[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4612648B2 - Gasification gas purification method - Google Patents

Gasification gas purification method Download PDF

Info

Publication number
JP4612648B2
JP4612648B2 JP2007063741A JP2007063741A JP4612648B2 JP 4612648 B2 JP4612648 B2 JP 4612648B2 JP 2007063741 A JP2007063741 A JP 2007063741A JP 2007063741 A JP2007063741 A JP 2007063741A JP 4612648 B2 JP4612648 B2 JP 4612648B2
Authority
JP
Japan
Prior art keywords
activated carbon
gas
light oil
gasification gas
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007063741A
Other languages
Japanese (ja)
Other versions
JP2008222877A (en
Inventor
雅也 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2007063741A priority Critical patent/JP4612648B2/en
Publication of JP2008222877A publication Critical patent/JP2008222877A/en
Application granted granted Critical
Publication of JP4612648B2 publication Critical patent/JP4612648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Industrial Gases (AREA)

Description

本発明は、廃プラスチックやバイオマス等の有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスの浄化方法に関し、とくに活性炭充填塔を用いたガス化ガスの浄化方法に関する。   The present invention relates to a purification method for gasification gas obtained by thermally decomposing organic waste such as waste plastic and biomass or solid organic matter such as coal, and more particularly to a purification method for gasification gas using an activated carbon packed tower. .

近年、地球環境保全とくに地球温暖化防止の一環として、エネルギーの有効利用が改めて注目されるなかで、廃プラスチックやバイオマス等の有機性廃棄物の持つエネルギーを有効利用する方法として、有機性廃棄物を熱分解し可燃性ガスを得る、いわゆるガス化が注目を集めている。   In recent years, effective use of energy has been attracting attention as part of global environmental conservation, especially prevention of global warming. Organic waste is a method for effectively using energy of organic waste such as waste plastic and biomass. So-called gasification, which obtains a combustible gas by pyrolyzing the gas, is attracting attention.

ところが、ガス化によって得られた可燃性ガス、すなわちガス化ガスには有機性廃棄物に含まれる塩素分に起因するダイオキシンが含まれているので、ガス化ガスの利用にあたってはダイオキシンの除去が必要である。また、有機性廃棄物のガス化ガスにはダイオキシンのほか、タール分や軽質油分等の常温常圧で液体若しくは固体である高沸点炭化水素化合物(本願明細書では単に「高沸点炭化水素化合物」という。ここで、「高沸点炭化水素化合物」の沸点は概ね60℃以上である。)が含まれている。これらの高沸点炭化水素化合物は、沸点以下の温度でも高い蒸気圧を持ち、冷却等によって除去することが難しく、ガス中に残存する高沸点炭水素化合物は、ガス化ガスの温度が低下すると凝縮し、ガス配管やその付帯設備に付着して設備トラブルを引き起こす原因となる。したがって、ダイオキシンと共にガス化ガス中から除去する必要がある。   However, combustible gas obtained by gasification, that is, gasification gas contains dioxin due to chlorine contained in organic waste, so it is necessary to remove dioxin when using gasification gas It is. In addition to dioxins, organic waste gasification gases include high-boiling hydrocarbon compounds that are liquid or solid at normal temperature and pressure, such as tar and light oil (in the present specification, simply “high-boiling hydrocarbon compounds”). Here, the boiling point of the “high-boiling hydrocarbon compound” is approximately 60 ° C. or higher). These high boiling hydrocarbon compounds have a high vapor pressure even at temperatures below the boiling point and are difficult to remove by cooling, etc., and the high boiling hydrocarbon compounds remaining in the gas condense when the temperature of the gasification gas decreases. In addition, it may cause equipment trouble by adhering to the gas piping and its ancillary equipment. Therefore, it is necessary to remove from gasification gas with dioxin.

従来、ガス中のダイオキシンを除去する技術として、特許文献1には、ダイオキシンを触媒層により分解し、残分のダイオキシンを活性炭層により吸着するという技術が開示されている。しかし、この特許文献1の技術は、おもに可燃性物質を燃焼させた後の燃焼排ガスを処理対象とするものであり、特許文献1の技術を有機性廃棄物のガス化ガスの処理に適用すると、触媒層ではダイオキシン以外の炭化水素ガスも分解され煤が発生するので、すぐに閉塞し失活する。また、活性炭層ではダイオキシン以外に上述の高沸点炭化水素化合物が吸着され、活性炭の活性を持続させることができない。持続させるためには、常に新しい活性炭を使用する必要があり、運転費が高くなる。   Conventionally, as a technique for removing dioxins in a gas, Patent Document 1 discloses a technique in which dioxins are decomposed by a catalyst layer and the remaining dioxins are adsorbed by an activated carbon layer. However, the technique of this patent document 1 is mainly intended for treating the combustion exhaust gas after burning a combustible substance, and when the technique of patent document 1 is applied to the treatment of gasification gas of organic waste. In the catalyst layer, hydrocarbon gases other than dioxins are also decomposed and soot is generated. Moreover, in the activated carbon layer, the above-described high boiling point hydrocarbon compound is adsorbed in addition to dioxin, and the activity of the activated carbon cannot be maintained. In order to sustain it, it is necessary to always use new activated carbon, which increases operating costs.

また、特許文献2には、バグフィルター等の集塵装置を設け、その上流側で粉末状の活性炭を吹き込み、バグフィルターのろ布表面上に活性炭層を形成し、その活性炭にダイオキシンを吸着させるという技術が開示されている。しかし、この特許文献2の技術においても、これを有機性廃棄物のガス化ガスの処理に適用すると、ガス化ガスに含まれる上述の高沸点炭化水素化合物によって目詰まり等のトラブルが発生し、安定的な運転を継続することができない。   In Patent Document 2, a dust collector such as a bag filter is provided, and powdered activated carbon is blown upstream thereof to form an activated carbon layer on the filter cloth surface of the bag filter, and dioxins are adsorbed on the activated carbon. This technique is disclosed. However, even in the technique of this Patent Document 2, when this is applied to the treatment of gasification gas of organic waste, troubles such as clogging occur due to the above-mentioned high boiling point hydrocarbon compound contained in the gasification gas, Stable operation cannot be continued.

一方、特許文献3及び特許文献4には、排気ガス中の溶剤等の炭化水素、軽質油分を除去するために活性炭を用いた浄化技術が開示されている。しかし、活性炭により有機性廃棄物のガス化ガスに含まれる軽質油分を除去する場合には、ガスの原料が廃棄物であることから原料の性状が安定しないのでガス浄化の制御が難しく、また、ガス化ガス中には軽質油分だけでなくタール分が含まれるので、タール分を含むガスを活性炭で浄化すると、タール分が活性炭から離脱しにくいため、活性炭の寿命が短くなる。   On the other hand, Patent Document 3 and Patent Document 4 disclose a purification technique using activated carbon to remove hydrocarbons such as solvents and light oil in exhaust gas. However, when the light oil contained in the gasification gas of organic waste is removed by activated carbon, it is difficult to control gas purification because the raw material of the gas is waste and the properties of the raw material are not stable. Since the gasified gas contains not only light oil but also tar, if the gas containing tar is purified by activated carbon, the tar is not easily separated from the activated carbon, and the life of the activated carbon is shortened.

また、特許文献5及び特許文献6には、バイオマスを熱分解して得られたバイオマスガス(ガス化ガス)を活性炭を用いて浄化する技術が開示されている。しかし、この技術ではガス処理温度が高く、分子量が大きくて沸点の高いタール分を吸着除去することは可能であるが、分子量が小さくて沸点が比較的低く、高揮発性であって、常温常圧で液状の炭化水素化合物、いわゆる軽質油分を吸着除去することはできない。軽質油分はガス利用の際に、配管中で冷却され、ドレン化する。このドレンは揮発性のきわめて高い引火性油であるため取り扱いが難しい。   Patent Documents 5 and 6 disclose a technique for purifying biomass gas (gasification gas) obtained by pyrolyzing biomass using activated carbon. However, with this technology, it is possible to adsorb and remove tar components having a high gas treatment temperature and a high molecular weight and a high boiling point, but they have a low molecular weight, a relatively low boiling point, a high volatility, and a normal temperature. It is impossible to adsorb and remove liquid hydrocarbon compounds, so-called light oil components, under pressure. Light oil is cooled in the piping and drained when using gas. Since this drain is a highly volatile flammable oil, it is difficult to handle.

また、性状の均一なバイオマス以外を原料としたガス化ガスの場合、タール分の発生量及び性状が変化し、活性炭吸着層が閉塞したり、軽質油分がガス利用設備に流れ、トラブルとなる可能性がある。とくに廃プラスチック、石炭等の化石燃料、あるいは化石燃料を原材料とする固体有機物をガス化する場合には、タール分及び軽質油分の量が多く、上記技術による手法では十分な浄化を行うことができない。   In addition, in the case of gasification gas using raw materials other than biomass with uniform properties, the generation amount and properties of tar may change, the activated carbon adsorption layer may be clogged, and light oil may flow to the gas utilization facility, causing problems. There is sex. In particular, when fossil fuels such as waste plastics and coal, or solid organic substances made from fossil fuels are gasified, the amount of tar and light oil is large, and the above-mentioned technique cannot perform sufficient purification. .

このように、従来、活性炭を用いてガスを浄化する技術は種々提案されているが、高沸点炭化水素化合物とくにタール分及び軽質油分を多く含むガス化ガスを浄化する場合、上述のような問題があり、活性炭を用いたガス化ガスの浄化技術は確立されていない。   As described above, various techniques for purifying gas using activated carbon have been proposed in the past. However, when purifying gasification gas containing a high boiling point hydrocarbon compound, particularly tar and light oil, the above-mentioned problems are required. However, gasification gas purification technology using activated carbon has not been established.

これに対して、活性炭を用いないガス化ガスの浄化技術も提案されている。例えば特許文献7には、有機性廃棄物をガス化後、酸素及び水蒸気と反応させ、1100℃程度の高温での改質反応により、ガス化ガス中のタール分や軽質油分を低減させる技術が提案されている。しかし、このような改質反応を用いたガスの浄化技術では、改質反応に必要な熱源を得るためにガス化ガスの部分燃焼が必要となり、ガス化ガスの持つエネルギーを消費されガスカロリーが低下するという問題がある。また、改質反応に用いる酸素の製造にエネルギーを多く必要とし、廃棄物処理に必要な総エネルギーが大きくなりすぎる。   On the other hand, a gasification gas purification technique that does not use activated carbon has also been proposed. For example, Patent Document 7 discloses a technology for reducing tar content and light oil content in gasified gas by gasification of organic waste, reaction with oxygen and water vapor, and reforming reaction at a high temperature of about 1100 ° C. Proposed. However, gas purification technology using such a reforming reaction requires partial combustion of the gasified gas in order to obtain a heat source required for the reforming reaction. There is a problem of lowering. In addition, the production of oxygen used for the reforming reaction requires a lot of energy, and the total energy required for waste treatment becomes too large.

他のガス洗浄技術としては、コークス炉ガスの浄化技術に見られるように、低温下でガスを油で洗浄し、ガス中のタール分及び軽質油分等を除去する技術がある。しかし、この技術では、低温下で洗浄を行うにあたり冷熱源を得るためにエネルギーが必要である。また、洗浄後の排水に高度な処理が必要となり、さらに油を再生する工程等が必要となり、再生時に発生するガスの処理等、設備が複雑になる傾向にある。また、ガスの洗浄によってはダイオキシンを除去することはできない。   As another gas cleaning technology, as seen in coke oven gas purification technology, there is a technology in which gas is cleaned with oil at a low temperature to remove tar content and light oil content in the gas. However, with this technique, energy is required to obtain a cold heat source for cleaning at low temperatures. Moreover, advanced treatment is required for the waste water after washing, and further, a step of regenerating oil and the like is required, and facilities such as treatment of gas generated at the time of regeneration tend to be complicated. Further, dioxins cannot be removed by gas cleaning.

このように、ガス中のダイオキシン及びタール分、軽質油分等の高沸点炭化水素化合物を同時に除去してガスを浄化するには、やはり活性炭を用いて乾式処理することが有用かつ簡便であり、活性炭を用いたガス化ガスの浄化技術の確立が望まれている。   Thus, in order to purify the gas by simultaneously removing high-boiling hydrocarbon compounds such as dioxin, tar, and light oil in the gas, it is useful and simple to dry-process using activated carbon. Establishing gasification gas purification technology using methane is desired.

一方で、有機物を熱分解し可燃性のガス化ガスを得る場合、ガス化ガスの利用にあたってはメタン等の炭化水素ガスを残し、ガスのカロリーを高く保つことが望ましい。但し、その場合、タール分及び軽質油分が副生しガス利用の妨げとなる。したがって、この点からもガス化ガス中のタール分及び軽質油分を除去する浄化技術の確立が望まれている。   On the other hand, when an organic substance is thermally decomposed to obtain a combustible gasification gas, it is desirable to keep hydrocarbon gas such as methane and keep gas calorie high when using the gasification gas. In this case, however, tar and light oil are by-produced and hinder gas utilization. Therefore, also from this point, establishment of a purification technique for removing tar and light oil in gasified gas is desired.

活性炭を用いてガス化ガス中のタール分及び軽質油分を主体とする高沸点炭化水素化合物を安定的に除去するには、高沸点炭化水素化合物を吸着した活性炭から定期的に高沸点炭化水素化合物を離脱させて活性炭の吸着能力を回復させる必要がある。したがって、活性炭から離脱させた高沸点炭化水素化合物の回収及び処理が必要となるが、エネルギーの有効利用の点から、回収した高沸点炭化水素化合物を単に廃棄処理するのではなく、燃料等として有効利用できるようにすることが望ましい。
特開2003−112012号公報 特開平11−230529号公報 特開平9−215908号公報 特開2005−66503号公報 特開2006−16469号公報 特開2006−16470号公報 特開2004−238535号公報
In order to stably remove high-boiling hydrocarbon compounds mainly composed of tar and light oil in gasification gas using activated carbon, high-boiling hydrocarbon compounds are periodically removed from activated carbon adsorbed with high-boiling hydrocarbon compounds. It is necessary to recover the adsorptive capacity of activated carbon by removing the. Therefore, it is necessary to recover and treat the high-boiling hydrocarbon compound released from the activated carbon. However, from the viewpoint of effective use of energy, the recovered high-boiling hydrocarbon compound is not simply disposed of but effective as a fuel. It is desirable to make it available.
Japanese Patent Laid-Open No. 2003-112012 JP-A-11-230529 JP-A-9-215908 JP 2005-66503 A JP 2006-16469 A JP 2006-16470 A JP 2004-238535 A

本発明が解決しようとする課題は、総括的には、活性炭を用いたガス化ガスの浄化技術を確立することにある。   The problem to be solved by the present invention is generally to establish a purification technology for gasification gas using activated carbon.

具体的には、ガス化ガス中の高沸点炭化水素化合物を吸着した活性炭の吸着能力を回復させるために活性炭から離脱させた高沸点炭化水素化合物の有効利用を図ることのできるガス化ガスの浄化方法を提供することにある。   Specifically, purification of gasification gas that enables effective utilization of high-boiling point hydrocarbon compounds released from activated carbon in order to restore the adsorption ability of activated carbon that has adsorbed high-boiling point hydrocarbon compounds in gasification gas It is to provide a method.

本発明の第一の形態は、有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスを活性炭吸着塔からなる活性炭式吸着装置に通し、活性炭にガス化ガス中のダイオキシン及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着させ活性炭吸着塔の活性炭に吸着した高沸点炭化水素化合物を活性炭から離脱させて回収するガス化ガスの浄化方法において、改質炉での改質反応により、ガス化ガス中のタール分を分解させ、タール分の含有量を少なくした上で、活性炭式吸着装置へ導入するガス化ガスの温度を20℃を超え100℃以下とし、回収した高沸点炭化水素化合物を、製鉄所のコークス炉ガス精製設備の軽油回収工程において蒸溜塔で軽質油分を分離した後の洗浄油あるいは前記蒸溜塔で分離された軽質油分と混合して利用することを特徴とする。本発明の第二の形態は、活性炭式吸着装置をガス化ガスの流れ方向に直列に2段設置し、1段目の活性炭式吸着装置で分離回収されたタール分主体高沸点炭化水素化合物は、製鉄所のコークス炉ガス精製設備の軽油回収工程において吸収塔でコークス炉ガス中の軽質油分を回収した洗浄油と混合して利用し、2段目の活性炭式吸着装置で分離回収された軽質油分主体の高沸点炭化水素化合物は、製鉄所のコークス炉ガス精製設備の軽油回収工程において蒸留塔で軽質油分を分離した後の洗浄油あるいは前記蒸留塔で分離された軽質油分と混合して利用することを特徴とする。本発明の第三の形態は、上記第二の形態において、活性炭式吸着装置の前段で改質炉での改質反応により、ガス化ガス中のタール分を分解させ、タール分の含有量を少なくした上で、活性炭式吸着装置へ導入するガス化ガスの温度を20℃を超え100℃以下とすることを特徴とするものです。 In the first aspect of the present invention , the gasification gas obtained by pyrolyzing organic waste or solid organic matter such as coal is passed through an activated carbon adsorption device comprising an activated carbon adsorption tower, and the activated carbon in the gasification gas is passed through. adsorbing the high boiling hydrocarbon compound with dioxins and normal temperature and pressure are liquid or solid, in the purification method of the gasification gas of high boiling hydrocarbon compounds adsorbed on the activated carbon adsorption tower is recovered by withdrawal from activated carbon, modified The reforming reaction in the quality furnace decomposes the tar content in the gasification gas, reduces the tar content, and the temperature of the gasification gas introduced into the activated carbon adsorption device exceeds 20 ° C and 100 ° C. The recovered high-boiling hydrocarbon compounds are separated from the light oil in the light oil recovery process of the coke oven gas refining equipment at the steelworks, after the light oil is separated in the distillation tower, or the light oil separated in the distillation tower. Min and mixed, characterized in that utilized. In the second embodiment of the present invention, the activated carbon type adsorption apparatus is installed in two stages in series in the gasification gas flow direction, and the tar-based high-boiling hydrocarbon compound separated and recovered by the first stage activated carbon type adsorption apparatus is In the light oil recovery process of the coke oven gas refining equipment at the steelworks, the light oil in the coke oven gas is mixed with the cleaning oil recovered in the coke oven gas at the absorption tower and used, separated and recovered by the second-stage activated carbon adsorption device. Oil-based high-boiling hydrocarbon compounds are used after being mixed with washing oil or light oil separated in the distillation tower after separation of light oil in the distillation tower in the light oil recovery process of the coke oven gas refining equipment at the steelworks It is characterized by doing. According to a third aspect of the present invention, in the above second aspect, the tar content in the gasification gas is decomposed by a reforming reaction in a reforming furnace in the preceding stage of the activated carbon adsorption device, and the content of the tar content is reduced. In addition, the temperature of the gasification gas introduced into the activated carbon adsorption device is over 20 ° C and below 100 ° C.

本発明では、代表的には有機性廃棄物として廃プラスチック、又は固体有機物として石炭をガス化する。   In the present invention, waste plastic is typically gasified as organic waste, or coal is gasified as solid organic matter.

有機性廃棄物又は固体有機物のガス化ガス中には、ダイオキシン及び高沸点炭化水素化合物が含まれる。また、高沸点炭化水素化合物としては、ナフタレン、アントラセン等のタール分(炭素原子数が10以上の高分子炭化水素化合物)とベンゼン、トルエン、キシレン等の軽質油分(炭素原子数が10未満の低分子炭化水素化合物)が含まれる。これらのダイオキシン及び高沸点炭化水素化合物は、ガス化ガスの有効利用にあたり除去する必要があるが、本発明では、上述のように、活性炭吸着塔からなる活性炭式吸着装置によって、有機性廃棄物又は固体有機物のガス化ガス中に可燃性ガスと共に含まれるダイオキシン及び高沸点炭化水素化合物を除去する。   The organic waste or solid organic gasification gas contains dioxin and a high-boiling hydrocarbon compound. High boiling point hydrocarbon compounds include tar components such as naphthalene and anthracene (polymer hydrocarbon compounds having 10 or more carbon atoms) and light oil components such as benzene, toluene and xylene (low carbon number of less than 10). Molecular hydrocarbon compounds). These dioxins and high boiling point hydrocarbon compounds need to be removed for effective use of the gasification gas, but in the present invention, as described above, the activated carbon-type adsorption device comprising the activated carbon adsorption tower allows organic waste or Dioxins and high-boiling hydrocarbon compounds contained in combustible gas in the gasification gas of solid organic matter are removed.

すなわち、活性炭吸着塔に充填されている活性炭には表面に無数の細孔が開いており、この細孔にダイオキシン及び高分子炭化水素化合物の分子が入り込むことで吸着されガス化ガスから除去される。   That is, the activated carbon packed in the activated carbon adsorption tower has innumerable pores on the surface, and dioxin and polymer hydrocarbon compound molecules enter the pores to be adsorbed and removed from the gasification gas. .

一方、活性炭に高分子炭化水素化合物が吸着すると、活性炭の細孔が閉塞し吸着能力が低下するので、定期的に活性炭から高沸点炭化水素化合物を離脱させて活性炭の吸着能力を回復させる必要がある。この活性炭の吸着能力の回復は、例えば、活性炭吸着塔に蒸気を通し、活性炭の細孔に吸着していた高沸点炭化水素化合物を気化離脱させることによって行う。また、活性炭吸着塔内の圧力を下げ、キャリアガスを通すことで、活性炭の細孔に吸着していた高沸点炭化水素化合物を気化離脱させることによって行うこともできる。   On the other hand, when the polymer hydrocarbon compound is adsorbed on the activated carbon, the pores of the activated carbon are blocked and the adsorption capacity is lowered. Therefore, it is necessary to periodically remove the high boiling point hydrocarbon compound from the activated carbon to restore the adsorption capacity of the activated carbon. is there. The adsorption ability of the activated carbon is recovered, for example, by passing steam through an activated carbon adsorption tower and vaporizing and separating the high boiling point hydrocarbon compound adsorbed on the pores of the activated carbon. Alternatively, the high-boiling point hydrocarbon compound adsorbed on the pores of the activated carbon can be vaporized and released by lowering the pressure in the activated carbon adsorption tower and passing the carrier gas.

そして、本発明では、活性炭から離脱させた高沸点炭化水素化合物を回収し、この回収した高沸点炭化水素化合物を製鉄所のコークス炉ガス精製設備の軽油回収工程で得られた副生物又は前記軽油回収工程で使用する油分と混合して利用する。上述のとおり、ガス化ガス中の含まれていた高沸点炭化水素化合物は、ベンゼン、トルエン、キシレンを主成分とする軽質油分、ナフタレン等のタール分を多く含む。したがって、この高沸点炭化水素化合物を製鉄所のコークス炉ガス精製設備の軽油回収工程で得られる副生物又は前記軽油回収工程で使用する油分と混合することにより、新規に処理設備を設置することなく、燃料や化学原料等として有効に利用することができる。   In the present invention, the high-boiling point hydrocarbon compound separated from the activated carbon is recovered, and the recovered high-boiling point hydrocarbon compound is a by-product obtained in the light oil recovery step of the coke oven gas refining facility of the ironworks or the light oil. Used by mixing with oil used in the recovery process. As described above, the high-boiling point hydrocarbon compound contained in the gasification gas contains a large amount of tar such as light oil mainly composed of benzene, toluene and xylene, and naphthalene. Therefore, by mixing this high-boiling hydrocarbon compound with the by-product obtained in the light oil recovery process of the coke oven gas refining equipment of the steelworks or the oil used in the light oil recovery process, there is no need to install new processing equipment. It can be effectively used as a fuel, a chemical raw material or the like.

すなわち、製鉄所のコークス炉ガス精製設備の軽油回収工程では、コークス炉ガスを洗浄油で洗浄することにより、コークス炉ガス中の軽質油分を洗浄油に溶解させ、この洗浄油を蒸留することにより軽質油分を回収し、蒸留後の洗浄油をコークス炉ガスの洗浄に循環使用するようにしているので、このコークス炉ガス精製設備の軽油回収工程で得られる軽質油分又は同工程で使用する洗浄油に前記の高沸点炭化水素化合物を混合することで、新規に処理設備を設置することなく、燃料や化学原料等として有効に利用することができる。   That is, in the light oil recovery process of the coke oven gas refining equipment at the steelworks, by washing the coke oven gas with cleaning oil, the light oil in the coke oven gas is dissolved in the cleaning oil, and this cleaning oil is distilled. Light oil is collected and the distilled cleaning oil is recycled for coke oven gas cleaning. The light oil obtained in the light oil recovery process of this coke oven gas refining equipment or the cleaning oil used in the same process By mixing the high boiling point hydrocarbon compound with the above, it can be effectively used as a fuel, a chemical raw material or the like without newly installing a treatment facility.

本発明によれば、活性炭を用いたガス化ガスの浄化方法において、ガス化ガス中の高沸点炭化水素化合物を吸着した活性炭の吸着能力を回復させるために活性炭から離脱させた高沸点炭化水素化合物を、新規に処理設備を設置することなく処理して燃料や化学原料等として有効に利用することができる。   According to the present invention, in a gasification gas purification method using activated carbon, the high boiling point hydrocarbon compound separated from the activated carbon in order to recover the adsorption ability of the activated carbon that has adsorbed the high boiling point hydrocarbon compound in the gasification gas. Can be effectively used as fuel, chemical raw material, etc. without being newly installed.

以下、図面に示す実施例に基づき本発明の実施の形態を説明する。   Embodiments of the present invention will be described below based on examples shown in the drawings.

図1は本発明のガス化ガスの浄化方法を実施する設備の構成図である。   FIG. 1 is a configuration diagram of equipment for carrying out the gasification gas purification method of the present invention.

図1において、活性炭式吸着装置1は2塔の活性炭吸着塔1a、1bからなる。有機性廃棄物をガス化するガス化炉2で得られたガス化ガスは、ガス化ガス供給本管3を通り、改質炉4を経た後に、それぞれ活性炭吸着塔1a、1bに通じるガス化ガス供給支管3a、3bを通り、活性炭吸着塔1a、1bにその下部から導入される。   In FIG. 1, the activated carbon adsorption device 1 is composed of two activated carbon adsorption towers 1a and 1b. The gasification gas obtained in the gasification furnace 2 that gasifies organic waste passes through the gasification gas supply main 3, passes through the reforming furnace 4, and then gasifies to the activated carbon adsorption towers 1a and 1b, respectively. The gas passes through the gas supply branch pipes 3a and 3b and is introduced into the activated carbon adsorption towers 1a and 1b from below.

活性炭吸着塔1a、1bにガス化ガスが導入されると、ガス化ガス中のダイオキシン及び高沸点炭化水素化合物が活性炭吸着塔1a、1b内の活性炭に吸着され、その後、ガス化ガスは、活性炭吸着塔1a、1b上部に接続されたガス化ガス排出支管5a、5bから排出され、ガス化ガス排出本管5に合流し、ガス利用設備6まで搬送される。ガス化ガスの具体的な利用先としては、加熱炉、コークス炉等の工業炉用の燃料、ガスエンジンやガスタービン用の燃料、ボイラ燃料、熱風炉用の燃料等が挙げられる。   When the gasification gas is introduced into the activated carbon adsorption towers 1a and 1b, dioxins and high-boiling hydrocarbon compounds in the gasification gas are adsorbed by the activated carbon in the activated carbon adsorption towers 1a and 1b, and then the gasification gas is activated carbon. The gas is discharged from the gasification gas discharge branch pipes 5 a and 5 b connected to the upper portions of the adsorption towers 1 a and 1 b, joins the gasification gas discharge main pipe 5, and is conveyed to the gas utilization facility 6. Specific uses of gasified gas include fuel for industrial furnaces such as heating furnaces and coke ovens, fuel for gas engines and gas turbines, boiler fuel, fuel for hot stove furnaces, and the like.

ガス化ガス供給支管3a、3b及びガス化ガス排出支管5a、5bには、それぞれ開閉弁3c、3d及び開閉弁5c、5dが設けられている。また、それぞれの活性炭吸着塔1a、1bには、上部に蒸気供給本管7から分岐した蒸気供給支管7a、7bが接続され、下部に廃蒸気排出支管8a、8bが接続されている。蒸気供給支管7a、7b及び廃蒸気排出支管8a、8bには、それぞれ開閉弁7c、7d及び開閉弁8c、8dが設けられている。   The gasification gas supply branch pipes 3a and 3b and the gasification gas discharge branch pipes 5a and 5b are provided with on-off valves 3c and 3d and on-off valves 5c and 5d, respectively. Further, each of the activated carbon adsorption towers 1a, 1b is connected to steam supply branch pipes 7a, 7b branched from the steam supply main pipe 7 at the upper part and connected to waste steam discharge branch pipes 8a, 8b at the lower part. The steam supply branch pipes 7a and 7b and the waste steam discharge branch pipes 8a and 8b are provided with on-off valves 7c and 7d and on-off valves 8c and 8d, respectively.

なお、ガス化炉2としては、シャフト炉、ロータリーキルン炉、流動床炉、固定床炉、噴流炉等、各種の炉を使用することができる。また、ガス化炉2の加熱方式としては、生成したガス化ガスを一部燃焼させて熱源とする部分燃焼方式と、外部熱源を使用する外熱方式のいずれでもよい。   In addition, as the gasification furnace 2, various furnaces, such as a shaft furnace, a rotary kiln furnace, a fluidized bed furnace, a fixed bed furnace, a jet-flow furnace, can be used. Further, the heating method of the gasification furnace 2 may be either a partial combustion method in which the generated gasification gas is partially burned and used as a heat source, or an external heat method using an external heat source.

また、改質炉4は、ガス化炉2で得られたガス化ガスを800〜1100℃程度で酸素及び水蒸気と反応させる改質反応により、ガス化ガス中の過剰なタール分や軽質油分を低減させるものであるが、改質の必要がない場合には省略できる。   Further, the reforming furnace 4 removes excess tar and light oil in the gasification gas by a reforming reaction in which the gasification gas obtained in the gasification furnace 2 is reacted with oxygen and water vapor at about 800 to 1100 ° C. Although it is reduced, it can be omitted when there is no need for reforming.

なお、操業条件としては、活性炭吸着塔1a、1bに導入するガス化ガスのガス温度は100℃以下としておくことが好ましい。ガス温度が100℃超ではガス化ガス中の高沸点炭化水素化合物の蒸気圧が高くなり、活性炭による吸着力よりも揮発力が高くなり、吸着能力が十分に確保できない。ガス温度は好ましくは60℃以下とする。ただし、ガス温度を20℃以下にしようとすると、例えば、ガス化ガスの冷却に必要な冷却水の温度を冷却塔等の一般的な設備で得ることができなくなり、冷凍機が必要となる。冷凍機の利用は設備コスト及びランニングコストにおいて大きな負担となるため好ましくない。また、活性炭吸着塔の吸着能力回復のために導入する蒸気の温度は、80〜300℃とする。   In addition, as operation conditions, it is preferable that the gas temperature of the gasification gas introduce | transduced into activated carbon adsorption tower 1a, 1b shall be 100 degrees C or less. If the gas temperature exceeds 100 ° C., the vapor pressure of the high-boiling hydrocarbon compound in the gasification gas becomes high, the volatility becomes higher than the adsorption power by the activated carbon, and sufficient adsorption capacity cannot be secured. The gas temperature is preferably 60 ° C. or lower. However, if the gas temperature is set to 20 ° C. or lower, for example, the temperature of the cooling water necessary for cooling the gasification gas cannot be obtained by general equipment such as a cooling tower, and a refrigerator is required. Use of a refrigerator is not preferable because it imposes a heavy burden on equipment costs and running costs. Moreover, the temperature of the vapor | steam introduce | transduced for the adsorption capacity recovery | restoration of an activated carbon adsorption tower shall be 80-300 degreeC.

以上の構成において、操業開始時には、両方の活性炭吸着塔1a、1bにガス化ガスを通ガスし、その後、いずれかの活性炭吸着塔の吸着能力が低下したら、あるいはガス化ガスの通ガスから所定の時間が経過したら、吸着能力の低下したいずれか一方の活性炭吸着塔へのガス化ガスの通ガスを遮断する。   In the above configuration, at the start of operation, gasification gas is passed through both activated carbon adsorption towers 1a and 1b, and if the adsorption capacity of one of the activated carbon adsorption towers decreases thereafter, or the gasification gas is passed through the gas passage. When the time elapses, the gasification gas flow to one of the activated carbon adsorption towers whose adsorption capacity is reduced is shut off.

例えば、活性炭吸着塔1aへの通ガスを遮断する場合、ガス化ガス供給支管3aの開閉弁3c及びガス化ガス排出支管5aの開閉弁5cを閉にする。そして、蒸気供給支管7aの開閉弁7c及び廃蒸気排出支管8aの開閉弁8cを開にして、活性炭吸着塔1aに蒸気を通ガスして吸着能力を回復させる。吸着能力が回復したら、蒸気供給支管7aの開閉弁7c及び廃蒸気排出支管8aの開閉弁8cを閉にすると共に、ガス化ガス供給支管3aの開閉弁3c及びガス化ガス排出支管5aの開閉弁5cを開にしてガス化ガスの通ガスを再開する。   For example, when shutting off gas flow to the activated carbon adsorption tower 1a, the on-off valve 3c of the gasification gas supply branch 3a and the on-off valve 5c of the gasification gas discharge branch 5a are closed. Then, the open / close valve 7c of the steam supply branch pipe 7a and the open / close valve 8c of the waste steam discharge branch pipe 8a are opened, and steam is passed through the activated carbon adsorption tower 1a to restore the adsorption capacity. When the adsorption capacity is restored, the on-off valve 7c of the steam supply branch 7a and the on-off valve 8c of the waste steam discharge branch 8a are closed, and the on-off valve 3c of the gasification gas supply branch 3a and the on-off valve of the gasified gas discharge branch 5a 5c is opened and gasification gas passage is resumed.

その後、もう一つの活性炭吸着塔1bの吸着能力が低下したら、活性炭吸着塔1aの場合と同様に、ガス化ガスの通ガスを遮断後、蒸気を通して吸着能力を回復させ、その後、ガス化ガスの通ガスを再開する。この実施例では、このような操作を繰り返すことで、吸着能力を維持しつつ連続的にガス化ガスの浄化処理を行うことができる。   After that, when the adsorption capacity of the other activated carbon adsorption tower 1b is reduced, the gasification gas is shut off and then the adsorption capacity is recovered through steam, as in the case of the activated carbon adsorption tower 1a. Restart the gas flow. In this embodiment, by repeating such an operation, it is possible to continuously purify the gasification gas while maintaining the adsorption capacity.

上述の活性炭吸着塔の吸着能力回復に際しては、蒸気の通ガスによって活性炭に吸着していた高沸点炭化水素化合物が気化離脱し、廃蒸気として回収される。この高沸点炭化水素化合物を含む廃蒸気あるいは廃蒸気が凝縮した廃ドレンは、廃蒸気排出本管8を介して一旦、分離装置9に入れられ冷却等により廃蒸気は凝縮し、さらに高沸点炭化水素化合物は、水分から分離される。そして、分離装置9にて分離回収された高沸点炭化水素化合物は、後述するように製鉄所のコークス炉ガス精製設備の軽油回収工程で得られる副生物又は同工程で使用する油分と混合され利用される。   When the adsorption capacity of the activated carbon adsorption tower is restored, the high-boiling hydrocarbon compound adsorbed on the activated carbon by vapor passing is vaporized and recovered as waste steam. The waste steam containing the high-boiling hydrocarbon compound or the waste drain condensed with the waste steam is once put into the separator 9 through the waste steam discharge main pipe 8, and the waste steam is condensed by cooling or the like. Hydrogen compounds are separated from moisture. The high-boiling point hydrocarbon compound separated and recovered by the separator 9 is mixed with the by-product obtained in the light oil recovery process of the coke oven gas refining facility of the steelworks or the oil used in the same process as described later. Is done.

図1の下段に示すコークス炉ガス精製設備の軽油回収工程において、コークス炉ガスは吸収塔10にその下部から導入され、上部から排出される。吸収塔10では上部から洗浄油がスプレーされ、この洗浄油にコークス炉ガス中の軽質油分が溶解し、コークス炉ガスから分離・回収される。コークス炉ガス中の軽質油分が溶解した洗浄油は、蒸留塔11に導入され、洗浄油中の軽質油分は蒸留分離され回収される。一方、蒸留後の洗浄油は、吸収塔10におけるコークス炉ガスの洗浄に循環使用される。   In the light oil recovery process of the coke oven gas refining equipment shown in the lower part of FIG. In the absorption tower 10, cleaning oil is sprayed from above, and the light oil in the coke oven gas is dissolved in the cleaning oil, and separated and recovered from the coke oven gas. The cleaning oil in which the light oil in the coke oven gas is dissolved is introduced into the distillation column 11, and the light oil in the cleaning oil is separated by distillation and recovered. On the other hand, the cleaning oil after distillation is circulated and used for cleaning the coke oven gas in the absorption tower 10.

このようにコークス炉ガス精製設備の軽油回収工程においては軽質油分が副生物として得られ、また洗浄油を使用するが、本実施例では、これらの油分に上述の分離装置9にて分離回収された高沸点炭化水素化合物を混合して利用する。   Thus, in the light oil recovery process of the coke oven gas refining equipment, light oil is obtained as a by-product, and cleaning oil is used. In this embodiment, these oils are separated and recovered by the above-described separator 9. High boiling point hydrocarbon compounds are mixed and used.

例えば、図1に配管系統13aで示すように吸収塔10でコークス炉ガス中の軽質油分を回収した洗浄油に混合すれば、分離回収された高沸点炭化水素化合物は洗浄油とともに蒸留塔11に導入され、分離回収された高沸点炭化水素化合物中に含まれていた軽質油分は洗浄油中の軽質油分とともに分離回収され、コンデンサで液化した後に製鉄所の燃料等として利用することができる。また、分離回収された高沸点炭化水素化合物中にはタール分としてナフタレンも多量に含まれるので、蒸留塔11でナフタレンを分離回収することも可能であり、このナフタレンを化学原料等として利用することができる。   For example, if the light oil in the coke oven gas is mixed in the absorption tower 10 with the recovered cleaning oil as shown by the piping system 13a in FIG. 1, the separated high-boiling hydrocarbon compound is recovered in the distillation tower 11 together with the cleaning oil. The light oil contained in the high-boiling hydrocarbon compound introduced and separated and recovered is separated and recovered together with the light oil in the cleaning oil, and can be used as fuel for the steel mill after being liquefied by the condenser. Further, since the separated high-boiling hydrocarbon compound contains a large amount of naphthalene as a tar component, it is also possible to separate and recover naphthalene in the distillation column 11, and use this naphthalene as a chemical raw material or the like. Can do.

また、図1に配管系統13bで示すように分離装置9にて分離回収された高沸点炭化水素化合物は、蒸留塔11で軽質油分を分離した後の洗浄油と混合してもよく、図1に配管系統13cで示すように蒸留塔11で分離された軽質油分と混合してもよい。但し、これらの場合には、分離回収された高沸点炭化水素化合物のうち、ナフタレン等のタール分の含有量を低くすることが好ましい。このタール分の含有量を低くするには、上述の改質炉4での改質反応によってガス化ガス中のタール分を分解するようにすればよい。   Further, as shown by the piping system 13b in FIG. 1, the high boiling point hydrocarbon compound separated and recovered by the separation device 9 may be mixed with the cleaning oil after the light oil component is separated by the distillation column 11, FIG. As shown by the piping system 13c, it may be mixed with the light oil separated in the distillation column 11. However, in these cases, it is preferable to lower the content of tar such as naphthalene in the separated high-boiling hydrocarbon compound. In order to lower the tar content, the tar content in the gasification gas may be decomposed by the reforming reaction in the reforming furnace 4 described above.

なお、図1では3つの配管系統13a〜13cを同時に示したが、実際にはこれらの3系統を同時に使用することはなく、いずれか1系統のみを設けるか、あるいは3系統のうちいずれか1系統を選択的に使用する。   Although three piping systems 13a to 13c are shown at the same time in FIG. 1, in reality, these three systems are not used at the same time. Either one system is provided or any one of the three systems is used. Select the system selectively.

また、図1に示したような活性炭式吸着装置1をガス化ガスの流れ方向に直列に2段設置すれば、1段目の活性炭式吸着装置でおもにタール分が吸着され、2段目の活性炭式吸着装置で残りの軽質油分が吸着されるので、この場合は、1段目の活性炭式吸着装置で分離回収されたタール分主体の高沸点炭化水素化合物は吸収塔10でコークス炉ガス中の軽質油分を回収した洗浄油と混合し、2段目の活性炭式吸着装置で分離回収された軽質油分主体の高沸点炭化水素化合物は蒸留塔11で軽質油分を分離した後の洗浄油あるいは蒸留塔11で分離された軽質油分と混合すればよい。   In addition, if the activated carbon type adsorption device 1 as shown in FIG. 1 is installed in two stages in series in the gasification gas flow direction, the tar content is mainly adsorbed by the first stage activated carbon type adsorption device, and the second stage Since the remaining light oil is adsorbed by the activated carbon adsorber, in this case, the high boiling point hydrocarbon compound mainly composed of tar separated and recovered by the first-stage activated carbon adsorber is absorbed in the coke oven gas by the absorption tower 10. The high-boiling hydrocarbon compounds mainly composed of light oil separated by the second stage activated carbon adsorption device are mixed with the washing oil recovered from the light oil in the second stage. What is necessary is just to mix with the light oil component isolate | separated in the tower | column 11.

以上の実施例では、活性炭吸着塔内の活性炭の吸着能力を回復させるために蒸気を使用したが、活性炭の吸着能力を回復させる方法はこれに限定されるものではなく、例えば、吸着能力の低下した活性炭吸着塔についてガス化ガスの通ガスを遮断し、当該活性炭吸着塔内の圧力を下げ、キャリアガスを通すことで吸着した高沸点炭化水素化合物をキャリアガス側に吐き出させるようにしてもよい。この場合、キャリアガス側に吐き出させた高沸点炭化水素化合物を回収し、製鉄所のコークス炉ガス精製設備の軽油回収工程で得られた副生物又は同工程で使用する油分と混合して利用する。   In the above embodiment, steam was used to recover the adsorption capacity of the activated carbon in the activated carbon adsorption tower, but the method for restoring the adsorption capacity of the activated carbon is not limited to this, for example, a decrease in the adsorption capacity The activated carbon adsorption tower may be configured to shut off the gasification gas, reduce the pressure in the activated carbon adsorption tower, and discharge the high-boiling hydrocarbon compound adsorbed by passing the carrier gas to the carrier gas side. . In this case, the high boiling point hydrocarbon compound discharged to the carrier gas side is recovered and used by mixing with the by-product obtained in the light oil recovery process of the coke oven gas refining equipment at the steelworks or the oil used in the same process. .

本発明のガス化ガスの浄化方法を実施する設備の構成図である。It is a block diagram of the equipment which implements the purification method of the gasification gas of this invention.

符号の説明Explanation of symbols

1 活性炭式吸着装置
1a、1b 活性炭吸着塔
2 ガス化炉
3 ガス化ガス供給本管
3a、3b ガス化ガス供給支管
3c、3d 開閉弁
4 改質炉
5 ガス化ガス排出本管
5a、5b ガス化ガス排出支管
5c、5d 開閉弁
6 ガス利用設備
7 蒸気供給本管
7a、7b 蒸気供給支管
7c、7d 開閉弁
8 廃蒸気排出本管
8a、8b 廃蒸気排出支管
8c、8d 開閉弁
9 分離装置
10 吸収塔
11 蒸留塔
12 コンデンサ
13a〜13c 配管系統
DESCRIPTION OF SYMBOLS 1 Activated carbon type adsorption apparatus 1a, 1b Activated carbon adsorption tower 2 Gasification furnace 3 Gasification gas supply main 3a, 3b Gasification gas supply branch 3c, 3d On-off valve 4 Reforming furnace 5 Gasification gas discharge main 5a, 5b Gas Gasified gas discharge branch 5c, 5d On-off valve 6 Gas utilization equipment 7 Steam supply main pipe 7a, 7b Steam supply branch pipe 7c, 7d On-off valve 8 Waste steam discharge main pipe 8a, 8b Waste steam discharge branch pipe 8c, 8d On-off valve 9 Separation device DESCRIPTION OF SYMBOLS 10 Absorption tower 11 Distillation tower 12 Capacitor 13a-13c Piping system

Claims (3)

有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスを活性炭吸着塔からなる活性炭式吸着装置に通し、活性炭にガス化ガス中のダイオキシン及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着させ活性炭吸着塔の活性炭に吸着した高沸点炭化水素化合物を活性炭から離脱させて回収するガス化ガスの浄化方法において、
改質炉での改質反応により、ガス化ガス中のタール分を分解させ、タール分の含有量を少なくした上で、活性炭式吸着装置へ導入するガス化ガスの温度を20℃を超え100℃以下とし、
回収した高沸点炭化水素化合物を、製鉄所のコークス炉ガス精製設備の軽油回収工程において蒸溜塔で軽質油分を分離した後の洗浄油あるいは前記蒸溜塔で分離された軽質油分と混合して利用することを特徴とするガス化ガスの浄化方法。
Gasified gas obtained by pyrolyzing organic waste or solid organic matter such as coal is passed through an activated carbon type adsorption device consisting of an activated carbon adsorption tower, and the activated carbon is dioxin in the gasified gas and liquid or solid at normal temperature and pressure in it was adsorbed high-boiling hydrocarbon compounds, the method of purifying the gasification gas of high boiling hydrocarbon compounds adsorbed on the activated carbon adsorption tower is recovered by withdrawal from the activated carbon,
The tar content in the gasification gas is decomposed by the reforming reaction in the reforming furnace, the tar content is reduced, and the temperature of the gasification gas to be introduced into the activated carbon adsorption device exceeds 20 ° C. and 100 ℃ or less,
The recovered high-boiling hydrocarbon compounds are used after being mixed with the washing oil or the light oil separated by the distillation tower after the light oil is separated by the distillation tower in the light oil recovery process of the coke oven gas refining equipment at the ironworks. A method for purifying gasified gas, characterized in that:
有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスを活性炭吸着塔からなる活性炭式吸着装置に通し、活性炭にガス化ガス中のダイオキシン及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着させ、活性炭吸着塔の活性炭に吸着した高沸点炭化水素化合物を活性炭から離脱させて回収するガス化ガスの浄化方法において、
活性炭式吸着装置をガス化ガスの流れ方向に直列に2段設置し、
1段目の活性炭式吸着装置で分離回収されたタール分主体の高沸点炭化水素化合物は、製鉄所のコークス炉ガス精製設備の軽油回収工程において吸収塔でコークス炉ガス中の軽質油分を回収した洗浄油と混合して利用し、
2段目の活性炭式吸着装置で分離回収された軽質油分主体の高沸点炭化水素化合物は、製鉄所のコークス炉ガス精製設備の軽油回収工程において蒸留塔で軽質油分を分離した後の洗浄油あるいは前記蒸留塔で分離された軽質油分と混合して利用することを特徴とするガス化ガスの浄化方法。
Gasified gas obtained by pyrolyzing organic waste or solid organic matter such as coal is passed through an activated carbon type adsorption device consisting of an activated carbon adsorption tower, and the activated carbon is dioxin in the gasified gas and liquid or solid at normal temperature and pressure In the purification method of gasification gas which adsorbs the high-boiling point hydrocarbon compound which is, and separates and recovers the high-boiling point hydrocarbon compound adsorbed on the activated carbon of the activated carbon adsorption tower from the activated carbon,
Two stages of activated carbon adsorption devices are installed in series in the gasification gas flow direction.
The high-boiling point hydrocarbon compound mainly composed of tar collected and recovered by the first-stage activated carbon adsorption device recovered light oil in the coke oven gas at the absorption tower in the light oil recovery process of the coke oven gas refining equipment at the ironworks. Use it mixed with cleaning oil,
The high-boiling hydrocarbon compound mainly composed of light oil separated and recovered by the second-stage activated carbon-type adsorber is either washed oil after separation of light oil by the distillation tower in the light oil recovery process of the coke oven gas refining equipment at the ironworks. A method for purifying gasification gas, which is used by mixing with the light oil separated in the distillation column .
有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスを活性炭吸着塔からなる活性炭式吸着装置に通し、活性炭にガス化ガス中のダイオキシン及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着させ、活性炭吸着塔の活性炭に吸着した高沸点炭化水素化合物を活性炭から離脱させて回収するガス化ガスの浄化方法において、
改質炉での改質反応により、ガス化ガス中のタール分を分解させ、タール分の含有量を少なくした上で、活性炭式吸着装置へ導入するガス化ガスの温度を20℃を超え100℃以下とし、
さらに活性炭式吸着装置をガス化ガスの流れ方向に直列に2段設置し、
1段目の活性炭式吸着装置で分離回収されたタール分主体の高沸点炭化水素化合物は、製鉄所のコークス炉ガス精製設備の軽油回収工程において吸収塔でコークス炉ガス中の軽質油分を回収した洗浄油と混合して利用し、
2段目の活性炭式吸着装置で分離回収された軽質油分主体の高沸点炭化水素化合物は、製鉄所のコークス炉ガス精製設備の軽油回収工程において蒸留塔で軽質油分を分離した後の洗浄油あるいは前記蒸留塔で分離された軽質油分と混合して利用することを特徴とするガス化ガスの浄化方法。
Gasified gas obtained by pyrolyzing organic waste or solid organic matter such as coal is passed through an activated carbon type adsorption device consisting of an activated carbon adsorption tower, and the activated carbon is dioxin in the gasified gas and liquid or solid at normal temperature and pressure In the purification method of gasification gas which adsorbs the high-boiling point hydrocarbon compound which is, and separates and recovers the high-boiling point hydrocarbon compound adsorbed on the activated carbon of the activated carbon adsorption tower from the activated carbon,
The tar content in the gasification gas is decomposed by the reforming reaction in the reforming furnace, the tar content is reduced, and the temperature of the gasification gas to be introduced into the activated carbon adsorption device exceeds 20 ° C. and 100 ℃ or less,
Furthermore, two stages of activated carbon adsorption devices are installed in series in the gasification gas flow direction.
The high-boiling point hydrocarbon compound mainly composed of tar collected and recovered by the first-stage activated carbon adsorption device recovered light oil in the coke oven gas at the absorption tower in the light oil recovery process of the coke oven gas refining equipment at the ironworks. Use it mixed with cleaning oil,
The high-boiling hydrocarbon compound mainly composed of light oil separated and recovered by the second-stage activated carbon-type adsorber is either washed oil after separation of light oil by the distillation tower in the light oil recovery process of the coke oven gas refining equipment at the ironworks. A method for purifying gasification gas, which is used by mixing with the light oil separated in the distillation column .
JP2007063741A 2007-03-13 2007-03-13 Gasification gas purification method Expired - Fee Related JP4612648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063741A JP4612648B2 (en) 2007-03-13 2007-03-13 Gasification gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063741A JP4612648B2 (en) 2007-03-13 2007-03-13 Gasification gas purification method

Publications (2)

Publication Number Publication Date
JP2008222877A JP2008222877A (en) 2008-09-25
JP4612648B2 true JP4612648B2 (en) 2011-01-12

Family

ID=39841867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063741A Expired - Fee Related JP4612648B2 (en) 2007-03-13 2007-03-13 Gasification gas purification method

Country Status (1)

Country Link
JP (1) JP4612648B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2561916A1 (en) * 2011-08-24 2013-02-27 Neste Oil Oyj Method for naphthalene removal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201480A (en) * 2002-01-04 2003-07-18 Nippon Steel Corp Method for treating shredder dust
JP2005126524A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Method and apparatus for organic matter gasification
JP2006016470A (en) * 2004-06-30 2006-01-19 Jfe Engineering Kk Gas purifier and method for reclaiming removing agent used in the same
JP2006335822A (en) * 2005-05-31 2006-12-14 Jfe Engineering Kk Gas-purifying installation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458322A (en) * 1987-08-28 1989-03-06 Nippon Kokan Kk Method for operating control equipment of benzol group recovery apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201480A (en) * 2002-01-04 2003-07-18 Nippon Steel Corp Method for treating shredder dust
JP2005126524A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Method and apparatus for organic matter gasification
JP2006016470A (en) * 2004-06-30 2006-01-19 Jfe Engineering Kk Gas purifier and method for reclaiming removing agent used in the same
JP2006335822A (en) * 2005-05-31 2006-12-14 Jfe Engineering Kk Gas-purifying installation

Also Published As

Publication number Publication date
JP2008222877A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4875473B2 (en) Gasification gas purification method
US20130209338A1 (en) Integrated biogas cleaning system to remove water, siloxanes, sulfur, oxygen, chlorides and volatile organic compounds
US20100077767A1 (en) Emission free integrated gasification combined cycle
JP5320421B2 (en) Gasification gas purification method and purification device
KR20080061359A (en) Process and apparatus for the purification of methane rich gas streams
JP2017014437A (en) Purification device and purification method of raw material gas
US20110120012A1 (en) Minimal sour gas emission for an integrated gasification combined cycle complex
CN104428401A (en) Two stage gasification with dual quench
KR20140054314A (en) Process for producing direct reduced iron(dri) utilizing gases derived from coal
JP4728984B2 (en) Gasification gas purification method and purification device
JP2008222867A (en) Method for cleaning gasified gas and device for the same
JP3943042B2 (en) Tar-containing gas cleaning method and apparatus, and combustible gas production method and apparatus
JPS5815165B2 (en) Process for purifying air or gas streams of flammable, filter-adsorbable vapor or gaseous impurities
JP4612648B2 (en) Gasification gas purification method
US8821153B2 (en) Method and system for the production of a combustible gas from a fuel
JP4598803B2 (en) Gasification gas purification method and purification device
JP2005068435A (en) Method and plant for producing decontaminated syngas at high efficiency from feedstock rich in organic substance
JP4625048B2 (en) Gasification gas purification equipment
JP4555319B2 (en) Gasification gas purification method and purification device
KR101085434B1 (en) Systme and method for removing impurity in syngas using fluid sand
WO2021193573A1 (en) Pyrolysis gas purification/cooling device, pyrolysis gas purification/cooling method, organic substance production device, and method for producing organic substance
JP4594239B2 (en) Gas purification system and gas purification method
JP2008222882A (en) Method for purifying gasified gas and purifying apparatus
JP2014024937A (en) System and method for generating gasified gas
JP2009173717A (en) Fuel gas purification facility and operation method of it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4612648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees