[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4612366B2 - Process for producing α, β-unsaturated carboxylic acid - Google Patents

Process for producing α, β-unsaturated carboxylic acid Download PDF

Info

Publication number
JP4612366B2
JP4612366B2 JP2004256957A JP2004256957A JP4612366B2 JP 4612366 B2 JP4612366 B2 JP 4612366B2 JP 2004256957 A JP2004256957 A JP 2004256957A JP 2004256957 A JP2004256957 A JP 2004256957A JP 4612366 B2 JP4612366 B2 JP 4612366B2
Authority
JP
Japan
Prior art keywords
concentration
pressure
reactor
gas phase
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004256957A
Other languages
Japanese (ja)
Other versions
JP2005255665A (en
Inventor
淳史 小泉
和典 真武
祐治 藤森
隼也 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2004256957A priority Critical patent/JP4612366B2/en
Publication of JP2005255665A publication Critical patent/JP2005255665A/en
Application granted granted Critical
Publication of JP4612366B2 publication Critical patent/JP4612366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明はα,β−不飽和カルボン酸の製造方法に関する。詳しくは、α,β−不飽和アルデヒドの液相酸化において、安全に操業可能なα,β−不飽和カルボン酸の製造方法に関する。   The present invention relates to a method for producing an α, β-unsaturated carboxylic acid. Specifically, the present invention relates to a method for producing an α, β-unsaturated carboxylic acid that can be safely operated in the liquid phase oxidation of an α, β-unsaturated aldehyde.

α,β−不飽和アルデヒドを液相中で酸化(液相酸化)するには、通常分子状酸素を使用する。しかし、反応器内の気相部には可燃性物質も存在するため、爆発、火災という可能性を否定できず、その危険性を排除できる方法を開発することはプラントを安全に運転する観点から極めて重要な課題である。   To oxidize α, β-unsaturated aldehyde in the liquid phase (liquid phase oxidation), molecular oxygen is usually used. However, since there are flammable substances in the gas phase in the reactor, the possibility of explosion and fire cannot be denied, and developing a method that can eliminate the danger is from the viewpoint of operating the plant safely. This is a very important issue.

反応系は異なるが、特許文献1には、反応排ガスの一部を不活性ガスとして循環供給して気相部の酸素濃度が引火限界酸素濃度を下回るように調節することで爆発を回避しつつ、アルキルベンゼンの液相酸化により芳香族カルボン酸を製造する方法が開示されている。また、特許文献2には、メタクロレイン又はアクロレインをメタノール中で分子状酸素と反応させて対応するエステルを製造する方法として、触媒をできるだけ多く抜き取る方法が開示されている。このとき、反応器流出ガスの酸素濃度が引火限界酸素濃度を超えないよう供給空気を窒素等の不活性ガスで希釈する方法を採ることも記載されている。
特開平7−258151号公報 特開2003−267922号公報
Although the reaction system is different, Patent Document 1 discloses that a part of the reaction exhaust gas is circulated and supplied as an inert gas and adjusted so that the oxygen concentration in the gas phase is lower than the flammability limit oxygen concentration, while avoiding an explosion. A method for producing an aromatic carboxylic acid by liquid phase oxidation of alkylbenzene is disclosed. Patent Document 2 discloses a method of extracting as much catalyst as possible as a method of producing methacrolein or acrolein with molecular oxygen in methanol to produce the corresponding ester. At this time, it is also described that a method of diluting the supply air with an inert gas such as nitrogen so that the oxygen concentration of the reactor effluent gas does not exceed the flammability limit oxygen concentration is described.
JP 7-258151 A JP 2003-267922 A

しかし、特許文献1の方法では、反応排ガスの循環量を多くしなければならず、循環ブロア能力アップ、あるいは消費動力増大などによりコスト的に不利となる問題があった。   However, the method of Patent Document 1 has a problem that the circulation amount of the reaction exhaust gas has to be increased, which is disadvantageous in terms of cost due to an increase in circulation blower capacity or an increase in power consumption.

また、特許文献2の方法でも大量の窒素等の不活性ガスが必要となるといった問題があった。工業的に大量の窒素を入手するためにはPSA(圧力スイング吸着)装置といった専用の設備が必要であり、このための建設費及びランニングコストが増大するといった問題もあった。   The method of Patent Document 2 also has a problem that a large amount of inert gas such as nitrogen is required. In order to obtain a large amount of nitrogen industrially, a dedicated facility such as a PSA (pressure swing adsorption) device is required, and there is a problem that the construction cost and the running cost are increased.

さらに特許文献1及び2の方法では、製造時の酸素濃度が低くなってしまうため、分子状酸素液相酸化反応の速度が低下してしまい、製造効率が悪くコスト的に不利であるという問題もあった。   Furthermore, in the methods of Patent Documents 1 and 2, since the oxygen concentration at the time of production is low, the speed of the molecular oxygen liquid phase oxidation reaction is reduced, and there is a problem that the production efficiency is low and the cost is disadvantageous. there were.

本発明は、これらの問題に鑑みなされたものであり、その目的は、大量の不活性ガスを使用することなく、製造時の酸素濃度を高く設定でき、反応器の気相部における爆発、火災といった危険性を排除し安全に運転できるα,β−不飽和カルボン酸の製造方法を提供することにある。   The present invention has been made in view of these problems, and its purpose is to set a high oxygen concentration during production without using a large amount of inert gas, and to cause an explosion or fire in the gas phase part of the reactor. It is an object of the present invention to provide a method for producing an α, β-unsaturated carboxylic acid that eliminates such a risk and can be operated safely.

本発明者らは上記課題を解決するために、加圧引火点測定により気相部圧力と爆発の有無との関係を鋭意検討した結果、気相部圧力がある圧力を超えると爆発しないことを見出した。これは気相部の可燃性物質濃度が製造時の酸素濃度における爆発下限界濃度未満になっていることに起因していることを突き止め、本発明の端緒とした。そして、α,β−不飽和アルデヒドの液相酸化を気相部の可燃性物質濃度が製造時の酸素濃度における爆発下限界濃度未満になるような圧力で行えば、製造コストを抑えつつ安全に運転することができ、これらの知見を総合して本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors diligently studied the relationship between the gas phase pressure and the presence or absence of an explosion by measuring the pressurized flash point. I found it. It was found that this was caused by the fact that the combustible substance concentration in the gas phase part was less than the lower explosion limit concentration in the oxygen concentration at the time of production, and this was the beginning of the present invention. If the liquid phase oxidation of the α, β-unsaturated aldehyde is performed at a pressure such that the concentration of the combustible substance in the gas phase part is less than the lower explosive limit concentration in the oxygen concentration at the time of production, the production cost can be suppressed safely. The present invention was completed by combining these findings.

即ち本発明は、貴金属触媒存在下、液相中で分子状酸素によりα,β−不飽和アルデヒドを酸化することでα,β−不飽和カルボン酸を製造する方法であって、運転のスタートアップ時に、酸化を行う反応器内に引火限界酸素濃度未満の酸素濃度のガスを供給して、該反応器内の気相部に存在する可燃性物質の濃度が製造時の酸素濃度における爆発下限界濃度未満となる圧力にした後、該反応器の気相部に存在する可燃性物質の濃度が製造時の酸素濃度における爆発下限界濃度未満になるように、該反応器内の気相部の圧力を制御することを特徴とするα,β−不飽和カルボン酸の製造方法である。 That is, the present invention is the presence of a noble metal catalyst, alpha with molecular oxygen in a liquid phase, alpha by oxidizing β- unsaturated aldehydes, a method for producing a β- unsaturated carboxylic acid, at startup of operation A gas having an oxygen concentration lower than the flammability limit oxygen concentration is supplied into the reactor that performs the oxidation, and the concentration of the combustible substance existing in the gas phase portion in the reactor is the lower explosion limit concentration in the oxygen concentration at the time of production. The pressure of the gas phase in the reactor so that the concentration of the combustible material present in the gas phase of the reactor is less than the lower explosive limit concentration in the oxygen concentration at the time of manufacture. Is a method for producing an α, β-unsaturated carboxylic acid.

本発明の方法によれば、爆発、火災といった危険性を排除でき、安全にプラントを操業することができる。また、従来、爆発範囲を回避するために用いられていた大量の希釈用の不活性ガスが不要なため不活性ガス発生装置や循環設備を設ける必要がなく、さらには、製造時の酸素濃度を高く設定することができるため、製造コストの大幅な削減が可能となる。   According to the method of the present invention, dangers such as explosion and fire can be eliminated, and the plant can be operated safely. In addition, since a large amount of inert gas for dilution, which has been conventionally used to avoid the explosion range, is unnecessary, there is no need to provide an inert gas generator or a circulation facility. Since it can be set high, the manufacturing cost can be greatly reduced.

本発明は、貴金属触媒存在下、液相中で分子状酸素によりα,β−不飽和アルデヒドを酸化することでα,β−不飽和カルボン酸を製造する方法であって、運転のスタートアップ時に、酸化を行う反応器内に引火限界酸素濃度未満の酸素濃度のガスを供給して、該反応器内の気相部に存在する可燃性物質の濃度が製造時の酸素濃度における爆発下限界濃度未満となる圧力にした後、該反応器の気相部に存在する可燃性物質の濃度が造時の酸素濃度における爆発下限界濃度未満になるように、反応器内の気相部の圧力を制御するものである。 The present invention is a method for producing an α, β-unsaturated carboxylic acid by oxidizing an α, β-unsaturated aldehyde with molecular oxygen in a liquid phase in the presence of a noble metal catalyst . A gas having an oxygen concentration less than the flammable limit oxygen concentration is supplied into the reactor for oxidation, and the concentration of the flammable substance existing in the gas phase in the reactor is less than the lower explosion limit concentration in the oxygen concentration at the time of production. after the pressure becomes, so that the concentration of the flammable materials present in the gas phase portion in the reactor is less than lower explosion limit concentration in the oxygen concentration during manufacturing, the pressure of the gas phase portion of the reactor It is something to control.

本発明で用いられるα,β−不飽和アルデヒドは、例えば、アクロレイン、メタクロレイン、クロトンアルデヒド(β−メチルアクロレイン)、シンナムアルデヒド(β−フェニルアクロレイン)等が挙げられる。製造されるα,β−不飽和カルボン酸は、α,β−不飽和アルデヒドのアルデヒド基がカルボキシル基に変化したα,β−不飽和カルボン酸である。例えば、原料がアクロレインの場合得られるα,β−不飽和カルボン酸はアクリル酸であり、原料がメタクロレインの場合得られるα,β−不飽和カルボン酸はメタクリル酸である。アクロレインまたはメタクロレインを用いた液相酸化に好適である。原料のα,β−不飽和アルデヒドには、不純物として飽和炭化水素および/または低級飽和アルデヒド等が少々含まれていてもよい。   Examples of the α, β-unsaturated aldehyde used in the present invention include acrolein, methacrolein, crotonaldehyde (β-methylacrolein), cinnamaldehyde (β-phenylacrolein) and the like. The α, β-unsaturated carboxylic acid produced is an α, β-unsaturated carboxylic acid in which the aldehyde group of the α, β-unsaturated aldehyde is changed to a carboxyl group. For example, the α, β-unsaturated carboxylic acid obtained when the raw material is acrolein is acrylic acid, and the α, β-unsaturated carboxylic acid obtained when the raw material is methacrolein is methacrylic acid. Suitable for liquid phase oxidation using acrolein or methacrolein. The raw α, β-unsaturated aldehyde may contain a small amount of saturated hydrocarbon and / or lower saturated aldehyde as impurities.

液相酸化反応に用いる分子状酸素を含有するガスとしては、空気がその酸素濃度及び経済性から好ましいが、より高い酸素濃度で製造する場合など、必要であれば、純酸素、または、純酸素と空気、窒素、二酸化炭素、水蒸気等との混合ガスを用いることもできる。反応器内の液相部を通過した分子状酸素を含有するガスを循環させ再び反応に使用することもできる。なお、反応器内の液相部を通過した分子状酸素を含有するガスは、そのまま大気中に放散することもできる。また、反応器内の液相部を通過した分子状酸素を含有するガスには低濃度の原料や溶媒が存在している。大気汚染防止、またはコストの観点から、これらを回収してから大気中に放散することが好ましい。この回収法としては、吸収法、吸着法などを挙げることができる。   As the gas containing molecular oxygen used in the liquid phase oxidation reaction, air is preferable from the viewpoint of its oxygen concentration and economy, but pure oxygen or pure oxygen is necessary if it is produced at a higher oxygen concentration or the like. A mixed gas of air, nitrogen, carbon dioxide, water vapor and the like can also be used. A gas containing molecular oxygen that has passed through the liquid phase in the reactor can be circulated and used again for the reaction. Note that the gas containing molecular oxygen that has passed through the liquid phase in the reactor can be directly released into the atmosphere. In addition, low-concentration raw materials and solvents are present in the gas containing molecular oxygen that has passed through the liquid phase in the reactor. From the viewpoint of preventing air pollution or cost, it is preferable that these are recovered and then diffused into the atmosphere. Examples of the recovery method include an absorption method and an adsorption method.

液相酸化反応に用いる反応溶媒は特に限定されないが、水、アルコール類、ケトン類、有機酸類、有機酸エステル類、炭化水素類等が使用できる。アルコール類としては、例えば、ターシャリーブタノール、シクロヘキサノール等が挙げられる。ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。有機酸類としては、例えば、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸、iso−吉草酸等が挙げられる。有機酸エステル類としては、例えば、酢酸エチル、プロピオン酸メチル等が挙げられる。炭化水素類としては、例えば、ヘキサン、シクロヘキサン、トルエン等が挙げられる。中でも、炭素数2〜6の有機酸類、炭素数3〜6のケトン類、ターシャリーブタノールが好ましく、特に酢酸、n−吉草酸、ターシャリーブタノールが好ましい。溶媒は単独でも、2種以上の混合溶媒でもよい。また、アルコール類、ケトン類、有機酸類および有機酸エステル類からなる群から選ばれる少なくとも1種の化合物を溶媒として使用する場合は、この化合物と水との混合溶媒とすることが好ましい。その際の水の量は特に限定されないが、混合溶媒の質量に対して2質量%以上が好ましく、より好ましくは5質量%以上である。また、70質量%以下が好ましく、より好ましくは50質量%以下である。溶媒は均一であることが望ましいが、不均一な状態で用いても差し支えない。   The reaction solvent used for the liquid phase oxidation reaction is not particularly limited, and water, alcohols, ketones, organic acids, organic acid esters, hydrocarbons, and the like can be used. Examples of alcohols include tertiary butanol and cyclohexanol. Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of the organic acids include acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid, iso-valeric acid and the like. Examples of the organic acid esters include ethyl acetate and methyl propionate. Examples of hydrocarbons include hexane, cyclohexane, toluene, and the like. Among these, organic acids having 2 to 6 carbon atoms, ketones having 3 to 6 carbon atoms, and tertiary butanol are preferable, and acetic acid, n-valeric acid, and tertiary butanol are particularly preferable. A solvent may be individual or 2 or more types of mixed solvents may be sufficient as it. Further, when at least one compound selected from the group consisting of alcohols, ketones, organic acids and organic acid esters is used as a solvent, it is preferable to use a mixed solvent of this compound and water. The amount of water at that time is not particularly limited, but is preferably 2% by mass or more, more preferably 5% by mass or more, based on the mass of the mixed solvent. Moreover, 70 mass% or less is preferable, More preferably, it is 50 mass% or less. Although the solvent is desirably uniform, it may be used in a non-uniform state.

本発明において、貴金属触媒は以下の方法により調製されたものを好適に使用できるが、市販品を使用しても構わない。   In the present invention, the noble metal catalyst prepared by the following method can be suitably used, but a commercially available product may be used.

貴金属触媒は、貴金属化合物を溶媒に溶解し、還元剤を用いて還元することで調製できる。この還元により目的とする貴金属触媒が析出する。貴金属を担体に担持させた担持触媒とすることもできるが、非担持触媒でも構わない。還元は気相で行うこともできるが、液相で行うことが好ましい。以下、液相中で貴金属化合物を還元する液相還元法について説明する。   The noble metal catalyst can be prepared by dissolving a noble metal compound in a solvent and reducing with a reducing agent. The target noble metal catalyst is precipitated by this reduction. A supported catalyst in which a noble metal is supported on a carrier can be used, but a non-supported catalyst may also be used. The reduction can be performed in the gas phase, but is preferably performed in the liquid phase. Hereinafter, a liquid phase reduction method for reducing a noble metal compound in a liquid phase will be described.

本発明で用いる貴金属触媒に含まれる貴金属とは、パラジウム、白金、ロジウム、ルテニウム、イリジウム、金、銀、レニウム、オスミウムを指し、中でもパラジウム、白金、ロジウム、ルテニウム、イリジウム、金が好ましく、パラジウムが特に好ましい。触媒の製造に使用する貴金属化合物は特に限定されないが、例えば、貴金属の、塩化物、酸化物、酢酸塩、硝酸塩、硫酸塩、テトラアンミン錯体およびアセチルアセトナト錯体等が好ましく、貴金属の、塩化物、酸化物、酢酸塩、硝酸塩、硫酸塩がより好ましく、貴金属の、塩化物、酢酸塩、硝酸塩が特に好ましい。   The noble metal contained in the noble metal catalyst used in the present invention refers to palladium, platinum, rhodium, ruthenium, iridium, gold, silver, rhenium, osmium, among which palladium, platinum, rhodium, ruthenium, iridium and gold are preferred, and palladium is preferred. Particularly preferred. The noble metal compound used for the production of the catalyst is not particularly limited. For example, noble metal chlorides, oxides, acetates, nitrates, sulfates, tetraammine complexes, and acetylacetonato complexes are preferable. Noble metal chlorides, Oxides, acetates, nitrates and sulfates are more preferred, and noble metal chlorides, acetates and nitrates are particularly preferred.

まず、上記の貴金属化合物を溶媒に溶解して貴金属化合物溶液とする。この溶媒としては、水、アルコール類、ケトン類、有機酸類および炭化水素類よりなる群から選ばれる1種または2種以上の溶媒を用いることができる。貴金属化合物の濃度は、0.1質量%以上が好ましく、より好ましくは0.2質量%以上、特に好ましくは0.5質量%以上であり、20質量%以下が好ましく、より好ましくは10質量%以下、特に好ましくは7質量%以下である。   First, the above noble metal compound is dissolved in a solvent to obtain a noble metal compound solution. As this solvent, one or two or more solvents selected from the group consisting of water, alcohols, ketones, organic acids and hydrocarbons can be used. The concentration of the noble metal compound is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, particularly preferably 0.5% by mass or more, and preferably 20% by mass or less, more preferably 10% by mass. Hereinafter, it is particularly preferably 7% by mass or less.

次いで、これに還元剤を加えて貴金属化合物中の貴金属を還元する。用いる還元剤は特に限定されないが、例えば、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、水素、ギ酸、ギ酸の塩、エチレン、プロピレンおよびイソブチレン等が挙げられる。   Next, a reducing agent is added to this to reduce the noble metal in the noble metal compound. The reducing agent to be used is not particularly limited, and examples thereof include hydrazine, formaldehyde, sodium borohydride, hydrogen, formic acid, formic acid salts, ethylene, propylene, and isobutylene.

還元時の系の温度および還元時間は、還元方法、用いる貴金属化合物、溶媒および還元剤等により異なるので一概に言えないが、液相還元法の場合、還元温度は0〜100℃が好ましく、還元時間は0.5〜24時間が好ましい。   The temperature of the system and the reduction time during the reduction vary depending on the reduction method, the precious metal compound used, the solvent, the reducing agent, etc., but cannot be generally stated. In the case of the liquid phase reduction method, the reduction temperature is preferably 0 to 100 ° C. The time is preferably 0.5 to 24 hours.

担持触媒を調製する場合は、貴金属化合物溶液に担体を分散させること以外は担体を使用しない場合と同様に還元すればよい。担体としては、例えば、活性炭、カーボンブラック、シリカ、アルミナ、マグネシア、カルシア、チタニアおよびジルコニア等を挙げることができるが、中でも活性炭が好ましく用いられる。貴金属の担持率は、担持前の担体質量に対して0.1質量%以上が好ましく、より好ましくは1質量%以上、さらに好ましくは2質量%以上、特に好ましくは4質量%以上であり、40質量%以下が好ましく、より好ましくは30質量%以下、さらに好ましくは20質量%以下、特に好ましくは15質量%以下である。   When preparing a supported catalyst, it may be reduced in the same manner as when the support is not used, except that the support is dispersed in the noble metal compound solution. Examples of the carrier include activated carbon, carbon black, silica, alumina, magnesia, calcia, titania and zirconia. Among them, activated carbon is preferably used. The loading ratio of the noble metal is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, particularly preferably 4% by mass or more, based on the mass of the carrier before loading. It is preferably at most mass%, more preferably at most 30 mass%, further preferably at most 20 mass%, particularly preferably at most 15 mass%.

還元により析出した沈殿物は例えば、ろ過、遠心分離等の方法によりろ別することが好ましい。分離された触媒は適宜乾燥される。乾燥方法は特に限定されず、種々の方法を用いることができる。調製した触媒の物性は、BET表面積測定、XRD測定、COパルス吸着法、TEM測定等により確認できる。   The precipitate deposited by reduction is preferably separated by a method such as filtration or centrifugation. The separated catalyst is appropriately dried. The drying method is not particularly limited, and various methods can be used. The physical properties of the prepared catalyst can be confirmed by BET surface area measurement, XRD measurement, CO pulse adsorption method, TEM measurement, and the like.

本発明において、原料であるα,β−不飽和アルデヒドの使用量は、溶媒100質量部に対して、0.1質量部以上が好ましく、より好ましくは0.5質量部以上である。また、50質量部以下が好ましく、より好ましくは30質量部以下である。   In the present invention, the amount of α, β-unsaturated aldehyde used as a raw material is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the solvent. Moreover, 50 mass parts or less are preferable, More preferably, it is 30 mass parts or less.

分子状酸素の使用量は、α,β−不飽和アルデヒド1モルに対して、0.1モル以上が好ましく、より好ましくは0.3モル以上であり、特に好ましくは0.5モル以上である。また、30モル以下が好ましく、より好ましくは25モル以下であり、特に好ましくは20モル以下である。   The amount of molecular oxygen used is preferably at least 0.1 mol, more preferably at least 0.3 mol, particularly preferably at least 0.5 mol, per mol of α, β-unsaturated aldehyde. . Moreover, 30 mol or less is preferable, More preferably, it is 25 mol or less, Especially preferably, it is 20 mol or less.

貴金属触媒は液相酸化を行う反応液に懸濁させた状態で使用するのが好ましいが、固定床で使用してもよい。反応液中の貴金属触媒の量は、液相酸化を行う反応器内に存在する溶液100質量部に対して、その反応器内に存在する貴金属触媒として0.01質量部以上が好ましく、より好ましくは0.2質量部以上である。また、60質量部以下が好ましく、より好ましくは50質量部以下である。   The noble metal catalyst is preferably used in a state of being suspended in a reaction solution for liquid phase oxidation, but may be used in a fixed bed. The amount of the noble metal catalyst in the reaction solution is preferably 0.01 parts by mass or more as the noble metal catalyst present in the reactor with respect to 100 parts by mass of the solution present in the reactor performing liquid phase oxidation. Is 0.2 parts by mass or more. Moreover, 60 mass parts or less are preferable, More preferably, it is 50 mass parts or less.

液相酸化を行う温度は、用いる溶媒および原料によって適宜選択される。反応温度は、60℃以上が好ましく、より好ましくは70℃以上であり、200℃以下が好ましく、より好ましくは150℃以下である。液相酸化を行う反応圧力は後述する方法で設定する。   The temperature at which liquid phase oxidation is performed is appropriately selected depending on the solvent and the raw material used. The reaction temperature is preferably 60 ° C or higher, more preferably 70 ° C or higher, preferably 200 ° C or lower, more preferably 150 ° C or lower. The reaction pressure for performing liquid phase oxidation is set by the method described later.

本発明は、回分式または連続式のいずれにおいても実施することができる。連続式の場合、気液固反応が実施できれば制約はないが、例えば、充填塔型反応器、気泡塔型反応器、撹拌槽型反応器、スプレー塔型反応器、段塔型反応器等が用いられ、この中でも気泡塔型反応器、撹拌槽型反応器が好ましく用いられる。   The present invention can be carried out either batchwise or continuously. In the case of a continuous type, there is no restriction as long as a gas-liquid solid reaction can be carried out, but for example, a packed tower reactor, a bubble tower reactor, a stirred tank reactor, a spray tower reactor, a plate tower reactor, etc. Among these, bubble column reactors and stirred tank reactors are preferably used.

本発明は以上のような原料及び条件による液相酸化をするにあたり、反応器の気相部に存在する可燃性物質の濃度が製造時の酸素濃度における爆発下限界濃度未満になるように、反応器内の気相部の圧力を制御するものである。   In the liquid phase oxidation according to the raw materials and conditions as described above, the reaction is performed so that the concentration of the combustible substance existing in the gas phase portion of the reactor is less than the lower explosion limit concentration in the oxygen concentration at the time of production. The pressure in the gas phase section in the vessel is controlled.

可燃性物質の爆発限界については、「新版 溶剤ポケットブック」(有機合成化学協会編)に記載されている。これによれば、爆発限界が生ずるのは、混合気中の可燃性ガス又は酸素の一方が不足すると、燃焼反応による熱の発生量と燃焼を維持するのに必要な熱量のバランスが取れなくなって燃焼が維持できなくなるためである。したがって、この限界は可燃性ガスが少なすぎる側と、多すぎる側(相対的に酸素が少なすぎる側)の両方に存在し、前者を爆発下限界濃度、後者を爆発上限界濃度としている。また、この限界の間、つまり爆発可能な濃度範囲を爆発領域と呼ぶことにしている。   The explosive limits of flammable substances are described in the “New Solvent Pocket Book” (edited by the Society for Synthetic Organic Chemistry). According to this, the explosion limit occurs because if the amount of combustible gas or oxygen in the mixture is insufficient, the amount of heat generated by the combustion reaction and the amount of heat necessary to maintain combustion cannot be balanced. This is because combustion cannot be maintained. Therefore, this limit exists both on the side where there is too little combustible gas and on the side where there is too much combustible gas (the side where there is relatively too little oxygen). In addition, the concentration range in which the explosion is possible, that is, the explosive concentration range is called an explosion region.

図1に、爆発領域付近においての可燃性物質濃度と酸素濃度の関係を模式的に示した。図1中の網掛けしてある箇所が爆発領域を、これ以外は不爆領域を表している。なお、爆発領域と不爆領域の境界部は爆発限界を表している。   FIG. 1 schematically shows the relationship between the flammable substance concentration and the oxygen concentration in the vicinity of the explosion region. A shaded portion in FIG. 1 represents an explosion region, and the other portions represent non-explosion regions. The boundary between the explosion region and the non-explosion region represents the explosion limit.

今、仮に酸素濃度を濃度cとした場合、2点で爆発限界と交わる。この時の濃度aが可燃性物質の爆発下限界濃度に、濃度bが可燃性物質の爆発上限界濃度にそれぞれ相当する。したがって、酸素濃度が濃度cの場合、可燃性物質濃度が濃度a〜bの範囲において爆発領域となる。また、酸素濃度を下げて濃度eとした場合、可燃性物質の爆発下限界濃度と爆発下限界濃度が濃度dで一致し、爆発領域がなくなる。このときの酸素濃度eを引火限界酸素濃度と呼ぶ。   If the oxygen concentration is assumed to be concentration c, the explosion limit is intersected at two points. The concentration a at this time corresponds to the lower explosion limit concentration of the combustible substance, and the concentration b corresponds to the upper explosion limit concentration of the combustible substance. Therefore, when the oxygen concentration is the concentration c, the flammable substance concentration becomes an explosion region in the range of the concentrations a to b. Further, when the oxygen concentration is lowered to the concentration e, the lower explosion limit concentration and the lower explosion limit concentration of the combustible substance coincide with each other at the concentration d, and the explosion region disappears. The oxygen concentration e at this time is called the flammability limit oxygen concentration.

従来の方法では、可燃性物質濃度が、酸素濃度cにおける爆発下限界濃度aより高い条件で実施されるため、爆発を回避するためには不活性ガス等により希釈し、酸素濃度を引火限界酸素濃度e未満にする必要があった。すなわち、結果的に製造時の酸素濃度を低く設定することとなるため、液相酸化反応の速度が低下してしまい、製造効率が悪くコスト的に不利であった。本発明においては、可燃性物質濃度が、酸素濃度cにおける爆発下限界濃度a未満になるような条件で行うことが特徴である。すなわち、製造時の酸素濃度を高く設定できるようになり、製造効率が高まる。   In the conventional method, since the combustible substance concentration is carried out under a condition higher than the lower explosion limit concentration a at the oxygen concentration c, in order to avoid the explosion, it is diluted with an inert gas or the like, and the oxygen concentration is set to the flammable limit oxygen. It was necessary to make the concentration less than e. That is, as a result, the oxygen concentration at the time of production is set low, so that the speed of the liquid phase oxidation reaction is reduced, and the production efficiency is poor and the cost is disadvantageous. The present invention is characterized in that the flammable substance concentration is performed under conditions such that the oxygen concentration c is less than the lower explosion limit concentration a. That is, the oxygen concentration at the time of production can be set high, and the production efficiency is increased.

ここで、気相部の可燃性物質濃度は、下記式(1)により表される。   Here, the concentration of the combustible substance in the gas phase is expressed by the following formula (1).

Cg=PVap/π×100 (1)
ここに、Cgは気相部の可燃性物質濃度[vol%]、PVapは測定温度における可燃性物質の蒸気圧、πは試験圧力(全圧)をそれぞれ示す。式(1)によれば、例えば、51℃における酢酸の蒸気圧は60mmHg(「化学便覧基礎編 改訂3版」(日本化学会編)による)であることから、大気圧(760mmHg)における気相部の酢酸濃度は7.89vol%となる。PVapは、一般に温度の関数であり温度が一定ならばPVapは一定となり、πを大きくすることで可燃性物質濃度を小さくすることができる。すなわち、圧力をある値より高くすることで可燃性物質濃度を製造時の酸素濃度における爆発下限界濃度未満とすることができ、爆発を回避することができる。なお、可燃性物質濃度は、ガスクロマトグラフィー等の分析により測定することもできる。
Cg = P Vap / π × 100 (1)
Here, Cg represents the concentration of the combustible substance [vol%] in the gas phase, P Vap represents the vapor pressure of the combustible substance at the measurement temperature, and π represents the test pressure (total pressure). According to the equation (1), for example, the vapor pressure of acetic acid at 51 ° C. is 60 mmHg (according to “Chemical Handbook Basic Edition Revised 3rd Edition” (edited by the Chemical Society of Japan), so the gas phase at atmospheric pressure (760 mmHg) The acetic acid concentration of the part is 7.89 vol%. P Vap is generally a function of temperature. If the temperature is constant, P Vap is constant, and by increasing π, the combustible substance concentration can be reduced. That is, by setting the pressure higher than a certain value, the combustible substance concentration can be made lower than the lower explosion limit concentration in the oxygen concentration at the time of manufacture, and explosion can be avoided. The combustible substance concentration can also be measured by analysis such as gas chromatography.

爆発下限界濃度は、加圧引火点測定によって求めることができる。加圧引火点測定は、定温、定圧下で、爆発容器にて爆鳴気を形成させ点火し、式(2)で表される圧力上昇率から爆発、不爆を判定し実施する。判定にあたっては、以下の判定基準を用いる。   The lower explosion limit concentration can be determined by measuring the pressurized flash point. Pressurized flash point measurement is performed at a constant temperature and constant pressure by forming a squealing gas in an explosion container and igniting it, and determining explosion and non-explosion from the rate of pressure increase expressed by equation (2). In the determination, the following determination criteria are used.

圧力上昇率=(点火後の圧力)/(試験圧力)×100 [%] (2)
(判定基準)
10%超 爆発
10% 爆発限界
10%未満 不爆
つまり、爆発下限界濃度は、圧力上昇率が10%の時の可燃性物質濃度とする。なお、加圧引火点測定で、圧力上昇率10%の可燃性物質濃度が測定で直接求められない場合は、圧力上昇率1%超10%未満の点と10%超50%未満の点の少なくとも2点、好ましくは圧力上昇率5%超10%未満の点と10%超20%未満の点の少なくとも2点、の測定点から内挿法により求めることができる。圧力上昇率10%超50%未満の範囲、好ましくは圧力上昇率10%超20%未満の範囲、における少なくとも2点の測定点から外挿法により求めることもできる。
Pressure increase rate = (pressure after ignition) / (test pressure) × 100 [%] (2)
(Criteria)
Over 10% Explosion 10% Explosion limit Less than 10% No explosion, that is, the lower explosive limit concentration is the combustible substance concentration when the rate of pressure increase is 10%. If the combustible substance concentration with a pressure increase rate of 10% is not directly determined by measurement in the pressurized flash point measurement, the pressure increase rate is over 1% and less than 10% and over 10% and less than 50%. It can be determined by an interpolation method from at least two points, preferably at least two points of a pressure increase rate of more than 5% and less than 10% and more than 10% and less than 20%. It can also be determined by extrapolation from at least two measurement points in a pressure increase rate of more than 10% and less than 50%, preferably in a range of pressure increase rate of more than 10% and less than 20%.

本発明では、可燃性物質濃度が、上記の爆発下限界濃度未満になるように反応器内の気相部の圧力を制御することで爆発を回避することが可能となる。具体的には、可燃性物質濃度が製造時の酸素濃度における爆発下限界濃度未満となる気相部の圧力の下限をあらかじめ見積もっておき、反応器内の気相部の圧力がその圧力を上回るように管理しながら製造を行う方法を採ることができる。   In the present invention, explosion can be avoided by controlling the pressure in the gas phase in the reactor so that the combustible substance concentration is less than the lower explosion limit concentration. Specifically, the lower limit of the pressure in the gas phase where the combustible substance concentration is less than the lower explosion limit concentration in the oxygen concentration during production is estimated in advance, and the pressure in the gas phase in the reactor exceeds the pressure. Thus, it is possible to adopt a method of manufacturing while managing.

また本発明では、運転のスタートアップ時において、反応器内に引火限界酸素濃度未満の酸素濃度のガスを供給して、反応器内の気相部に存在する可燃性物質の濃度が製造時の酸素濃度における爆発下限界濃度未満となる圧力にした後、反応器内を製造時の酸素濃度にすることが好ましい。最初に反応器内に供給するガスとしては、窒素、二酸化炭素、アルゴン等の不活性ガス、または、空気等の酸素含有ガスを不活性ガスで引火限界酸素濃度未満の濃度まで希釈した混合ガス等を使用できる。入手の容易さから不活性ガスを使用することが好ましい。反応器内の気相部の圧力が大気圧の状態で製造時の酸素濃度にしてしまうと、反応器内の気相部に存在する可燃性物質の爆発領域に入ってしまう。そこで、引火限界酸素濃度未満の酸素濃度のガスを用いて、反応器内の気相部に存在する可燃性物質の濃度を製造時の酸素濃度における爆発下限界濃度未満となる圧力まで供給し、その後に反応器内の気相部の酸素濃度を製造時の酸素濃度とすることで、運転のスタートアップ時において可燃性物質の爆発領域を通過することを避けることができ、安全に運転をスタートアップできる。   In the present invention, a gas having an oxygen concentration less than the flammability limit oxygen concentration is supplied into the reactor at the start-up of operation, and the concentration of the combustible substance existing in the gas phase portion in the reactor is the oxygen at the time of production. It is preferable to set the pressure inside the reactor to the oxygen concentration at the time of production after the pressure becomes less than the lower explosion limit concentration. The gas supplied to the reactor first is an inert gas such as nitrogen, carbon dioxide or argon, or a mixed gas obtained by diluting an oxygen-containing gas such as air with an inert gas to a concentration lower than the flammability limit oxygen concentration. Can be used. It is preferable to use an inert gas because of its availability. If the pressure in the gas phase part in the reactor is the atmospheric pressure and the oxygen concentration at the time of production is reached, the gas enters the explosion region of the combustible substance existing in the gas phase part in the reactor. Therefore, using a gas having an oxygen concentration less than the flammable limit oxygen concentration, the concentration of the combustible substance present in the gas phase portion in the reactor is supplied to a pressure that is less than the lower explosion limit concentration in the oxygen concentration at the time of production, After that, by making the oxygen concentration in the gas phase in the reactor the oxygen concentration at the time of production, it is possible to avoid passing through the explosion area of combustible substances at the start-up of the operation, and the operation can be started up safely. .

また本発明では、運転のシャットダウン時において、反応器内の気相部の酸素濃度を引火限界酸素濃度未満にした後、反応器内の気相部の圧力を大気圧にすることが好ましい。反応器内の気相部の酸素濃度を引火限界酸素濃度未満とする方法としては、引火限界酸素濃度未満の酸素濃度のガスで置換する、反応器内の気相部の酸素濃度が引火限界酸素濃度未満となるまで不活性ガスを供給する、等の方法で行うことができる。管理のし易さから引火限界酸素濃度未満の酸素濃度のガスで置換することが好ましい。引火限界酸素濃度未満の酸素濃度のガスとしては、窒素、二酸化炭素、アルゴン等の不活性ガス、または、空気等の酸素含有ガスを不活性ガスで引火限界酸素濃度未満の濃度まで希釈した混合ガス等を使用できる。入手の容易さから不活性ガスを使用することが好ましい。反応器内の気相部を不活性ガスで置換する方法がより好ましい。製造時の反応器内の気相部は通常加圧状態であるため、そのまま反応器内の気相部の圧力を大気圧に下げてしまうと、反応器内の気相部に存在する可燃性物質の爆発領域に入ってしまう。そこで、上述のように反応器内の気相部の酸素濃度を引火限界酸素濃度未満まで下げた後、反応器の気相部の圧力を大気圧にすることで、運転のシャットダウン時において可燃性物質の爆発領域を通過することを避けることができ、安全に運転をシャットダウンできる。   In the present invention, it is preferable to set the pressure in the gas phase in the reactor to atmospheric pressure after the oxygen concentration in the gas phase in the reactor is less than the flammability limit oxygen concentration when the operation is shut down. As a method of setting the oxygen concentration in the gas phase portion in the reactor to less than the flammability limit oxygen concentration, the oxygen concentration in the gas phase portion in the reactor is replaced with a gas having an oxygen concentration less than the flammability limit oxygen concentration. It can be performed by a method such as supplying an inert gas until the concentration is less than the concentration. It is preferable to replace with a gas having an oxygen concentration lower than the flammable limit oxygen concentration for ease of management. As the gas having an oxygen concentration less than the flammability limit oxygen concentration, an inert gas such as nitrogen, carbon dioxide or argon, or a mixed gas obtained by diluting an oxygen-containing gas such as air with an inert gas to a concentration less than the flammability limit oxygen concentration Etc. can be used. It is preferable to use an inert gas because of its availability. A method of replacing the gas phase in the reactor with an inert gas is more preferable. Since the gas phase part in the reactor at the time of production is normally in a pressurized state, if the pressure of the gas phase part in the reactor is lowered to atmospheric pressure as it is, flammability existing in the gas phase part in the reactor Enter the explosion area of the material. Therefore, after reducing the oxygen concentration in the gas phase part in the reactor to below the flammability limit oxygen concentration as described above, the pressure in the gas phase part of the reactor is changed to atmospheric pressure, so that it is flammable when the operation is shut down. Passing through the explosion area of the material can be avoided and the operation can be shut down safely.

以下に、本発明を実施例を用いて更に詳細に説明するが、これらの実施例は本発明の概要を示すもので、本発明はこれらの実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, these examples show the outline of the present invention, and the present invention is not limited to these examples.

(蒸気圧測定1)
撹拌機、注入容器、圧力変換器(9.8MPa−abs)、低圧圧力変換器(0.2MPa−abs)及びφ0.5Pt線加熱線点火源を備えた0.5リットル爆発容器((株)三菱化学科学技術研究センター所有)を真空引き後、低圧圧力変換器元弁を閉じた。試料1として酢酸(和光純薬製)20mLを注入容器経由で爆発容器に投入した。ヒーターで昇温し爆発容器及び内容物を90℃で充分に安定させた。爆発容器内を10分間撹拌した後、撹拌を停止し、その後10分間静置させた。低圧圧力変換器のゼロ点を調節後、元弁を開けその時の圧力指示(1)を読取り記録した。爆発容器と注入容器を真空排気した後の圧力指示(2)を読取り記録した。圧力指示(1)と圧力指示(2)の差を測定温度(90℃)における試料1の蒸気圧とした。この結果、試料1の蒸気圧は41kPa−absであった。
(Vapor pressure measurement 1)
0.5 liter explosion container (Co., Ltd.) equipped with stirrer, injection container, pressure transducer (9.8 MPa-abs), low-pressure pressure transducer (0.2 MPa-abs), and φ0.5 Pt wire heating wire ignition source After evacuating Mitsubishi Chemical Science and Technology Research Center), the original valve of the low-pressure pressure transducer was closed. As Sample 1, 20 mL of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was introduced into the explosion container via the injection container. The temperature was raised with a heater, and the explosion container and contents were sufficiently stabilized at 90 ° C. After stirring the inside of the explosion container for 10 minutes, the stirring was stopped and then allowed to stand for 10 minutes. After adjusting the zero point of the low pressure pressure transducer, the main valve was opened and the pressure indication (1) at that time was read and recorded. The pressure instruction (2) after evacuating the explosion container and the injection container was read and recorded. The difference between the pressure instruction (1) and the pressure instruction (2) was used as the vapor pressure of the sample 1 at the measurement temperature (90 ° C.). As a result, the vapor pressure of Sample 1 was 41 kPa-abs.

(加圧引火点測定1)
蒸気圧測定で用いた0.5リットル爆発容器を真空下で気密試験を行った後、上記試料1を20mL注入容器経由で爆発容器に投入した。ヒーターで昇温し容器及び内容物を90℃で充分に安定させた。圧縮空気ボンベから空気を爆発容器に所定の気相部圧力となるまで移送した。10分間撹拌した後、撹拌を停止し、その後10分間静置させた後、点火源を作動させ爆発させ、その時の圧力データを記録した。以下、同様に気相部圧力を種々に変え加圧引火点測定を行った。結果を表1に示した。なお、気相中の可燃性物質濃度は、式(1)により算出し、圧力上昇率は式(2)より求めた。また、爆発の有無については先に示した判定基準に基いている。
(Pressure flash point measurement 1)
After a 0.5 liter explosion vessel used for vapor pressure measurement was subjected to an airtight test under vacuum, the sample 1 was put into the explosion vessel via a 20 mL injection vessel. The temperature was raised with a heater, and the container and contents were sufficiently stabilized at 90 ° C. Air was transferred from the compressed air cylinder to the explosion container until a predetermined gas phase pressure was reached. After stirring for 10 minutes, the stirring was stopped, and then allowed to stand for 10 minutes. Then, the ignition source was activated and exploded, and pressure data at that time was recorded. Thereafter, the pressure flash point was measured in the same manner by varying the gas phase pressure in various ways. The results are shown in Table 1. In addition, the combustible substance density | concentration in a gaseous phase was computed by Formula (1), and the pressure increase rate was calculated | required from Formula (2). In addition, the presence or absence of an explosion is based on the criteria shown above.

Figure 0004612366
この結果より、気相部圧力1.6MPa−absを超える圧力では不爆であることが確認された。すなわち、気相部を空気で加圧したときの可燃性物質の爆発下限界濃度は2.6vol%である。
Figure 0004612366
From this result, it was confirmed that there was no explosion at pressures exceeding the gas phase pressure of 1.6 MPa-abs. That is, the lower explosion limit concentration of the combustible substance when the gas phase part is pressurized with air is 2.6 vol%.

(蒸気圧測定2)
メタクロレイン15質量%、酢酸75質量%、水10質量%の混合物(重合防止剤として、パラメトキシフェノールを200ppm含有)である試料2について蒸気圧測定1と同様に蒸気圧の測定を行った結果、試料2の蒸気圧は103kPa−absであった。
(Vapor pressure measurement 2)
The result of measuring the vapor pressure in the same manner as in the vapor pressure measurement 1 for the sample 2 which is a mixture of 15% by mass of methacrolein, 75% by mass of acetic acid and 10% by mass of water (containing 200 ppm of paramethoxyphenol as a polymerization inhibitor). The vapor pressure of sample 2 was 103 kPa-abs.

(加圧引火点測定2)
試料2について加圧引火点測定1と同様に加圧引火点測定を行った。結果を表2に示した。
(Pressure flash point measurement 2)
For the sample 2, the pressurized flash point was measured in the same manner as the pressurized flash point measurement 1. The results are shown in Table 2.

Figure 0004612366
この結果より、気相部圧力5.3MPa−absを超える圧力では不爆であることが確認された。すなわち、気相部を空気で加圧したときの可燃性物質の爆発下限界濃度は2.0vol%である。
Figure 0004612366
From this result, it was confirmed that there was no explosion at pressures exceeding the gas phase pressure of 5.3 MPa-abs. That is, the lower explosion limit concentration of the combustible substance when the gas phase part is pressurized with air is 2.0 vol%.

(気相部圧力の設定)
上記の蒸気圧測定と加圧引火点測定の結果より、気相部を空気で加圧したときの可燃性物質の爆発下限界濃度(CgLL[vol%])と試料の蒸気圧(PVap[kPa−abs])は、式(3)で表される関係にある。
(Gas phase pressure setting)
From the results of the above vapor pressure measurement and pressurized flash point measurement, the lower explosive limit concentration (C gLL [vol%]) of the combustible substance when the gas phase is pressurized with air and the vapor pressure of the sample (P Vap [KPa-abs]) is in a relationship represented by Expression (3).

gLL=−0.00968PVap+2.997 (3)
そこで、予め、供給されるメタクロレイン濃度、平均滞留時間、触媒量などを変えて反応させ、これら因子とメタクロレイン転化率の関係から反応液の組成を求めておき、該反応液の90℃における蒸気圧を実測または推算により得た後、式(1)により求められる気相部に存在する可燃性物質濃度が式(3)により求められる爆発下限界濃度未満になるように、気相部圧力を設定した。
C gLL = −0.00968P Vap +2.997 (3)
Therefore, the concentration of methacrolein to be supplied, the average residence time, the amount of catalyst, etc. are reacted in advance to determine the composition of the reaction solution from the relationship between these factors and methacrolein conversion, and the reaction solution at 90 ° C. After obtaining the vapor pressure by actual measurement or estimation, the gas phase pressure is adjusted so that the concentration of the combustible substance existing in the gas phase determined by the equation (1) is less than the lower explosion limit concentration determined by the equation (3). It was set.

(触媒調製)
88質量%n−吉草酸水溶液55部に市販の酢酸パラジウム1部を溶解した。この溶液をオートクレーブに移し、石炭原料から製造された比表面積790m2/gの活性炭5部を加え、オートクレーブを密閉し、液相部を撹拌しながらオートクレーブ内の気相部を窒素で置換し、その後5〜10℃になるよう冷却した。プロピレンをオートクレーブ内の圧力が0.5MPa−ゲージ圧となるまで導入した後、50℃で1時間撹拌を行った。その後、撹拌を止め、反応器内の圧力を開放した後、反応液を取り出した。窒素気流下で得られた反応液から沈殿物をろ別し、パラジウム金属担持触媒を得た。この触媒のパラジウム担持率は10質量%であった。
(Catalyst preparation)
1 part of commercially available palladium acetate was dissolved in 55 parts of 88% by mass n-valeric acid aqueous solution. This solution was transferred to an autoclave, 5 parts of activated carbon with a specific surface area of 790 m 2 / g produced from coal raw material was added, the autoclave was sealed, and the gas phase part in the autoclave was replaced with nitrogen while stirring the liquid phase part. Thereafter, it was cooled to 5 to 10 ° C. Propylene was introduced until the pressure in the autoclave reached 0.5 MPa-gauge pressure, and then stirred at 50 ° C. for 1 hour. Then, stirring was stopped and the pressure in the reactor was released, and then the reaction solution was taken out. The precipitate was filtered off from the reaction solution obtained under a nitrogen stream to obtain a palladium metal supported catalyst. The palladium loading rate of this catalyst was 10% by mass.

<実施例1>
反応装置は、内径41.2mm、高さ1,375mmのステンレス製気泡塔型反応器(液容量1.7L)を用いた。原料メタクロレインは反応器下部から供給し、反応液は液相部の液面を一定に保ちつつ、クロスフローフィルター(積層焼結金網フィルター;(株)ニチダイ社製)で触媒をろ過した後、系外に抜き出す構造となっている。
<Example 1>
The reaction apparatus used was a stainless steel bubble column reactor (liquid capacity: 1.7 L) having an inner diameter of 41.2 mm and a height of 1,375 mm. The raw material methacrolein was supplied from the lower part of the reactor, and the reaction liquid was filtered with a cross flow filter (laminated sintered wire mesh filter; manufactured by Nichidai Co., Ltd.) while keeping the liquid surface of the liquid phase constant. It is structured to be pulled out of the system.

(運転のスタートアップ及び定常運転)
反応器に予めパラジウム金属担持触媒55gと88質量%酢酸水溶液を制御液面に達するように投入した。窒素ガスを反応器に供給し、気相部圧力が3.2MPa−ゲージ圧となった時点で供給を停止した。この場合、気相部を空気で加圧して、気相部に存在する可燃性物質濃度が爆発下限界濃度未満になる圧力の下限は1.7MPa−ゲージ圧(爆発下限界濃度は2.6vol%)であることから、余裕をもたせ3.2MPa−ゲージ圧に設定した。液相温度を90℃まで昇温し約10分間安定させた後、88質量%酢酸水溶液100質量部にメタクロレイン3質量部を加えて調製した原料溶液を、反応器内の平均滞留時間が1.6時間になるよう連続的に供給した。次に、気相部圧力を保ったまま反応器液相部に、圧縮空気ボンベから空気を空塔速度が2.7cm/sになるよう連続的に供給し反応を開始させた。この状態で6時間反応した後、気相部ガスをサンプリングし可燃物濃度を測定した結果1.5vol%であり、爆発下限界濃度未満であった。なおガス分析は、ガスクロマトグラフィー[装置名:HP6850Series(FID検出器)、カラム;CARBOWAX20M(Quadrex社製)、長さ50m、フィルム厚3μm、内径0.32mm]を用いて、カラム温度70℃、注入口温度200℃、検出器温度250℃の条件にて実施した。また、反応液を分析した結果、メタクロレイン転化率77%、メタクリル酸選択率74%であった。なお、反応液中のメタクロレイン濃度は0.7質量%であった。
(Operation start-up and steady operation)
Into the reactor, 55 g of palladium metal supported catalyst and 88 mass% acetic acid aqueous solution were charged in advance so as to reach the control liquid level. Nitrogen gas was supplied to the reactor, and the supply was stopped when the gas phase pressure reached 3.2 MPa-gauge pressure. In this case, when the gas phase part is pressurized with air, the lower limit of the pressure at which the concentration of the combustible substance existing in the gas phase part is less than the lower explosion limit concentration is 1.7 MPa-gauge pressure (lower explosion limit concentration is 2.6 vol. %), A margin was set to 3.2 MPa-gauge pressure. The liquid phase temperature was raised to 90 ° C. and stabilized for about 10 minutes, and then a raw material solution prepared by adding 3 parts by mass of methacrolein to 100 parts by mass of an 88% by mass acetic acid aqueous solution was used. Continuously fed for 6 hours. Next, the reaction was started by continuously supplying air from the compressed air cylinder so that the superficial velocity was 2.7 cm / s while maintaining the gas phase pressure. After reacting in this state for 6 hours, the gas phase gas was sampled and the combustible concentration was measured. Gas analysis was performed using gas chromatography [device name: HP6850 Series (FID detector), column; CARBOWAX20M (manufactured by Quadrex), length 50 m, film thickness 3 μm, inner diameter 0.32 mm], column temperature 70 ° C., The test was carried out under conditions of an inlet temperature of 200 ° C. and a detector temperature of 250 ° C. As a result of analysis of the reaction solution, methacrolein conversion was 77% and methacrylic acid selectivity was 74%. The methacrolein concentration in the reaction solution was 0.7% by mass.

気相部ガスは、背圧弁から大気圧にブローアウトした後、吸収液として水15Lを張り込んだ20L吸収槽に導き、吸収処理を行った後、大気に放散した。   The gas phase gas was blown out from the back pressure valve to atmospheric pressure, then led to a 20 L absorption tank filled with 15 L of water as an absorbing solution, subjected to absorption treatment, and then diffused into the atmosphere.

(運転の終了)
運転の終了に際しては、まず空気の供給を停止した後、窒素ガスを10分間供給し反応器内気相部を窒素ガスに置換した。次に冷却を開始し液温が30℃になった時点で反応器圧力を大気圧に戻した。
(End of driving)
At the end of operation, first, the supply of air was stopped, then nitrogen gas was supplied for 10 minutes, and the gas phase portion in the reactor was replaced with nitrogen gas. Next, cooling was started and when the liquid temperature reached 30 ° C., the reactor pressure was returned to atmospheric pressure.

以上のように、酸化を行う反応器の気相部に存在する可燃性物質の濃度が製造時の酸素濃度における爆発下限界濃度未満になるように、該反応器内の気相部の圧力を制御しつつ液相酸化反応を行うことにより、運転のスタートアップ、定常運転及びシャットダウンの各工程で安全に運転することができた。   As described above, the pressure of the gas phase part in the reactor is set so that the concentration of the combustible substance existing in the gas phase part of the reactor performing the oxidation is less than the lower explosion limit concentration in the oxygen concentration at the time of production. By performing the liquid phase oxidation reaction while controlling, it was possible to operate safely in each process of startup, steady operation and shutdown.

<実施例2>
反応装置は、内径126mm、容量4リットルのジャケット付き撹拌槽式反応器を用いた。原料メタクロレインは反応器上部から供給し、反応液は液相部の液面を一定に保ちつつ、クロスフローフィルター(実施例1と同じ)で触媒をろ過した後、系外に抜き出す構造となっている。
<Example 2>
As the reaction apparatus, a jacketed stirred tank reactor having an inner diameter of 126 mm and a capacity of 4 liters was used. The raw material methacrolein is supplied from the upper part of the reactor, and the reaction liquid is structured to be extracted from the system after filtering the catalyst with a cross flow filter (same as in Example 1) while keeping the liquid surface part constant. ing.

(運転のスタートアップ及び定常運転)
反応器に予めパラジウム金属担持触媒176gと88質量%酢酸水溶液を制御液面に達するように投入した(液面は液容積が3リットルになるように調整した)。窒素ガスを反応器上部から供給し、気相部圧力が8.0MPa−ゲージ圧となった時点で供給を停止した。この場合、気相部を空気で加圧して、気相部に存在する可燃性物質濃度が爆発下限界濃度未満になる圧力の下限は5.4MPa−ゲージ圧(爆発下限界濃度は2.0vol%)であることから、余裕をもたせ8.0MPa−ゲージ圧に設定した。液相温度を90℃まで昇温し、約10分間安定させた後、メタクロレイン22質量%、酢酸69質量%、水9質量%、重合防止剤として、パラメトキシフェノール200ppmを含有させて調製した原料液を0.91リットル/hrで反応器へ連続的に供給した。このとき平均滞留時間は3.3時間であった。次に、気相部圧力を保ったまま反応器液相部に、圧縮空気ボンベから空気をスパージャーを通して0.7kg/hrで連続的に供給し反応を開始させた。この状態で6時間反応した後、気相部ガスをサンプリングし可燃物濃度を測定した結果1.2vol%であり、爆発下限界濃度未満であった。また、反応液を分析した結果、メタクロレイン転化率41%、メタクリル酸選択率61%であった。なお、反応液中のメタクロレイン濃度は13.2質量%であった。気相部ガスは、背圧弁から大気圧にブローアウトした後、実施例1と同様に処理した。
(Operation start-up and steady operation)
Into the reactor, 176 g of a palladium metal supported catalyst and an 88% by mass acetic acid aqueous solution were charged in advance so as to reach the control liquid level (the liquid level was adjusted so that the liquid volume was 3 liters). Nitrogen gas was supplied from the top of the reactor, and the supply was stopped when the gas phase pressure reached 8.0 MPa-gauge pressure. In this case, when the gas phase part is pressurized with air, the lower limit of the pressure at which the combustible substance concentration present in the gas phase part is less than the lower explosion limit concentration is 5.4 MPa-gauge pressure (lower explosion limit concentration is 2.0 vol. %), The margin was set to 8.0 MPa-gauge pressure. The liquidus temperature was raised to 90 ° C. and stabilized for about 10 minutes, and then prepared by containing 22% by mass of methacrolein, 69% by mass of acetic acid, 9% by mass of water, and 200 ppm of paramethoxyphenol as a polymerization inhibitor. The raw material liquid was continuously supplied to the reactor at 0.91 liter / hr. At this time, the average residence time was 3.3 hours. Next, the reaction was started by continuously supplying air from a compressed air cylinder through a sparger at 0.7 kg / hr to the liquid phase part of the reactor while maintaining the gas phase part pressure. After reacting in this state for 6 hours, the gas phase gas was sampled and the combustible concentration was measured. As a result, it was 1.2 vol%, which was less than the lower explosion limit concentration. As a result of analyzing the reaction solution, the methacrolein conversion rate was 41% and the methacrylic acid selectivity was 61%. The methacrolein concentration in the reaction solution was 13.2% by mass. The gas phase gas was blown out from the back pressure valve to atmospheric pressure, and then treated in the same manner as in Example 1.

(運転の終了)
運転の終了に際しても実施例1と同様に操作し、反応器圧力を大気圧に戻した。
(End of driving)
At the end of the operation, the same operation as in Example 1 was performed, and the reactor pressure was returned to atmospheric pressure.

以上のように、酸化を行う反応器の気相部に存在する可燃性物質の濃度が製造時の酸素濃度における爆発下限界濃度未満になるように、該反応器内の気相部の圧力を制御しつつ液相酸化反応を行うことにより、運転のスタートアップ、定常運転及びシャットダウンの各工程で安全に運転することができた。   As described above, the pressure of the gas phase part in the reactor is set so that the concentration of the combustible substance existing in the gas phase part of the reactor performing the oxidation is less than the lower explosion limit concentration in the oxygen concentration at the time of production. By performing the liquid phase oxidation reaction while controlling, it was possible to operate safely in each process of startup, steady operation and shutdown.

爆発領域付近においての可燃性物質濃度と酸素濃度の関係を模式的に示す図である。It is a figure which shows typically the relationship between the combustible substance density | concentration and oxygen concentration in the explosion area vicinity.

Claims (2)

貴金属触媒存在下、液相中で分子状酸素によりα,β−不飽和アルデヒドを酸化することでα,β−不飽和カルボン酸を製造する方法であって、運転のスタートアップ時に、酸化を行う反応器内に引火限界酸素濃度未満の酸素濃度のガスを供給して、該反応器内の気相部に存在する可燃性物質の濃度が製造時の酸素濃度における爆発下限界濃度未満となる圧力にした後、該反応器の気相部に存在する可燃性物質の濃度が製造時の酸素濃度における爆発下限界濃度未満になるように、該反応器内の気相部の圧力を制御することを特徴とするα,β−不飽和カルボン酸の製造方法。 The presence of a noble metal catalyst, alpha with molecular oxygen in a liquid phase, alpha by oxidizing β- unsaturated aldehydes, a method for producing a β- unsaturated carboxylic acid, at startup of the operation, the reaction for performing oxidation A gas having an oxygen concentration less than the flammable limit oxygen concentration is supplied to the reactor, and the pressure is such that the concentration of the flammable substance existing in the gas phase in the reactor is less than the lower explosion limit concentration in the oxygen concentration at the time of production. After that, the pressure of the gas phase portion in the reactor is controlled so that the concentration of the combustible substance existing in the gas phase portion of the reactor is less than the lower explosion limit concentration in the oxygen concentration at the time of manufacture. A method for producing an α, β-unsaturated carboxylic acid. 運転のシャットダウン時において、前記反応器内の気相部の酸素濃度を引火限界酸素濃度未満にした後、該反応器内の気相部の圧力を大気圧にすることを特徴とする請求項1記載のα,β−不飽和カルボン酸の製造方法。   2. The pressure of the gas phase in the reactor is set to atmospheric pressure after the oxygen concentration in the gas phase in the reactor is made less than the flammability limit oxygen concentration when the operation is shut down. The manufacturing method of the alpha, beta-unsaturated carboxylic acid of description.
JP2004256957A 2004-02-10 2004-09-03 Process for producing α, β-unsaturated carboxylic acid Expired - Lifetime JP4612366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256957A JP4612366B2 (en) 2004-02-10 2004-09-03 Process for producing α, β-unsaturated carboxylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004033252 2004-02-10
JP2004256957A JP4612366B2 (en) 2004-02-10 2004-09-03 Process for producing α, β-unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JP2005255665A JP2005255665A (en) 2005-09-22
JP4612366B2 true JP4612366B2 (en) 2011-01-12

Family

ID=35081747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256957A Expired - Lifetime JP4612366B2 (en) 2004-02-10 2004-09-03 Process for producing α, β-unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP4612366B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414149B2 (en) * 2004-11-22 2008-08-19 Rohm And Haas Company Non-routine reactor shutdown method
JP7172976B2 (en) * 2019-12-16 2022-11-16 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832821A (en) * 1971-08-21 1973-05-02
JPS4834815A (en) * 1971-09-13 1973-05-22
JP2002035575A (en) * 2000-07-21 2002-02-05 Nippon Shokubai Co Ltd Method for stopping refining column
JP2002053519A (en) * 2000-08-07 2002-02-19 Nippon Shokubai Co Ltd Method for start-up of reactor
JP2002293757A (en) * 2001-03-30 2002-10-09 Nippon Shokubai Co Ltd Method for producing benzyl ester

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832821A (en) * 1971-08-21 1973-05-02
JPS4834815A (en) * 1971-09-13 1973-05-22
JP2002035575A (en) * 2000-07-21 2002-02-05 Nippon Shokubai Co Ltd Method for stopping refining column
JP2002053519A (en) * 2000-08-07 2002-02-19 Nippon Shokubai Co Ltd Method for start-up of reactor
JP2002293757A (en) * 2001-03-30 2002-10-09 Nippon Shokubai Co Ltd Method for producing benzyl ester

Also Published As

Publication number Publication date
JP2005255665A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
RU2437871C2 (en) Method of reducing concentration of aldehyde in target stream
JP4846576B2 (en) Palladium-containing catalyst and method for producing the same
JP4612366B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP5016920B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP5001543B2 (en) Method for producing palladium-containing supported catalyst
JP4728761B2 (en) Method for producing supported catalyst containing palladium and tellurium, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride
JP4846575B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP5340705B2 (en) Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride
US7994091B2 (en) Method for producing palladium-containing catalyst
JP5362348B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP4571872B2 (en) Noble metal-containing catalyst and method for producing α, β-unsaturated carboxylic acid using the same
JP4829730B2 (en) Method for producing palladium-containing supported catalyst
JP5648520B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP2009024000A (en) METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2006061813A (en) CATALYST FOR LIQUID-PHASE OXIDATIVE-REACTION, ITS PREPARING METHOD, AND MANUFACTURING METHOD OF alpha, beta-UNSATURATED ALDEHYDE OR alpha, beta-UNSATURATED CARBOXYLIC ACID
JP2011236145A (en) METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
JP2006219403A (en) METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2007044607A (en) Noble metal-containing catalyst and method for producing alpha,beta-unsaturated carboxylic acid and alpha,beta-unsaturated carboxylic acid anhydride by using the same
JP5416886B2 (en) Palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid
JP5019586B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP2005218953A (en) PALLADIUM-CONTAINING CATALYST, MANUFACTURING METHOD THEREFOR AND METHOD FOR PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID
JP2006000727A (en) Palladium-containing catalyst and its manufacturing method, and method for producing alpha, beta-unsaturated aldehyde and alpha, beta-unsaturated carboxylic acid
JP2005220069A (en) METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2006137729A (en) METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2010254617A (en) METHOD FOR PRODUCING alpha,beta-UNSATURATED ALDEHYDE AND/OR alpha,beta-UNSATURATED CARBOXYLIC ACID

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4612366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250