[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4612174B2 - Battery current measurement circuit - Google Patents

Battery current measurement circuit Download PDF

Info

Publication number
JP4612174B2
JP4612174B2 JP2000343814A JP2000343814A JP4612174B2 JP 4612174 B2 JP4612174 B2 JP 4612174B2 JP 2000343814 A JP2000343814 A JP 2000343814A JP 2000343814 A JP2000343814 A JP 2000343814A JP 4612174 B2 JP4612174 B2 JP 4612174B2
Authority
JP
Japan
Prior art keywords
current
voltage
semiconductor switch
secondary battery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000343814A
Other languages
Japanese (ja)
Other versions
JP2002151163A (en
Inventor
信雄 塩島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000343814A priority Critical patent/JP4612174B2/en
Publication of JP2002151163A publication Critical patent/JP2002151163A/en
Application granted granted Critical
Publication of JP4612174B2 publication Critical patent/JP4612174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子機器の駆動源として用いられる電池、特に二次電池の電流を、電流測定に伴う電圧降下を最小限に抑えて測定することができる電池電流測定回路に関する。
【0002】
【従来の技術】
携帯電話機やノートブック型パーソナルコンピュータ等の携帯用電子機器では、充電可能な二次電池が電源に使用される。また、商用電源を駆動源とする電子機器においても、電気エネルギーの蓄積・供給のため、充電可能な二次電池が電源として使用される。
【0003】
二次電池の性能を長期にわたり維持し、安定に使用するためには、二次電池の充電および放電の管理を行うことが望ましい。この充放電の管理は、例えば電池の充放電路に直列に介挿された電流検出抵抗器を用い、該電流検出抵抗器の両端間に生じる電圧降下から、その充放電電流を測定して行われる。
【0004】
【発明が解決しようとする課題】
しかしながら電池の充放電路に電流検出抵抗器を介挿してその充放電電流を測定する場合、電流検出抵抗器における電圧降下が無視できない。
例えば携帯電話機においては、その駆動源である二次電池からその電子回路本体に対して最大2A程度の電流を供給する必要があり、またノートブック型のパーソナルコンピュータにおいても最大5A程度の電流を供給する必要がある。この場合、前記電流検出抵抗器として20〜50mΩのものを用いたとしても、40〜100mV、或いは100〜250mVもの電圧降下が発生する。このような電圧降下は、二次電池からノートブック型パーソナルコンピュータ等の電子回路本体に供給される電圧を低下させる要因となり、ひいては二次電池の電池寿命を短くする要因になる。
【0005】
本発明は、上記問題に鑑みてなされたもので、電池の充放電電流の測定に伴う電圧降下を抑えると共に、電池による電子機器の長時間動作を可能とする簡易な構成の電池電流測定回路を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために請求項1に記載の本発明による電池電流測定回路は、二次電池の一方の電極に直列に接続されて該二次電池の充放電電流をオン・オフ制御する半導体スイッチと、該半導体スイッチ素子の両端間に発生する電圧降下から前記二次電池の充電電流および/または放電電流を求める電圧・電流圧変換手段とを具備し、
前記電圧・電流圧変換手段は、前記半導体スイッチの両端間電圧を測定する電圧降下測定手段と、前記半導体スイッチの温度を測定する温度測定手段と、前記電圧降下測定手段の測定電圧を電流値に変換するための変換係数と前記半導体スイッチの温度との関係を示す温度特性を記憶した記憶手段と、前記温度測定手段により測定された半導体スイッチの温度に応じて前記記憶手段から求められる変換係数を用いて前記電圧降下測定手段により測定された電圧を電流値に変換する演算回路とを備え、
更に前記二次電池を一定電流にて充電する際に検出される前記半導体スイッチの温度と前記半導体スイッチの両端間電圧とに従って前記記憶手段に記憶された変換係数の温度特性を補正する特性補正手段
を備えることを特徴とする。
【0007】
このような構成であれば、半導体スイッチの両端に生じる電圧降下を測定することによって、電流検出抵抗器を用いることなく、電池電流を測定することができるので、電流検出抵抗器による大きな電圧降下の問題を解消し、電池による電子機器の長時間動作を可能とする電池電流測定回路が提供される。
ここで、半導体スイッチとしてオン抵抗の小さい電界効果トランジスタを使用することが好適であり、この場合、その導通/遮断の制御を低電力でおこなうことが実現できる(請求項2)。
【0008】
特に前記電圧・電流変換手段を、前記半導体スイッチの両端間電圧を測定する電圧降下測定手段と、前記半導体スイッチの温度を測定する温度測定手段と、電圧降下測定手段の測定電圧を電流値に変換するための変換係数を記憶した記憶手段と、前記温度測定手段により測定された半導体スイッチの温度に応じて前記記憶手段に記憶された変換係数を用いて前記電圧降下測定手段により測定された電圧を電流値に変換する演算回路とにより構成しているので、前記半導体スイッチに発生する電圧降下を電池電流の電流値に簡易に変換し得ることが可能となる。
【0009】
本発明の好ましい態様は、前記半導体スイッチとして、二次電池の充電を制御する第1の半導体スイッチと、二次電池の放電を制御する第2の半導体スイッチとを用い、前記電圧降下測定手段においては、上記第1または第2の半導体スイッチの両端間電圧を測定するように構成される。即ち、二次電池の充放電を制御する第1および第2の半導体スイッチを、電流検出の素子として用いることを特徴としている。
【0010】
また更に前記二次電池を一定電流にて充電する際に検出される前記半導体スイッチの温度と前記半導体スイッチの両端間電圧とに従って前記記憶手段に記憶された変換係数の温度特性を補正する特性補正手段を備えるので、前記半導体スイッチのオン抵抗が、その温度に依存して変化しても、温度に応じた変換係数の補正により、正確な電池電流測定が可能となる。
【0011】
【発明の実施の形態】
以下本発明の実施形態を図面を参照して詳細に説明する。
図1は、本発明の一実施形態に係る二次電池の電池電流測定回路の概略構成図である。
図1で、11は二次電池B11を備えた電池パック6のプラス電源端であり、12はそのマイナス電源端である。これらの一対の電源端11,12は図示しない電子機器に接続される。二次電池B11は、例えば複数の二次電池セルB11a〜B11dを直列に接続したもので、前記一対の電源端11,12を介してその充放電が行われる。この二次電池B11の充放電路には、特に、二次電池B11のプラス電極B11pと前記プラス電源端11との間には、その充放電を制御する第1および第2の電界効果トランジスタTr12,Tr11が直列に介挿されている。
【0012】
電界効果トランジスタTr11,Tr12はそれぞれPチャンネル型のものであって、そのドレインD1,D2間を互いに接続して直列に設けられる。しかしてソースS1をプラス電源端11に接続した第1の電界効果トランジスタTr11は、前記二次電池B11の充電を制御するスイッチ素子として機能するものであり、またソースS2を前記二次電池B11のプラス電極B11pに接続した第2の電界効果トランジスタTr12は、前記二次電池B11の放電を制御するスイッチ素子として機能する。
【0013】
これらの第1および第2の電界効果トランジスタTr11,Tr12は、前記各二次電池セルB11a〜B11dの電池電圧を検出して二次電池B11の過充電および過放電を検出する保護回路14の出力をそのゲートG1,G2に受けて、それぞれ導通/遮断(オン・オフ)制御される。具体的には、二次電池B11の充放電時には、上記各電界効果トランジスタTr11,Tr12は、共に導通状態に設定されている。そして二次電池B11の充電時において、その過充電が前記保護回路14において検出されたとき、該保護回路14により前記第1の電界効果トランジスタTr11が遮断制御され、その充電が停止される。また二次電池B11の放電時において、前記二次電池セルB11a〜B11dの端子電圧が予め設定された監視電圧(放電禁止電圧)まで低下したとき、保護回路14はこれを検出して前記第2の電界効果トランジスタTr12を遮断制御することで、その放電を停止させるものとなっている。
【0014】
さて、基本的には上述したように二次電池B11の充放電路に、該二次電池B11の充電を制御する第1の電界効果トランジスタTr11およびその放電を制御する第2の電界効果トランジスタTr12を備えて構成される電池パック6が備える電池電流測定回路が特徴とするところは、上記第1および第2の電界効果トランジスタTr11,Tr12をそのまま二次電池B11の充放電電流を測定するための電流検出の素子として用いている点にある。
【0015】
即ち、この電池電流測定回路は、二次電池B11の充放電を制御するスイッチ素子である、直列に接続された第1および第2の電界効果トランジスタTr11,Tr12の両端間に生じる電圧降下を検出する差動増幅器13と、この差動増幅器13にて検出された電圧降下から前記二次電池B11の充放電電流を求めるマイクロコントローラ(電圧・電流変換手段)15とを備える。
【0016】
このマイクロコントローラ15は、前記差動増幅器13にて検出された電圧降下をディジタル変換する第1のアナログ・ディジタル変換器(AD変換器と略する)16と、温度センサ21にて検出される電界効果トランジスタTr11,12のケース温度をディジタル変換する第3のAD変換器18、前記二次電池B11の電池電圧(プラス電極B11p側)をディジタル変換する第2のAD変換器17を備える。更にマイクロコントローラ15は、前記第1および第2の電界効果トランジスタTr11,Tr12の両端間に生じる電圧降下を二次電池B11の充放電電流に変換するための変換係数、具体的には第1および第2の電界効果トランジスタTr11,Tr12の特性を記憶した記憶回路19と、この記憶回路19に記憶された変換係数に基づき、前記AD変換器16の出力(電圧降下)から二次電池B11の充放電電流を算出する演算回路20とを有する。そしてこの演算回路20にて求められた上記二次電池B11の充放電電流の情報は、通信ポート20cを介して、前記二次電池B11の後述する充電量や電池電圧、更には充放電の状態情報等と共に図示しない電子機器に出力されるようになっている。
【0017】
なお、差動増幅器13、保護回路14、マイクロコントローラ15および温度センサ21は、ここでは独立した電源Vccにより駆動されてそれぞれ作動するように構成されるが、二次電池B11から電力供給を受けて作動するように構成することも可能である。
次に、上述のように構成された電池電流測定回路の動作および作用を説明する。
【0018】
二次電池B11の充電は、図示しない外部電源装置から前述した一対の電源端11,12を介して電力を供給することによってなされ、また二次電池B11の放電は、一対の電源端11,12を介して図示しない外部の電子機器に対して電力を供給することによってなされる。そのときの充放電電流Idcは、第1および第2の電界効果トランジスタTr11,Tr12を介して流れる。この際、直列接続された電界効果トランジスタTr11,Tr12は、少なからずもオン抵抗Rdsを有するので、該電界効果トランジスタTr11,Tr12の両端間には、充放電電流Idcによる電圧降下が生じる。但し、充電時と放電時とではその電流Idcが流れる向きが逆であり、従って電圧降下の極性も異なる。前記差動増幅器13は、このような充電電流Idcによる電界効果トランジスタTr11,Tr12の両端間に生じる電圧降下Vdcを検出しており、検出された電圧値Vdcは、前述したように第1のAD変換器16を介して演算回路20に与えられる。
【0019】
なお、差動増幅器13の利得および直流オフセットは、その出力電圧範囲が第1のAD変換器16のアナログ入力電圧範囲に適合するように設定される。直流オフセットに関しては、上述した充電時と放電時との電圧降下をそれぞれ検出すべく、電圧降下が零(0)の状態においてその出力電圧が、出力電圧範囲内の中点電位となるように設定される。また差動増幅器13の利得に関しては、電界効果トランジスタTr11,Tr12のオン抵抗と充放電電流の最大値とにより定まる最大電圧降下と、AD変換器16のアナログ入力電圧範囲に応じて設定すれば良い。
【0020】
ところで上述した如く測定される電圧降下Vdcから、充放電電流Idcを求めるには、電界効果トランジスタTr11,Tr12のオン抵抗を知る必要がある。
ちなみに電界効果トランジスタのオン抵抗Rdsは、該電界効果トランジスタのケース温度Tcに依存して変化する。又、電界効果トランジスタのオン抵抗Rdsは、その相互コンダクタンスの逆数であるので、該電界効果トランジスタのゲート・ソース間電位差Vgsに依存する。そして、電界効果トランジスタのオン抵抗Rdsは、そのゲート・ソース間電位差Vgsが一定であるとき、図2に例示するように、そのドレイン電流Idに殆ど依存することなく、ケース温度Tcに対して略直線的な変化を示す(ドレイン電流Idは充放電電流Idcに等しい)。従って電界効果トランジスタのゲート・ソース間電位差Vgsと、そのケース温度Tcとが明らかであれば、該電界効果トランジスタのゲート・ソース間電位差Vgsとケース温度Tcとの関係から、そのオン抵抗Rdsを求めることが可能となる。
【0021】
なお、電界効果トランジスタTr11,Tr12のケース温度を検出する温度センサ21としては、例えばサーミスタを用いれば良い。
また、電界効果トランジスタTr11,Tr12のゲート・ソース間電位差Vgsについては、これらの電界効果トランジスタTr11,Tr12がPチャンネル型のものからなり、そのソースS1,S2に対してゲートG1,G2を負電位にバイアスして、一般的には接地電位を与えて導通させるので、そのソースS1,S2に加えられる電圧をソース・ゲート間電圧Vgsとして検出するようにすればよい。ここで、ソースS2は二次電池のプラス電極B11pに接続されており、ソースS1,S2間の電圧降下は二次電池電圧Vbに比して極めて小さいので、二次電池電圧Vbをソース・ゲート間電圧Vgsと看做してよい。
【0022】
この際、2つの電界効果トランジスタTr11,Tr12が共に導通しており、その特性が等しいことから、1つの電界効果トランジスタ当たり、それぞれ(Vdc/2)の電圧降下が発生していると看做すようにすれば良い。
しかして前記記憶回路19には、前記電界効果トランジスタTr11,Tr12の上述したケース温度Tcに対するオン抵抗Rdsの変化特性を含む動作特性が、予めケース温度Tcおよびゲート・ソース間電位差Vgsをパラメータとして記憶されている。そこで演算回路20は、前述した第2のAD変換器17を介して求められる二次電池B11のプラス電極電圧と、前記第3のAD変換器18を介して求められる電界効果トランジスタTr11,Tr12のケース温度Tcに従って前記記憶回路19を検索し、該記憶回路19から上記ケース温度Tcおよびゲート・ソース間電位差Vgsに対応するオン抵抗Rdsを求めている。
【0023】
そしてこのオン抵抗Rdsを変換係数とし、前記AD変換器16を介して求められる電界効果トランジスタTr11,Tr12の両端間電圧(電圧降下)Vdcから、該電界効果トランジスタTr11,Tr12を介して流れる二次電池B11の充放電電流Idcを
Idc = Vdc/(2×Rds)
として算出するものとなっている。
【0024】
なお、演算回路20においては、更に上述した如く求められた充電電流Idcを所定の周期Tに亘って積算して、二次電池B11の充放電量を求めるようにしても良い。
ところで、電流測定精度を更に高める場合には、次のようにすれば良い。即ち、この場合には、図示しない外部電源から第1および第2の電界トランジスタTr11,Tr12を介して前記二次電池B11を一定電流(例えば1.0A)で充電し、このときの電圧降下Vdcとケース温度Tcとをそれぞれ測定して、前述した如く記憶回路19に記憶した特性(ケース温度Tcに対するオン抵抗Rdsの変化特性)を補正するようにすれば良い。即ち、この場合には、第1および第2の電界トランジスタTr11,Tr12を流れる電流値自体が既知であるから、そのときの電圧降下Vdcとケース温度Tcとから電界トランジスタTr11,Tr12のオン抵抗Rdsを逆算することができる。従って逆算によって求められる電界トランジスタTr11,Tr12のオン抵抗Rdsを用いて、記憶回路19に記憶されている特性を補正すれば、この補正された特性を用いて前述したように二次電池B11の充放電時における充放電電流をより高精度に求めることが可能となる。
【0025】
また、上記の定電流充電によるケース温度Tcに対するオン抵抗Rdsの補正は、一の定電流(例えば1.0A)の場合と他の定電流(例えば2.0A)の場合の2点による補正としてもよい。補正を2点の充電電流で行うことにより、差動増幅器13や第1のAD変換器16のオフセットの補正が容易となる。
かくして上述した如く構成された電池電流測定回路によれば、二次電池B11の充放電を制御するべく、その充放電路に直列に介挿された電界効果トランジスタTr11,Tr12の両端間に発生する電圧降下Vdcを測定することで、該電界効果トランジスタTr11,Tr12を電流測定用の素子として有効に活用して、二次電池B11の充放電電流を測定することができる。しかも記憶回路19に記憶した電界効果トランジスタTr11,Tr12の特性と、そのケース温度Tcおよびゲート・ソース間電位差Vgsとから求められる該電界効果トランジスタTr11,Tr12のオン抵抗Rdsを変換係数として、前記電界効果トランジスタTr11,Tr12の両端電圧Vdcからその充放電電流Idcを求めるので、簡易にして高精度な電流測定が可能である。特に従来のように二次電池B11の充放電路に電流測定用の抵抗器を介挿する必要がないので、無駄な電圧降下の発生を抑えることができ、二次電池B11が供給し得る電圧を有効に活用することができ、その動作寿命を長くし得る等の実用上多大なる効果が奏せられる。
【0026】
なお本発明は上述した実施形態に限定されるものではない。例えば実施形態では、直列に接続した2つの電界効果トランジスタをTr11,Tr12の両端の電圧降下から充放電電流を測定したが、何れか一方の電界効果トランジスタにおける電圧降下から充放電電流を測定するようにしても良い。またここでは、2つの電界効果トランジスタTr11,Tr12を用いて二次電池B11の充電と放電とをそれぞれ制御する充放電回路を例に説明したが、1つの電界効果トランジスタにより二次電池B11の充電または放電を制御するように構成した充放電回路に対しても同様に適用することができる。更に実施形態では、二次電池B11の充放電電流を測定する場合について説明したが、一次電池の放電電流を測定する場合にも適用可能なことは勿論である。
【0027】
更に前述したスイッチ素子(電界効果トランジスタTr11,Tr12)を二次電池B11のマイナス電極側に直列に介挿した場合にも同様に適用可能であり、スイッチ素子としてNチャンネル型電界効果トランジスタを使用してもよい。また、2つの電界効果トランジスタTr11,Tr12として、必ずしもその特性が同じものを用いる必要はない。但し、この場合には各電界効果トランジスタTr11,Tr12の特性をそれぞれ記憶回路19に記憶しておく必要がある。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。
【0028】
【発明の効果】
以上説明したように、本発明の電池電流測定回路によれば、電池の充電および/または放電を制御する半導体スイッチにおける電圧降下から電池の充放電電流を測定するので、従来一般的な電流検出抵抗器を必要とせず、電流検出に伴う電圧降下を抑えることができる。従って電池による電子機器の長時間動作を可能とするという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る電池電流測定回路の概略構成を示す図である。
【図2】電界効果トランジスタのケース温度Tcに対するオン抵抗Rdsの変化特性図である。
【符号の説明】
B11 二次電池
Tr11,Tr12 電界効果トランジスタ(半導体スイッチ)
13 差動増幅器
14 保護回路
16 第1のAD変換器
17 第2のAD変換器
18 第3のAD変換器
19 記憶回路
20 演算回路
21 温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery current measurement circuit that can measure the current of a battery, particularly a secondary battery, used as a drive source for various electronic devices while minimizing a voltage drop associated with current measurement.
[0002]
[Prior art]
In portable electronic devices such as mobile phones and notebook personal computers, rechargeable secondary batteries are used as power sources. Further, in an electronic device using a commercial power source as a drive source, a rechargeable secondary battery is used as a power source for storing and supplying electric energy.
[0003]
In order to maintain the performance of the secondary battery over a long period of time and use it stably, it is desirable to manage the charging and discharging of the secondary battery. This charge / discharge management is performed, for example, by using a current detection resistor inserted in series in the charge / discharge path of the battery, and measuring the charge / discharge current from the voltage drop that occurs across the current detection resistor. Is called.
[0004]
[Problems to be solved by the invention]
However, when the current detection resistor is inserted in the charge / discharge path of the battery and the charge / discharge current is measured, the voltage drop in the current detection resistor cannot be ignored.
For example, in a mobile phone, it is necessary to supply a maximum current of about 2 A to the electronic circuit main body from a secondary battery that is a driving source. In a notebook personal computer, a maximum current of about 5 A is supplied. There is a need to. In this case, even if a current detection resistor having a resistance of 20 to 50 mΩ is used, a voltage drop of 40 to 100 mV or 100 to 250 mV occurs. Such a voltage drop becomes a factor that lowers the voltage supplied from the secondary battery to the electronic circuit main body such as a notebook personal computer, and as a result shortens the battery life of the secondary battery.
[0005]
The present invention has been made in view of the above problems, and a battery current measuring circuit having a simple configuration capable of suppressing a voltage drop accompanying measurement of a charging / discharging current of a battery and enabling a long-time operation of an electronic device using the battery. The purpose is to provide.
[0006]
[Means for Solving the Problems]
Battery current measuring circuit according to the present invention described in claim 1 in order to achieve the above object, a semiconductor for controlling turning on and off the charging and discharging currents of the connected in series to one electrode in the secondary battery of the secondary battery A switch , and voltage / current pressure conversion means for obtaining a charging current and / or a discharging current of the secondary battery from a voltage drop generated between both ends of the semiconductor switching element ,
The voltage / current pressure converting means includes a voltage drop measuring means for measuring a voltage across the semiconductor switch, a temperature measuring means for measuring the temperature of the semiconductor switch, and a voltage measured by the voltage drop measuring means as a current value. Storage means storing a temperature characteristic indicating a relationship between a conversion coefficient for conversion and the temperature of the semiconductor switch, and a conversion coefficient obtained from the storage means according to the temperature of the semiconductor switch measured by the temperature measurement means Using an arithmetic circuit that converts the voltage measured by the voltage drop measuring means into a current value,
Further, characteristic correction means for correcting the temperature characteristic of the conversion coefficient stored in the storage means according to the temperature of the semiconductor switch detected when charging the secondary battery with a constant current and the voltage across the semiconductor switch.
It is characterized by providing .
[0007]
With such a configuration, it is possible to measure the battery current without using a current detection resistor by measuring the voltage drop that occurs across the semiconductor switch. A battery current measuring circuit that solves the problem and enables the electronic device to operate for a long time using a battery is provided.
Here, it is preferable to use a field effect transistor having a low on-resistance as the semiconductor switch, and in this case, it is possible to realize conduction / cutoff control with low power.
[0008]
In particular, the voltage / current converting means includes a voltage drop measuring means for measuring a voltage across the semiconductor switch, a temperature measuring means for measuring the temperature of the semiconductor switch, and a voltage measured by the voltage drop measuring means is converted into a current value. Storage means for storing a conversion coefficient for performing the voltage drop measurement means using the conversion coefficient stored in the storage means according to the temperature of the semiconductor switch measured by the temperature measurement means. Since it is constituted by an arithmetic circuit that converts it into a current value, it is possible to easily convert a voltage drop generated in the semiconductor switch into a current value of a battery current.
[0009]
A preferred embodiment of the present invention, as the semiconductor switch, using a first semiconductor switch for controlling the charging of the secondary battery, and a second semiconductor switch for controlling the discharge of the secondary battery, in the voltage drop measurement unit It is configured to measure the voltage across the first or second semiconductor switches. That is, the first and second semiconductor switches that control charging and discharging of the secondary battery are used as current detection elements.
[0010]
Further, a characteristic correction for correcting the temperature characteristic of the conversion coefficient stored in the storage means according to the temperature of the semiconductor switch detected when charging the secondary battery at a constant current and the voltage across the semiconductor switch. Since the means is provided, even if the on-resistance of the semiconductor switch changes depending on the temperature, the battery current can be accurately measured by correcting the conversion coefficient in accordance with the temperature.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a battery current measuring circuit for a secondary battery according to an embodiment of the present invention.
In FIG. 1, 11 is a positive power supply terminal of the battery pack 6 provided with the secondary battery B11, and 12 is its negative power supply terminal. The pair of power supply terminals 11 and 12 are connected to an electronic device (not shown). The secondary battery B11 is formed by, for example, connecting a plurality of secondary battery cells B11a to B11d in series, and charging / discharging is performed via the pair of power supply terminals 11 and 12. In the charge / discharge path of the secondary battery B11, in particular, between the positive electrode B11p of the secondary battery B11 and the positive power supply terminal 11, the first and second field effect transistors Tr12 that control the charge / discharge are provided. , Tr11 are inserted in series.
[0012]
Each of the field effect transistors Tr11 and Tr12 is a P-channel type, and is provided in series with the drains D1 and D2 connected to each other. Thus, the first field effect transistor Tr11 in which the source S1 is connected to the positive power supply terminal 11 functions as a switching element that controls the charging of the secondary battery B11, and the source S2 is connected to the secondary battery B11. The second field effect transistor Tr12 connected to the plus electrode B11p functions as a switch element that controls the discharge of the secondary battery B11.
[0013]
These first and second field effect transistors Tr11 and Tr12 detect the battery voltage of each of the secondary battery cells B11a to B11d to detect the overcharge and overdischarge of the secondary battery B11. Are received and controlled by the gates G1 and G2, respectively. Specifically, at the time of charging / discharging of the secondary battery B11, the field effect transistors Tr11 and Tr12 are both set to a conductive state. When the secondary battery B11 is charged, when the overcharge is detected by the protection circuit 14, the protection circuit 14 controls the cutoff of the first field effect transistor Tr11 and stops the charging. Further, when the secondary battery B11 is discharged, when the terminal voltage of the secondary battery cells B11a to B11d drops to a preset monitoring voltage (discharge prohibition voltage), the protection circuit 14 detects this and detects the second voltage. The field effect transistor Tr12 is controlled to be cut off to stop the discharge.
[0014]
Basically, as described above, the first field-effect transistor Tr11 that controls the charging of the secondary battery B11 and the second field-effect transistor Tr12 that controls the discharging of the secondary battery B11 in the charging / discharging path of the secondary battery B11. The battery current measuring circuit included in the battery pack 6 including the above is characterized in that the first and second field effect transistors Tr11 and Tr12 are used for measuring the charging / discharging current of the secondary battery B11 as they are. It is in the point used as an element of current detection.
[0015]
That is, this battery current measuring circuit detects a voltage drop generated between both ends of the first and second field effect transistors Tr11 and Tr12 connected in series, which is a switching element for controlling charging / discharging of the secondary battery B11. And a microcontroller (voltage / current conversion means) 15 for obtaining a charge / discharge current of the secondary battery B11 from a voltage drop detected by the differential amplifier 13.
[0016]
The microcontroller 15 includes a first analog / digital converter (abbreviated as AD converter) 16 for digitally converting the voltage drop detected by the differential amplifier 13 and an electric field detected by the temperature sensor 21. A third AD converter 18 that digitally converts the case temperature of the effect transistors Tr11 and 12 and a second AD converter 17 that digitally converts the battery voltage (on the positive electrode B11p side) of the secondary battery B11 are provided. Further, the microcontroller 15 converts the voltage drop generated between the both ends of the first and second field effect transistors Tr11 and Tr12 into the charge / discharge current of the secondary battery B11, specifically, the first and Based on the storage circuit 19 that stores the characteristics of the second field effect transistors Tr11 and Tr12 and the conversion coefficient stored in the storage circuit 19, the charging (charging voltage) of the secondary battery B11 is obtained from the output (voltage drop) of the AD converter 16. And an arithmetic circuit 20 for calculating a discharge current. The information on the charging / discharging current of the secondary battery B11 obtained by the arithmetic circuit 20 is transmitted via the communication port 20c, and the charge amount and battery voltage of the secondary battery B11, which will be described later, and further the state of charge / discharge The information is output to an electronic device (not shown) together with information.
[0017]
Here, the differential amplifier 13, the protection circuit 14, the microcontroller 15 and the temperature sensor 21 are configured to operate by being driven by an independent power source Vcc, respectively, but receive power supply from the secondary battery B11. It can also be configured to operate.
Next, the operation and action of the battery current measuring circuit configured as described above will be described.
[0018]
The secondary battery B11 is charged by supplying electric power from an external power supply device (not shown) through the pair of power supply terminals 11 and 12 described above, and the secondary battery B11 is discharged by the pair of power supply terminals 11 and 12. This is done by supplying power to an external electronic device (not shown). The charge / discharge current Idc at that time flows through the first and second field effect transistors Tr11 and Tr12. At this time, since the field effect transistors Tr11 and Tr12 connected in series have at least an on-resistance Rds, a voltage drop due to the charge / discharge current Idc occurs between both ends of the field effect transistors Tr11 and Tr12. However, the direction in which the current Idc flows is opposite between charging and discharging, and therefore the polarity of the voltage drop is also different. The differential amplifier 13 detects a voltage drop Vdc generated between both ends of the field effect transistors Tr11 and Tr12 due to the charging current Idc, and the detected voltage value Vdc is the first AD as described above. The signal is given to the arithmetic circuit 20 via the converter 16.
[0019]
Note that the gain and DC offset of the differential amplifier 13 are set so that the output voltage range thereof matches the analog input voltage range of the first AD converter 16. Regarding DC offset, in order to detect the voltage drop at the time of charging and discharging, respectively, the output voltage is set so that the output voltage becomes the middle point potential within the output voltage range when the voltage drop is zero (0). Is done. The gain of the differential amplifier 13 may be set according to the maximum voltage drop determined by the on-resistance of the field effect transistors Tr11 and Tr12 and the maximum value of the charge / discharge current and the analog input voltage range of the AD converter 16. .
[0020]
By the way, in order to obtain the charge / discharge current Idc from the voltage drop Vdc measured as described above, it is necessary to know the on-resistances of the field effect transistors Tr11 and Tr12.
Incidentally, the on-resistance Rds of the field effect transistor changes depending on the case temperature Tc of the field effect transistor. The on-resistance Rds of the field effect transistor is the reciprocal of its mutual conductance, and therefore depends on the gate-source potential difference Vgs of the field effect transistor. The on-resistance Rds of the field-effect transistor is substantially independent of the case temperature Tc and hardly depends on the drain current Id as illustrated in FIG. 2 when the gate-source potential difference Vgs is constant. It shows a linear change (the drain current Id is equal to the charge / discharge current Idc). Therefore, if the gate-source potential difference Vgs of the field effect transistor and its case temperature Tc are clear, the on-resistance Rds is obtained from the relationship between the gate-source potential difference Vgs of the field effect transistor and the case temperature Tc. It becomes possible.
[0021]
For example, a thermistor may be used as the temperature sensor 21 that detects the case temperature of the field effect transistors Tr11 and Tr12.
Further, regarding the gate-source potential difference Vgs of the field effect transistors Tr11 and Tr12, these field effect transistors Tr11 and Tr12 are of P-channel type, and the gates G1 and G2 have a negative potential with respect to the sources S1 and S2. In general, a ground potential is applied to cause conduction, so that the voltage applied to the sources S1 and S2 may be detected as the source-gate voltage Vgs. Here, the source S2 is connected to the positive electrode B11p of the secondary battery, and the voltage drop between the sources S1 and S2 is extremely smaller than the secondary battery voltage Vb. It may be regarded as the inter-voltage Vgs.
[0022]
At this time, since the two field effect transistors Tr11 and Tr12 are both conductive and have the same characteristics, it is considered that a voltage drop of (Vdc / 2) occurs for each field effect transistor. You can do that.
Accordingly, the storage circuit 19 stores in advance the operation characteristics including the above-described change characteristic of the on-resistance Rds with respect to the case temperature Tc of the field effect transistors Tr11 and Tr12, using the case temperature Tc and the gate-source potential difference Vgs as parameters. Has been. Therefore, the arithmetic circuit 20 determines the positive electrode voltage of the secondary battery B11 obtained through the second AD converter 17 and the field effect transistors Tr11 and Tr12 obtained through the third AD converter 18. The memory circuit 19 is searched according to the case temperature Tc, and the on-resistance Rds corresponding to the case temperature Tc and the gate-source potential difference Vgs is obtained from the memory circuit 19.
[0023]
Then, the on-resistance Rds is used as a conversion coefficient, and the secondary current flowing through the field effect transistors Tr11 and Tr12 from the voltage (voltage drop) Vdc across the field effect transistors Tr11 and Tr12 obtained via the AD converter 16 is obtained. The charge / discharge current Idc of the battery B11 is Idc = Vdc / (2 × Rds)
Is to be calculated as
[0024]
In the arithmetic circuit 20, the charging current Idc obtained as described above may be integrated over a predetermined period T to obtain the charge / discharge amount of the secondary battery B11.
By the way, in order to further improve the current measurement accuracy, the following may be performed. That is, in this case, the secondary battery B11 is charged with a constant current (for example, 1.0 A) from the external power source (not shown) through the first and second field transistors Tr11 and Tr12, and the voltage drop Vdc at this time is charged. And the case temperature Tc are measured to correct the characteristic stored in the storage circuit 19 as described above (the change characteristic of the on-resistance Rds with respect to the case temperature Tc). That is, in this case, since the current value itself flowing through the first and second field transistors Tr11 and Tr12 is known, the on-resistance Rds of the field transistors Tr11 and Tr12 is determined from the voltage drop Vdc and the case temperature Tc at that time. Can be calculated backwards. Therefore, if the characteristic stored in the memory circuit 19 is corrected using the on-resistance Rds of the field transistors Tr11 and Tr12 obtained by back calculation, the charging of the secondary battery B11 is performed using the corrected characteristic as described above. It becomes possible to obtain the charging / discharging current at the time of discharging with higher accuracy.
[0025]
Further, the correction of the on-resistance Rds with respect to the case temperature Tc by the above-described constant current charging is performed as two points of correction for one constant current (for example, 1.0 A) and another constant current (for example, 2.0 A). Also good. By performing the correction with the two charging currents, the offset of the differential amplifier 13 and the first AD converter 16 can be easily corrected.
Thus, according to the battery current measuring circuit configured as described above, it is generated between both ends of the field effect transistors Tr11 and Tr12 inserted in series in the charge / discharge path in order to control the charge / discharge of the secondary battery B11. By measuring the voltage drop Vdc, the field effect transistors Tr11 and Tr12 can be effectively used as current measurement elements, and the charge / discharge current of the secondary battery B11 can be measured. In addition, the electric field effect transistors Tr11 and Tr12 stored in the memory circuit 19 and the on-resistance Rds of the field effect transistors Tr11 and Tr12 obtained from the case temperature Tc and the gate-source potential difference Vgs are used as the conversion coefficient to convert the electric field. Since the charge / discharge current Idc is obtained from the voltage Vdc across the effect transistors Tr11 and Tr12, current measurement can be performed easily and with high accuracy. In particular, since it is not necessary to insert a current measuring resistor in the charging / discharging path of the secondary battery B11 as in the prior art, it is possible to suppress generation of a useless voltage drop, and the voltage that can be supplied by the secondary battery B11. Can be effectively utilized, and a great effect can be obtained in practical use, such as extending its operating life.
[0026]
The present invention is not limited to the embodiment described above. For example, in the embodiment, the charge / discharge current of the two field effect transistors connected in series is measured from the voltage drop across the transistors Tr11 and Tr12, but the charge / discharge current is measured from the voltage drop of one of the field effect transistors. Anyway. Further, here, the charge / discharge circuit that controls the charging and discharging of the secondary battery B11 using the two field effect transistors Tr11 and Tr12 is described as an example, but the charging of the secondary battery B11 by one field effect transistor is described. Alternatively, the present invention can be similarly applied to a charge / discharge circuit configured to control discharge. Further, in the embodiment, the case where the charge / discharge current of the secondary battery B11 is measured has been described, but it is needless to say that the present invention can also be applied to the case where the discharge current of the primary battery is measured.
[0027]
Furthermore, the present invention can be similarly applied to the case where the above-described switch elements (field effect transistors Tr11, Tr12) are inserted in series on the negative electrode side of the secondary battery B11, and an N-channel field effect transistor is used as the switch element. May be. Further, it is not always necessary to use the two field effect transistors Tr11 and Tr12 having the same characteristics. However, in this case, it is necessary to store the characteristics of the field effect transistors Tr11 and Tr12 in the storage circuit 19, respectively. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.
[0028]
【The invention's effect】
As described above, according to the battery current measuring circuit of the present invention, the charge / discharge current of the battery is measured from the voltage drop in the semiconductor switch that controls the charge and / or discharge of the battery. A voltage drop due to current detection can be suppressed without the need for a voltage detector. Therefore, it is possible to obtain an effect that the electronic device can be operated for a long time by the battery.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a battery current measuring circuit according to an embodiment of the present invention.
FIG. 2 is a change characteristic diagram of an on-resistance Rds with respect to a case temperature Tc of a field effect transistor.
[Explanation of symbols]
B11 Secondary battery Tr11, Tr12 Field effect transistor (semiconductor switch)
13 differential amplifier 14 protection circuit 16 first AD converter 17 second AD converter 18 third AD converter 19 storage circuit 20 arithmetic circuit 21 temperature sensor

Claims (3)

二次電池の一方の電極に直列に接続されて該二次電池の充放電電流をオン・オフ制御する半導体スイッチと、該半導体スイッチ素子の両端間に発生する電圧降下から前記二次電池の充電電流および/または放電電流を求める電圧・電流圧変換手段とを具備し、
前記電圧・電流圧変換手段は、前記半導体スイッチの両端間電圧を測定する電圧降下測定手段と、前記半導体スイッチの温度を測定する温度測定手段と、前記電圧降下測定手段の測定電圧を電流値に変換するための変換係数と前記半導体スイッチの温度との関係を示す温度特性を記憶した記憶手段と、前記温度測定手段により測定された半導体スイッチの温度に応じて前記記憶手段から求められる変換係数を用いて前記電圧降下測定手段により測定された電圧を電流値に変換する演算回路とを備え、
更に前記二次電池を一定電流にて充電する際に検出される前記半導体スイッチの温度と前記半導体スイッチの両端間電圧とに従って前記記憶手段に記憶された変換係数の温度特性を補正する特性補正手段
を備えることを特徴とする電池電流測定回路。
A semiconductor switch connected in series to one electrode of the secondary battery on-off control the charging and discharging currents of the secondary battery, the charging from the voltage drop generated across the semiconductor switching element of the secondary battery Voltage / current pressure conversion means for obtaining current and / or discharge current ,
The voltage / current pressure converting means includes a voltage drop measuring means for measuring a voltage across the semiconductor switch, a temperature measuring means for measuring the temperature of the semiconductor switch, and a voltage measured by the voltage drop measuring means as a current value. Storage means storing a temperature characteristic indicating a relationship between a conversion coefficient for conversion and the temperature of the semiconductor switch, and a conversion coefficient obtained from the storage means according to the temperature of the semiconductor switch measured by the temperature measurement means Using an arithmetic circuit that converts the voltage measured by the voltage drop measuring means into a current value,
Further, characteristic correction means for correcting the temperature characteristic of the conversion coefficient stored in the storage means according to the temperature of the semiconductor switch detected when charging the secondary battery with a constant current and the voltage across the semiconductor switch.
Battery current measuring circuit, characterized in that it comprises a.
前記半導体スイッチは、電界効果トランジスタからなる請求項1に記載の電池電流測定回路。  The battery current measuring circuit according to claim 1, wherein the semiconductor switch includes a field effect transistor. 前記半導体スイッチは、前記二次電池の充電を制御する第1の半導体スイッチと、前記二次電池の放電を制御する第2の半導体スイッチとからなり、
前記電圧降下測定手段は、上記第1または第2の半導体スイッチの両端間電圧を測定するものである請求項1に記載の電池電流測定回路。
The semiconductor switch comprises a first semiconductor switch that controls charging of the secondary battery, and a second semiconductor switch that controls discharging of the secondary battery,
The battery current measuring circuit according to claim 1 , wherein the voltage drop measuring means measures a voltage across the first or second semiconductor switch.
JP2000343814A 2000-11-10 2000-11-10 Battery current measurement circuit Expired - Fee Related JP4612174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000343814A JP4612174B2 (en) 2000-11-10 2000-11-10 Battery current measurement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000343814A JP4612174B2 (en) 2000-11-10 2000-11-10 Battery current measurement circuit

Publications (2)

Publication Number Publication Date
JP2002151163A JP2002151163A (en) 2002-05-24
JP4612174B2 true JP4612174B2 (en) 2011-01-12

Family

ID=18818123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000343814A Expired - Fee Related JP4612174B2 (en) 2000-11-10 2000-11-10 Battery current measurement circuit

Country Status (1)

Country Link
JP (1) JP4612174B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319104A (en) * 2003-04-11 2004-11-11 Seiko Instruments Inc Battery pack with residual battery capacity calculating function
JP2011062022A (en) * 2009-09-11 2011-03-24 Sony Computer Entertainment Inc Charging circuit and method
JP6380953B2 (en) * 2012-10-31 2018-08-29 ローム株式会社 Electronic circuit
KR102042754B1 (en) * 2015-11-18 2019-11-08 주식회사 엘지화학 Apparatus of Measuring Voltage of Battery Pack and Method thereof
KR20200085071A (en) * 2019-01-04 2020-07-14 주식회사 엘지화학 Apparatus and Method for measuring current of battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984280A (en) * 1995-09-14 1997-03-28 Fujitsu Ltd Power supply monitor circuit
JPH11332111A (en) * 1998-05-15 1999-11-30 Seiko Instruments Inc Battery state monitoring circuit and battery device
JP2000270485A (en) * 1999-03-18 2000-09-29 Fujitsu Ltd Protection method and control circuit and/or battery unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984280A (en) * 1995-09-14 1997-03-28 Fujitsu Ltd Power supply monitor circuit
JPH11332111A (en) * 1998-05-15 1999-11-30 Seiko Instruments Inc Battery state monitoring circuit and battery device
JP2000270485A (en) * 1999-03-18 2000-09-29 Fujitsu Ltd Protection method and control circuit and/or battery unit

Also Published As

Publication number Publication date
JP2002151163A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
US8278876B2 (en) Battery pack current monitoring
US8173287B2 (en) Temperature compensated current measuring device and battery pack using the same
US8207705B2 (en) Charging apparatus and charging method
US10141759B2 (en) Battery fuel gauge apparatus
JP5390925B2 (en) Battery pack
US8421417B2 (en) Secondary battery control circuit
US6407534B1 (en) Detecting a microcurrent and a microcurrent detecting circuit
JP2021501325A (en) Failure determination method for battery management system, battery pack including it, and current measurement circuit
JP4816705B2 (en) Battery control device, battery control method, and battery
KR20040004057A (en) Charging control circuit, charger, power suppry circuit, information processing device, and battery pack
JP4934419B2 (en) Battery pack
JP4086008B2 (en) Secondary battery remaining capacity ratio calculation method and battery pack
JP4612174B2 (en) Battery current measurement circuit
JPH08340112A (en) Protective device of rechargeable battery element and mosfettransistor with its device
JP2013140565A (en) Detection circuit for battery
KR101012593B1 (en) Battery pack with a remaining battery power calculating function
KR101017327B1 (en) battery charging current control circuit of protection circuit for secondary battery
WO2012039209A1 (en) Rechargeable electric apparatus
US20130093429A1 (en) Battery gauge estimation device
KR20190140782A (en) Battery management system, battery pack including the same, and method for deteriming a failure of current detecting circuit
JP2019103305A (en) Power supply device and communication device
JP5313643B2 (en) Battery diagnostic device
JP2001185232A (en) Battery pack
JP2004311240A (en) Power supply device
KR100570452B1 (en) Charging apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees