[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4610324B2 - Color separation optical system - Google Patents

Color separation optical system Download PDF

Info

Publication number
JP4610324B2
JP4610324B2 JP2004372848A JP2004372848A JP4610324B2 JP 4610324 B2 JP4610324 B2 JP 4610324B2 JP 2004372848 A JP2004372848 A JP 2004372848A JP 2004372848 A JP2004372848 A JP 2004372848A JP 4610324 B2 JP4610324 B2 JP 4610324B2
Authority
JP
Japan
Prior art keywords
light
wavelength
prism
optical system
color separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004372848A
Other languages
Japanese (ja)
Other versions
JP2006178264A (en
Inventor
裕一 澤畑
有宏 斎田
茂弘 金山
和人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2004372848A priority Critical patent/JP4610324B2/en
Publication of JP2006178264A publication Critical patent/JP2006178264A/en
Application granted granted Critical
Publication of JP4610324B2 publication Critical patent/JP4610324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Color Television Image Signal Generators (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、テレビカメラやビデオカメラ等の撮像装置に用いられる色分解光学系に関し、詳しくは、複数のプリズムおよび波長選択フィルタを組み合わせて構成され、入射光をこれら各光学素子の分光特性により、複数の波長範囲の光(例えば、青色域光、緑色域光、および赤色域光)に分解して、分解した各光を固体撮像素子等に向けて射出する色分解光学系に関するものである。   The present invention relates to a color separation optical system used in an imaging apparatus such as a TV camera or a video camera, and more specifically, is configured by combining a plurality of prisms and wavelength selection filters, and incident light is divided by spectral characteristics of these optical elements, The present invention relates to a color separation optical system that decomposes light into a plurality of wavelength ranges (for example, blue light, green light, and red light) and emits the decomposed light toward a solid-state imaging device or the like.

従来、この種の色分解光学系として、複数のプリズムおよび色分解用の光学フィルタ膜の組み合わせ方の特徴により、フィリップス型と呼ばれるタイプのものやクロスダイクロイック型と呼ばれるタイプのものなど、種々のものが知られている。   Conventionally, this type of color separation optical system has various types such as a type called a Philips type and a type called a cross dichroic type, depending on the combination of a plurality of prisms and an optical filter film for color separation. It has been known.

近年、この種の色分解光学系を組み込んだテレビカメラ等の撮像装置では、取り込んだ光学像を電気信号に変換する撮像素子として、撮像管に替わりCCD等の固体撮像素子が用いられるようになっている。そして、いわゆる焼き付きなどの問題が発生しやすい撮像管を用いた場合には困難であった手法、すなわち、高輝度な被写体像を色分解光学系に取り込んで色分解した後、各光を高輝度な状態のまま各固体撮像素子の撮像面に射出する手法も容易に行ない得るようになった。   In recent years, in an imaging apparatus such as a television camera incorporating this type of color separation optical system, a solid-state imaging element such as a CCD is used instead of an imaging tube as an imaging element that converts the captured optical image into an electrical signal. ing. A technique that was difficult when using an imaging tube that is prone to problems such as so-called burn-in, i.e., taking a high-luminance subject image into a color separation optical system and performing color separation, In such a state, it is possible to easily perform the method of injecting the image onto the imaging surface of each solid-state imaging device.

しかし、固体撮像素子の撮像面は金属のコーティング膜が施されるなど反射率が高く、高輝度な光が撮像面に入射した場合に、この光が撮像面で反射して色分解光学系の光射出面に反射光として戻り、この反射光が再び光射出面で反射して固体撮像素子の撮像面に再度入射する現象が起きやすい。このような色分解光学系の光射出面と固体撮像素子の撮像面との間で生じる光の往復現象は、ゴーストやフレアを引き起こして画像に悪影響を及ぼす原因となる。   However, the imaging surface of the solid-state imaging device has a high reflectance such as a metal coating film, and when high-intensity light is incident on the imaging surface, this light is reflected by the imaging surface and the color separation optical system There is a tendency that the reflected light returns to the light exit surface, and the reflected light is reflected again by the light exit surface and incident again on the image capturing surface of the solid-state image sensor. Such light reciprocation between the light exit surface of the color separation optical system and the image pickup surface of the solid-state image pickup device causes ghosts and flares and causes an adverse effect on the image.

そこで、色分解光学系の光射出面に不要な成分光を除去するための色ガラスからなるトリミングフィルタを配設して、ゴーストやフレアを制御する手段が提案されている(例えば特許文献1参照)。   In view of this, a means for controlling ghost and flare has been proposed by arranging a trimming filter made of colored glass for removing unnecessary component light on the light exit surface of the color separation optical system (see, for example, Patent Document 1). ).

また、色分解光学系の光射出面ではなく、CCD等からなる固体撮像素子の保護ガラスの表面に不要な成分光を除去するための色ガラスからなるトリミングフィルタを配設する技術も提案されている(例えば、特許文献2参照)
特開平10−234049号公報 特開平9−37116号公報
In addition, a technique has also been proposed in which a trimming filter made of color glass for removing unnecessary component light is arranged on the surface of a protective glass of a solid-state imaging device made of a CCD or the like instead of the light emission surface of the color separation optical system. (For example, see Patent Document 2)
Japanese Patent Laid-Open No. 10-234049 JP-A-9-37116

しかしながら、上記特許文献1に記載された技術では、色ガラスの分光特性が当該色ガラスの厚みに依存するため、色ガラスに求められる分光特性と厚みに関する機械的な制約とを同時に満足させることが困難であった。また、仮に色ガラスに求められる分光特性と厚みに関する機械的な制約とを同時に満足させることができたとしても、色ガラスを製造するための材料の成分が限定されてしまい、色ガラスの熱膨張係数や屈折率などの他の物性に関する自由度が小さなものとなっていた。
このような不都合に対処するため、本願発明者等は、色ガラスの代わりに色素を含む光吸収層を有するトリミングフィルタを用いた色分解光学系を開発した。
However, in the technique described in Patent Document 1, since the spectral characteristics of the colored glass depend on the thickness of the colored glass, it is possible to satisfy both the spectral characteristics required for the colored glass and the mechanical restrictions on the thickness at the same time. It was difficult. Moreover, even if the spectral characteristics required for the colored glass and the mechanical constraints on the thickness can be satisfied at the same time, the components of the material for producing the colored glass are limited, and the thermal expansion of the colored glass is limited. The degree of freedom regarding other physical properties such as coefficient and refractive index was small.
In order to cope with such an inconvenience, the inventors of the present application have developed a color separation optical system using a trimming filter having a light absorption layer containing a pigment instead of color glass.

しかしながら、色素を含む光吸収層は、色ガラスと比較して分光透過率が低いという特性を有している。人間の目は緑色域光に対して特に感度が高いため、光射出面から緑色域光を射出させるプリズムに対して色素を含む光吸収層を用いた場合には、色バランスの良好な色分解光学系とすることができない場合もあった。   However, the light absorption layer containing a pigment has a characteristic that spectral transmittance is lower than that of colored glass. Since the human eye is particularly sensitive to green light, color separation with good color balance is achieved when a light-absorbing layer containing a pigment is used for the prism that emits green light from the light exit surface. In some cases, the optical system could not be used.

図3を参照して、従来の色分解光学系における緑色域光の分光透過率を説明する。図3は、従来の色分解光学系において、赤色域光を反射するとともに緑色域光を透過するダイクロイック膜(以下、赤反射/緑透過のダイクロイック膜と称する)、色ガラス、および色素を含み光吸収層の分光透過率曲線を示す説明図である。なお、図3において、赤反射/緑透過のダイクロイック膜の分光透過率曲線を実線で示し、色ガラスの分光透過率曲線を一点鎖線で示し、色素を含む光吸収層の分光透過率曲線を破線で示している。   With reference to FIG. 3, the spectral transmittance of green light in a conventional color separation optical system will be described. FIG. 3 shows a conventional color separation optical system that includes a dichroic film that reflects red light and transmits green light (hereinafter referred to as a red reflection / green transmission dichroic film), colored glass, and a pigment. It is explanatory drawing which shows the spectral transmittance curve of an absorption layer. In FIG. 3, the spectral transmittance curve of the red reflection / green transmission dichroic film is indicated by a solid line, the spectral transmittance curve of the colored glass is indicated by a one-dot chain line, and the spectral transmittance curve of the light absorption layer containing the dye is indicated by a broken line. Is shown.

図3に示すように、従来の色分解光学系に用いる赤反射/緑透過のダイクロイック膜は、緑色域光に関して波長575nm付近に分光透過率曲線の立ち下がり半値を有しているが、短波長側では緑色域光の分光透過範囲を規定することができない。したがって、色ガラス、あるいは色素を含む光吸収層を用いることにより、緑色域光に関して波長490nm付近に分光透過率曲線の立ち上がり半値を有するようにして、緑色域光の透過範囲(赤色域光の反射範囲)を規定している。   As shown in FIG. 3, the red reflection / green transmission dichroic film used in the conventional color separation optical system has a falling half-value of the spectral transmittance curve in the vicinity of the wavelength of 575 nm with respect to the green region light. On the side, the spectral transmission range of green light cannot be defined. Therefore, by using a colored glass or a light absorbing layer containing a pigment, the green region light transmission range (reflection of red region light is reflected so as to have a rising half value of the spectral transmittance curve near the wavelength of 490 nm with respect to the green region light. Range).

ところで、図3に示すように、色ガラスを用いた場合には、緑色域の短波長側において、分光透過率曲線が急峻に立ち上がるとともに、波長520nm付近からは光透過率がほぼ100%に近い状態となり、良好な光学性能を発揮することができていた。
しかし、上述したように、色素を含む光吸収層を用いた場合には、緑色域の長波長側における分光透過率の最大値が88%程度となってしまい、人間の目の感度が特に高い緑色域光に対して色バランスの良好な色分解光学系とすることができなかった。
By the way, as shown in FIG. 3, when colored glass is used, the spectral transmittance curve rises steeply on the short wavelength side of the green region, and the light transmittance is nearly 100% from around the wavelength of 520 nm. Thus, good optical performance was exhibited.
However, as described above, when a light absorbing layer containing a dye is used, the maximum value of the spectral transmittance on the long wavelength side of the green region is about 88%, and the sensitivity of the human eye is particularly high. A color separation optical system having a good color balance with respect to green light could not be obtained.

また、色分解光学系を構成する波長選択フィルタ(例えば、ダイクロイック膜)の特性によっては、プリズムへの入射光に若干の不要域光が残存する場合もある。例えば、光射出面から赤色域光を射出させるプリズムに入射する光には、青色域光側に若干の不要域光が残存している場合があり、この不要域光を除去するためには、当該プリズムの光射出面側にトリミングフィルタを配設する必要がある。   Further, depending on the characteristics of the wavelength selection filter (for example, dichroic film) constituting the color separation optical system, some unnecessary light may remain in the incident light to the prism. For example, in the light incident on the prism that emits red light from the light exit surface, some unnecessary light may remain on the blue light side, and in order to remove this unnecessary light, It is necessary to provide a trimming filter on the light exit surface side of the prism.

上述したように、特許文献2に記載された従来の色分解光学系では、固体撮像素子の保護ガラスの表面に色ガラスを貼り付けていたが、色ガラスはある程度の厚みがあるため、プリズムと固体撮像素子との間に十分なスペースが必要であり、色分解光学系を小型化することが難しかった。また、色ガラスに用いる材料の選択自由度が小さいという問題を有していた。   As described above, in the conventional color separation optical system described in Patent Document 2, the color glass is pasted on the surface of the protective glass of the solid-state imaging device. However, since the color glass has a certain thickness, Sufficient space is required between the solid-state imaging device and it is difficult to downsize the color separation optical system. In addition, there is a problem that the degree of freedom in selecting a material used for the colored glass is small.

本発明は、上述した事情に鑑み提案されたもので、緑色域光を透過させるとともに赤色域光を反射させる波長選択フィルタの分光特性を調整することにより、光射出面から緑色域光を射出させるプリズムにおいて、色ガラスや色素を含む光吸収層を用いることなく、ゴーストやフレアを抑制するとともに、色バランスの良好な色分解光学系を提供することを目的とする。   The present invention has been proposed in view of the above-described circumstances, and emits green light from the light exit surface by adjusting the spectral characteristics of a wavelength selection filter that transmits green light and reflects red light. An object of the present invention is to provide a color separation optical system that suppresses ghosts and flares and has a good color balance without using a light absorbing layer containing colored glass or a pigment in the prism.

また、本発明は、不要域光を除去するために、その光射出面側にトリミングフィルタを配設する必要があるプリズムが存在する場合であっても、ゴーストやフレアを抑制するとともに、色バランスが良好で小型化を図ることが可能な色分解光学系を提供することを目的とする。   In addition, the present invention suppresses ghosts and flares and reduces color balance even when there is a prism that requires a trimming filter on the light exit surface side in order to remove unwanted light. An object of the present invention is to provide a color separation optical system that is favorable and can be miniaturized.

本発明の色分解光学系は、上述した目的を達成するため、光線の入射側から順に配設された、第1のプリズム、第2のプリズムおよび第3のプリズムと、該プリズムの所定のプリズム面に配置され、所定の波長範囲の光を選択的に透過または反射させる相異なる分光特性を有する複数の波長選択フィルタとを備えた色分解光学系において、
前記波長選択フィルタのうち、前記第2のプリズムと前記第3のプリズムとの境界面に設けられ、赤色域光を反射するとともに緑色域光を透過させる分光特性を有する波長選択フィルタ、その分光透過率曲線において、緑色域光の短波長側の立ち上がり半値波長が480nm〜510nmの範囲内に設定されるとともに、該立ち上がり半値波長を挟んで、短波長側において15%の透過率を有する波長と、長波長側において80%の透過率を有する波長との差が30nm以内に設定されていることを特徴とするものである。
In order to achieve the above-described object, the color separation optical system of the present invention includes a first prism, a second prism, and a third prism arranged in order from the light incident side , and a predetermined prism of the prism. In a color separation optical system including a plurality of wavelength selection filters disposed on a surface and having different spectral characteristics that selectively transmit or reflect light in a predetermined wavelength range,
Among the wavelength selective filter, wherein the second prism is provided at the interface between the third prism, the wavelength selective filter having a spectral property of transmitting green region light while reflecting red region light, its spectral In the transmittance curve , the rising half-value wavelength on the short wavelength side of green light is set in the range of 480 nm to 510 nm, and the wavelength having a transmittance of 15% on the short wavelength side across the rising half-value wavelength The difference from the wavelength having a transmittance of 80% on the long wavelength side is set within 30 nm .

本発明のさらに他の色分解光学系は、光線の入射側から順に配設された、第1のプリズム、第2のプリズムおよび第3のプリズムと、該プリズムの所定のプリズム面に配置され、所定の波長範囲の光を選択的に透過または反射させる相異なる分光特性を有する複数の波長選択フィルタとを備えた色分解光学系において、
前記波長選択フィルタは、前記第1のプリズムにおける前記第2のプリズムの光入射面に対向する光反射面に備えられ、青色域光を反射するとともに赤色域光および緑色域光を透過させる分光特性を有する波長選択フィルタと、
前記第2のプリズムと前記第3のプリズムとの境界面に設けられ、赤色域光を反射するとともに緑色域光を透過させる分光特性を有する波長選択フィルタとからなり、
前記赤色域光を反射するとともに緑色域光を透過させる分光特性を有する波長選択フィルタは、その分光透過率曲線において、緑色域光の短波長側の立ち上がり半値波長が480nm〜510nmの範囲内に設定されるとともに、該立ち上がり半値波長を挟んで、短波長側において15%の透過率を有する波長と、長波長側において80%の透過率を有する波長との差が30nm以内に設定されていることを特徴とするものである
Still another color separation optical system of the present invention is disposed on a predetermined prism surface of the first prism, the second prism, and the third prism, which are sequentially disposed from the light incident side , In a color separation optical system including a plurality of wavelength selection filters having different spectral characteristics that selectively transmit or reflect light in a predetermined wavelength range,
The wavelength selection filter has spectral characteristics the provided opposite the light reflecting surface to the light incident surface of the second prism in the first prism, and transmits the red band light and green region light while reflecting the blue band light A wavelength selective filter having :
A wavelength selective filter provided at a boundary surface between the second prism and the third prism, having a spectral characteristic that reflects red light and transmits green light;
The wavelength selective filter having the spectral characteristic of reflecting the red light and transmitting the green light has a rising half-value wavelength on the short wavelength side of the green light within the range of 480 nm to 510 nm in the spectral transmittance curve. The difference between the wavelength having a transmittance of 15% on the short wavelength side and the wavelength having a transmittance of 80% on the long wavelength side is set within 30 nm across the rising half-value wavelength . It is characterized by .

また、前記複数のプリズムの光射出面に対向させてそれぞれ固体撮像素子を配設し、
前記複数のプリズムのうち、その光射出面から赤色域光を射出するプリズムに対向して配設された固体撮像素子の受光面までの間に、前記固体撮像素子への入射光に含まれる不要な波長域の光を除去する分光特性を持つ色素を含むコーティング層を設けることが可能である。
In addition, a solid-state imaging device is disposed to face the light exit surfaces of the plurality of prisms,
Among the plurality of prisms, there is no need to be included in the incident light to the solid-state image sensor between the light exit surface and the light-receiving surface of the solid-state image sensor disposed facing the prism that emits red light. It is possible to provide a coating layer containing a dye having spectral characteristics that removes light in various wavelength ranges.

本発明の色分解光学系によれば、緑色域光を透過させる波長選択フィルタに対して、その分光透過率曲線が、緑色域光の短波長側で、青色域光と緑色域光の境界に沿って立ち上がるような透過特性を付加したことにより、色ガラスや色素を含む光吸収層を用いることなく分光特性を適切に調整して不要域光を除去することができ、ゴーストやフレアを抑制するとともに、色バランスを良好なものとすることができる。   According to the color separation optical system of the present invention, for a wavelength selection filter that transmits green light, the spectral transmittance curve is at the short wavelength side of the green light and at the boundary between blue light and green light. By adding a transmission characteristic that rises along the line, it is possible to remove unwanted light by appropriately adjusting the spectral characteristics without using a light absorbing layer containing colored glass or pigment, thereby suppressing ghosts and flares. At the same time, the color balance can be improved.

また、緑色域光を透過させる分光特性を有する波長選択フィルタにおける分光透過率曲線について、短波長側の立ち上がり半値を480nm〜510nmの範囲内に設定するとともに、該立ち上がり半値波長を挟んで、短波長側において15%の透過率を有する波長と、長波長側において80%の透過率を有する波長との差が30nm以内に設定することにより、より確実かつ効果的にゴーストやフレアを抑制するとともに、色バランスを良好なものとすることができる。   For the spectral transmittance curve in the wavelength selective filter having spectral characteristics that transmits green light, the rising half-value on the short wavelength side is set within a range of 480 nm to 510 nm, and the rising half-value wavelength is sandwiched between the short wavelength By setting the difference between the wavelength having a transmittance of 15% on the side and the wavelength having a transmittance of 80% on the long wavelength side to be within 30 nm, it is possible to more reliably and effectively suppress ghosts and flares, The color balance can be made good.

また、光射出面から赤色域光を射出するプリズムに対向して配設された固体撮像素子の受光面に、入射光に含まれる不要な青色域光を除去する分光特性を持つ色素を含むコーティング層を設けることにより、さらに一層、ゴーストやフレアを抑制するとともに、色バランスを良好なものとし、小型化を図ることが可能な色分解光学系とすることができる。   In addition, a coating containing a pigment having a spectral characteristic for removing unnecessary blue light contained in incident light on a light receiving surface of a solid-state imaging device disposed opposite to a prism that emits red light from a light emitting surface By providing the layer, it is possible to further reduce ghosts and flares, improve the color balance, and achieve a color separation optical system that can be reduced in size.

以下、図面を参照して、本発明の色分解光学系の実施形態を説明する。
図1は、本発明の実施形態に係る色分解光学系を示す概略構成図である。
Embodiments of the color separation optical system of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a color separation optical system according to an embodiment of the present invention.

本発明の実施形態に係る色分解光学系は、図1に示すように、被写体(図示せず)の画像情報を担持した入射光の光路L上に配置されたフィリップス型の色分解プリズム10を備えてなり、色分解プリズム10は、青色分解プリズム11、赤色分解プリズム12および緑色分解プリズム13の3つのプリズムから構成されている。   As shown in FIG. 1, a color separation optical system according to an embodiment of the present invention includes a Philips color separation prism 10 disposed on an optical path L of incident light carrying image information of a subject (not shown). The color separation prism 10 includes three prisms, a blue separation prism 11, a red separation prism 12, and a green separation prism 13.

また、青色分解プリズム11の青色域光射出面11aと対向する位置には、青色用固体撮像素子14Bが、赤色分解プリズム12の赤色域光射出面12aと対向する位置には、赤色用固体撮像素子14Rが、緑色分解プリズム13の緑色域光射出面13aと対向する位置には、緑色用固体撮像素子14Gが、それぞれ配設されている。   The blue solid-state imaging element 14B is positioned at a position facing the blue color light emitting surface 11a of the blue separation prism 11, and the red solid-state imaging is positioned at a position facing the red color light emitting surface 12a of the red separation prism 12. A green solid-state image sensor 14G is disposed at a position where the element 14R faces the green light exit surface 13a of the green separation prism 13.

また、青色分解プリズム11の反射プリズム面には、青色域光を含む短波長光域の光(青色域光)のみを反射し、緑色域光を含む中間波長域の光(緑色域光)および赤色域光を含む長波長域の光(赤色域光)は透過する第1のダイクロイック膜15が配設されている。さらに、赤色分解プリズム12と緑色分解プリズム13との境界に位置する反射プリズム面には、赤色分解プリズム12に入射してきた光のうち、赤色域光の波長域内の光は反射して、赤色域光の波長域外の光(主として緑色域光)は透過する分光特性を持つ第2のダイクロイック膜16が配設されている。   Further, the reflection prism surface of the blue separation prism 11 reflects only light in the short wavelength light region (blue region light) including blue region light, and light in the intermediate wavelength region (green region light) including green region light and A first dichroic film 15 that transmits light in a long wavelength region (red region light) including red region light is disposed. Furthermore, the light within the wavelength range of the red light among the light incident on the red separation prism 12 is reflected on the reflecting prism surface located at the boundary between the red separation prism 12 and the green separation prism 13, and the red region. A second dichroic film 16 having a spectral characteristic for transmitting light outside the light wavelength range (mainly green light) is disposed.

第1のダイクロイック膜15および第2のダイクロイック膜16は、所定の分光特性を有するように調整された周知のダイクロイック膜からなり、例えば、TiO2およびSiO2からなる複数の膜層を交互に積層した構造となっている。 The first dichroic film 15 and the second dichroic film 16 are made of a well-known dichroic film adjusted to have a predetermined spectral characteristic. For example, a plurality of film layers made of TiO 2 and SiO 2 are alternately laminated. It has a structure.

また、赤色分解プリズム12の赤色域光射出面12aと、この赤色域光射出面12aに対向して配設された赤色用固体撮像素子14Rの撮像面との間には、赤色域光射出面12aからの射出光に微量含まれる不要な波長域光を除去する分光特性を持つ色素を含むコーティング層121が形成されている。このコーティング層121は、光学ガラス120の表面に色素をスピンコート法や真空蒸着法などにより付着させたものである。また、この色素を含むコーティング層をCCDのカバーガラス等に設けることにより、部品点数を削減することができる。   In addition, a red region light emission surface between the red region light emission surface 12a of the red separation prism 12 and the imaging surface of the red solid-state imaging device 14R disposed to face the red region light emission surface 12a. A coating layer 121 containing a pigment having spectral characteristics for removing unnecessary wavelength band light contained in a minute amount in the emitted light from 12a is formed. The coating layer 121 is obtained by attaching a dye to the surface of the optical glass 120 by a spin coating method, a vacuum deposition method, or the like. In addition, the number of parts can be reduced by providing a coating layer containing this pigment on a cover glass of a CCD.

被写体(図示せず)からの光は、光路Lに沿って青色分解プリズム11の入射プリズム面11bから入射して第1のダイクロイック膜15に到り、この第1のダイクロイック膜15において、青色域光Bのみが反射され、緑色域光Gおよび赤色域光Rは透過される。第1のダイクロイック膜15において反射された青色域光Bは、入射プリズム面11bにおいて全反射された後、青色域光射出面11aから射出され、青色用固体撮像素子14Bにおいて撮像される。   Light from a subject (not shown) is incident along the optical path L from the incident prism surface 11b of the blue separation prism 11 and reaches the first dichroic film 15. In the first dichroic film 15, the blue region Only the light B is reflected, and the green color light G and the red color light R are transmitted. The blue color light B reflected by the first dichroic film 15 is totally reflected by the incident prism surface 11b, then exits from the blue color light exit surface 11a, and is imaged by the blue solid-state imaging device 14B.

一方、第1のダイクロイック膜15を透過した緑色域光Gおよび赤色域光Rは、第2のダイクロイック膜16において赤色域光Rが反射され、緑色域光Gが透過される。透過した緑色域光Gは、緑色分解プリズム13を経て緑色域光射出面13aから射出され、緑色用固体撮像素子14Gにおいて撮像される。   On the other hand, the green color light G and the red color light R transmitted through the first dichroic film 15 are reflected by the second dichroic film 16 and the green color light G is transmitted. The transmitted green light G is emitted from the green light emitting surface 13a through the green separation prism 13, and is imaged by the green solid-state imaging device 14G.

また、第2のダイクロイック膜16で反射された赤色域光Rは、青色分解プリズム11と赤色分解プリズム12との間にエアギャップが設けられているため、赤色分解プリズム12の全反射プリズム面12bにおいて全反射され、赤色光射出面12aから射出されて、赤色用固体撮像素子14Rにおいて撮像される。   Further, since the red gap light R reflected by the second dichroic film 16 has an air gap between the blue separation prism 11 and the red separation prism 12, the total reflection prism surface 12b of the red separation prism 12 is provided. Are totally reflected, emitted from the red light exit surface 12a, and imaged by the red solid-state imaging device 14R.

ここで、第2のダイクロイック膜16の特性として、赤色分解プリズム12に入射され、その赤色域光射出面12aから射出される光には、若干ではあるが不要な波長域光が含まれている。そこで、赤色域光射出面12aと、この赤色域光射出面12aと対向して配設された赤色用固体撮像素子14Rの撮像面との間に設けたコーティング層121で不要な波長域光を吸収することにより、光学ガラス120の光射出面12cと赤色用固体撮像素子14Rの受光面との間における光の往復現象を防止して、ゴーストやフレアがないとともに、クロストークの少ない良好な画像を得ることができる。   Here, as a characteristic of the second dichroic film 16, light that is incident on the red separation prism 12 and is emitted from the light emission surface 12a of the red color region includes a small amount of unnecessary wavelength range light. . Therefore, unnecessary wavelength band light is emitted by the coating layer 121 provided between the red color light emitting surface 12a and the imaging surface of the red solid-state image pickup device 14R disposed to face the red color light emitting surface 12a. Absorption prevents a light reciprocation between the light exit surface 12c of the optical glass 120 and the light receiving surface of the red solid-state imaging device 14R, and is free from ghosts and flares and is a good image with little crosstalk. Can be obtained.

次に、図2を参照して、本実施形態の色分解光学系における分光特性を説明する。
図2は、本発明の色分解光学系に用いる第2のダイクロイック膜の分光特性を示す説明図である。
Next, with reference to FIG. 2, spectral characteristics in the color separation optical system of this embodiment will be described.
FIG. 2 is an explanatory diagram showing the spectral characteristics of the second dichroic film used in the color separation optical system of the present invention.

本実施形態の色分解光学系において、第2のダイクロイック膜16は、図2に示すように、分光透過率曲線の立ち上がりの半値波長が495nm程度、分光透過率曲線の立ち下がりの半値波長が575nm程度となるように設定されている。また、立ち上がり半値波長を挟んで、短波長側において15%の透過率を有する波長は490nm程度であり、長波長側において80%の透過率を有する波長は498nm程度である。したがって、両者の差は8nm程度となっている。   In the color separation optical system of the present embodiment, as shown in FIG. 2, the second dichroic film 16 has a rising half-value wavelength of about 495 nm and a falling half-value wavelength of the spectral transmittance curve of 575 nm. It is set to be about. Further, the wavelength having 15% transmittance on the short wavelength side is about 490 nm across the rising half-value wavelength, and the wavelength having 80% transmittance on the long wavelength side is about 498 nm. Therefore, the difference between them is about 8 nm.

さらに、図2に示すように、緑色域光の分光透過率の最大領域において、97%〜100%程度の分光透過率を有している。したがって、本実施形態の色分解光学系によれば、人間の目の感度に対して色バランスを良好なものとすることができる。   Furthermore, as shown in FIG. 2, it has a spectral transmittance of about 97% to 100% in the maximum region of the spectral transmittance of green light. Therefore, according to the color separation optical system of the present embodiment, the color balance can be improved with respect to the sensitivity of the human eye.

また、他の実施形態に係る色分解光学系として、第1のダイクロイック膜15において、上記第2のダイクロイック膜16と同様に、分光透過率曲線の立ち上がりの半値が波長495nm程度となるように設定することにより、緑色域光の短波長側で、青色域光と緑色域光の境界に沿って立ち上がる透過特性を付加することができる。この場合にも、緑色域光の短波長側で、分光透過率曲線の立ち上がり半値波長を挟んで、短波長側において15%の透過率を有する波長と80%の透過率を有する波長との差が30nm以内に設定される。   Further, as a color separation optical system according to another embodiment, in the first dichroic film 15, as in the case of the second dichroic film 16, the rising half value of the spectral transmittance curve is set to a wavelength of about 495 nm. By doing so, it is possible to add a transmission characteristic that rises along the boundary between the blue light and the green light on the short wavelength side of the green light. Also in this case, the difference between the wavelength having a transmittance of 15% and the wavelength having a transmittance of 80% on the short wavelength side across the rising half-value wavelength of the spectral transmittance curve on the short wavelength side of the green light. Is set within 30 nm.

なお、本発明の色分解光学系では、分光透過率曲線において、短波長側の立ち上がり半値波長が480nm〜510nmの範囲内に設定されるとともに、該立ち上がり半値波長を挟んで、短波長側において15%の透過率を有する波長と、長波長側において80%の透過率を有する波長との差が30nm以内に設定されていれば、色バランスを良好なものとすることができる。   In the color separation optical system of the present invention, the rising half-value wavelength on the short wavelength side is set in the range of 480 nm to 510 nm in the spectral transmittance curve, and 15 on the short wavelength side across the rising half-value wavelength. If the difference between the wavelength having a transmittance of% and the wavelength having a transmittance of 80% on the long wavelength side is set within 30 nm, the color balance can be improved.

また、緑色域光を透過させる分光特性を有する波長選択フィルタにおける緑色域光の分光透過率曲線を、短波長側の立ち上がり半値波長が490nm〜500nmの範囲内となるように設定することにより、特に良好な色バランスを実現することができる。   In addition, by setting the spectral transmittance curve of the green light in the wavelength selection filter having spectral characteristics to transmit the green light so that the rising half-value wavelength on the short wavelength side is within the range of 490 nm to 500 nm, Good color balance can be achieved.

また、上記実施形態では、フィリップス型の色分解プリズムを用いているが、本発明は、クロスダイクロイック型の色分解プリズム、あるいは4板式や2板式の色分解プリズム等、他の色分解プリズムに対して適用可能である。   In the above embodiment, a Philips type color separation prism is used. However, the present invention is not limited to other color separation prisms such as a cross dichroic type color separation prism or a four-plate type or two-plate type color separation prism. It is applicable.

本発明の実施形態に係る色分解光学系を示す概略構成図1 is a schematic configuration diagram showing a color separation optical system according to an embodiment of the present invention. 本発明の実施形態に係る色分解光学系に用いる第2のダイクロイック膜の分光特性を示す説明図Explanatory drawing which shows the spectral characteristics of the 2nd dichroic film | membrane used for the color separation optical system which concerns on embodiment of this invention 従来の色分解光学系において、赤反射/緑透過のダイクロイック膜、色ガラス、および色素を含み光吸収層の分光透過率曲線を示す説明図Explanatory drawing which shows the spectral transmittance curve of the light absorption layer containing the dichroic film | membrane of red reflection / green transmission, colored glass, and pigment | dye in the conventional color separation optical system

符号の説明Explanation of symbols

10 色分解プリズム
11 青色分解プリズム
11a 青色域光射出面
11b 全反射プリズム面(青反射)
12 赤色分解プリズム
12a 赤色域光射出面
12b 全反射プリズム面(赤反射)
12c 光学ガラスの光射出面
120 光学ガラス
121 色素を含むコーティング層
13 緑色分解プリズム
13a 緑色域光射出面
14B 青色用固体撮像素子
14R 赤色用固体撮像素子
14G 緑色用固体撮像素子
15 第1のダイクロイック膜
16 第2のダイクロイック膜
10 Color separation prism 11 Blue separation prism 11a Blue area light exit surface 11b Total reflection prism surface (blue reflection)
12 Red separation prism 12a Red area light exit surface 12b Total reflection prism surface (red reflection)
12c Light emission surface of optical glass 120 Optical glass 121 Coating layer containing pigment 13 Green separation prism 13a Green light emission surface 14B Blue solid-state image pickup device 14R Red solid-state image pickup device 14G Green solid-state image pickup device 15 First dichroic film 16 Second dichroic membrane

Claims (3)

光線の入射側から順に配設された、第1のプリズム、第2のプリズムおよび第3のプリズムと、該プリズムの所定のプリズム面に配置され、所定の波長範囲の光を選択的に透過または反射させる相異なる分光特性を有する複数の波長選択フィルタとを備えた色分解光学系において、
前記波長選択フィルタのうち、前記第2のプリズムと前記第3のプリズムとの境界面に設けられ、赤色域光を反射するとともに緑色域光を透過させる分光特性を有する波長選択フィルタは、その分光透過率曲線において、緑色域光の短波長側の立ち上がり半値波長が480nm〜510nmの範囲内に設定されるとともに、該立ち上がり半値波長を挟んで、短波長側において15%の透過率を有する波長と、長波長側において80%の透過率を有する波長との差が30nm以内に設定されていることを特徴とする色分解光学系。
A first prism, a second prism, and a third prism, which are arranged in order from the light incident side, and are arranged on a predetermined prism surface of the prism and selectively transmit light in a predetermined wavelength range; In a color separation optical system including a plurality of wavelength selection filters having different spectral characteristics to be reflected,
Among the wavelength selection filters, a wavelength selection filter that is provided at a boundary surface between the second prism and the third prism and has a spectral characteristic that reflects red range light and transmits green range light has its spectral characteristics. In the transmittance curve, the rising half-value wavelength on the short wavelength side of green light is set in the range of 480 nm to 510 nm, and the wavelength having a transmittance of 15% on the short wavelength side across the rising half-value wavelength A color separation optical system characterized in that a difference from a wavelength having a transmittance of 80% on the long wavelength side is set within 30 nm.
光線の入射側から順に配設された、第1のプリズム、第2のプリズムおよび第3のプリズムと、該プリズムの所定のプリズム面に配置され、所定の波長範囲の光を選択的に透過または反射させる相異なる分光特性を有する複数の波長選択フィルタとを備えた色分解光学系において、
前記波長選択フィルタは、前記第1のプリズムにおける前記第2のプリズムの光入射面に対向する光反射面に備えられ、青色域光を反射するとともに赤色域光および緑色域光を透過させる分光特性を有する波長選択フィルタと、
前記第2のプリズムと前記第3のプリズムとの境界面に設けられ、赤色域光を反射するとともに緑色域光を透過させる分光特性を有する波長選択フィルタとからなり、
前記赤色域光を反射するとともに緑色域光を透過させる分光特性を有する波長選択フィルタは、その分光透過率曲線において、緑色域光の短波長側の立ち上がり半値波長が480nm〜510nmの範囲内に設定されるとともに、該立ち上がり半値波長を挟んで、短波長側において15%の透過率を有する波長と、長波長側において80%の透過率を有する波長との差が30nm以内に設定されていることを特徴とする色分解光学系。
A first prism, a second prism, and a third prism, which are arranged in order from the light incident side, and are arranged on a predetermined prism surface of the prism and selectively transmit light in a predetermined wavelength range; In a color separation optical system including a plurality of wavelength selection filters having different spectral characteristics to be reflected,
The wavelength selection filter is provided on a light reflecting surface of the first prism facing the light incident surface of the second prism, and reflects the blue color light and transmits the red color light and the green color light. A wavelength selective filter having:
A wavelength selective filter provided at a boundary surface between the second prism and the third prism, having a spectral characteristic that reflects red light and transmits green light;
The wavelength selective filter having the spectral characteristic of reflecting the red light and transmitting the green light has a rising half-value wavelength on the short wavelength side of the green light within the range of 480 nm to 510 nm in the spectral transmittance curve. The difference between the wavelength having a transmittance of 15% on the short wavelength side and the wavelength having a transmittance of 80% on the long wavelength side is set within 30 nm across the rising half-value wavelength. A color separation optical system.
前記複数のプリズムの光射出面に対向させてそれぞれ固体撮像素子を配設し、
前記複数のプリズムのうち、その光射出面から赤色域光を射出するプリズムに対向して配設された固体撮像素子の受光面までの間に、前記固体撮像素子への入射光に含まれる不要な波長域の光を除去する分光特性を持つ色素を含むコーティング層が設けられてなることを特徴とする請求項1又は2に記載の色分解光学系。
A solid-state image sensor is disposed to face the light exit surfaces of the plurality of prisms,
Among the plurality of prisms, there is no need to be included in the incident light to the solid-state image sensor between the light exit surface and the light-receiving surface of the solid-state image sensor disposed facing the prism that emits red light. color separation optical system according to claim 1 or 2 coating layer comprising a dye having a spectral characteristic for removing light in a wavelength band, characterized in that the thus provided.
JP2004372848A 2004-12-24 2004-12-24 Color separation optical system Expired - Fee Related JP4610324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372848A JP4610324B2 (en) 2004-12-24 2004-12-24 Color separation optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372848A JP4610324B2 (en) 2004-12-24 2004-12-24 Color separation optical system

Publications (2)

Publication Number Publication Date
JP2006178264A JP2006178264A (en) 2006-07-06
JP4610324B2 true JP4610324B2 (en) 2011-01-12

Family

ID=36732427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372848A Expired - Fee Related JP4610324B2 (en) 2004-12-24 2004-12-24 Color separation optical system

Country Status (1)

Country Link
JP (1) JP4610324B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942041B2 (en) 2013-08-29 2016-06-29 富士フイルム株式会社 Color separation optical system and imaging apparatus
CN105700221A (en) * 2016-04-15 2016-06-22 成都京东方光电科技有限公司 Substrate and display device
JP2020086417A (en) * 2018-11-28 2020-06-04 武蔵オプティカルシステム株式会社 Color separation optical system and imaging apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135301A (en) * 1988-11-16 1990-05-24 Fuji Photo Optical Co Ltd Color separation optical system
JPH0973006A (en) * 1995-09-05 1997-03-18 Fuji Photo Optical Co Ltd Color resolving optical system
JP2000098442A (en) * 1998-09-18 2000-04-07 Canon Inc Image pickup device
JP2002365413A (en) * 2001-06-12 2002-12-18 Fuji Photo Optical Co Ltd Color separation optical system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135301A (en) * 1988-11-16 1990-05-24 Fuji Photo Optical Co Ltd Color separation optical system
JPH0973006A (en) * 1995-09-05 1997-03-18 Fuji Photo Optical Co Ltd Color resolving optical system
JP2000098442A (en) * 1998-09-18 2000-04-07 Canon Inc Image pickup device
JP2002365413A (en) * 2001-06-12 2002-12-18 Fuji Photo Optical Co Ltd Color separation optical system

Also Published As

Publication number Publication date
JP2006178264A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP4839632B2 (en) Imaging device
JP3507122B2 (en) Color separation optical system or TV camera having color separation optical system
US8134191B2 (en) Solid-state imaging device, signal processing method, and camera
JP4740018B2 (en) Solid-state imaging device, camera, and signal processing method
US8227883B2 (en) Solid-state imaging device and camera
CN100548033C (en) Imageing sensor and digital camera
JP5066420B2 (en) Color separation optical system and imaging apparatus
JP2007135951A (en) Two-plate imaging system
JP2000266915A (en) Light flux splitting prism system or image pick-up device
US20020186310A1 (en) Optical imaging system
JP5047547B2 (en) Optical element, two-plate unit including this optical element, imaging device, and endoscope
JP4409119B2 (en) Color separation optical system
JP3397758B2 (en) Imaging device
JP4610324B2 (en) Color separation optical system
JPH08275182A (en) Television camera in common use for color mode and infrared ray mode
JP5056002B2 (en) Color separation prism and color imaging device
JP2013105122A (en) Color separation optical system and imaging apparatus including the same
JP2006091653A (en) Color separation optical system
JP3397757B2 (en) Imaging device
WO2015137084A1 (en) Ir cut filter
JP2017037162A (en) Color separation optical system and imaging device having the same
JP3104432B2 (en) Color separation optics
JP2004208212A (en) Imaging device
JP2000098442A (en) Image pickup device
JP2011107285A (en) Light quantity splitting prism and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees