[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4611429B2 - Method for filling metal into fine space - Google Patents

Method for filling metal into fine space Download PDF

Info

Publication number
JP4611429B2
JP4611429B2 JP2009049455A JP2009049455A JP4611429B2 JP 4611429 B2 JP4611429 B2 JP 4611429B2 JP 2009049455 A JP2009049455 A JP 2009049455A JP 2009049455 A JP2009049455 A JP 2009049455A JP 4611429 B2 JP4611429 B2 JP 4611429B2
Authority
JP
Japan
Prior art keywords
molten metal
metal
pressure
fine space
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009049455A
Other languages
Japanese (ja)
Other versions
JP2010129995A (en
JP2010129995A5 (en
Inventor
重信 関根
由莉奈 関根
竜司 木村
Original Assignee
有限会社ナプラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ナプラ filed Critical 有限会社ナプラ
Priority to JP2009049455A priority Critical patent/JP4611429B2/en
Publication of JP2010129995A publication Critical patent/JP2010129995A/en
Publication of JP2010129995A5 publication Critical patent/JP2010129995A5/ja
Application granted granted Critical
Publication of JP4611429B2 publication Critical patent/JP4611429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、処理対象物に存在する微細空間に溶融金属を充填し硬化させる方法に関する。   The present invention relates to a method of filling and hardening a molten metal in a fine space existing in a processing object.

例えば、半導体デバイスによって代表される電子デバイスや、マイクロマシン等においては、内部に高アスペクト比を持つ微細な導体充填構造、接合構造又は機能構造を形成しなければならないことがある。このような場合、予め選択された充填材を微細空間内に充填することによって、導体充填構造、接合構造及び機能構造等を実現する技術が知られている。しかし、高アスペクト比を持つ微細空間内に、空隙や硬化後変形などを生じさせることなく、その底部まで、充填材を充分に充填することは、困難を極める。   For example, in an electronic device typified by a semiconductor device, a micromachine, or the like, it may be necessary to form a fine conductor filling structure, junction structure, or functional structure having a high aspect ratio inside. In such a case, a technique for realizing a conductor filling structure, a joining structure, a functional structure, and the like by filling a fine space with a preselected filler is known. However, it is extremely difficult to sufficiently fill the bottom of the fine space having a high aspect ratio without causing voids or deformation after curing.

例えば、半導体デバイスの製造に用いられるウエハ処理の場合を例にとると、ウエハには、電極等を形成するための多数の微細空間(孔)が設けられており、その微細空間は、孔径が例えば数十μm以下であり、非常に小さい。しかも、このような微小孔径の微細空間に対して、ウエハの厚みはかなり厚く、微細空間のアスペクト比が5以上になることも多い。電極を形成するためには、このような微小で、高アスペクト比の微細空間に、その底部に達するように、導電材料を確実に充填しなければならないので、当然、高度の充填技術が要求される。   For example, in the case of wafer processing used in the manufacture of semiconductor devices, the wafer is provided with a large number of fine spaces (holes) for forming electrodes and the like. For example, it is several tens of μm or less and is very small. Moreover, the thickness of the wafer is considerably larger than the minute space having such a minute hole diameter, and the aspect ratio of the minute space is often 5 or more. In order to form an electrode, it is necessary to reliably fill such a minute, high aspect ratio minute space with a conductive material so as to reach the bottom, and naturally, advanced filling technology is required. The

電極形成技術としては、導電金属成分と有機バインダとを混合した導電性ペーストを用いる技術も知られているが、導電性に優れ、損失が低く、しかも高周波特性に優れた溶融金属材料を用いる冶金的な技術が注目されている。そのような技術は、例えば特許文献1及び特許文献2に開示されている。   As an electrode forming technique, a technique using a conductive paste in which a conductive metal component and an organic binder are mixed is also known, but metallurgy using a molten metal material having excellent conductivity, low loss, and excellent high frequency characteristics. Technology is attracting attention. Such a technique is disclosed in Patent Document 1 and Patent Document 2, for example.

まず、特許文献1は、溶融金属埋め戻し法により、微細空間(貫通孔)内に金属を充填する技術を開示している。溶融金属埋め戻し法とは、対象物(ウエハ)の置かれている雰囲気を減圧し、次いで減圧状態を保ったまま、前記対象物を溶融金属に挿入し、次いで前記溶融金属の雰囲ガス圧を加圧して、金属挿入前後における雰囲ガス圧差により前記空間に溶融金属を充填し、次いで対象物を溶融金属槽から引き上げて、大気中で冷やす方法である。   First, Patent Document 1 discloses a technique for filling a metal in a minute space (through hole) by a molten metal backfilling method. In the molten metal backfilling method, the atmosphere in which the object (wafer) is placed is depressurized, and then the object is inserted into the molten metal while maintaining the depressurized state, and then the ambient gas pressure of the molten metal , The molten metal is filled into the space by the atmospheric gas pressure difference before and after the metal is inserted, and then the object is pulled up from the molten metal tank and cooled in the atmosphere.

しかし、この溶融金属埋め戻し法には、次のような問題点がある。
(a)対象物を溶融金属槽から引き上げて冷やすと、金属表面が、対象物の表面よりも低い位置まで凹面状にくぼんでしまう。このため、外部との間の電気的導通が不完全になることがある。
(b)上述した問題点を解決するためには、凹面を埋めるべく、再度、溶融金属を供給しなければならない。しかも、凹面を埋めるためには、供給された金属の表面を、対象物の表面よりも高く突出させる必要があるから、金属の表面を対象物の表面と一致させるための工程、例えばCMP(Chemical Mechanical Polishing)工程が必要になる。これらは、工程の複雑化、それに伴う歩留りの低下など招く要因となる。
(c)更に大きな問題点は、上述したような複雑な工程を要するにもかかわらず、微細空間の、特に底部に、溶融金属の充填の不十分な空隙等が生じてしまうことである。
However, this molten metal backfilling method has the following problems.
(A) When the object is pulled up from the molten metal tank and cooled, the metal surface is recessed in a concave shape to a position lower than the surface of the object. For this reason, electrical continuity with the outside may be incomplete.
(B) In order to solve the above-described problems, the molten metal must be supplied again to fill the concave surface. Moreover, in order to fill the concave surface, it is necessary to make the surface of the supplied metal higher than the surface of the object. Therefore, a process for matching the surface of the metal with the surface of the object, for example, CMP (Chemical Mechanical Polishing) process is required. These cause factors such as complication of the process and a decrease in yield accompanying the process.
(C) A bigger problem is that, despite the complicated process as described above, a gap or the like inadequately filled with molten metal is generated in the fine space, particularly at the bottom.

次に、特許文献2は差圧充填方式を開示している。この差圧充填方式では、微細空間が形成された対象物と金属シートとを真空チャンバ内に配置した後、真空チャンバ内を減圧し、金属シートを加熱手段により溶融させ、次いで真空チャンバ内を不活性ガスで大気圧以上に加圧する。これにより、溶融した金属が微細空間内に真空吸入される。次いで真空チャンバを開放して、試料表面に残った溶融状態の金属を取り除き、その後、大気中で室温冷却する。   Next, Patent Document 2 discloses a differential pressure filling method. In this differential pressure filling method, an object in which a fine space is formed and a metal sheet are placed in a vacuum chamber, then the inside of the vacuum chamber is decompressed, the metal sheet is melted by heating means, and then the inside of the vacuum chamber is inactivated. Pressurize to atmospheric pressure or higher with active gas. Thereby, the molten metal is sucked into the fine space by vacuum. Next, the vacuum chamber is opened to remove the molten metal remaining on the sample surface, and then cooled to room temperature in the atmosphere.

特許文献2の記載によれば、溶融金属埋め戻し法(特許文献1)と比べて、溶融金属の熱容量が少ないから、試料に反りや割れが生じないこと、余剰金属を最小限に抑制することができ、コスト低減を図ることができることなどの効果があるとされている。   According to the description of Patent Document 2, since the heat capacity of the molten metal is smaller than that of the molten metal backfill method (Patent Document 1), the sample is not warped or cracked, and the excess metal is suppressed to a minimum. It is said that there are effects such as being able to reduce costs.

しかし、特許文献2に記載された差圧充填方式では、溶融金属が微細空間の底部まで完全には充填されず、内部に空隙が生じてしまう。   However, in the differential pressure filling method described in Patent Document 2, the molten metal is not completely filled up to the bottom of the fine space, and voids are generated inside.

また、試料表面に残った溶融状態の金属を取り除くので、その工程において、微小隙間に充填されている溶融金属の一部(上端側)も削り取られてしまう。このため、依然として凹面の問題が残る。   Moreover, since the molten metal remaining on the sample surface is removed, a part of the molten metal (upper end side) filled in the minute gap is also scraped off in the process. For this reason, the problem of a concave surface still remains.

実際、差圧充填方式により製造されたウエハ及びそれを用いたデバイスが、未だ市場に提供されていないのは、上述した問題点が解決できていないことの証左である。   In fact, the fact that the wafers manufactured by the differential pressure filling method and the devices using the wafers have not been provided to the market is proof that the above-mentioned problems have not been solved.

微細空間へ溶融金属を充分に充填する際に生じる技術的困難性は、半導体デバイス用ウエハ処理の場合に限って問題となるものではない。他の電子デバイスや、マイクロマシン等においても、同様に問題となり得る。   The technical difficulty that occurs when the molten metal is sufficiently filled into the fine space is not a problem only in the case of wafer processing for semiconductor devices. Other electronic devices, micromachines, and the like can be similarly problematic.

特開2002−237468号公報JP 2002-237468 A 特開2002−368082号公報Japanese Patent Laid-Open No. 2002-368082

本発明の課題は、凹面化、空隙、ボイドなどを生じることなく、微細空間を金属充填材によって満たすことのできる方法を提供することである。   An object of the present invention is to provide a method capable of filling a fine space with a metal filler without causing concave surface formation, voids, voids and the like.

本発明のもう一つの課題は、冷却後の溶融金属の再供給やCMP工程等が不要で、工程の簡素化、歩留りの向上などに寄与しえる方法を提供することである。   Another object of the present invention is to provide a method that does not require re-supply of molten metal after cooling, a CMP process, etc., and can contribute to simplification of the process and improvement of yield.

上述した課題の少なくとも1つを解決するため、本発明は、処理対象となる対象物に存在する微細空間に、溶融金属を充填し硬化させるに当たり、前記微細空間内の前記溶融金属に強制外力を印加したままで、前記溶融金属を冷却し硬化させる工程を含む。   In order to solve at least one of the above-described problems, the present invention applies a forced external force to the molten metal in the fine space when filling and hardening the molten metal in the fine space existing in the object to be processed. A step of cooling and hardening the molten metal while the voltage is applied;

上述したように、本発明に係る方法では、微細空間内の溶融金属に強制外力を加えままで、溶融金属を冷却し硬化させる工程を含むから、外部から加えられる強制外力によって、溶融金属を微細空間の底部まで充分に充填するとともに、熱収縮による金属の変形を抑えることができる。このため、空隙やボイドなどを生じることなく、微細空間を金属体によって満たすことができる。   As described above, the method according to the present invention includes a step of cooling and hardening the molten metal while applying a forced external force to the molten metal in the fine space, so that the molten metal is finely divided by a forced external force applied from the outside. While sufficiently filling the bottom of the space, metal deformation due to heat shrinkage can be suppressed. For this reason, the fine space can be filled with the metal body without generating voids or voids.

同様の理由で、微細隙間で冷却された際に生じる溶融金属の凹面化も回避しえる。このため、外部との電気的導通を確実に確保し得る。   For the same reason, it is also possible to avoid the concave surface of the molten metal that occurs when cooled by a fine gap. For this reason, electrical continuity with the outside can be reliably ensured.

更に、金属体の凹面化を回避しえるから、冷却後の溶融金属の再供給やCMP工程等が不要であり、工程の簡素化、歩留りの向上などに寄与しえる。   Further, since the concave surface of the metal body can be avoided, there is no need to re-supply molten metal after cooling, a CMP process, etc., which can contribute to simplification of the process and improvement of yield.

本発明において、強制外力とは、自然放置したときに加わる圧力、典型的には、大気圧は含まないことを意味する。この強制外力は、圧力、磁力または遠心力から選択された少なくとも一種で与えられる。前記圧力は、正圧で与えられてもよいし、負圧で与えられてもよい。負圧の場合、吸引力となる。前記圧力は、具体的には、プレス圧又はガス圧で与えられる。   In the present invention, the forced external force means that a pressure applied when left undisturbed, typically, atmospheric pressure is not included. This forced external force is given as at least one selected from pressure, magnetic force or centrifugal force. The pressure may be applied as a positive pressure or a negative pressure. In the case of negative pressure, it becomes a suction force. Specifically, the pressure is given as a press pressure or a gas pressure.

強制外力の別の形態として、射出機による射出圧力を利用する形態もある。この場合は、対象物の開口面上に射出機によって溶融金属を供給し、その射出圧力による強制外力を印加したままで、前記溶融金属を冷却し硬化させる。   As another form of the forced external force, there is a form using an injection pressure by an injection machine. In this case, the molten metal is supplied onto the opening surface of the object by an injector, and the molten metal is cooled and hardened while a forced external force due to the injection pressure is applied.

強制外力を印加する場合、硬化工程の初期の段階では、静圧のみならず、動圧も積極的に利用し、動圧によるダイナミックな押込み動作を行わせることが好ましい。この手法によれば、溶融金属を、微細空間の底部まで確実に到達させ、底部に未充填領域が生じるのを、更に確実に回避することができるようになる。   When a forced external force is applied, it is preferable that not only the static pressure but also the dynamic pressure is actively used in the initial stage of the curing process to perform a dynamic pushing operation by the dynamic pressure. According to this method, it is possible to reliably prevent the molten metal from reaching the bottom of the fine space and to generate an unfilled region at the bottom.

本発明において、工程の少なくとも一部は、真空チャンバ内の減圧雰囲気内で実行される。真空チャンバ内の減圧雰囲気により、溶融金属を、微細空間に真空吸引することができるからである。減圧雰囲気とは、大気圧を基準にして、それよりも低い圧力の雰囲気をいう。   In the present invention, at least a part of the process is performed in a reduced pressure atmosphere in a vacuum chamber. This is because the molten metal can be vacuum-sucked into a fine space by the reduced pressure atmosphere in the vacuum chamber. The reduced pressure atmosphere refers to an atmosphere having a lower pressure than the atmospheric pressure.

溶融金属は、好ましくは、開口面上にその金属薄膜が生じるように供給される。これにより、金属薄膜の受けた強制外力によって、溶融金属を微細空間の内部に確実に押込むことができる。   Molten metal is preferably supplied such that the metal film forms on the open face. Thereby, the molten metal can be surely pushed into the fine space by the forced external force received by the metal thin film.

溶融金属を、開口面上にその金属薄膜が生じるように供給した場合は、溶融金属を硬化させた後、開口面上の金属薄膜を再溶融し、再溶融された金属薄膜を拭き取る工程を採ることができる。再溶融時の熱は、微細隙間の内部の硬化金属体にも加わるが、硬化金属体の持つ熱容量が金属薄膜の熱容量よりも著しく大きいため、金属薄膜が再溶融しても、硬化金属体の再溶融までは進展しない。このため、金属薄膜だけを拭き取り、凹面部を持たない平坦な面を形成することができる。   When supplying molten metal so that the metal thin film is formed on the opening surface, after the molten metal is cured, the metal thin film on the opening surface is remelted and the remelted metal thin film is wiped off. be able to. The heat at the time of remelting is also applied to the hardened metal body inside the fine gap, but since the heat capacity of the hardened metal body is significantly larger than the heat capacity of the metal thin film, even if the metal thin film is remelted, It does not progress until remelting. For this reason, only a metal thin film can be wiped off and a flat surface without a concave surface portion can be formed.

本発明に係る方法を示すフローチャートである。4 is a flowchart illustrating a method according to the present invention. 図1に示した工程において、硬化工程(加圧冷却)を省略して得られた半導体ウエハ(シリコンウエハ)の断面SEM写真である。2 is a cross-sectional SEM photograph of a semiconductor wafer (silicon wafer) obtained by omitting a curing step (pressure cooling) in the step shown in FIG. 硬化工程(加圧冷却)を有する本発明に係る方法によって得られた半導体ウエハ(シリコンウエハ)の断面SEM写真である。It is a cross-sectional SEM photograph of the semiconductor wafer (silicon wafer) obtained by the method based on this invention which has a hardening process (pressurization cooling). 本発明に係る方法の別の適用例を示す図である。It is a figure which shows another example of application of the method which concerns on this invention. 本発明に係る方法の更に別の適用例を示す図である。It is a figure which shows another example of application of the method which concerns on this invention. 本発明に係る方法の更に別の適用例を示す図である。It is a figure which shows another example of application of the method which concerns on this invention.

1 真空チャンバ
2 対象物
21 微細空間
4 溶融金属
41 充填溶融金属
42 金属膜
40 硬化金属体
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Target object 21 Fine space 4 Molten metal 41 Filled molten metal 42 Metal film 40 Hardened metal body

図1は、本発明に係る方法を示すフローチャートである。図を参照すると、この実施の形態に示す方法は、準備工程、流し込み工程、硬化工程及び後工程を含んでいる。もっとも、これらの工程の区別は、単に説明の都合上の区別に過ぎない。以下、工程順に説明する。
(A)準備工程
まず、真空チャンバ1の内部に設けられた支持具3の上に、処理対象となる対象物2を設置する。対象物2は、微細空間21を有している。微細空間21は、対象物2の外面に開口している必要はあるが、その口形、経路及び数等は任意である。図示の貫通孔である必要はないし、非貫通孔であってもよい。あるいは、図示の縦方向のみならず、これと直交する横方向に連なるような複雑な形状であってもよい。微細空間21は、意図的に形成したものに限らない。意図せずに、発生したものであってもよい。
FIG. 1 is a flow chart illustrating a method according to the present invention. Referring to the figure, the method shown in this embodiment includes a preparation process, a pouring process, a curing process, and a post-process. However, the distinction between these steps is merely a matter of convenience for explanation. Hereinafter, it demonstrates in order of a process.
(A) Preparation Step First, the object 2 to be processed is placed on the support 3 provided inside the vacuum chamber 1. The object 2 has a fine space 21. The fine space 21 needs to be open on the outer surface of the object 2, but its mouth shape, path, number, etc. are arbitrary. The through hole shown in the figure does not need to be a non-through hole. Alternatively, it may be a complicated shape that extends not only in the illustrated vertical direction but also in a horizontal direction perpendicular thereto. The minute space 21 is not limited to the one formed intentionally. It may have occurred unintentionally.

対象物2の代表例は、半導体デバイス用ウエハであるが、これに限定されない。本発明は、対象物2に存在する微細空間21に溶融金属を充填し固化する必要のある場合に、広く適用できるもので、例えば、他の電子デバイスや、マイクロマシン等において、内部に微細な導体充填構造、接合構造又は機能部分を形成する場合に、広く適用が可能である。ある場合には、電子デバイスやマイクロマシン以外の通常の大きさを有するデバイスに適用することもできる。   A typical example of the object 2 is a semiconductor device wafer, but is not limited thereto. The present invention can be widely applied when it is necessary to fill the solid space 21 in the object 2 with molten metal and solidify it. For example, in other electronic devices, micromachines, etc., a fine conductor inside The present invention can be widely applied when forming a filling structure, a bonding structure, or a functional part. In some cases, the present invention can be applied to devices having a normal size other than electronic devices and micromachines.

また、対象物2は、溶融金属から放散される熱に対する耐熱性を有するものであれば、金属、合金、金属酸化物、セラミックス、ガラス、プラスチックもしくはそれらの複合材、又は、それらの積層体の別を問わず、広く用いることができる。更に、対象物2の外形形状は、平板状に限らず、任意の形状をとることができる。図示の平板状は、単に説明の便宜のために選択された一例に過ぎない。   In addition, the object 2 may be a metal, an alloy, a metal oxide, a ceramic, glass, a plastic, a composite material thereof, or a laminate thereof as long as it has heat resistance against heat dissipated from the molten metal. It can be widely used regardless of whether it is different. Furthermore, the outer shape of the object 2 is not limited to a flat plate shape, and can take any shape. The flat plate shape shown is merely an example selected for convenience of explanation.

対象物2としてウエハが選択された場合、その物性、構造などは、対象とするデバイスの種類によって異なる。例えば、半導体デバイスの場合には、Siウエハ、SiCウエハ又はSOIウエハ等が用いられる。受動電子回路デバイスの場合には、誘電体、磁性体又はそれらの複合体の形態をとることがある。MRAM (Magnetoresistive Random Access Memory)、MEMS (Micro Electro Mechanical Systems)又は光デバイスなどの製造においても、その要求に沿った物性及び構造を持つウエハが用いられる。ウエハにおいて、微細空間21は、一般には、貫通孔、非貫通孔(盲孔)又はビア・ホールと称される。この微細空間21は、例えば、孔径が10μm〜60μmである。ウエハ自体の厚みは、通常、数十μmである。したがって、微細空間21はかなり高いアスペクト比を持つことになる。これが、溶融金属4を微細空間21に充填する際の問題点を生じる大きな理由となるのである。   When a wafer is selected as the target object 2, its physical properties, structure, and the like vary depending on the type of target device. For example, in the case of a semiconductor device, a Si wafer, a SiC wafer, an SOI wafer, or the like is used. In the case of a passive electronic circuit device, it may take the form of a dielectric, a magnetic material or a composite thereof. Also in the manufacture of MRAM (Magnetoresistive Random Access Memory), MEMS (Micro Electro Mechanical Systems), or optical devices, wafers having physical properties and structures that meet the requirements are used. In the wafer, the fine space 21 is generally referred to as a through hole, a non-through hole (blind hole), or a via hole. The fine space 21 has, for example, a pore diameter of 10 μm to 60 μm. The thickness of the wafer itself is usually several tens of μm. Therefore, the fine space 21 has a considerably high aspect ratio. This is a major reason for causing problems when the molten metal 4 is filled in the fine space 21.

次に、真空チャンバ1に対して真空引きを実行し、真空チャンバ1の内圧を、例えば真空度10-3Pa程度まで減圧する。もっとも、この真空度は一例であって、これに限定されるものではない。
(B)流し込み工程
次に、流し込み工程では、溶融金属4を、微細空間21の開口している開口面から、微細空間21内に流し込む。この流し込み工程は、真空チャンバ1の内部の減圧雰囲気内で実行されることを基本とする。これにより、溶融金属4が微細空間21内に真空吸入され、微細空間21の内部に充填溶融金属41が生じることになる。
Next, the vacuum chamber 1 is evacuated, and the internal pressure of the vacuum chamber 1 is reduced to, for example, a degree of vacuum of about 10 −3 Pa. However, this degree of vacuum is an example, and the present invention is not limited to this.
(B) Pouring Step Next, in the casting step, the molten metal 4 is poured into the fine space 21 from the opening surface where the fine space 21 is open. This pouring step is basically performed in a reduced pressure atmosphere inside the vacuum chamber 1. Thereby, the molten metal 4 is sucked into the fine space 21 by vacuum, and the filled molten metal 41 is generated inside the fine space 21.

溶融金属4を構成する金属材料は、対象物2の種類及びその目的に応じて、その組成分が選択される。溶融金属4は、一般には、単一金属元素によって構成されるものではなく、合金化を前提とした複数金属元素を含有する。例えば、対象物2が、半導体ウエハであって、微細空間21の内部に、導体を形成することが目的であれば、Ag、Cu、Au、Pt、Pd、Ir、Al、Ni、Sn、In、Bi、Znの群から選択された少なくとも1種の金属元素を含む金属成分を用いることができる。接合構造を得ようとする場合には、接合される対象物との間の接合性を考慮した金属成分が選択される。   The composition of the metal material constituting the molten metal 4 is selected according to the type of the object 2 and its purpose. The molten metal 4 is generally not composed of a single metal element, but contains a plurality of metal elements premised on alloying. For example, if the object 2 is a semiconductor wafer and the purpose is to form a conductor in the minute space 21, Ag, Cu, Au, Pt, Pd, Ir, Al, Ni, Sn, In A metal component containing at least one metal element selected from the group consisting of Bi, Zn and Zn can be used. In order to obtain a bonded structure, a metal component is selected in consideration of the bonding property with the objects to be bonded.

上述した金属成分は、好ましくは、ナノコンポジット構造を有する。ここに、ナノコンポジット構造とは、粒径が好ましくは500nm以下の多結晶体を言う。ナノコンポジット構造を有する金属成分を用いることの利点は、溶融金属4の全体としての融点を低下させ得る点にある。   The metal component described above preferably has a nanocomposite structure. Here, the nanocomposite structure refers to a polycrystal having a particle size of preferably 500 nm or less. The advantage of using a metal component having a nanocomposite structure is that the melting point of the molten metal 4 as a whole can be lowered.

融点を低下させるもう一つの手法は、高融点金属成分(Ag、Cu、Au、Pt、Pd、Ir、Al、Ni)と、低融点金属成分(Sn、In、Bi)とを組み合わせことである。   Another technique for reducing the melting point is to combine a high melting point metal component (Ag, Cu, Au, Pt, Pd, Ir, Al, Ni) and a low melting point metal component (Sn, In, Bi). .

溶融金属材料には、好ましくは、ビスマス(Bi)を含有させる。ビスマス(Bi)を含有させることの利点は、ビスマス(Bi)の冷却時体積膨張特性を利用して、微細空間21内に空隙やボイドのない金属導体を形成するのに寄与することができる点にある。   The molten metal material preferably contains bismuth (Bi). The advantage of containing bismuth (Bi) can contribute to the formation of a metal conductor free from voids and voids in the fine space 21 by utilizing the volume expansion characteristics of bismuth (Bi) during cooling. It is in.

更に、微細空間21の底部が導体によって閉じられている場合、上述した溶融金属4を流し込む前に、微細空間21内に貴金属ナノ粒子を供給しておき、しかる後に、溶融金属4を流し込む工程を採ることも有効である。この工程を経ることにより、貴金属ナノ粒子の有する触媒作用により、導体に形成されることのある酸化膜を還元し、溶融金属4と導体との間に電気抵抗の低い接合を形成することができる。貴金属には金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)及びオスミウム(Os)が含まれる。これらの元素のうちでも、金(Au)、白金(Pt)、パラジウム(Pd)から選択された少なくとも一種を含むことが好ましい。   Furthermore, when the bottom of the fine space 21 is closed by a conductor, the step of supplying the precious metal nanoparticles into the fine space 21 before pouring the above-described molten metal 4 and thereafter pouring the molten metal 4 is performed. Taking it is also effective. By passing through this step, the oxide film that may be formed on the conductor can be reduced by the catalytic action of the noble metal nanoparticles, and a junction with low electrical resistance can be formed between the molten metal 4 and the conductor. . Precious metals include gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru) and osmium (Os). Among these elements, it is preferable to include at least one selected from gold (Au), platinum (Pt), and palladium (Pd).

溶融金属4の流し込みに当たっては、上述した金属材料を、真空チャンバ1の外部で予め溶融しておいて真空チャンバ1の内部の対象物2に供給するか、或いは、真空チャンバ1の内部に設置された支持具3に、加熱機構を付設しておき、真空チャンバ1内で金属材料を溶解させる。溶解のための温度は、一例であるが、200〜300℃の範囲で設定することができる。溶解温度は、上述したように、金属成分の組み合わせの選択、及び、ナノ化によって調整し、又は低下させることができる。   In pouring the molten metal 4, the above-described metal material is melted in advance outside the vacuum chamber 1 and supplied to the object 2 inside the vacuum chamber 1 or installed inside the vacuum chamber 1. A heating mechanism is attached to the support 3 and the metal material is dissolved in the vacuum chamber 1. Although the temperature for melt | dissolution is an example, it can set in the range of 200-300 degreeC. As described above, the melting temperature can be adjusted or lowered by selecting a combination of metal components and nanonization.

金属材料は、粉体の形態で供給してもよいし、或いは、上述した金属材料を用いて、対象物2の外形形状に対応する金属薄板を予め準備しておき、この金属薄板を対象物2の一面上に重ね合わせておいて溶解させてもよい。   The metal material may be supplied in the form of powder, or a metal thin plate corresponding to the outer shape of the object 2 is prepared in advance using the metal material described above, and this metal thin plate is used as the object. 2 may be superposed on one surface and dissolved.

上記の流し込み方法と異なって、減圧雰囲気中で、対象物2を溶融金属槽中に浸漬し、その後引き上げる工程を採用することもできる。   Unlike the above pouring method, a step of immersing the object 2 in a molten metal tank in a reduced pressure atmosphere and then pulling it up can be employed.

流し込み工程は、溶融金属4を加圧する工程を含むことができる。この工程では、溶融金属に対して、静圧のみならず、動圧をも与えることが好ましい。動圧のダイナミックな押込み作用により、溶融金属4を、微細空間21に対して、強制的に流し込むことができるからである。加圧は、機械的なプレス手段を用いたプレス圧として与えてもよいし、孔版及びスキージを用いた押込み力として与えてもよいし、真空チャンバ1内の雰囲気ガス圧を、減圧状態から増圧するによって与えてもよい。減圧状態からの増圧分により、いわゆる差圧充填が実行される。   The casting step can include a step of pressurizing the molten metal 4. In this step, it is preferable to apply not only static pressure but also dynamic pressure to the molten metal. This is because the molten metal 4 can be forced into the fine space 21 by the dynamic pushing action of the dynamic pressure. The pressurization may be applied as a press pressure using a mechanical pressing means, or may be applied as an indentation force using a stencil and a squeegee, and the atmospheric gas pressure in the vacuum chamber 1 is increased from a reduced pressure state. It may be given by pressing. So-called differential pressure filling is executed by the increased pressure from the reduced pressure state.

真空チャンバ1の内部のガス圧を増圧する場合には、真空チャンバ1内にN2ガスなどの不活性ガスを供給して、溶融金属材料の酸化を防止しつつ、そのガス圧を加圧するのが好ましい。真空チャンバ1内のガス圧は、一例であるが、0.6〜1kgf/cmの範囲で設定することができる。このガス圧に到達するまでの昇圧ー時間特性をコントロールすることにより、好適な動圧を発生させることができる。 When the gas pressure inside the vacuum chamber 1 is increased, an inert gas such as N 2 gas is supplied into the vacuum chamber 1 to increase the gas pressure while preventing oxidation of the molten metal material. Is preferred. Although the gas pressure in the vacuum chamber 1 is an example, it can be set in the range of 0.6 to 1 kgf / cm 2 . A suitable dynamic pressure can be generated by controlling the pressure rise-time characteristic until the gas pressure is reached.

さらに、流し込み工程は、溶融金属4を、真空チャンバ1の外部に設置された射出機により射出して微細空間21に充填する工程を含むこともできる。この工程は、上述した加圧手段と組み合わせてもよいし、又は、それとは独立する手段としてもよい。   Further, the pouring step may include a step of injecting the molten metal 4 by an injection machine installed outside the vacuum chamber 1 to fill the fine space 21. This step may be combined with the pressurizing means described above, or may be an independent means.

流し込み工程において、溶融金属4は、対象物2の微細空間21の開口する開口面上に、金属薄膜42が生じるように供給することが好ましい。即ち、溶融金属4を、微細空間21の総容積よりも多くなるように供給する。このような工程を踏むことにより、金属薄膜42に加わる動圧を利用して、押込み動作を確実に生じさせることができる。   In the pouring step, it is preferable to supply the molten metal 4 so that the metal thin film 42 is formed on the opening surface of the minute space 21 of the object 2 that opens. That is, the molten metal 4 is supplied so as to be larger than the total volume of the fine space 21. By performing such a process, the pushing operation can be surely generated by using the dynamic pressure applied to the metal thin film 42.

更に、流し込み工程においては、超音波振動を利用した充填、磁力を利用した充填、更には遠心力を利用した充填を行なうこともできる。超音波振動充填では、対象物2に超音波振動を与えるか、プレス手段に超音波振動を与えるか、又は孔版及びスキージに超音波振動を与えることが考えられる。もっとも、振動効率の向上、及び、対象物2の共振作用による溶融金属4の溢流を回避する観点から、振動周波数を適切に選択する必要がある。   Furthermore, in the pouring step, filling using ultrasonic vibration, filling using magnetic force, and filling using centrifugal force can be performed. In ultrasonic vibration filling, it is conceivable to apply ultrasonic vibration to the object 2, apply ultrasonic vibration to the press means, or apply ultrasonic vibration to the stencil and squeegee. However, it is necessary to appropriately select the vibration frequency from the viewpoint of improving the vibration efficiency and avoiding the overflow of the molten metal 4 due to the resonance action of the object 2.

磁力充填では、溶融金属4に磁性成分を含有させておき、外部から磁界を印加して、磁性成分に作用する磁力を利用し、溶融金属4を微細空間21の内部に引き込むようにすればよい。遠心力充填では、対象物2を回転させたときに発生する遠心力を利用すればよい。
(C)硬化工程
次に、硬化工程に移行する。この硬化工程における処理内容が本発明における大きな特徴の一つである。硬化工程では、上述した流し込み工程により、微細空間21内に溶融金属4を流し込んだ後、微細空間21内の充填溶融金属41を、大気圧を超える強制外力F1を印加した状態で、冷却し硬化させる。強制外力F1は、硬化が完了するまで、継続して印加される。冷却は、基本的には室温中での徐冷であるが、室温よりも低い温度条件を設定してもよいし、場合によっては、室温よりも高い温度条件を設定してもよい。更に、時間経過とともに、連続的又は段階的に温度を低下させる冷却方法をとってもよい。
In the magnetic filling, the molten metal 4 is made to contain a magnetic component, a magnetic field is applied from the outside, and the magnetic force acting on the magnetic component is used to draw the molten metal 4 into the fine space 21. . In centrifugal force filling, centrifugal force generated when the object 2 is rotated may be used.
(C) Curing process Next, the process proceeds to a curing process. The processing content in this curing step is one of the major features of the present invention. In the curing step, after the molten metal 4 is poured into the fine space 21 by the above-described casting step, the filled molten metal 41 in the fine space 21 is cooled and cured in a state where a forced external force F1 exceeding the atmospheric pressure is applied. Let The forced external force F1 is continuously applied until the curing is completed. The cooling is basically slow cooling at room temperature, but a temperature condition lower than room temperature may be set, or in some cases, a temperature condition higher than room temperature may be set. Furthermore, a cooling method may be adopted in which the temperature is lowered continuously or stepwise with time.

強制外力F1の大きさは、対象物2の機械的強度及び微細空間21のアスペクト比などを考慮して定める。一例として、対象物2がシリコンウエハである場合、強制外力F1は、大気圧超〜2kgf/cm以下の範囲で設定することが好ましい。対象物2の機械的強度及び微細空間21のアスペクト比が大きい場合には、更に高い圧力を印加することができる。 The magnitude of the forced external force F1 is determined in consideration of the mechanical strength of the object 2, the aspect ratio of the minute space 21, and the like. As an example, when the target object 2 is a silicon wafer, the forced external force F1 is preferably set in the range of greater than atmospheric pressure to 2 kgf / cm 2 or less. When the mechanical strength of the object 2 and the aspect ratio of the fine space 21 are large, a higher pressure can be applied.

硬化工程で印加される強制外力F1は、プレス圧、射出圧、ガス圧又は転圧から選択された少なくとも1種で与えられる。これらの圧力を利用する場合、硬化工程の初期の段階では、静圧のみならず、動圧も積極的に利用し、動圧によるダイナミックな押込み動作を行わせることができる。これにより、空隙やボイドの発生をより確実に抑制するとともに、充填溶融金属41が、微細空間21の底部に、より一層確実に到達するように操作することができる。   The forced external force F1 applied in the curing step is given by at least one selected from a press pressure, an injection pressure, a gas pressure, or a rolling pressure. When these pressures are used, in the initial stage of the curing process, not only the static pressure but also the dynamic pressure can be positively used to perform a dynamic pushing operation by the dynamic pressure. Thereby, while suppressing generation | occurrence | production of a space | gap and a void more reliably, it can operate so that the filling molten metal 41 may reach the bottom part of the fine space 21 still more reliably.

プレス圧は、機械的なプレス手段によって、また、射出圧は、射出機によって印加することができる。ガス圧は、対象物2を、真空チャンバ1又はそれとは別に準備された処理チャンバ内に保持したままで、その雰囲気ガス圧を上昇させることによって印加することができる。ガス圧においても、その時間的な圧力上昇特性をコントロールすることにより、硬化工程の初期の段階では、動圧を積極的に利用し、動圧によるダイナミックな押込み動作を行わせることができる。硬化工程においても、超音波振動充填、磁力充填及び遠心力充填を利用することができる。   The pressing pressure can be applied by mechanical pressing means, and the injection pressure can be applied by an injection machine. The gas pressure can be applied by increasing the atmospheric gas pressure while holding the object 2 in the vacuum chamber 1 or in a processing chamber prepared separately. Even in the gas pressure, by controlling the temporal pressure rise characteristic, the dynamic pressure can be actively used in the initial stage of the curing process, and a dynamic pushing operation by the dynamic pressure can be performed. Also in the curing step, ultrasonic vibration filling, magnetic force filling, and centrifugal force filling can be used.

硬化工程における強制外力による加圧は、流し込み工程における加圧工程から独立して実行してもよいし、連続的な関係で実行してもよい。連続的な関係で実行された場合は、両加圧工程は、一つの加圧工程として吸収されることになる。その典型例は、真空チャンバ1内のガス圧を、大気圧を超える程度まで増圧する場合、及び、対象物2の開口面上に射出機によって溶融金属4を供給し、その射出圧力による強制外力を印加したままで、溶融金属を冷却し硬化させる場合である。もっとも、一つの加圧工程として、一体化した場合でも、印加圧力を調整することが好ましい。   The pressurization by the forced external force in the curing process may be executed independently of the pressurization process in the pouring process, or may be executed in a continuous relationship. When executed in a continuous relationship, both pressurization steps are absorbed as one pressurization step. A typical example is when the gas pressure in the vacuum chamber 1 is increased to a level exceeding the atmospheric pressure, and when the molten metal 4 is supplied onto the opening surface of the object 2 by an injector, and a forced external force is generated by the injection pressure. This is a case where the molten metal is cooled and hardened while the voltage is applied. However, it is preferable to adjust the applied pressure as one pressurizing step even when they are integrated.

上述したように、本発明では、微細空間21内の溶融金属4に対し、強制外力F1を印加したままで、微細空間21内の充填溶融金属41を冷却し硬化させる硬化工程を含むから、微細空間21内に充填溶融金属41を確実に充填するとともに、充填溶融金属41が冷却の過程で熱収縮したとき、印加された強制外力F1によって、熱収縮による金属の変形を抑えることができる。このため、空隙やボイドなどを生じることなく、微細空間21を、その底部に至るまで、硬化金属体40によって満たすことができる。同様の理由で、硬化金属体40が微細空間21内で冷却された際に生じるべき凹面化も回避しえる。   As described above, the present invention includes a curing step of cooling and hardening the filled molten metal 41 in the fine space 21 while the forced external force F1 is applied to the molten metal 4 in the fine space 21. The filled molten metal 41 is reliably filled in the space 21, and when the filled molten metal 41 is thermally contracted during the cooling process, deformation of the metal due to the thermal contraction can be suppressed by the applied forced external force F1. For this reason, the fine space 21 can be filled with the hardened metal body 40 up to the bottom thereof without generating voids or voids. For the same reason, it is possible to avoid the concave surface to be generated when the hardened metal body 40 is cooled in the fine space 21.

更に、微細空間21内の硬化金属体40の凹面化を回避しえるから、冷却後の溶融金属の再供給やCMP工程等が不要であり、工程の簡素化や歩留りの向上などに寄与することができる。   Furthermore, since the concave surface of the hardened metal body 40 in the fine space 21 can be avoided, there is no need to re-supply molten metal after cooling, a CMP process, etc., which contributes to simplification of the process and improvement of yield. Can do.

特に、流し込み工程において、溶融金属4を、対象物2の外面上に、金属薄膜42が生じるように供給した場合には、この金属薄膜42が圧力を受け、微細空間21の中に充填された充填溶融金属41の形態に応じて膜厚が変わるなど、変化することになるので、微細空間21の中に充填され硬化した硬化金属体40の熱収縮による変形、及び、凹面化を確実に抑えることができる。
(D)後工程
次に、対象物2の外面上の金属薄膜42を再溶融させ、再溶融した金属薄膜42を、例えばスキージ5などにより拭き取る。この後工程によれば、対象物2の外面を平坦化しえる。しかも、拭き取りという簡単な操作で済み、従来と異なって、溶融金属冷却後の溶融金属4の再供給やCMP工程等が不要であるから、工程の簡素化、歩留りの向上などに寄与することができる。必要であれば、硬化工程に準じて、更に、再加圧F2し、その後に冷却する工程を実行してもよい。もっとも、この後工程は、金属薄膜42を除去し、対象物2の一面を平坦化するためのものであるから、平坦化の必要がない場合には、省略することもできる。
In particular, in the pouring process, when the molten metal 4 is supplied on the outer surface of the object 2 so that the metal thin film 42 is generated, the metal thin film 42 receives pressure and is filled in the fine space 21. Since the film thickness changes depending on the form of the filled molten metal 41, the deformation due to the heat shrinkage of the hardened metal body 40 filled and hardened in the fine space 21 and the concave surface are surely suppressed. be able to.
(D) Post-process Next, the metal thin film 42 on the outer surface of the object 2 is remelted, and the remelted metal thin film 42 is wiped off with, for example, a squeegee 5. According to this post-process, the outer surface of the object 2 can be flattened. Moreover, a simple operation such as wiping is required, and unlike the conventional case, there is no need to re-supply the molten metal 4 after cooling the molten metal and the CMP process, which contributes to simplification of the process and improvement of the yield. it can. If necessary, a step of repressurizing F2 and then cooling may be performed in accordance with the curing step. However, since this post-process is for removing the metal thin film 42 and flattening one surface of the object 2, it can be omitted if flattening is not necessary.

再溶融時の熱は、微細隙間21の内部で硬化している硬化金属体40にも加わるが、硬化金属体40の持つ熱容量が金属薄膜42の熱容量よりも著しく大きいため、金属薄膜42が再溶融しても、硬化金属体40の再溶融までは進展しない。このため、金属薄膜42だけを拭き取ることができる。   The heat at the time of remelting is also applied to the hardened metal body 40 that is hardened inside the fine gap 21. However, since the heat capacity of the hardened metal body 40 is significantly larger than the heat capacity of the metal thin film 42, the metal thin film 42 is regenerated. Even if it melts, it does not progress until remelting of the hardened metal body 40. For this reason, only the metal thin film 42 can be wiped off.

上述した一連の工程を経て、微細空間21に硬化金属体40を充填した対象物2が得られる。なお、上述した各工程の全てが、真空チャンバ1内で実行される必要はない。硬化工程や、後工程は、真空チャンバ1の外部で実行されてもよい工程を含んでいる。   Through the series of steps described above, the object 2 in which the fine space 21 is filled with the hardened metal body 40 is obtained. Note that not all of the above-described steps need be performed in the vacuum chamber 1. The curing process and the post-process include processes that may be performed outside the vacuum chamber 1.

次に、本発明の効果をSEM(Scanning Electron Microscope)写真によって実証する。図2は、図1に示した工程において、硬化工程(加圧冷却)を省略して得られた半導体ウエハ(シリコンウエハ)の断面SEM写真、図3は硬化工程(加圧冷却)を有する本発明に係る方法によって得られた半導体ウエハ(シリコンウエハ)の断面SEM写真である。硬化工程(加圧冷却)の有無を除けば、両SEM写真とも、同じ工程条件下で得られた半導体ウエハの断面を示している。工程条件は次のとおりである。
(A)準備工程
真空チャンバ内真空度:10-3(Pa)
対象物:ガラス保護膜を有する300mm×50μmのシリコンウエハ
微細空間:開口径15μm、底部孔径10μm
(B)流し込み工程
(1)上記シリコンウエハの上に、同形の金属薄板を配置し、溶解させた。
金属薄板の組成分:Sn、In、Cu、Bi
溶解温度:250℃
(2)次に、真空チャンバ内にNガスを導入し、ガス圧を0.6kgf/cmに設定した(加圧)。
(C)硬化工程(本発明の場合のみ)
プレス機により、溶融金属に2.0kgf/cmの圧力を印加し、そのた状態で徐冷した。
(D)後工程
再溶融のための溶解温度:250℃
スキージによる拭き取り
再加圧:プレス機により、2.0kgf/cmの圧力を印加
まず、図2のSEM写真と見ると、対象物たるウエハ2の微細空間21の内部に充填されている硬化金属体40の上端側に、凹面部P1が生じており、しかも、その底部にも、硬化金属体40の充填されていない空隙部P2が生じている。硬化金属体40の周囲と、微細空間21の内側面との間にも、空隙の存在が認められる。
Next, the effect of the present invention will be demonstrated by SEM (Scanning Electron Microscope) photographs. 2 is a cross-sectional SEM photograph of a semiconductor wafer (silicon wafer) obtained by omitting the curing step (pressure cooling) in the step shown in FIG. 1, and FIG. 3 is a book having a curing step (pressure cooling). It is a cross-sectional SEM photograph of the semiconductor wafer (silicon wafer) obtained by the method which concerns on invention. Except for the presence or absence of a curing step (pressure cooling), both SEM photographs show a cross section of a semiconductor wafer obtained under the same process conditions. The process conditions are as follows.
(A) Preparatory step Vacuum degree in vacuum chamber: 10 −3 (Pa)
Object: 300 mm × 50 μm silicon wafer with glass protective film Fine space: Opening diameter 15 μm, bottom hole diameter 10 μm
(B) Casting step (1) An identical thin metal plate was placed on the silicon wafer and dissolved.
Composition of thin metal plate: Sn, In, Cu, Bi
Melting temperature: 250 ° C
(2) Next, N 2 gas was introduced into the vacuum chamber, and the gas pressure was set to 0.6 kgf / cm 2 (pressurization).
(C) Curing step (only in the case of the present invention)
A pressure of 2.0 kgf / cm 2 was applied to the molten metal with a press machine, and the molten metal was gradually cooled.
(D) Melting temperature for remelting the post-process: 250 ° C.
Wiping and re-pressurizing with a squeegee: A pressure of 2.0 kgf / cm 2 is applied by a press machine. First, looking at the SEM photograph in FIG. 2, the hardened metal filled in the minute space 21 of the wafer 2 as the object. A concave surface portion P1 is formed on the upper end side of the body 40, and a void portion P2 that is not filled with the hardened metal body 40 is formed on the bottom portion. The presence of voids is also observed between the periphery of the hardened metal body 40 and the inner surface of the fine space 21.

これに対して、本発明の適用に係る図3のSEM写真を見ると、ウエハ2の微細空間21の内部に充填されている硬化金属体40の上端面は、ウエハ2の上面に連続して連なる平坦面となっており、凹面部は認められない。硬化金属体40の下端面は、微細空間21の底部に密接しており、底部空隙は見えない。更に、硬化金属体40の外周面は、微細空間21の内側面に密接しており、空隙の存在は認められない。   On the other hand, when the SEM photograph of FIG. 3 according to the application of the present invention is seen, the upper end surface of the hardened metal body 40 filled in the minute space 21 of the wafer 2 is continuous with the upper surface of the wafer 2. It is a continuous flat surface, and no concave surface is observed. The lower end surface of the hardened metal body 40 is in close contact with the bottom of the fine space 21, and the bottom gap is not visible. Furthermore, the outer peripheral surface of the hardened metal body 40 is in close contact with the inner surface of the fine space 21, and the presence of voids is not recognized.

図4は、本発明に係る方法の別の適用例を示している。この例は、本発明が直線状の単純な構造の微細空間のみならず、曲路を持つ微細空間にも適用できることを示している。図4(A)を参照すると、対象物2は、互いに異なる位置で縦方向に延びる2つの微細空間211、213を有しており、これらの微細空間211、213が横方向に延びる微細空間212を介して連続している。   FIG. 4 shows another application of the method according to the invention. This example shows that the present invention can be applied not only to a fine space having a simple linear structure but also to a fine space having a curved path. Referring to FIG. 4A, the object 2 has two fine spaces 211 and 213 extending in the vertical direction at different positions, and these fine spaces 211 and 213 extend in the horizontal direction. Is continuous through.

図4(A)に図示したような微細空間構造であっても、図1を参照して説明した本発明に係る方法を適用することによって、図4(B)に示すように、微細空間211、212、213を通って連続する硬化金属体40を形成することができる。図示は、省略するが、更に複雑な形状を有する微細空間であっても、本発明の適用により、硬化金属体40を形成することができる。   Even in the fine space structure as shown in FIG. 4A, by applying the method according to the present invention described with reference to FIG. 1, as shown in FIG. , 212, 213 to form a continuous hardened metal body 40. Although illustration is omitted, the hardened metal body 40 can be formed by applying the present invention even in a fine space having a more complicated shape.

図4において、対象物2は、金属、合金、金属酸化物、セラミックス、ガラス、プラスチックもしくはそれらの複合材、又は、それらの積層体の形態をとることができる。更に、対象物2の外形形状は、平板状に限らず、任意の形状をとることができる。図示の形状は、やはり、単に説明の便宜のために選択された一例に過ぎない。   In FIG. 4, the object 2 can take the form of a metal, an alloy, a metal oxide, ceramics, glass, plastic, a composite material thereof, or a laminate thereof. Furthermore, the outer shape of the object 2 is not limited to a flat plate shape, and can take any shape. The shape shown is merely an example selected for convenience of explanation.

図5は、本発明に係る方法の更に別の適用例を示している。この例は、本発明を接合技術の分野に適用した場合を示している。図を参照すると、第1の部材201と第2の部材202との間に生じる微細空間21が、硬化金属体40によって埋められている。硬化金属体40は、図1を参照して説明した方法に従って充填・硬化されたものである。溶融金属の流し込み方向は、紙面と直交する方向、又は、紙面と平行する方向の何れの方向でもよい。第1の部材201及び第2の部材202の形状は任意であり、図は単なる一例を示すに過ぎない。また、第1の部材201及び第2の部材202は、同種の金属材料であってもよいし、異種の金属材料であってもよい。   FIG. 5 shows a further application of the method according to the invention. This example shows a case where the present invention is applied to the field of bonding technology. Referring to the figure, the fine space 21 generated between the first member 201 and the second member 202 is filled with the hardened metal body 40. The hardened metal body 40 is filled and hardened according to the method described with reference to FIG. The flowing direction of the molten metal may be any of a direction orthogonal to the paper surface or a direction parallel to the paper surface. The shapes of the first member 201 and the second member 202 are arbitrary, and the drawing is merely an example. Further, the first member 201 and the second member 202 may be the same type of metal material or different types of metal materials.

第1の部材201と第2の部材202が分離できない関係にあって、一般的なロウ付けなどの溶接技術が適用できない場合であっても、本発明の適用により、溶接することができる。   Even if the first member 201 and the second member 202 cannot be separated and a general welding technique such as brazing cannot be applied, welding can be performed by applying the present invention.

図6は、本発明に係る方法の更に別の適用例を示している。この適用例では、同筒状に配置された2つの筒体201、201の間に生じる微細空間21に、硬化金属体40を充填してある。このような適用場面は、電子デバイスやマイクロマシンの属する技術分野のみならず、それよりも大きな機構部品を取り扱う技術分野でも生じ得る。即ち、本発明の適用範囲は、必ずしも、微小電子デバイスやマイクロマシンの製造プロセスに限定されるものではない。図示はしないが、本発明には、物体に生じた亀裂や隙間を埋める手段としての適用可能性もある。   FIG. 6 shows a further application of the method according to the invention. In this application example, the hard metal body 40 is filled in the minute space 21 generated between the two cylinders 201 and 201 arranged in the same cylindrical shape. Such an application scene may occur not only in the technical field to which electronic devices and micromachines belong, but also in the technical field that handles larger mechanical components. That is, the application range of the present invention is not necessarily limited to the manufacturing process of a microelectronic device or a micromachine. Although not shown, the present invention may be applied as a means for filling cracks and gaps generated in an object.

以上、好ましい実施例を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様及び説明されない他の適用技術分野を想到しえることは自明である。   Although the contents of the present invention have been specifically described with reference to the preferred embodiments, various modifications and other applications not described will be apparent to those skilled in the art based on the basic technical idea and teachings of the present invention. It is obvious that the technical field can be conceived.

Claims (10)

ウエハである対象物に存在する微細空間に溶融金属を充填し硬化させる方法であって、
前記微細空間は、一端が前記対象物の厚み方向の一面で開口しており、
前記対象物を、前記微細空間の他端側を閉じた状態で、支持体上に設置し、
前記対象物の前記微細空間内に充填された前記溶融金属前記対象物の前記一面側からプレス圧、射出圧又は転圧を印加したままで前記溶融金属を冷却し、硬化させる
工程を含む、方法。
A method of filling and hardening a molten metal in a minute space present in an object that is a wafer ,
The fine space has one end opened on one surface in the thickness direction of the object,
The object is placed on a support with the other end of the fine space closed.
Pressing pressure from the one surface of the fine the object to the molten metal filled in the space of the object, the injection pressure or by cooling the molten metal while applying a compaction and cured,
A method comprising the steps.
請求項1に記載された方法であって、前記溶融金属は、Biを含む、方法。   The method of claim 1, wherein the molten metal comprises Bi. 請求項1又は2に記載された方法であって、前記溶融金属は、Ag、Cu、Au、Pt、Pd、Ir、Al、Ni、Sn、In、Znの群から選択された少なくとも1種の金属元素を含む、方法。   The method according to claim 1 or 2, wherein the molten metal is at least one selected from the group consisting of Ag, Cu, Au, Pt, Pd, Ir, Al, Ni, Sn, In, and Zn. A method comprising a metal element. 請求項1乃至3の何れかに記載された方法であって、前記溶融金属を冷却し硬化させる前に、前記対象物の前記開口面上に金属薄板を配置し、真空チャンバ内の減圧された雰囲気内で前記金属薄板を溶解させて前記溶融金属を生成するステップを含む、方法。   The method according to any one of claims 1 to 3, wherein a thin metal plate is disposed on the opening surface of the object and the pressure in the vacuum chamber is reduced before the molten metal is cooled and hardened. Dissolving the sheet metal in an atmosphere to produce the molten metal. 請求項4に記載された方法であって、前記溶融金属を冷却し硬化させる前に、前記真空チャンバ内の雰囲気を減圧状態から増圧し、前記溶融金属を前記微細空間に流し込むステップを含む、方法。   5. The method according to claim 4, comprising the step of increasing the atmosphere in the vacuum chamber from a reduced pressure state and pouring the molten metal into the fine space before cooling and hardening the molten metal. . 請求項1乃至3の何れかに記載された方法であって、前記溶融金属を冷却し硬化させる前、真空チャンバ内の減圧された雰囲気内に置かれた前記対象物の前記開口面上に前記溶融金属を供給した後、前記真空チャンバ内の雰囲気を増圧するステップを含む、方法。   4. The method according to claim 1, wherein the molten metal is placed on the opening surface of the object placed in a reduced pressure atmosphere in a vacuum chamber before the molten metal is cooled and hardened. A method comprising the step of increasing the pressure in the vacuum chamber after supplying molten metal. 請求項1又は2に記載された方法であって、前記対象物の前記開口面上に射出機によって前記溶融金属を供給し、その射出による強制外力を印加したままで、前記溶融金属を冷却し硬化させるステップを含む、方法。   The method according to claim 1 or 2, wherein the molten metal is supplied onto the opening surface of the object by an injection machine, and the molten metal is cooled while applying a forced external force by the injection. A method comprising the step of curing. 請求項1乃至7の何れかに記載された方法であって、前記溶融金属は、前記微細空間の開口部の存在する開口面上にその金属薄膜が生じるように供給される、方法。   The method according to claim 1, wherein the molten metal is supplied so that the metal thin film is formed on an opening surface where an opening of the fine space exists. 請求項8に記載された方法であって、前記溶融金属を硬化させた後、前記開口面上の前記金属薄膜を再溶融し、再溶融された前記金属薄膜を拭き取る工程を含む、方法。   The method according to claim 8, comprising curing the molten metal, re-melting the metal thin film on the opening surface, and wiping the re-melted metal thin film. 請求項1乃至9の何れかに記載された方法であって、前記対象物は、半導体ウエハである、方法。   The method according to claim 1, wherein the object is a semiconductor wafer.
JP2009049455A 2009-03-03 2009-03-03 Method for filling metal into fine space Expired - Fee Related JP4611429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049455A JP4611429B2 (en) 2009-03-03 2009-03-03 Method for filling metal into fine space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049455A JP4611429B2 (en) 2009-03-03 2009-03-03 Method for filling metal into fine space

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008300887A Division JP4278007B1 (en) 2008-11-26 2008-11-26 Method for filling metal into fine space

Publications (3)

Publication Number Publication Date
JP2010129995A JP2010129995A (en) 2010-06-10
JP2010129995A5 JP2010129995A5 (en) 2010-08-12
JP4611429B2 true JP4611429B2 (en) 2011-01-12

Family

ID=42330146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049455A Expired - Fee Related JP4611429B2 (en) 2009-03-03 2009-03-03 Method for filling metal into fine space

Country Status (1)

Country Link
JP (1) JP4611429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075330A (en) * 2011-09-14 2013-04-25 Sumitomo Precision Prod Co Ltd Metal filling apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9704793B2 (en) 2011-01-04 2017-07-11 Napra Co., Ltd. Substrate for electronic device and electronic device
JP5250707B2 (en) * 2011-05-26 2013-07-31 有限会社 ナプラ Electronic equipment substrate and electronic equipment
JP2013115340A (en) * 2011-11-30 2013-06-10 Napura:Kk Vertical conductor packed structure
JP5124693B1 (en) * 2012-04-24 2013-01-23 有限会社 ナプラ Electronics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269564A (en) * 1992-03-24 1993-10-19 Inax Corp Method and device for pressurized casting
JPH10189495A (en) * 1996-12-24 1998-07-21 Toshiba Corp Semiconductor device and its fabrication
JP2003133410A (en) * 2001-10-29 2003-05-09 Fujikura Ltd Method of forming through wiring and metal filling method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269564A (en) * 1992-03-24 1993-10-19 Inax Corp Method and device for pressurized casting
JPH10189495A (en) * 1996-12-24 1998-07-21 Toshiba Corp Semiconductor device and its fabrication
JP2003133410A (en) * 2001-10-29 2003-05-09 Fujikura Ltd Method of forming through wiring and metal filling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075330A (en) * 2011-09-14 2013-04-25 Sumitomo Precision Prod Co Ltd Metal filling apparatus

Also Published As

Publication number Publication date
JP2010129995A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP4278007B1 (en) Method for filling metal into fine space
KR101660673B1 (en) Electrode material
JP4505540B1 (en) Metal filling equipment
JP5250582B2 (en) Filling substrate and filling method using the same
JP4611429B2 (en) Method for filling metal into fine space
KR101890085B1 (en) A method of manufacturing a package and a package manufactured by the method
EP3089207B1 (en) HERMETIC-SEALING PACKAGE MEMBER, PRODUCTION METHOD THEREFOR, AND 
HERMETICALLY-SEALED PACKAGE PRODUCTION METHOD USING THIS HERMETIC-SEALING 
PACKAGE MEMBER
JP5330323B2 (en) Insulator filling method for micro space
JP2018125376A (en) Method for manufacturing wiring structure
TW202129882A (en) Electrically conductive vias and methods for producing same
JP6340215B2 (en) Semiconductor bonding method
WO2018190226A1 (en) Sealing structure and sealing method of through hole, and transfer substrate for sealing through hole
JP5450780B1 (en) Method for forming a conductor in a minute space
CN109075127B (en) Sealing structure and sealing method for through hole, and transfer substrate for sealing through hole
JP2019079965A (en) Columnar conductor structure
JP2013089641A (en) Filling method of liquidity filler, filling device and wafer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100628

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100628

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4611429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees