer program
JP2010019610A (en) Immunochromatography measuring device and immunochromatography measuring method
JP2006003366A (en) Stabilization of cuvette under measurement
JP2010117290A (en) Apparatus and method for analyzing liquid sample constituent
JP2012215467A (en) Biological substance analyzer and biological substance analysis method
US7198955B1 (en) Method and apparatus for measurement of blood substitutes
WO2020116058A1 (en) Analyzer and analysis method
WO2024195510A1 (en) Automated analysis device and sample analysis method
Niculescu Optical method for improving the accuracy of biochemical assays
JP2005337960A (en) Immunoreaction measuring method, immunoreaction measuring kit, and immunoreaction measuring apparatus
JP2008298755A (en) Medical photometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees