JP4611006B2 - Spherical silica fine particles, toner external additive for developing electrostatic image and toner - Google Patents
Spherical silica fine particles, toner external additive for developing electrostatic image and toner Download PDFInfo
- Publication number
- JP4611006B2 JP4611006B2 JP2004346755A JP2004346755A JP4611006B2 JP 4611006 B2 JP4611006 B2 JP 4611006B2 JP 2004346755 A JP2004346755 A JP 2004346755A JP 2004346755 A JP2004346755 A JP 2004346755A JP 4611006 B2 JP4611006 B2 JP 4611006B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- toner
- fine particles
- silica fine
- spherical silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Silicon Compounds (AREA)
- Silicon Polymers (AREA)
- Developing Agents For Electrophotography (AREA)
Description
本発明は、表面が疎水性で核が親水性基含有の球状シリカ微粒子に関する。また、本発明は、電子写真法、静電記録法等において静電荷像を現像するために使用する静電荷像現像用トナー外添剤およびこれを用いたトナーであって、例えば、高画質化、カラー化のために用いられる小粒径トナー用の外添剤およびこれを用いたトナーに関する。 The present invention relates to spherical silica fine particles having a hydrophobic surface and a nucleus containing a hydrophilic group. The present invention also relates to a toner external additive for developing an electrostatic charge image used for developing an electrostatic charge image in an electrophotographic method, an electrostatic recording method, etc., and a toner using the same. The present invention relates to an external additive for a small particle size toner used for colorization and a toner using the same.
テトラアルコキシシランを酸あるいはアルカリ触媒の存在下、水−アルコール混合溶媒中、常温で加水分解縮合し、シリカ微粒子を得る方法(ゾルゲル法)は良く知られている。この方法は、粒子径が単分散の微細球状粒子が得られる点、原料、溶媒、触媒に由来する不純物が極めて少ない点、加水分解縮合の操作、装置が簡単で生産性が高い点などで優れている。 A method (sol-gel method) in which tetraalkoxysilane is hydrolyzed and condensed at room temperature in a water-alcohol mixed solvent in the presence of an acid or an alkali catalyst is well known. This method is excellent in that fine spherical particles with a monodisperse particle size can be obtained, that there are very few impurities derived from raw materials, solvents and catalysts, the operation of hydrolysis condensation, the equipment is simple and the productivity is high. ing.
このようなシリカ微粒子に機能を付与する場合、その微粒子表面のシラノール基との反応性を生かしてシランカップリング剤、チタンカップリング剤、シリル化剤、疎水化剤等で表面改質する方法、シリコーンオイル、4級アンモニウム塩等を表面に物理吸着させる方法等が広く行なわれている。 When imparting a function to such silica fine particles, a method of modifying the surface with a silane coupling agent, a titanium coupling agent, a silylating agent, a hydrophobizing agent, etc. by utilizing the reactivity with silanol groups on the surface of the fine particles, A method of physically adsorbing silicone oil, quaternary ammonium salt or the like on the surface is widely used.
しかし、シリカ微粒子内部に機能性基を含有するシリカ微粒子は知られていない。このように、シリカ微粒子内部に機能性基を含有することで微粒子全体の諸特性を変えることが出来ると期待される。 However, silica fine particles containing functional groups inside the silica fine particles are not known. Thus, it is expected that various characteristics of the whole fine particles can be changed by containing a functional group in the fine silica particles.
電子写真法等で使用する乾式現像剤は、結着樹脂中に着色剤を分散したトナーそのものを用いる一成分現像剤と、そのトナーにキャリアを混合した二成分現像剤とに大別でき、そしてこれらの現像剤を用いてコピー操作を行う場合、プロセス適合性を有するためには、現像剤が流動性、耐ケーキング性、定着性、帯電性、クリーニング性等に優れていることが必要である。そして、流動性、耐ケーキング性、定着性、クリーニング性等を高めるために、無機微粒子をトナーに添加することがしばしば行われている。しかしながら、無機微粒子は、帯電性に大きな影響を与えてしまう。例えば、一般に使用されているシリカ系微粉末の場合には、負極性が強く、特に低温低湿下において負帯電性トナーの帯電性を過度に増大させ、一方、高温高湿下においては水分を取り込んで帯電性を減少させるため、両者の帯電性に大きな差を生ぜしめてしまうという問題があった。その結果、濃度再現不良、背景カブリの原因となることがあった。また、無機微粒子の分散性がトナー特性に大きな影響を与え、分散性が不均一な場合、流動性、耐ケーキング性、定着性に所望の特性が得られなかったり、クリーニング性が不十分になって、感光体上にトナー固着等が発生し、黒点状の画像欠陥が生じる原因となることがあった。これらの点を改善する目的で、無機微粒子の表面を疎水化処理したものが種々提案されている(特許文献1〜4)。 Dry developers used in electrophotography and the like can be broadly classified into a one-component developer using a toner itself in which a colorant is dispersed in a binder resin, and a two-component developer in which the toner is mixed with a carrier, and When performing a copying operation using these developers, in order to have process compatibility, the developer needs to be excellent in fluidity, caking resistance, fixing properties, charging properties, cleaning properties, and the like. . In order to improve fluidity, caking resistance, fixing properties, cleaning properties, etc., inorganic fine particles are often added to the toner. However, the inorganic fine particles have a great influence on the chargeability. For example, generally used silica-based fine powder has a strong negative polarity and excessively increases the chargeability of the negatively chargeable toner, particularly under low temperature and low humidity, while taking up moisture under high temperature and high humidity. Therefore, there is a problem that a large difference is caused in the chargeability between the two. As a result, density reproduction failure and background fogging may occur. In addition, the dispersibility of the inorganic fine particles has a great influence on the toner characteristics. If the dispersibility is not uniform, desired characteristics cannot be obtained in the fluidity, caking resistance, and fixability, or the cleaning performance becomes insufficient. As a result, toner sticking or the like may occur on the photoreceptor, which may cause black spot image defects. In order to improve these points, various types in which the surface of inorganic fine particles has been subjected to a hydrophobic treatment have been proposed (Patent Documents 1 to 4).
しかしながら、より高画質化を図るために有機感光体を使用したり、より小粒径のトナーを使用したりする場合には、上記の無機微粒子を使用したのでは十分な性能が得られなくなっている。有機感光体は無機感光体に比べてその表面が柔らかく、かつ反応性が高いので寿命が短くなりやすい。したがって、有機感光体を用いた場合には、トナーに添加された無機微粒子によって感光体の変質や削れが生じ易い。また、トナーを小粒径にした場合には、通常用いられる粒子径のトナーと比較して粉体流動性が悪いので無機微粒子をより多量に添加しなければならなくなるが、その結果、無機微粒子が感光体へのトナー付着の原因となることがあった。 However, when using an organophotoreceptor for higher image quality or using a toner having a smaller particle diameter, sufficient performance cannot be obtained by using the above-mentioned inorganic fine particles. Yes. Organic photoreceptors have a softer surface and higher reactivity than inorganic photoreceptors, so their life is likely to be shortened. Therefore, when an organic photoreceptor is used, the photoreceptor is likely to be altered or scraped by the inorganic fine particles added to the toner. In addition, when the toner has a small particle size, the powder fluidity is poor as compared with a toner having a particle size that is usually used, and thus a larger amount of inorganic fine particles must be added. May cause toner adhesion to the photoreceptor.
そこで、本発明の課題は、シリカ微粒子内部に機能性基を含有するシリカ微粒子を提供すること、ならびに有機感光体との反応や相互作用がなく、従来の無機微粒子より柔らかいため感光体の変質や割れの原因とならず、また流動性が良好であるため感光体へのトナー付着が生じない、環境状態に依存されない帯電性を持つトナー用外添剤、および該外添剤を外添してなるトナーを提供することにある。 Accordingly, an object of the present invention is to provide silica fine particles containing a functional group inside the silica fine particles, and there is no reaction or interaction with the organic photoconductor, which is softer than conventional inorganic fine particles, An external additive for toner that does not cause cracking and has good fluidity so that toner adhesion to the photoreceptor does not occur, and has a charging property that does not depend on environmental conditions, and the external additive is added. To provide a toner.
本発明者らは、前記の課題を解決するため鋭意検討の結果、本発明を為すに至った。
即ち、本発明は第一に、
(1)(A)一般式(I):
Si(OR1)4
(式中、R1は独立に炭素原子数1〜6の1価炭化水素基である)
で示されるテトラアルコキシシランもしくはその部分加水分解縮合物、またはそれらの組み合わせ、ならびに
(B)加水分解性シリル基および親水性基を有する化合物
の共加水分解および縮合反応によって得られる親水性基含有球状シリカ微粒子と、
(2)一般式(II):
R2 3SiNHSiR2 3
(式中、R2は独立に炭素原子数1〜6の1価炭化水素基である)
で示されるシラザン化合物、もしくは一般式(III):
R2 3SiX
(式中、R2は前述のとおりであり、XはOH基または加水分解性基である)
で示されるシラン化合物、またはそれらの組み合わせと
を反応させることによって得られる、1次粒子の平均粒子径が0.01〜5μmであり、表面が疎水性で核が親水性基含有の球状シリカ微粒子、
を提供する。
As a result of intensive studies in order to solve the above problems, the present inventors have made the present invention.
That is, the present invention firstly
(1) (A) General formula (I):
Si (OR 1 ) 4
(Wherein R 1 is independently a monovalent hydrocarbon group having 1 to 6 carbon atoms)
A tetraalkoxysilane or a partially hydrolyzed condensate thereof, or a combination thereof, and
(B) hydrophilic group-containing spherical silica fine particles obtained by cohydrolysis and condensation reaction of a compound having a hydrolyzable silyl group and a hydrophilic group;
(2) General formula (II):
R 2 3 SiNHSiR 2 3
(Wherein R 2 is independently a monovalent hydrocarbon group having 1 to 6 carbon atoms)
Or a general formula (III):
R 2 3 SiX
(Wherein R 2 is as described above, and X is an OH group or a hydrolyzable group)
Spherical silica fine particles having an average primary particle diameter of 0.01 to 5 μm, a hydrophobic surface, and a nucleus containing a hydrophilic group, obtained by reacting with the silane compound represented by formula (1) or a combination thereof. ,
I will provide a.
本発明は第二に、前記表面が疎水性で核が親水性基含有の球状シリカ微粒子からなる静電荷像現像用トナー外添剤を提供する。 The present invention secondly provides a toner external additive for developing an electrostatic image comprising spherical silica fine particles having a hydrophobic surface and nuclei containing a hydrophilic group.
本発明は第三に、前記静電荷像現像用トナー外添剤を外添してなるトナーを提供する。 Thirdly, the present invention provides a toner obtained by externally adding the toner external additive for developing an electrostatic charge image.
本発明のシリカ微粒子は、該微粒子内部に機能性基を含有するものである。したがって、この本発明のシリカ微粒子からなる静電荷像現像用トナー外添剤を適用することにより、トナー乃至現像剤の流動性、耐ケーキング性、定着性、クリーニング性が優れるだけでなく、感光体の変質や削れが生じず、また、感光体へのトナー付着が生じない、環境状態に依存されない帯電性を付与する等の効果が得られる。 The silica fine particles of the present invention contain a functional group inside the fine particles. Accordingly, by applying the toner external additive for developing electrostatic images comprising the silica fine particles of the present invention, not only the fluidity, the caking resistance, the fixing property, and the cleaning property of the toner or developer are excellent, but also the photoreceptor. There are obtained effects such as no deterioration or shaving of the toner, no toner adhesion to the photosensitive member, and imparting charging property independent of environmental conditions.
本発明の表面が疎水性で核が親水性基含有の球状シリカ微粒子は、上述のとおりにして製造される。以下、詳細について説明する。 The spherical silica fine particles having a hydrophobic surface and a nucleus containing a hydrophilic group according to the present invention are produced as described above. Details will be described below.
<(1)親水性基含有球状シリカ微粒子>
(1)親水性基含有球状シリカ微粒子は、上述のとおり、(A)前記一般式(I)で示されるテトラアルコキシシランもしくはその部分加水分解縮合物、またはそれらの組み合わせ(以下、「テトラアルコキシシラン等」という)、ならびに
(B)加水分解性シリル基および親水性基を有する化合物
の共加水分解および縮合反応によって得られる。
<(1) Spherical silica fine particles containing hydrophilic groups>
(1) As described above, the hydrophilic group-containing spherical silica fine particles include (A) a tetraalkoxysilane represented by the general formula (I) or a partial hydrolysis condensate thereof, or a combination thereof (hereinafter referred to as “tetraalkoxysilane”). Etc.), and
(B) It is obtained by cohydrolysis and condensation reaction of a compound having a hydrolyzable silyl group and a hydrophilic group.
−(A)テトラアルコキシシラン等−
(A)成分のテトラアルコキシシラン等は、前記一般式(I)で表されるもの、またはその部分加水分解縮合物である。なお、部分加水分解縮合物の分子中には、後述の加水分解・縮合反応に関与できるアルコキシ基等の加水分解性基が残存している。
-(A) tetraalkoxysilane, etc.-
The (A) component tetraalkoxysilane and the like are those represented by the above general formula (I) or a partially hydrolyzed condensate thereof. In the molecule of the partially hydrolyzed condensate, hydrolyzable groups such as alkoxy groups that can participate in the hydrolysis / condensation reaction described below remain.
一般式(I)中、R1で表される一価炭化水素基としては、例えば、メチル基、エチル基、イソプロピル基、ブチル基等のアルキル基等が挙げられる。 In the general formula (I), examples of the monovalent hydrocarbon group represented by R 1 include alkyl groups such as a methyl group, an ethyl group, an isopropyl group, and a butyl group.
(A)成分のテトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等が挙げられる。また、前記テトラアルコキシシランの部分加水分解縮合物としては、例えば、メチルシリケート、エチルシリケート等のアルキルシリケートが挙げられる。これらのテトラアルコキシシラン等は、一種単独で用いても二種以上を併用してもよい。 Examples of the (A) component tetraalkoxysilane include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane. Examples of the partially hydrolyzed condensate of tetraalkoxysilane include alkyl silicates such as methyl silicate and ethyl silicate. These tetraalkoxysilanes may be used alone or in combination of two or more.
−(B)加水分解性シリル基および親水性基を有する化合物−
(B)成分の加水分解性シリル基および親水性基を有する化合物は、これらの官能基を有するものであれば特に限定されない。なお、(B)成分の加水分解性シリル基および親水性基を有する化合物は、一種単独で用いても二種以上を併用してもよい。
-(B) Compound having hydrolyzable silyl group and hydrophilic group-
The compound having a hydrolyzable silyl group and a hydrophilic group as the component (B) is not particularly limited as long as it has these functional groups. In addition, the compound which has a hydrolyzable silyl group and hydrophilic group of (B) component may be used individually by 1 type, or may use 2 or more types together.
加水分解性シリル基とは、加水分解性基が結合したシリル基であり、例えば、式:(Ra)x(Rb)3-xSi−(式中、Raは加水分解性基であり、Rbは炭素原子数1〜10の1価炭化水素基、例えば、アルキル基およびフェニル基であり、xは1〜3の整数である)で表される。この加水分解性基としては、例えば、アルコキシ基、アミノ基、アシルオキシ基、アルケノオキシ基、ケトキシモ基、N−メチルベンズアミド基等が挙げられる。前記アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基等が挙げられる。 The hydrolyzable silyl group is a silyl group to which a hydrolyzable group is bonded. For example, the formula: (R a ) x (R b ) 3−x Si— (wherein R a is a hydrolyzable group. Rb is a monovalent hydrocarbon group having 1 to 10 carbon atoms, for example, an alkyl group and a phenyl group, and x is an integer of 1 to 3. Examples of the hydrolyzable group include an alkoxy group, an amino group, an acyloxy group, an alkenooxy group, a ketoximo group, and an N-methylbenzamide group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a hexyloxy group.
親水性基とは、水と強く相互作用することのできる有極性の基のことである。この親水性基としては、例えば、カルボキシル基、水酸基、アミノ基、スルホン酸基、ポリオキシアルキレン鎖(例えば、ポリオキシエチレン基、ポリオキシプロピレン基等のポリオキシアルキレン鎖)を有する基等が挙げられ、好ましくは、ポリオキシエチレン鎖を有する基である。 A hydrophilic group is a polar group that can interact strongly with water. Examples of the hydrophilic group include a carboxyl group, a hydroxyl group, an amino group, a sulfonic acid group, and a group having a polyoxyalkylene chain (for example, a polyoxyalkylene chain such as a polyoxyethylene group or a polyoxypropylene group). Preferably, it is a group having a polyoxyethylene chain.
(B)成分の加水分解性シリル基および親水性基を有する化合物としては、例えば、一般式(IV):
(R3O)aR4 3−aSiR5O(C2H4O)p(C3H6O)qR6
(式中、aは1〜3の整数であり、R3は独立に炭素原子数1〜10のアルキル基であり、R4は独立に炭素原子数1〜10のアルキル基またはフェニル基であり、R5は炭素原子数2〜5の2価炭化水素基であり、R6は水素原子、炭素原子数1〜10のアルキル基、または−R5SiR4 3−a(OR3)a(ここで、R3、R4、R5およびaは前記のとおりである)で表される基であり、pは2〜200の整数であり、qは0〜198の整数であり、但し、p+qは3〜200の整数であり、p/qは1以上である。)
で示される化合物が好ましい。
Examples of the compound having a hydrolyzable silyl group and a hydrophilic group as the component (B) include, for example, the general formula (IV):
(R 3 O) a R 4 3-a SiR 5 O (C 2 H 4 O) p (C 3 H 6 O) q R 6
(Wherein, a is an integer of 1 to 3 , R 3 is independently an alkyl group having 1 to 10 carbon atoms, and R 4 is independently an alkyl group having 1 to 10 carbon atoms or a phenyl group. , R 5 is a divalent hydrocarbon group having 2 to 5 carbon atoms, R 6 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or —R 5 SiR 4 3-a (OR 3 ) a ( Wherein R 3 , R 4 , R 5 and a are as described above), p is an integer of 2 to 200, and q is an integer of 0 to 198, provided that p + q is an integer of 3 to 200, and p / q is 1 or more.)
The compound shown by these is preferable.
一般式(IV)中、R3で表されるアルキル基としては、例えば、メチル基、エチル基、イソプロピル基、n−プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。 In general formula (IV), examples of the alkyl group represented by R 3 include a methyl group, an ethyl group, an isopropyl group, an n-propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a nonyl group. Group, decyl group and the like.
R4で表されるアルキル基としては、前記R3で表されるアルキル基として例示したものが挙げられる。 Examples of the alkyl group represented by R 4 include those exemplified as the alkyl group represented by R 3 .
R5で表される2価炭化水素基としては、例えば、エチレン基、トリメチレン基、プロピレン基等のアルキレン基が挙げられる。 Examples of the divalent hydrocarbon group represented by R 5 include alkylene groups such as an ethylene group, a trimethylene group, and a propylene group.
R6で表されるアルキル基としては、前記R3で表されるアルキル基として例示したものが挙げられる。 Examples of the alkyl group represented by R 6 include those exemplified as the alkyl group represented by R 3 .
一般式(IV)で示される化合物の具体例としては、
(CH3O)3SiC3H6O(C2H4O)10H 、
(CH3O)3SiC3H6O(C2H4O)10CH3 、
(CH3O)3SiC3H6O(C2H4O)10C3H6Si(OCH3)3 、
(CH3CH2O)3SiC3H6O(C2H4O)20(C3H6O)10CH3 、
(CH3O)3SiC3H6O(C2H4O)30C2H5 、
(CH3)(CH3O)2SiC3H6O(C2H4O)5C3H7 、
(CH3O)3SiC4H8O(C2H4O)10C4H9 、
(C4H9O)(CH3)2SiC5H10O(C2H4O)20CH3
等が挙げられる。
Specific examples of the compound represented by the general formula (IV) include
(CH 3 O) 3 SiC 3 H 6 O (C 2 H 4 O) 10 H,
(CH 3 O) 3 SiC 3 H 6 O (C 2 H 4 O) 10 CH 3 ,
(CH 3 O) 3 SiC 3 H 6 O (C 2 H 4 O) 10 C 3 H 6 Si (OCH 3 ) 3 ,
(CH 3 CH 2 O) 3 SiC 3 H 6 O (C 2 H 4 O) 20 (C 3 H 6 O) 10 CH 3 ,
(CH 3 O) 3 SiC 3 H 6 O (C 2 H 4 O) 30 C 2 H 5 ,
(CH 3 ) (CH 3 O) 2 SiC 3 H 6 O (C 2 H 4 O) 5 C 3 H 7 ,
(CH 3 O) 3 SiC 4 H 8 O (C 2 H 4 O) 10 C 4 H 9 ,
(C 4 H 9 O) (CH 3 ) 2 SiC 5 H 10 O (C 2 H 4 O) 20 CH 3
Etc.
(B)加水分解性シリル基および親水性基を有する化合物の配合量は、特に限定されないが、(A)テトラアルコキシシラン等中のSiO2単位の質量に対して、通常、0.1〜20質量%であり、好ましくは1〜10質量%である。この配合量が、かかる範囲を満たすと、得られるトナー乃至現像剤が、流動性、耐ケーキング性、定着性、クリーニング性、環境状態に依存しない帯電性等の諸特性により優れたものとなる。 (B) The amount of a compound having a hydrolyzable silyl group and a hydrophilic group is not particularly limited, (A) relative to the weight of SiO 2 units in tetraalkoxy silane, typically, 0.1 to 20 It is mass%, Preferably it is 1-10 mass%. When this blending amount satisfies such a range, the obtained toner or developer is excellent in various properties such as fluidity, caking resistance, fixing property, cleaning property, and charging property independent of environmental conditions.
−共加水分解・縮合反応−
前述の(A)テトラアルコキシシラン等ならびに(B)加水分解性シリル基および親水性基を有する化合物の共加水分解および縮合反応は、通常、水、親水性有機溶媒、塩基性化合物等の存在下で行われる。この反応により、親水性基含有球状シリカ微粒子が得られる。なお、親水性基含有球状シリカ微粒子の分子中には、アルコキシ基等の加水分解性基が実質的に残存していない。ここで、「実質的に残存していない」とは、存在量が0または1質量%以下であることを意味する。
-Co-hydrolysis / condensation reaction-
The co-hydrolysis and condensation reaction of the aforementioned (A) tetraalkoxysilane and the like and (B) a compound having a hydrolyzable silyl group and a hydrophilic group are usually carried out in the presence of water, a hydrophilic organic solvent, a basic compound, etc. Done in By this reaction, hydrophilic group-containing spherical silica fine particles are obtained. It should be noted that substantially no hydrolyzable groups such as alkoxy groups remain in the molecules of the hydrophilic group-containing spherical silica fine particles. Here, “substantially does not remain” means that the abundance is 0 or 1% by mass or less.
親水性有機溶媒は、(A)テトラアルコキシシラン等、(B)加水分解性シリル基および親水性基を有する化合物、ならびに水を溶解するものであれば、特に限定されない。その具体例としては、アルコール類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、酢酸セロソルブ等のセロソルブ類;アセトン、メチルエチルケトン等のケトン類;ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられ、好ましくはアルコール類である。 The hydrophilic organic solvent is not particularly limited as long as it dissolves (A) tetraalkoxysilane, (B) a compound having a hydrolyzable silyl group and a hydrophilic group, and water. Specific examples thereof include alcohols; cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, and cellosolve acetate; ketones such as acetone and methylethylketone; ethers such as dioxane and tetrahydrofuran; and preferably alcohols .
アルコール類としては、例えば、一般式(V):
R7OH
(式中、R7は炭素原子数1〜6の1価炭化水素基である)
で示されるアルコールが挙げられる。
Examples of alcohols include, for example, general formula (V):
R 7 OH
(Wherein R 7 is a monovalent hydrocarbon group having 1 to 6 carbon atoms)
The alcohol shown by is mentioned.
前記一般式(V)中、R7で表される1価炭化水素基としては、例えば、メチル基、エチル基、イソプロピル基、ブチル基等が挙げられる。この一般式(V)で表されるアルコールとしては、例えば、メタノール、エタノール、イソプロパノール、ブタノール等が挙げられる。このアルコールの炭素原子数が増すと生成するシリカ微粒子の粒子径が大きくなるので、目的とするシリカ微粒子の粒子径により、アルコールの種類を選択することが望ましい。 In the general formula (V), examples of the monovalent hydrocarbon group represented by R 7 include a methyl group, an ethyl group, an isopropyl group, and a butyl group. Examples of the alcohol represented by the general formula (V) include methanol, ethanol, isopropanol, butanol and the like. As the number of carbon atoms of the alcohol increases, the particle size of the silica fine particles to be generated increases. Therefore, it is desirable to select the type of alcohol depending on the particle size of the target silica fine particles.
塩基性化合物としては、例えば、アンモニア、ジメチルアミン、ジエチルアミン等が挙げられ、好ましくはアンモニアである。塩基性化合物は、通常、水に所要量溶解した後、得られた水溶液(塩基性水溶液)を前記親水性有機溶媒と混合すればよい。 Examples of the basic compound include ammonia, dimethylamine, diethylamine and the like, preferably ammonia. The basic compound is usually prepared by dissolving a required amount in water and then mixing the obtained aqueous solution (basic aqueous solution) with the hydrophilic organic solvent.
このとき使用される水の量は、(A)テトラアルコキシシラン等ならびに(B)加水分解性シリル基および親水性基を有する化合物中のアルコキシ基1モルに対して0.5〜5モルであることが好ましい。また、水と親水性有機溶媒との比率は、質量比で、0.5〜10であることが好ましい。さらに、塩基性化合物の量は、(A)テトラアルコキシシラン等ならびに(B)加水分解性シリル基および親水性基を有する化合物中のアルコキシ基1モルに対して0.01〜1モルであることが好ましい。 The amount of water used at this time is 0.5 to 5 mol with respect to 1 mol of alkoxy group in the compound having (A) tetraalkoxysilane and the like and (B) hydrolyzable silyl group and hydrophilic group. preferable. Moreover, it is preferable that the ratio of water and a hydrophilic organic solvent is 0.5-10 by mass ratio. Furthermore, the amount of the basic compound is preferably 0.01 to 1 mol with respect to 1 mol of the alkoxy group in the compound having (A) tetraalkoxysilane and the like and (B) a hydrolyzable silyl group and a hydrophilic group. .
(A)テトラアルコキシシラン等ならびに(B)加水分解性シリル基および親水性基を有する化合物の共加水分解・縮合反応は、例えば、塩基性化合物と親水性有機溶媒と水との混合物中に、(A)テトラアルコキシシラン等ならびに(B)加水分解性シリル基および親水性基を有する化合物を滴下する方法で行えばよい。 The cohydrolysis / condensation reaction of (A) tetraalkoxysilane and the like and (B) a compound having a hydrolyzable silyl group and a hydrophilic group can be performed, for example, in a mixture of a basic compound, a hydrophilic organic solvent, and water. (A) Tetraalkoxysilane and the like and (B) a compound having a hydrolyzable silyl group and a hydrophilic group may be added dropwise.
(2)シラザン化合物/シラン化合物
(2)シラザン化合物およびシラン化合物は、各々、前記一般式(II)および一般式(III)で示される。
(2) Silazane compound / silane compound (2) The silazane compound and the silane compound are represented by the general formula (II) and the general formula (III), respectively.
前記一般式(II)および一般式(III)中、R2で表される一価炭化水素基としては、例えば、メチル基、エチル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基等が挙げられる。 In the general formula (II) and general formula (III), examples of the monovalent hydrocarbon group represented by R 2 include alkyl such as methyl, ethyl, isopropyl, butyl, pentyl, and hexyl groups. Groups and the like.
前記一般式(III)中、Xで表される加水分解性基としては、例えば、前記で例示したもの、塩素原子等のハロゲン原子等が挙げられる。 In the general formula (III), examples of the hydrolyzable group represented by X include those exemplified above and halogen atoms such as chlorine atom.
前記一般式(II)で示されるシラザン化合物としては、例えば、ヘキサメチルジシラザンが挙げられる。前記一般式(III)で示されるシラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物;トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン;トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン;トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン;トリメチルアセトキシシラン等のモノアシロキシシラン等が挙げられる。これらのシラザン化合物およびシラン化合物は、各々、一種単独で用いても二種以上を併用してもよい。 Examples of the silazane compound represented by the general formula (II) include hexamethyldisilazane. Examples of the silane compound represented by the general formula (III) include monosilanol compounds such as trimethylsilanol and triethylsilanol; monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane; monoalkoxysilanes such as trimethylmethoxysilane and trimethylethoxysilane; Examples thereof include monoaminosilanes such as trimethylsilyldimethylamine and trimethylsilyldiethylamine; monoacyloxysilanes such as trimethylacetoxysilane. These silazane compounds and silane compounds may be used alone or in combination of two or more.
これらのシラザン化合物および/またはシラン化合物の使用量は、(A)テトラアルコキシシラン等中のSiO2単位1モルに対して、通常、0.1〜0.5モルであり、好ましくは0.2〜0.3モルである。 The amount of these silazane compounds and / or silane compounds used is usually 0.1 to 0.5 moles, preferably 0.2 moles per mole of SiO 2 units in (A) tetraalkoxysilane and the like. ~ 0.3 mol.
−成分(1)と成分(2)との反応−
前記(1)親水性基含有球状シリカ微粒子は、通常、前記親水性有機溶媒および水を分散媒とした分散液の状態で得られる。この親水性基含有球状シリカ微粒子は、そのままの状態で上記(2)シラザン化合物/シラン化合物と反応させてもよいが、分散媒を活性水素を持たない有機溶媒に変換してから反応させてもよい。この(2)シラザン化合物/シラン化合物との反応により、(1)親水性基含有球状シリカ微粒子の表面に残存するシラノール基がトリアルキルシリル化され、凝集が防止される。
-Reaction of component (1) and component (2)-
The (1) hydrophilic group-containing spherical silica fine particles are usually obtained in the form of a dispersion using the hydrophilic organic solvent and water as a dispersion medium. The hydrophilic group-containing spherical silica fine particles may be reacted with the (2) silazane compound / silane compound as they are, or may be reacted after converting the dispersion medium to an organic solvent having no active hydrogen. Good. By the reaction with (2) silazane compound / silane compound, (1) silanol groups remaining on the surface of the hydrophilic group-containing spherical silica fine particles are trialkylsilylated to prevent aggregation.
活性水素を持たない有機溶媒としては、例えば、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン等が挙げられる。前記分散媒を活性水素を持たない有機溶媒に変換する場合には、該分散液に活性水素を持たない有機溶媒を添加し、前記親水性溶媒および水を留去する操作を行う(必要に応じてこの操作を繰り返す)。添加される活性水素を持たない有機溶媒の量は、前記親水性基含有球状シリカ微粒子分散液に対して、質量比で、通常、0.5〜5倍量であり、好ましくは1〜2倍量である。 Examples of the organic solvent having no active hydrogen include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, and the like. When converting the dispersion medium into an organic solvent having no active hydrogen, an operation of adding an organic solvent having no active hydrogen to the dispersion and distilling off the hydrophilic solvent and water is performed (if necessary). Repeat this operation). The amount of the organic solvent having no active hydrogen added is usually 0.5 to 5 times, preferably 1 to 2 times the mass ratio of the hydrophilic group-containing spherical silica fine particle dispersion. Amount.
前記反応により、表面が疎水性で核が親水性基含有の球状シリカ微粒子が得られる。さらに、この球状シリカ微粒子は上記分散液から常法によって乾燥した粉体として得ることができる。該球状シリカ微粒子は、核(シラザン化合物および/またはシラン化合物との反応による影響を受けた表面部を除く本体部分)がSiO2からなるシリカ構造中に親水性基が共有結合により組み込まれてなり、その表面にR2 3SiO1/2単位(R2は前記のとおりである)が導入されてなる構造を有する。 By the reaction, spherical silica fine particles having a hydrophobic surface and a nucleus containing a hydrophilic group are obtained. Further, the spherical silica fine particles can be obtained from the above dispersion as a powder dried by a conventional method. In the spherical silica fine particles, a hydrophilic group is incorporated by a covalent bond in a silica structure in which a nucleus (a main body part excluding a surface part affected by a reaction with a silazane compound and / or a silane compound) is made of SiO 2. The surface has a structure in which R 2 3 SiO 1/2 units (R 2 is as described above) are introduced on the surface.
また、この表面が疎水性で核が親水性基含有の球状シリカ微粒子に対して、必要に応じて種々のシランカップリング剤、ジメチルジメトキシシラン等のシラン類、ジメチルシリコーン等のシリコーン類で更なる表面疎水化処理を行ってもよい。 In addition, spherical silica fine particles having a hydrophobic surface and a nucleus containing a hydrophilic group are further treated with various silane coupling agents, silanes such as dimethyldimethoxysilane, and silicones such as dimethylsilicone as necessary. Surface hydrophobing treatment may be performed.
−表面が疎水性で核が親水性基含有の球状シリカ微粒子−
前記表面が疎水性で核が親水性基含有の球状シリカ微粒子は、1次粒子の形態で外添剤としての機能を発現するので、合一、凝集等により2次粒子を形成していないことが好ましい。
-Spherical silica fine particles with hydrophobic surface and nuclei containing hydrophilic groups-
The spherical silica fine particles having a hydrophobic surface and a nucleus containing a hydrophilic group express a function as an external additive in the form of primary particles, so that secondary particles are not formed by coalescence or aggregation. Is preferred.
前記表面が疎水性で核が親水性基含有の球状シリカ微粒子の1次粒子の平均粒子径は、現像剤の流動性、耐ケーキング性及び定着性を良好にし、感光体への悪影響を低減する観点から、0.01〜5μmであることが必要であり、好ましくは0.05〜0.5μmである。この1次粒子径が0.01μmより小さい場合には、凝集により現像剤の流動性、耐ケーキング性、定着性が得られないことがあり、5μmを超える場合には、感光体の変性、削れ、トナーへの付着性の低下が生じることがある。 The average particle diameter of the primary particles of spherical silica fine particles having a hydrophobic surface and nuclei containing hydrophilic groups improves the flowability, caking resistance and fixability of the developer, and reduces adverse effects on the photoreceptor. From the viewpoint, it is necessary to be 0.01 to 5 μm, and preferably 0.05 to 0.5 μm. When the primary particle size is smaller than 0.01 μm, the developer fluidity, caking resistance, and fixing property may not be obtained due to aggregation. When the primary particle size exceeds 5 μm, the photoreceptor may be modified or scraped. In some cases, adhesion to the toner may be reduced.
なお、本明細書において、「平均粒子径」とは、表面が疎水性で核が親水性基含有の球状シリカ微粒子の1次粒子の体積平均粒子径を意味する。また、「球状」とは、下記式:
(球状係数)=(実際の粒子と同じ体積を有する球の表面積)/(実際の粒子の表面積)
で定義される粒子の球状係数が、通常、0.6〜1であり、好ましくは0.8〜1であることを意味する。
In the present specification, the “average particle diameter” means the volume average particle diameter of primary particles of spherical silica fine particles having a hydrophobic surface and a nucleus containing a hydrophilic group. In addition, “spherical” means the following formula:
(Spherical coefficient) = (Surface area of sphere having the same volume as actual particle) / (Surface area of actual particle)
It means that the spherical coefficient of the particle defined by is usually 0.6 to 1, preferably 0.8 to 1.
本発明の表面が疎水性で核が親水性基含有の球状シリカ微粒子は、(i)核(粒子核)に親水性基を含有し一定量の水分を保持できると共にその表面が疎水化されているため低湿環境下においても保持した水分を逃がしにくく、(ii)柔軟性を持つシリカとなり、(iii)表面が疎水化されシラノール基等の反応性基が残存せず、(iv)高分散性、低凝集性で流動性がよい等の理由から優れた諸特性を有し、例えば、後述するようにトナー外添剤として用いた場合には、トナー乃至現像剤が、優れた流動性、耐ケーキング性、定着性、クリーニング性、環境状態に依存しない帯電性等の諸特性を有するものとなる。 The spherical silica particles having a hydrophobic surface and a nucleus containing a hydrophilic group according to the present invention have (i) a hydrophilic group in the nucleus (particle nucleus) and can retain a certain amount of water and the surface is hydrophobized. (Ii) Highly dispersible. (Iv) Highly dispersible. (Iv) Highly dispersible For example, when used as a toner external additive as will be described later, the toner or developer has excellent fluidity and resistance. It has various characteristics such as caking property, fixing property, cleaning property, and charging property independent of environmental conditions.
本発明の表面が疎水性で核が親水性基含有の球状シリカ微粒子は、トナー外添剤等として使用することができる。該微粒子からなるトナー外添剤(以下、単に「球状シリカ微粒子」ともいう)のトナーに対する配合量は、トナー100質量部に対して、通常、0.01〜20質量部であり、好ましくは0.1〜5質量部である。この配合量がかかる範囲を満たすと、トナーへの付着量が適切なものとなりより優れた流動性が得られ、さらにトナー帯電性や経済性にも優れる。 The spherical silica fine particles having a hydrophobic surface and a nucleus containing a hydrophilic group according to the present invention can be used as an external toner additive. The blending amount of the toner external additive composed of the fine particles (hereinafter also simply referred to as “spherical silica fine particles”) with respect to the toner is usually 0.01 to 20 parts by mass, preferably 0 with respect to 100 parts by mass of the toner. .1 to 5 parts by mass. When the blending amount satisfies such a range, the amount of adhesion to the toner becomes appropriate, and more excellent fluidity can be obtained, and further, the toner charging property and economical efficiency are also excellent.
前記トナー外添剤が添加されるトナー粒子としては、結着樹脂と着色剤とを含有してなるものであって、粉砕法あるいは重合法によって製造される公知のものが使用できる。また、必要に応じて帯電制御剤が添加されていてもよい。 As the toner particles to which the toner external additive is added, known particles produced by a pulverization method or a polymerization method, which contain a binder resin and a colorant, can be used. Moreover, the charge control agent may be added as needed.
本発明のトナー外添剤が添加された正電荷像現像用トナーは、一成分現像剤として使用できるが、それをキャリアと混合して二成分現像剤として使用することもできる。二成分現像剤として使用する場合には、上記トナー外添剤は予めトナー粒子に添加せず、トナーとキャリアとの混合時に添加してトナーの表面被覆を行ってもよい。キャリアとしては、鉄粉等、あるいはそれらの表面に樹脂コーティングされた公知のものが使用される。 The positive charge image developing toner to which the toner external additive of the present invention is added can be used as a one-component developer, but it can also be used as a two-component developer by mixing it with a carrier. When used as a two-component developer, the toner external additive may not be added to the toner particles in advance, but may be added when the toner and the carrier are mixed to coat the surface of the toner. As the carrier, iron powder or the like, or a known one whose surface is resin-coated is used.
以下、実施例および比較例を示して本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to these Examples.
−実施例1−
[表面が疎水性で核が親水性基含有の球状シリカ微粒子の合成1]
攪拌機と滴下ロートと温度計とを備えた3リットルのガラス製反応器に、メタノール623.7gと水41.4gと28質量%アンモニア水49.8gとを添加して混合した。この混合溶液を35℃に調整し、攪拌しながら、テトラメトキシシラン1143.0g(7.52モル)と下記一般式(VI):
(CH3O)3SiCH2CH2CH2O(C2H4O)10CH3
で表される化合物24.1g(0.038モル)との混合物、ならびに5.2質量%アンモニア水418.1gを同時に添加開始し、4時間かけて滴下した。滴下終了後も0.5時間攪拌を続け、共加水分解および縮合反応を行うことにより、親水性基含有球状シリカ微粒子の分散液を得た。この分散液に室温でヘキサメチルジシラザン242.0g(1.5モル)を添加した後、該分散液を60℃に加熱し3時間反応させ、前記シリカ微粒子をトリメチルシリル化した。その後、前記分散液から溶媒を減圧下で留去して、表面が疎水性で核が親水性基含有の球状シリカ微粒子536gを得た。得られた球状シリカ微粒子について、以下の基準に従って、試験を行った。得られた結果は表1に示す。
Example 1
[Synthesis of spherical silica particles with hydrophobic surface and nuclei containing hydrophilic groups 1]
In a 3 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer, 623.7 g of methanol, 41.4 g of water, and 49.8 g of 28% by mass ammonia water were added and mixed. The mixed solution was adjusted to 35 ° C., and while stirring, 1143.0 g (7.52 mol) of tetramethoxysilane and the following general formula (VI):
(CH 3 O) 3 SiCH 2 CH 2 CH 2 O (C 2 H 4 O) 10 CH 3
A mixture of 24.1 g (0.038 mol) of the compound represented by formula (41) and 418.1 g of 5.2% by mass aqueous ammonia were simultaneously started and added dropwise over 4 hours. After completion of the dropping, stirring was continued for 0.5 hour to carry out cohydrolysis and condensation reaction, thereby obtaining a dispersion of hydrophilic group-containing spherical silica fine particles. After adding 242.0 g (1.5 mol) of hexamethyldisilazane to this dispersion at room temperature, the dispersion was heated to 60 ° C. and reacted for 3 hours to trimethylsilylate the silica fine particles. Thereafter, the solvent was distilled off from the dispersion under reduced pressure to obtain 536 g of spherical silica fine particles having a hydrophobic surface and a nucleus containing a hydrophilic group. The obtained spherical silica fine particles were tested according to the following criteria. The results obtained are shown in Table 1.
[平均粒子径の測定]
メタノールに球状シリカ微粒子を質量比で1:0.005となるよう添加した後、超音波照射器により該球状シリカ微粒子をメタノール中に分散させた。このように処理した球状シリカ微粒子の粒度分布をレーザー回折散乱式粒度分布測定装置(堀場製作所製、商品名:LA910)で測定し、その平均粒子径を求めた(こうして求められた平均粒子径は、所謂、体積平均粒子径である)。なお、電子顕微鏡を用いて前記球状シリカ微粒子の平均粒子径を測定し、前記装置による測定結果から求めた平均粒子径と比較して、それらの値が一致していることを確認し、さらに該球状シリカ微粒子の凝集が生じていないことを確認することにより、該平均粒子径が1次粒子のものであると判断した。
[Measurement of average particle size]
After adding spherical silica fine particles to methanol so as to have a mass ratio of 1: 0.005, the spherical silica fine particles were dispersed in methanol with an ultrasonic irradiator. The particle size distribution of the spherical silica fine particles treated in this way was measured with a laser diffraction / scattering particle size distribution analyzer (trade name: LA910, manufactured by Horiba Seisakusho), and the average particle size was determined (the average particle size thus determined is The so-called volume average particle diameter). In addition, the average particle diameter of the spherical silica fine particles was measured using an electron microscope, and compared with the average particle diameter obtained from the measurement result by the apparatus, it was confirmed that those values coincided, and the By confirming that the spherical silica fine particles were not aggregated, it was determined that the average particle size was that of primary particles.
[疎水化度]
疎水化度の測定は、メタノール滴定試験により行った。具体的には、水50ml中に添加された球状シリカ微粒子0.2gの全量が湿潤されるまで、球状シリカ微粒子混合液を攪拌しながらビュレットからメタノールを滴下して滴定し、その終点でのメタノールと水との混合物中におけるメタノールの百分率により表わされる値を疎水化度とした。この疎水化度の数値が大きいほど疎水性が高く、数値が小さいほど親水性が高いことを示す。
[Hydrophobicity]
The degree of hydrophobicity was measured by a methanol titration test. Specifically, methanol was dropped from a burette while stirring the spherical silica fine particle mixture until the total amount of 0.2 g of spherical silica fine particles added in 50 ml of water was wetted, and methanol at the end point The value represented by the percentage of methanol in the mixture of water and water was taken as the degree of hydrophobicity. The larger the value of the degree of hydrophobicity, the higher the hydrophobicity, and the smaller the value, the higher the hydrophilicity.
[外添剤混合トナーの作製]
ガラス転移点(Tg)60℃、軟化点110℃のポリエステル樹脂96質量部と、色剤(商品名:カーミン6BC、住化カラー(株)製)4質量部とを溶融しながら混練し、粉砕し、分級した後、平均粒子径7μmのトナーを得た。このトナー10gに球状シリカ微粒子0.3gをサンプルミルにより混合し、外添剤混合トナーを得た。これを用いて以下の方法で凝集度を評価した。
[Production of external additive mixed toner]
96 parts by mass of a polyester resin having a glass transition point (Tg) of 60 ° C. and a softening point of 110 ° C. and 4 parts by mass of a colorant (trade name: Carmine 6BC, manufactured by Sumika Color Co., Ltd.) are melted and kneaded and pulverized. After classification, a toner having an average particle diameter of 7 μm was obtained. 10 g of this toner was mixed with 0.3 g of spherical silica fine particles by a sample mill to obtain an external additive mixed toner. Using this, the degree of aggregation was evaluated by the following method.
[凝集度]
凝集度とは、粉体の流動性を表す値である。この凝集度は、パウダーテスタ(ホソカワミクロン株式会社製)と、200、100及び60メッシュのふるいをこの順序で下から重ねた三段のふるいとを用いて測定した。測定手段としては、5gのトナーからなる粉体を三段ふるいの上段の60メッシュのふるいの上にのせ、パウダーテスタに2.5Vの電圧を印加して15秒間三段ふるいを振動させ、60メッシュのふるいに残留した粉体質量a(g)と、100メッシュのふるいに残留した粉体質量b(g)と、200メッシュのふるいに残留した粉体質量c(g)とから下記式によって凝集度(%)を算出する。
凝集度(%)=(a+b×0.6+c×0.2)×100/5
凝集度が小さいほど流動性が良好で、凝集度が大きいほど流動性が不良であると評価できる。
[Cohesion]
The degree of aggregation is a value representing the fluidity of the powder. This degree of aggregation was measured using a powder tester (manufactured by Hosokawa Micron Corporation) and a three-stage sieve in which 200, 100 and 60 mesh sieves were stacked in this order from the bottom. As a measuring means, a powder consisting of 5 g of toner is placed on the upper 60 mesh screen of the three-stage sieve, a voltage of 2.5 V is applied to the powder tester, and the three-stage sieve is vibrated for 15 seconds. From the powder mass a (g) remaining on the mesh screen, the powder mass b (g) remaining on the 100 mesh screen, and the powder mass c (g) remaining on the 200 mesh screen, Calculate the degree of aggregation (%).
Aggregation degree (%) = (a + b × 0.6 + c × 0.2) × 100/5
It can be evaluated that the smaller the degree of aggregation, the better the fluidity, and the higher the degree of aggregation, the poorer the fluidity.
[現像剤の調製]
外添剤混合トナー3部と、キャリアであるフェライト(商品名:FL100、パウダーテック社製)97部とを混合して現像剤を調製した。これを用いて以下の方法でトナー帯電量および感光体へのトナー付着を評価した。
[Preparation of developer]
A developer was prepared by mixing 3 parts of the external additive mixed toner and 97 parts of ferrite (trade name: FL100, manufactured by Powdertech) as a carrier. Using this, the toner charge amount and toner adhesion to the photoreceptor were evaluated by the following methods.
[トナー帯電量]
前記現像剤を高温高湿(30℃、90%RH)と低温低湿(10℃、15%RH)の各条件下に1日放置した後、同一条件下で十分混合し摩擦帯電を行った。それぞれの試料の帯電量を同一条件下でブローオフ粉体帯電量測定装置(東芝ケミカル(株)製、TB−200型)を用いて測定した。
[Toner charge amount]
The developer was allowed to stand for 1 day under conditions of high temperature and high humidity (30 ° C., 90% RH) and low temperature and low humidity (10 ° C., 15% RH), and then sufficiently mixed under the same conditions for triboelectric charging. The charge amount of each sample was measured using a blow-off powder charge amount measuring device (Toshiba Chemical Co., Ltd., TB-200 type) under the same conditions.
[感光体へのトナー付着および感光体摩耗]
前記現像剤を、有機感光体を備えた二成分改造現像機に入れ、30000枚のプリントテストを実施した。このとき、感光体へのトナーの付着は、全ベタ画像での白抜けとして感知できる。ここで、白抜けの程度は、白抜け個所の数が10個以上/cm2を「多い」、1〜9個/cm2を「少ない」、0個/cm2を「なし」と評価した。
[Toner adherence to photoconductor and photoconductor wear]
The developer was put into a two-component modified developing machine equipped with an organic photoreceptor, and a print test of 30000 sheets was performed. At this time, the adhesion of the toner to the photoconductor can be detected as white spots in all solid images. Here, the degree of white spots, the white number of missing points are "many" more than 10 / cm 2, 1-9 / cm 2 or "small", and the 0 / cm 2 was evaluated as "none" .
また、感光体摩耗は、前記プリントテストにおいて、画像の乱れとして検出される。ここで、画像の乱れのないものを良好と評価してAと示し、大きな画像の乱れのないもの(実用上問題のないもの)をやや良好であると評価してBと示し、画像の乱れがあるものを不良と評価してCと示す。 Further, the photoconductor wear is detected as image disturbance in the print test. Here, an image having no image disturbance is evaluated as good and indicated as A, and an image having no large image disturbance (no problem in practical use) is evaluated as slightly good and indicated as B. If there is any, it is evaluated as defective and indicated as C.
−実施例2−
[表面が疎水性で核が親水性基含有の球状シリカ微粒子の合成2]
実施例1において、前記一般式(VI)で表される化合物の代わりに、下記一般式(VII):
(CH3O)3SiC3H6O(C2H4O)10C3H6Si(OCH3)3
で表される化合物29.7g(0.038モル)を用いた以外は、実施例1と同様にして、表面が疎水性で核が親水性基含有の球状シリカ微粒子531gを得た。得られた球状シリカ微粒子について、上述の基準に従って、試験を行った。なお、外添剤混合トナーについても、実施例1と同様にして作製した。得られた結果は表1に示す。
-Example 2-
[Synthesis of spherical silica particles with hydrophobic surface and nuclei containing hydrophilic groups 2]
In Example 1, instead of the compound represented by the general formula (VI), the following general formula (VII):
(CH 3 O) 3 SiC 3 H 6 O (C 2 H 4 O) 10 C 3 H 6 Si (OCH 3 ) 3
In the same manner as in Example 1 except that 29.7 g (0.038 mol) of the compound represented by formula (1) was used, 531 g of spherical silica fine particles having a hydrophobic surface and a nucleus containing a hydrophilic group were obtained. The obtained spherical silica fine particles were tested according to the above criteria. The external additive mixed toner was prepared in the same manner as in Example 1. The results obtained are shown in Table 1.
−比較例1−
[球状疎水性シリカ微粒子の合成1]
撹拌機と滴下ロートと温度計とを備えた3リットルのガラス製反応器に、メタノール623.7gと水41.4gと28質量%アンモニア水49.8gとを添加して混合した。この混合溶液を35℃に調整し、撹拌しながらテトラメトキシシラン1163.7gおよび5.4質量%アンモニア水418.1gを同時に添加開始し、前者は6時間、後者は4時間かけて滴下した。テトラメトキシシランの滴下終了後も0.5時間撹拌を続け、加水分解および縮合反応を行い、シリカ微粒子の分散液を得た。ガラス製反応器にエステルアダプターと冷却管とを取り付け、前記分散液を60〜70℃に加熱してメタノール1132gを留去したところで水1200gを添加し、次いで、さらに該分散液を70〜90℃に加熱してメタノール273gを留去し、シリカ微粒子の水性分散液を得た。この水性分散液に、室温でメチルトリメトキシシラン11.6g(テトラメトキシシランに対してモル比で0.1である量)を0.5時間かけて滴下し、滴下後も12時間撹拌しシリカ微粒子表面疎水化処理を行った。
-Comparative Example 1-
[Synthesis of spherical hydrophobic silica fine particles 1]
In a 3 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer, 623.7 g of methanol, 41.4 g of water, and 49.8 g of 28% by mass ammonia water were added and mixed. The mixed solution was adjusted to 35 ° C., and 1163.7 g of tetramethoxysilane and 418.1 g of 5.4 mass% aqueous ammonia were simultaneously added while stirring. The former was added dropwise over 6 hours and the latter over 4 hours. Stirring was continued for 0.5 hour after completion of the dropwise addition of tetramethoxysilane to carry out hydrolysis and condensation reaction to obtain a dispersion of silica fine particles. An ester adapter and a condenser tube were attached to a glass reactor, and the dispersion was heated to 60 to 70 ° C. to distill off 1132 g of methanol, and then 1200 g of water was added, and then the dispersion was further added to 70 to 90 ° C. And 273 g of methanol was distilled off to obtain an aqueous dispersion of silica fine particles. To this aqueous dispersion, 11.6 g of methyltrimethoxysilane (a molar ratio of 0.1 with respect to tetramethoxysilane) was added dropwise at room temperature over 0.5 hours, and after the addition, the mixture was stirred for 12 hours and the surface of silica fine particles Hydrophobic treatment was performed.
こうして得られた分散液にメチルイソブチルケトン1440gを添加した後、該分散液を80〜110℃に加熱してメタノール水を7時間かけて留去した。得られた分散液に室温でヘキサメチルジシラザン357.6gを添加し、120℃に加熱して3時間反応させ、シリカ微粒子をトリメチルシリル化した。その後、溶媒を減圧下で留去して球状疎水性シリカ微粒子477gを得た。
得られた球状シリカ微粒子について、上述の基準に従って、試験を行った。なお、外添剤混合トナーについても、実施例1と同様にして作製した。得られた結果は表2に示す。
After 1440 g of methyl isobutyl ketone was added to the dispersion thus obtained, the dispersion was heated to 80 to 110 ° C. and methanol water was distilled off over 7 hours. To the obtained dispersion, 357.6 g of hexamethyldisilazane was added at room temperature, heated to 120 ° C. and reacted for 3 hours, and the silica fine particles were trimethylsilylated. Thereafter, the solvent was distilled off under reduced pressure to obtain 477 g of spherical hydrophobic silica fine particles.
The obtained spherical silica fine particles were tested according to the above criteria. The external additive mixed toner was prepared in the same manner as in Example 1. The results obtained are shown in Table 2.
−比較例2−
[球状疎水性シリカ微粒子の合成2]
攪拌機と滴下ロートと温度計とを備えた3リットルのガラス製反応器に、メタノール623.7gと水38.9gと28質量%アンモニア水52.3gとを添加して混合した。この混合溶液を35℃に調整し、攪拌しながらテトラメトキシシラン1163.7g(7.65モル)および5.48質量%アンモニア水418.1gを同時に添加開始し、前者は6時間、後者は5時間かけて滴下した。テトラメトキシシランの滴下終了後も0.5時間攪拌を続けて加水分解を行い、シリカ微粒子の分散液を得た。得られた分散液に室温でヘキサメチルジシラザン184.7g(1.14モル)を添加し120℃に加熱して3時間反応させ、シリカ微粒子をトリメチルシリル化した。その後、該分散液から溶媒を減圧下で留去して、球状疎水性シリカ微粒子540gを得た。
得られた球状シリカ微粒子について、上述の基準に従って、試験を行った。なお、外添剤混合トナーについても、実施例1と同様にして作製した。得られた結果は表2に示す。
-Comparative Example 2-
[Synthesis of spherical hydrophobic silica fine particles 2]
In a 3 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer, 623.7 g of methanol, 38.9 g of water, and 52.3 g of 28% by mass ammonia water were added and mixed. The mixed solution was adjusted to 35 ° C., and 1163.7 g (7.65 mol) of tetramethoxysilane and 418.1 g of 5.48% by mass ammonia water were simultaneously added while stirring. The former was added dropwise over 6 hours and the latter over 5 hours. After completion of the dropwise addition of tetramethoxysilane, the mixture was stirred for 0.5 hours for hydrolysis to obtain a dispersion of silica fine particles. To the obtained dispersion, 184.7 g (1.14 mol) of hexamethyldisilazane was added at room temperature and heated to 120 ° C. for reaction for 3 hours to trimethylsilylate the silica fine particles. Thereafter, the solvent was distilled off from the dispersion under reduced pressure to obtain 540 g of spherical hydrophobic silica fine particles.
The obtained spherical silica fine particles were tested according to the above criteria. The external additive mixed toner was prepared in the same manner as in Example 1. The results obtained are shown in Table 2.
−比較例3−
[親水性基含有球状シリカ微粒子の合成]
攪拌機と滴下ロートと温度計とを備えた3リットルのガラス製反応器に、メタノール623.7gと水41.4gと28質量%アンモニア水49.8gとを添加して混合した。この混合溶液を35℃に調整し、攪拌しながらテトラメトキシシラン1143.0g(7.52モル)と下記一般式(VI):
(CH3O)3SiCH2CH2CH2O(C2H4O)10CH3
で表される化合物24.1g(0.038モル)の混合物および5.2質量%アンモニア水418.1gを同時に添加開始し、4時間かけて滴下した。滴下終了後も0.5時間攪拌を続け共加水分解、縮合反応を行い、親水性基含有球状シリカ微粒子の分散液を得た。その後、該分散液から溶媒を減圧下で留去して、親水性基含有球状シリカ微粒子527gを得た。
得られた球状シリカ微粒子について、上述の基準に従って、試験を行った。なお、外添剤混合トナーについても、実施例1と同様にして作製した。得られた結果は表2に示す。
-Comparative Example 3-
[Synthesis of hydrophilic group-containing spherical silica fine particles]
In a 3 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer, 623.7 g of methanol, 41.4 g of water, and 49.8 g of 28% by mass ammonia water were added and mixed. The mixed solution was adjusted to 35 ° C., and stirred with stirring, 1143.0 g (7.52 mol) of tetramethoxysilane and the following general formula (VI):
(CH 3 O) 3 SiCH 2 CH 2 CH 2 O (C 2 H 4 O) 10 CH 3
A mixture of 24.1 g (0.038 mol) of the compound represented by formula (41) and 418.1 g of 5.2% by mass aqueous ammonia were simultaneously started and added dropwise over 4 hours. After completion of the dropping, stirring was continued for 0.5 hours to carry out cohydrolysis and condensation reaction, thereby obtaining a dispersion of hydrophilic group-containing spherical silica fine particles. Thereafter, the solvent was distilled off from the dispersion under reduced pressure to obtain 527 g of hydrophilic group-containing spherical silica fine particles.
The obtained spherical silica fine particles were tested according to the above criteria. The external additive mixed toner was prepared in the same manner as in Example 1. The results obtained are shown in Table 2.
−比較例4−
実施例1で得た表面が疎水性で核が親水性基含有の球状シリカ微粒子の代わりに、ヒュームドシリカを疎水化処理した疎水性シリカ(商品名:アエロジルR972、日本アエロジル(株)製)を用いた以外は実施例1と同様にして、外添剤混合トナーを得た。得られた外添剤混合トナーについて実施例1と同様にして試験を行った。得られた結果は表2に示す。
-Comparative Example 4-
Hydrophobic silica obtained by hydrophobizing fumed silica instead of spherical silica particles having a hydrophobic surface and a nucleus containing a hydrophilic group obtained in Example 1 (trade name: Aerosil R972, manufactured by Nippon Aerosil Co., Ltd.) An external additive mixed toner was obtained in the same manner as in Example 1 except that was used. The obtained external additive mixed toner was tested in the same manner as in Example 1. The results obtained are shown in Table 2.
−比較例5−
実施例1で得た表面が疎水性で核が親水性基含有の球状シリカ微粒子の代わりに、平均粒子径0.3μmの高純度球状アモルファスシリカ(商品名:アドマファインSO−22R、アドマテック社製)を用いた以外は実施例1と同様にして、外添剤混合トナーを得た。得られた外添剤混合トナーについて実施例1と同様にして試験を行った。得られた結果は表2に示す。
-Comparative Example 5-
Instead of spherical silica fine particles having a hydrophobic surface and a nucleus containing a hydrophilic group obtained in Example 1, high-purity spherical amorphous silica having an average particle diameter of 0.3 μm (trade name: Admafine SO-22R, manufactured by Admatech) ) Was used in the same manner as in Example 1 to obtain an external additive mixed toner. The obtained external additive mixed toner was tested in the same manner as in Example 1. The results obtained are shown in Table 2.
Claims (4)
Si(OR1)4
(式中、R1は独立に炭素原子数1〜6の1価炭化水素基である)
で示されるテトラアルコキシシランもしくはその部分加水分解縮合物、またはそれらの組み合わせ、ならびに
(B)加水分解性シリル基とポリオキシエチレン鎖を有する基とを有する化合物
の共加水分解および縮合反応によって得られる、ポリオキシエチレン鎖を有する基を含有する球状シリカ微粒子と、
(2)一般式(II):
R2 3SiNHSiR2 3
(式中、R2は独立に炭素原子数1〜6の1価炭化水素基である)
で示されるシラザン化合物、もしくは一般式(III):
R2 3SiX
(式中、R2は前述のとおりであり、XはOH基または加水分解性基である)
で示されるシラン化合物、またはそれらの組み合わせと
を反応させることによって得られる、1次粒子の平均粒子径が0.01〜5μmであり、表面が疎水性で核がポリオキシエチレン鎖を有する基を含有する球状シリカ微粒子。 (1) (A) General formula (I):
Si (OR 1 ) 4
(Wherein R 1 is independently a monovalent hydrocarbon group having 1 to 6 carbon atoms)
A tetraalkoxysilane or a partially hydrolyzed condensate thereof, or a combination thereof, and
(B) obtained by cohydrolysis and condensation reaction of a compound having a group having a hydrolyzable silyl group and a polyoxyethylene chain, and spherical silica particles containing a group having a polyoxyethylene chain,
(2) General formula (II):
R 2 3 SiNHSiR 2 3
(Wherein R 2 is independently a monovalent hydrocarbon group having 1 to 6 carbon atoms)
Or a general formula (III):
R 2 3 SiX
(Wherein R 2 is as described above, and X is an OH group or a hydrolyzable group)
A group having a primary particle average particle diameter of 0.01 to 5 μm, a hydrophobic surface, and a nucleus having a polyoxyethylene chain. spherical silica particles containing.
(R3O)aR4 3−aSiR5O(C2H4O)p(C3H6O)qR6
(式中、aは1〜3の整数であり、R3は独立に炭素原子数1〜10のアルキル基であり、R4は独立に炭素原子数1〜10のアルキル基またはフェニル基であり、R5は炭素原子数2〜5の2価炭化水素基であり、R6は水素原子、炭素原子数1〜10のアルキル基、または−R5SiR4 3−a(OR3)a(ここで、R3、R4、R5およびaは前記のとおりである)で表される基であり、pは2〜200の整数であり、qは0〜198の整数であり、但し、p+qは3〜200の整数であり、p/qは1以上である。)
で示される化合物である請求項1に記載の球状シリカ微粒子。 The compound (B) having a hydrolyzable silyl group and a group having a polyoxyethylene chain is represented by the general formula (IV):
(R 3 O) a R 4 3-a SiR 5 O (C 2 H 4 O) p (C 3 H 6 O) q R 6
(Wherein, a is an integer of 1 to 3 , R 3 is independently an alkyl group having 1 to 10 carbon atoms, and R 4 is independently an alkyl group having 1 to 10 carbon atoms or a phenyl group. , R 5 is a divalent hydrocarbon group having 2 to 5 carbon atoms, R 6 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or —R 5 SiR 4 3-a (OR 3 ) a ( Wherein R 3 , R 4 , R 5 and a are as described above), p is an integer of 2 to 200, and q is an integer of 0 to 198, provided that p + q is an integer of 3 to 200, and p / q is 1 or more.)
The spherical silica fine particle according to claim 1, which is a compound represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004346755A JP4611006B2 (en) | 2004-11-30 | 2004-11-30 | Spherical silica fine particles, toner external additive for developing electrostatic image and toner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004346755A JP4611006B2 (en) | 2004-11-30 | 2004-11-30 | Spherical silica fine particles, toner external additive for developing electrostatic image and toner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006151764A JP2006151764A (en) | 2006-06-15 |
JP4611006B2 true JP4611006B2 (en) | 2011-01-12 |
Family
ID=36630500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004346755A Active JP4611006B2 (en) | 2004-11-30 | 2004-11-30 | Spherical silica fine particles, toner external additive for developing electrostatic image and toner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4611006B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4793603B2 (en) * | 2009-02-06 | 2011-10-12 | 信越化学工業株式会社 | Water-repellent fine particles and method for producing the same |
JP5374238B2 (en) * | 2009-06-03 | 2013-12-25 | アイカ工業株式会社 | Production method of silicone rubber fine particles without interparticle fusion |
CN102762498B (en) * | 2010-02-19 | 2015-11-25 | 株式会社德山 | The manufacture method of inorganic oxide particle |
JP5701092B2 (en) * | 2010-06-30 | 2015-04-15 | 株式会社トクヤマ | Method for producing surface-treated inorganic oxide particles |
JP7548845B2 (en) | 2021-02-24 | 2024-09-10 | 信越化学工業株式会社 | Method for producing surface-treated sol-gel silica particles, surface-treated sol-gel silica particles, and toner additive for developing electrostatic images |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001194824A (en) * | 2000-01-06 | 2001-07-19 | Shin Etsu Chem Co Ltd | Electrostatic charge image developing toner external additive |
-
2004
- 2004-11-30 JP JP2004346755A patent/JP4611006B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001194824A (en) * | 2000-01-06 | 2001-07-19 | Shin Etsu Chem Co Ltd | Electrostatic charge image developing toner external additive |
Also Published As
Publication number | Publication date |
---|---|
JP2006151764A (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3927741B2 (en) | Toner external additive for electrostatic image development | |
JP4781769B2 (en) | Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive | |
JP3988936B2 (en) | Silane surface-treated spherical silica titania fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same | |
JP5631699B2 (en) | Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image | |
JP2008174430A (en) | Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development | |
JP2008273757A (en) | Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same | |
JP2011185998A (en) | Electrostatic image-developing toner and electric charge-controlling particle for external addition | |
JP2011032114A (en) | Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same | |
JP2014114175A (en) | Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image | |
JP6962296B2 (en) | Positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same. | |
JP5655800B2 (en) | Method for producing associated silica | |
JP4347201B2 (en) | Toner external additive and toner for developing electrostatic image | |
JP4060241B2 (en) | Hydrophobic spherical silica-based fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same | |
JP4611006B2 (en) | Spherical silica fine particles, toner external additive for developing electrostatic image and toner | |
JP3319114B2 (en) | Hydrophobic silica powder, its production method and electrophotographic developer containing it | |
TWI804672B (en) | Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles | |
JP4628760B2 (en) | Spherical hydrophobic polydiorganosiloxane-containing silica fine particles, toner additive for developing electrostatic image and toner | |
JP3767788B2 (en) | Toner external additive for electrostatic image development | |
JP4198108B2 (en) | Toner external additive and toner for developing electrostatic image | |
JP3930236B2 (en) | Toner external additive for electrostatic image development | |
JP7548845B2 (en) | Method for producing surface-treated sol-gel silica particles, surface-treated sol-gel silica particles, and toner additive for developing electrostatic images | |
JP2015059054A (en) | Surface organic resin-coated hydrophobic spherical silica fine particle, production method of the same, and toner external additive for electrostatic charge image development using the same | |
JP3856744B2 (en) | Toner external additive for electrostatic image development | |
JP2014136670A (en) | Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image | |
JP5915550B2 (en) | Method for producing silica-based fine particle electrostatic charge developing toner external additive having high dispersibility and low cohesiveness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090908 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091029 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101012 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101013 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4611006 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |