[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4608971B2 - heat pump - Google Patents

heat pump Download PDF

Info

Publication number
JP4608971B2
JP4608971B2 JP2004200658A JP2004200658A JP4608971B2 JP 4608971 B2 JP4608971 B2 JP 4608971B2 JP 2004200658 A JP2004200658 A JP 2004200658A JP 2004200658 A JP2004200658 A JP 2004200658A JP 4608971 B2 JP4608971 B2 JP 4608971B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
heat
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004200658A
Other languages
Japanese (ja)
Other versions
JP2006023002A (en
Inventor
慎一 若本
利秀 幸田
一 吉安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004200658A priority Critical patent/JP4608971B2/en
Publication of JP2006023002A publication Critical patent/JP2006023002A/en
Application granted granted Critical
Publication of JP4608971B2 publication Critical patent/JP4608971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

この発明は、給湯器などに使用されるヒートポンプに関するものである。   The present invention relates to a heat pump used for a water heater or the like.

給湯器などに使用されるヒートポンプでは、約70℃〜約90℃の範囲という高温の湯を得るために、圧縮機入口での冷媒の過熱度(圧縮機入口での圧力での飽和温度と冷媒温度との差)を大きく取り、圧縮機から吐出される冷媒の温度が沸かす湯の温度よりも高くなるように運転している。ヒートポンプで2台以上の圧縮機を直列に接続することはよく行われている。(例えば、特許文献1を参照)   In a heat pump used for a water heater or the like, in order to obtain hot water having a temperature in the range of about 70 ° C. to about 90 ° C., the degree of superheat of the refrigerant at the compressor inlet (saturation temperature and refrigerant at the pressure at the compressor inlet) The operation is performed so that the temperature of the refrigerant discharged from the compressor is higher than the temperature of the boiling water. It is common to connect two or more compressors in series with a heat pump. (For example, see Patent Document 1)

特開平6−2966号公報JP-A-6-2966

圧縮機入口での冷媒の過熱度が高いほど、同じ出力を得るために圧縮機で消費する電力量が大きくなり、給湯器用のヒートポンプは効率が悪い運転をしている。ヒートポンプの効率を改善する技術が望まれている。   The higher the degree of superheat of the refrigerant at the compressor inlet, the larger the amount of electric power consumed by the compressor to obtain the same output, and the heat pump for the hot water heater is operating less efficiently. A technique for improving the efficiency of a heat pump is desired.

この発明に係るヒートポンプは、熱源により冷媒に熱を与える第1熱交換器と、該第1熱交換器で熱を与えられた冷媒を圧縮する第1圧縮機と、該第1圧縮機で圧縮された冷媒であって第1圧縮機から吐出された時点の温度以上に保たれた冷媒を圧縮する第2圧縮機と、該第2圧縮機で圧縮された冷媒から熱を奪う第2熱交換器と、該第2熱交換器で熱を奪われた冷媒を前記第1熱交換器に戻す帰還路と、前記第1圧縮機から前記第2圧縮機に向かう冷媒配管に設けられ、前記第1圧縮機から吐出される冷媒よりも高温になるように前記第2圧縮機に入る冷媒を加熱する冷媒加熱手段とを備えたものである。 The heat pump according to the present invention includes a first heat exchanger that applies heat to a refrigerant from a heat source, a first compressor that compresses the refrigerant that is heated by the first heat exchanger, and a compressor that compresses the first heat exchanger. A second compressor that compresses the refrigerant that has been discharged and maintained at a temperature equal to or higher than the temperature at which it was discharged from the first compressor, and second heat exchange that takes heat away from the refrigerant compressed by the second compressor And a return path for returning the refrigerant deprived of heat by the second heat exchanger to the first heat exchanger, and a refrigerant pipe from the first compressor to the second compressor. And a refrigerant heating means for heating the refrigerant entering the second compressor so that the temperature is higher than that of the refrigerant discharged from the first compressor.

この発明に係るヒートポンプは、熱源により冷媒に熱を与える第1熱交換器と、該第1熱交換器で熱を与えられた冷媒を圧縮する第1圧縮機と、該第1圧縮機で圧縮された冷媒であって第1圧縮機から吐出された時点の温度以上に保たれた冷媒を圧縮する第2圧縮機と、該第2圧縮機で圧縮された冷媒から熱を奪う第2熱交換器と、該第2熱交換器で熱を奪われた冷媒を前記第1熱交換器に戻す帰還路と、前記第1圧縮機から前記第2圧縮機に向かう冷媒配管に設けられ、前記第1圧縮機から吐出される冷媒よりも高温になるように前記第2圧縮機に入る冷媒を加熱する冷媒加熱手段とを備えたものなので、冷媒加熱手段がない場合と比較して、同じ出力を得るために必要な圧縮機仕事量を低減できるという効果が有る。 The heat pump according to the present invention includes a first heat exchanger that applies heat to a refrigerant from a heat source, a first compressor that compresses the refrigerant that is heated by the first heat exchanger, and a compressor that compresses the first heat exchanger. A second compressor that compresses the refrigerant that has been discharged and maintained at a temperature equal to or higher than the temperature at which it was discharged from the first compressor, and second heat exchange that takes heat away from the refrigerant compressed by the second compressor And a return path for returning the refrigerant deprived of heat by the second heat exchanger to the first heat exchanger, and a refrigerant pipe from the first compressor to the second compressor. And a refrigerant heating means for heating the refrigerant entering the second compressor so that the temperature is higher than that of the refrigerant discharged from the first compressor, so that the same output is obtained as compared with the case without the refrigerant heating means. This has the effect of reducing the amount of compressor work necessary to obtain.

実施の形態1.
図1に、実施の形態1でのヒートポンプの構成を説明する図を示す。このヒートポンプは、給湯器などで湯を沸かす熱源として使用する2段圧縮のヒートポンプである。このヒートポンプの冷媒は、地球環境に悪影響を与える度合いが少ない二酸化炭素とする。このヒートポンプは、冷媒を圧縮する低圧側の第1圧縮機1と、高圧側の第2圧縮機2と、第1圧縮機1から吐出され第2圧縮機2に入る冷媒を加熱する冷媒加熱手段3と、第2圧縮機2から吐出される冷媒から熱を奪って水を加熱する放熱器4と、放熱器4から出る冷媒を減圧する減圧弁5と、減圧弁5により減圧された冷媒を蒸発させる蒸発器6と、これらの間で冷媒を流す冷媒配管7から構成する。放熱器4には水配管8があり、ポンプ9により水配管8の中を加熱される水が流れる。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating the configuration of the heat pump in the first embodiment. This heat pump is a two-stage compression heat pump used as a heat source for boiling water in a water heater or the like. The refrigerant of the heat pump is carbon dioxide that has a low degree of adverse effect on the global environment. This heat pump includes a first compressor 1 on the low pressure side that compresses the refrigerant, a second compressor 2 on the high pressure side, and a refrigerant heating means that heats the refrigerant discharged from the first compressor 1 and entering the second compressor 2. 3, a radiator 4 that removes heat from the refrigerant discharged from the second compressor 2 and heats the water, a pressure reducing valve 5 that decompresses the refrigerant discharged from the heat radiator 4, and a refrigerant decompressed by the pressure reducing valve 5 It comprises an evaporator 6 that evaporates and a refrigerant pipe 7 through which refrigerant flows. The radiator 4 has a water pipe 8, and water heated in the water pipe 8 by the pump 9 flows.

冷媒は、第1圧縮機1、冷媒加熱手段3、第2圧縮機2、放熱器4、減圧弁5及び蒸発器6の間で、冷媒配管7により、この順番に流れて循環する。蒸発器6が第1熱交換器であり、放熱器4が第2熱交換器である。減圧弁5とその両側の冷媒配管7Aと冷媒配管7Bとが帰還路であり、放熱器4と蒸発器6との間をつなぐ。
冷媒加熱手段3は、第2圧縮機2から吐出されて第1圧縮機1の吸入口に戻る冷凍機油が持つ熱や他のヒートポンプや蓄熱装置などの廃熱を利用して、冷媒を加熱するものとする。なお、冷凍機油は圧縮機の動作を滑らかにするための潤滑油である。冷凍機油は冷媒とともに圧縮機で圧縮される。圧縮機から吐出された冷凍機油は、分離されて特別の配管で圧縮機の吸入口に戻す場合もあれば、分離しないで冷媒とともに流す場合もある。
The refrigerant flows and circulates in this order through the refrigerant pipe 7 between the first compressor 1, the refrigerant heating means 3, the second compressor 2, the radiator 4, the pressure reducing valve 5 and the evaporator 6. The evaporator 6 is a first heat exchanger, and the radiator 4 is a second heat exchanger. The pressure reducing valve 5 and the refrigerant pipes 7 </ b> A and 7 </ b> B on both sides thereof are return paths, and connect between the radiator 4 and the evaporator 6.
The refrigerant heating means 3 heats the refrigerant using the heat of the refrigerating machine oil discharged from the second compressor 2 and returning to the suction port of the first compressor 1 and waste heat from other heat pumps, heat storage devices, etc. Shall. The refrigeration oil is a lubricating oil for smoothing the operation of the compressor. The refrigeration oil is compressed by the compressor together with the refrigerant. The refrigeration oil discharged from the compressor may be separated and returned to the compressor inlet through a special pipe, or may flow along with the refrigerant without being separated.

次に動作を説明する。冷媒の状態変化を説明する温度エントロピ図を、図2に示す。実線がこの発明に係るヒートポンプの動作を示す軌跡であり、破線が従来のヒートポンプの動作を示す軌跡である。この発明に係る方式を本方式と呼ぶ。冷媒の状態と対応する位置を説明する図を、図3に示す。図3では点を意味する記号を四角で囲んで表示する。
第1圧縮機1に吸入される冷媒は、図2に示す点Aで示される低温低圧の気体である。第1圧縮機1で断熱圧縮されることにより、冷媒は点Bで示される中間圧の気体となる。なお、厳密には圧縮機内部の表面と冷媒との間で僅かな熱の伝導は有る。この伝導で伝わる熱量はヒートポンプが移動させる熱量と比較すると無視できるほど小さいので、圧縮機では断熱圧縮すると考える。
Next, the operation will be described. FIG. 2 shows a temperature entropy diagram explaining the state change of the refrigerant. A solid line is a locus indicating the operation of the heat pump according to the present invention, and a broken line is a locus indicating the operation of the conventional heat pump. The method according to the present invention is called the present method. FIG. 3 is a diagram for explaining the position corresponding to the state of the refrigerant. In FIG. 3, symbols representing points are displayed by being surrounded by squares.
The refrigerant sucked into the first compressor 1 is a low-temperature and low-pressure gas indicated by a point A shown in FIG. By being adiabatically compressed by the first compressor 1, the refrigerant becomes an intermediate pressure gas indicated by a point B. Strictly speaking, there is slight heat conduction between the surface inside the compressor and the refrigerant. The amount of heat transmitted by this conduction is negligibly small compared to the amount of heat transferred by the heat pump.

冷媒加熱手段3でほぼ定圧で加熱されて、冷媒は点Cで示される点Bよりも温度が高い状態になる。そして、冷媒が第2圧縮機2でさらに圧縮されて、冷媒は点Dで示される高温高圧の気体となる。点Dでの冷媒は、圧力一定で温度が低下しても液体になることがない超臨界の領域である。
放熱器4で水を加熱しながら冷媒の温度が低下して、点Eで示す低温高圧の状態に点Dから変化する。ここで、ヒートポンプの出力を満足するように、点Dと点Eの位置が決められる。減圧弁5で減圧されると、冷媒は点Fで示す低温低圧の気液二相状態になる。そして、蒸発器6で外気から熱を奪って液体の冷媒が蒸発して、気体の状態である点Aの位置に戻る。
The refrigerant is heated at a substantially constant pressure by the refrigerant heating means 3, and the temperature of the refrigerant is higher than that at the point B indicated by the point C. Then, the refrigerant is further compressed by the second compressor 2, and the refrigerant becomes a high-temperature and high-pressure gas indicated by a point D. The refrigerant at the point D is a supercritical region where the pressure is constant and the liquid does not become liquid even when the temperature is lowered.
While the water is heated by the radiator 4, the temperature of the refrigerant decreases, and the state changes from the point D to a low temperature and high pressure state indicated by a point E. Here, the positions of the points D and E are determined so as to satisfy the output of the heat pump. When the pressure is reduced by the pressure reducing valve 5, the refrigerant enters a low-temperature low-pressure gas-liquid two-phase state indicated by a point F. Then, the evaporator 6 removes heat from the outside air, the liquid refrigerant evaporates, and returns to the point A which is in the gaseous state.

一方、冷媒加熱手段3がない従来のヒートポンプで同じ出力を得る場合の動作は以下のようになる。出力を同じにするために、第2圧縮機2、放熱器4及び減圧弁5は本方式の場合と同様に動作し、冷媒の状態の軌跡はC−D−E−Fとなる。第1圧縮機1と蒸発器6の動作は、本方式と従来とでは異なる。第1圧縮機1では冷媒の状態が点A2から点Cになるように断熱圧縮する。そして、蒸発器6では、冷媒の状態を点Fから点A2まで変化させるように定圧で加熱する。なお、点A2は点Aよりも温度すなわち過熱度が高い。
点A2が点Aよりも温度すなわち過熱度が高くなる理由を説明する。本方式では第1圧縮機1で圧縮した後に冷媒加熱手段3により点Bから点Cまで加熱するのに対して、従来方式では冷媒加熱手段3による加熱がないので、第1圧縮機1での圧縮後に本方式と同じ点Cになるためには、第1圧縮機1に入る冷媒の温度を本方式よりも高くする必要があるからである。
On the other hand, the operation when obtaining the same output with a conventional heat pump without the refrigerant heating means 3 is as follows. In order to make the output the same, the 2nd compressor 2, the radiator 4, and the pressure-reduction valve 5 operate | move similarly to the case of this system, and the locus | trajectory of the state of a refrigerant | coolant becomes CDEF. The operations of the first compressor 1 and the evaporator 6 are different between this method and the conventional one. The first compressor 1 performs adiabatic compression so that the state of the refrigerant is changed from the point A2 to the point C. And in the evaporator 6, it heats with a constant pressure so that the state of a refrigerant | coolant may be changed from the point F to the point A2. Note that the temperature at point A2 is higher than that at point A, that is, the degree of superheat.
The reason why the temperature of the point A2 is higher than that of the point A, that is, the degree of superheat will be described. In this method, after being compressed by the first compressor 1, the refrigerant is heated from the point B to the point C by the refrigerant heating means 3, whereas in the conventional method, there is no heating by the refrigerant heating means 3. This is because the temperature of the refrigerant entering the first compressor 1 needs to be higher than that in this method in order to reach the same point C as that in this method after compression.

一般にヒートポンプの成績係数(COP)は、以下の式で計算される。成績係数が高いほど少ないエネルギーで多くの熱量を得る事ができる。つまり、成績係数が高いほど高性能のヒートポンプである。
成績係数=利用できる熱量/圧縮機仕事量
ここで、圧縮機仕事量は、温度エントロピ図では、ヒートポンプの1サイクルの軌跡が囲む面積になる。利用できる熱量は、点Dと点Eの位置により決まる。
Generally, the coefficient of performance (COP) of a heat pump is calculated by the following formula. The higher the coefficient of performance, the more heat can be obtained with less energy. In other words, the higher the coefficient of performance, the higher the performance of the heat pump.
Coefficient of performance = amount of heat available / compressor work amount Here, the compressor work amount is an area surrounded by the locus of one cycle of the heat pump in the temperature entropy diagram. The amount of heat that can be used is determined by the positions of points D and E.

図2から分かるように、本方式のヒートポンプでは、ハッチングを施した軌跡A−A2−C−B−Aで囲まれる部分の面積だけ、従来よりも圧縮機仕事量が少ない。つまり、本方式のヒートポンプでは、従来のヒートポンプよりも成績係数が高い値になる。なお、冷媒加熱手段3での熱源は、第2圧縮機2から吐出されて第1圧縮機1の吸入口に戻る冷凍機油や他のヒートポンプや蓄熱装置などの廃熱を利用するので、そのエネルギー量を成績係数の分母として考慮する必要がない。   As can be seen from FIG. 2, in the heat pump of this system, the amount of compressor work is less than that in the conventional case by the area of the portion surrounded by the hatched locus A-A2-CBA. That is, the coefficient of performance of the heat pump of this method is higher than that of the conventional heat pump. Note that the heat source in the refrigerant heating means 3 uses the waste heat from the refrigeration oil discharged from the second compressor 2 and returned to the suction port of the first compressor 1, and other heat pumps, heat storage devices, etc. There is no need to consider quantity as the denominator of the coefficient of performance.

本方式のヒートポンプで従来よりも圧縮機仕事量が少なくなることを、別の角度から説明する。図4に、冷媒の状態変化を説明する圧力エンタルピ図を示す。図2と同様に、実線で本方式のヒートポンプの軌跡を表現し、破線で従来のヒートポンプの軌跡を表現する。点を表す記号の意味は、図2の場合と同じとする。
圧縮機仕事量は、圧縮機の入口と出口でのエンタルピ差である。そのため、本方式での圧縮機仕事量は、軌跡A−Bでのエンタルピの増分ΔH1と軌跡C−Dでのエンタルピの増分ΔH2の和である。従来のヒートポンプでは、軌跡A2−Dでのエンタルピ増分ΔHが圧縮機仕事量になる。
It will be explained from another angle that the compressor work is less than that of the conventional heat pump. In FIG. 4, the pressure enthalpy figure explaining the state change of a refrigerant | coolant is shown. Similar to FIG. 2, the solid line represents the trajectory of the heat pump of the present system, and the dashed line represents the trajectory of the conventional heat pump. The meaning of the symbols representing the points is the same as in FIG.
The compressor work is the enthalpy difference at the compressor inlet and outlet. Therefore, the compressor work in this method is the sum of the enthalpy increment ΔH1 on the trajectory AB and the enthalpy increment ΔH2 on the trajectory CD. In the conventional heat pump, the enthalpy increment ΔH in the locus A2-D becomes the compressor work.

図4から分かるように、温度が低くエンタルピが小さい冷媒を所定の圧力まで圧縮するのに要する圧縮機仕事量は、温度が高くエンタルピが大きい冷媒の場合と比較して小さい。つまり、図4における軌跡A−Bの傾きの方が、軌跡A2−Dの傾きよりも大きい。そのため、ΔH1+ΔH2<ΔHとなり、本方式の圧縮機仕事量の方が小さくなる。   As can be seen from FIG. 4, the compressor work required to compress the refrigerant having a low temperature and a small enthalpy to a predetermined pressure is smaller than that of the refrigerant having a high temperature and a large enthalpy. That is, the inclination of the trajectory AB in FIG. 4 is larger than the inclination of the trajectory A2-D. Therefore, ΔH1 + ΔH2 <ΔH, and the compressor work of this method is smaller.

本方式による圧縮機仕事量の削減量に関して考察する。圧縮機仕事量の削減量を変数DHで表現することとする。まず、変数の定義から以下が成立する。
DH=ΔH−ΔH1−ΔH2 (式1)
従来の軌跡A−A2で蒸発器6により冷媒に与えられる熱量をQ1とし、本方式の軌跡B−Cで冷媒加熱手段3により冷媒に与えられる熱量をQ2とすると、図における位置Aから位置Dに移動するのに必要なエンタルピ量は、どの経路をとっても同じになるので、以下が成立する。
ΔH1+Q2+ΔH2=Q1+ΔH (式2)
(式2)を(式1)に代入して、以下の式を得る。
DH=Q2−Q1 (式3)
(式3)より、冷媒加熱手段3により冷媒に与えられる熱量Q2と蒸発器6により冷媒に与えられる熱量Q1との差が、圧縮機仕事量の削減量DHとなることが分かる。つまり、冷媒加熱手段3により従来よりも多くの熱量を冷媒に与えると、従来よりも多い熱量の分だけの圧縮機仕事量を削減できる。
We consider the amount of compressor work reduction by this method. The amount of reduction in compressor work is represented by a variable DH. First, the following holds from the definition of variables.
DH = ΔH−ΔH1−ΔH2 (Formula 1)
Assuming that the amount of heat given to the refrigerant by the evaporator 6 in the conventional locus A-A2 is Q1, and the amount of heat given to the refrigerant by the refrigerant heating means 3 in the locus B-C of this system is Q2, the position A to the position D in FIG. Since the amount of enthalpy required to move to is the same for any route, the following holds.
ΔH1 + Q2 + ΔH2 = Q1 + ΔH (Formula 2)
Substituting (Expression 2) into (Expression 1), the following expression is obtained.
DH = Q2-Q1 (Formula 3)
From (Equation 3), it can be seen that the difference between the amount of heat Q2 given to the refrigerant by the refrigerant heating means 3 and the amount of heat Q1 given to the refrigerant by the evaporator 6 becomes the reduction amount DH of the compressor work. That is, if the refrigerant heating means 3 gives more heat to the refrigerant than before, the compressor work can be reduced by the amount of heat more than before.

冷媒加熱手段3を付加することでヒートポンプへの何らかの機械的入力が増加する場合でも、増加する機械的入力の量が(式3)で表現される圧縮機仕事量の減少量よりも小さければ、ヒートポンプの効率を改善できる。
図4から、(式3)で計算される圧縮機仕事量の削減量DHを大きくするには、点Bと点Cの圧力を高くして、Q2を大きくすればよいことが分かる。ただし、点Bと点Cの圧力を高くすると温度も高くなるので、冷媒加熱手段3が利用する熱源の温度を高くする必要がある。なお、第1圧縮機1の吸入口での圧力、第1圧縮機1の吐出口での圧力すなわち第2圧縮機2の吸入口での圧力、第2圧縮機2の吐出口での圧力は、さまざまな要因を考慮して総合的に決める。
Even if some mechanical input to the heat pump is increased by adding the refrigerant heating means 3, if the amount of the increased mechanical input is smaller than the reduction amount of the compressor work expressed by (Equation 3), The efficiency of the heat pump can be improved.
From FIG. 4, it can be seen that in order to increase the reduction amount DH of the compressor work calculated by (Equation 3), the pressures at points B and C should be increased and Q2 should be increased. However, since the temperature increases when the pressure at points B and C is increased, the temperature of the heat source used by the refrigerant heating means 3 needs to be increased. The pressure at the suction port of the first compressor 1, the pressure at the discharge port of the first compressor 1, that is, the pressure at the suction port of the second compressor 2, and the pressure at the discharge port of the second compressor 2 are Determine comprehensively considering various factors.

この実施の形態1では、2個の圧縮機が直列に接続される場合で説明したが、3個以上の圧縮機が直列に接続する場合にも適用できる。直列に接続された圧縮機の間であればどこに冷媒加熱手段を配置しても、圧縮機の間に冷媒加熱手段を配置しない場合と比較して、ヒートポンプの圧縮機仕事量を低減できるという効果がある。
3個以上の圧縮機がある場合も、圧縮機仕事量の削減量DHを大きくするには、冷媒の流れから見て最下流の最も圧力が高い圧縮機に入る冷媒を加熱することが有効である。冷媒加熱手段3が利用できる熱源の温度に制約がある場合は、複数箇所で冷媒を加熱するようにして、冷媒に与える熱量をできるだけ大きくなるようにする。
直列に接続する少なくとも2個の圧縮機を有するヒートポンプであれば、並列に接続される圧縮機が存在してもよい。
In the first embodiment, the case where two compressors are connected in series has been described. However, the present invention can also be applied to a case where three or more compressors are connected in series. The effect that the heat work of the compressor of the heat pump can be reduced compared to the case where the refrigerant heating means is not arranged between the compressors, wherever the refrigerant heating means is arranged between the compressors connected in series. There is.
Even when there are three or more compressors, in order to increase the reduction amount DH of the compressor work, it is effective to heat the refrigerant entering the compressor with the highest pressure at the most downstream side as viewed from the refrigerant flow. is there. When the temperature of the heat source that can be used by the refrigerant heating means 3 is limited, the refrigerant is heated at a plurality of locations so that the amount of heat given to the refrigerant is as large as possible.
If the heat pump has at least two compressors connected in series, there may be a compressor connected in parallel.

この実施の形態1では、二酸化炭素を冷媒とするヒートポンプで説明したが、冷媒は二酸化炭素以外でもよい。また、給湯器で利用する場合で説明したが、蓄熱装置などで利用するようにしてもよい。
以上のことは、他の実施の形態でもあてはまる。
In the first embodiment, the heat pump using carbon dioxide as a refrigerant has been described, but the refrigerant may be other than carbon dioxide. Moreover, although demonstrated in the case of utilizing with a hot water heater, you may make it utilize with a thermal storage apparatus etc.
The above also applies to other embodiments.

実施の形態2.
図5に、実施の形態2でのヒートポンプの構成を説明する図を示す。実施の形態2は、第2圧縮機2から吐出される冷凍機油の熱を利用する冷媒加熱手段3としての具体的な構成を備えるように、実施の形態1を変更したものである。なお、冷凍機油の量は、圧縮機内では冷媒の量の10%程度である。
Embodiment 2. FIG.
FIG. 5 is a diagram illustrating the configuration of the heat pump in the second embodiment. The second embodiment is a modification of the first embodiment so as to have a specific configuration as the refrigerant heating means 3 that uses the heat of the refrigerating machine oil discharged from the second compressor 2. The amount of refrigeration oil is about 10% of the amount of refrigerant in the compressor.

実施の形態1での図1と異なる点だけを説明する。油分離器10、冷媒加熱用熱交換器11及び第2減圧弁12と、これら及び第1圧縮機1の吸入側の冷媒配管7とを接続する冷凍機油配管13が追加されている。図1に有った冷媒加熱手段3は、これらの構成に置き換わっているので、図5では存在しない。
油分離器10は第2圧縮機2と放熱器4の間にあり、冷媒から冷凍機油を分離する。油分離器10で分離された高温高圧の冷凍機油は、冷凍機油配管13により冷媒加熱用熱交換器11に送られる。冷媒加熱用熱交換器11では、高温高圧の冷凍機油により第1圧縮機1から吐出されて第2圧縮機2に入る冷媒を加熱する。第2減圧弁12は、冷媒加熱用熱交換器11からの冷凍機油を減圧する。第2減圧弁12からの冷凍機油配管13は、第1圧縮機1の吸入側で冷媒配管7に接続する。
この実施の形態2と同様だが冷媒加熱用熱交換器11だけを有しない構成のヒートポンプは、従来から存在している。冷媒加熱用熱交換器11を追加しているのが、この実施の形態2の特徴である。この実施の形態2では、冷媒加熱用熱交換器11が冷媒加熱手段である。
Only differences from Embodiment 1 in FIG. 1 will be described. A refrigerating machine oil pipe 13 connecting the oil separator 10, the refrigerant heating heat exchanger 11 and the second pressure reducing valve 12, and the refrigerant pipe 7 on the suction side of the first compressor 1 is added. The refrigerant heating means 3 in FIG. 1 is not present in FIG.
The oil separator 10 is between the second compressor 2 and the radiator 4 and separates refrigeration oil from the refrigerant. The high-temperature and high-pressure refrigerating machine oil separated by the oil separator 10 is sent to the refrigerant heating heat exchanger 11 through the refrigerating machine oil pipe 13. In the refrigerant heating heat exchanger 11, the refrigerant discharged from the first compressor 1 and entering the second compressor 2 is heated by high-temperature and high-pressure refrigeration oil. The second pressure reducing valve 12 depressurizes the refrigeration oil from the refrigerant heating heat exchanger 11. A refrigerator oil pipe 13 from the second pressure reducing valve 12 is connected to the refrigerant pipe 7 on the suction side of the first compressor 1.
A heat pump having a configuration similar to that of the second embodiment but not including only the heat exchanger 11 for heating the refrigerant has conventionally existed. The feature of the second embodiment is that a heat exchanger 11 for heating the refrigerant is added. In the second embodiment, the refrigerant heating heat exchanger 11 is a refrigerant heating means.

次に動作を説明する。この実施の形態2でも、冷媒の状態変化は、実施の形態1の場合と同様になる。ここで、B−Cの状態変化は、冷媒加熱用熱交換器11で冷凍機油の熱により冷媒が加熱されることを意味する。
油分離器10で分離された高温高圧の冷凍機油は、冷媒加熱用熱交換器11で第1圧縮機1から吐出される冷媒(冷凍機油を含む)を加熱して、温度が下がる。冷媒加熱用熱交換器11で温度が下がった冷凍機油は、第2減圧弁12で減圧されて、第1圧縮機1の吸入側で冷媒と混合される。
Next, the operation will be described. Even in the second embodiment, the state change of the refrigerant is the same as in the first embodiment. Here, the state change of B-C means that the refrigerant is heated by the heat of the refrigerating machine oil in the refrigerant heating heat exchanger 11.
The high-temperature and high-pressure refrigerating machine oil separated by the oil separator 10 heats the refrigerant (including refrigerating machine oil) discharged from the first compressor 1 by the refrigerant heating heat exchanger 11, and the temperature decreases. The refrigerating machine oil whose temperature has been lowered in the refrigerant heating heat exchanger 11 is decompressed by the second pressure reducing valve 12 and mixed with the refrigerant on the suction side of the first compressor 1.

従来は、油分離器10で分離された高温高圧の冷凍機油は、途中で冷媒加熱に利用されることなくそのまま第1圧縮機1の吸入口に戻されていた。これに対して、高温高圧の冷凍機油の熱を冷媒加熱用熱交換器11で利用して、第1圧縮機1から吐出され第2圧縮機2に入る冷媒を加熱するようにした点が、この実施の形態2での構成のポイントである。
この実施の形態2でも、圧縮機での圧縮機仕事量が低減できる。なお、冷媒加熱用熱交換器11で利用する冷凍機油の熱量は、従来は有効に利用していなかったものであり、このような構成にしても、ヒートポンプに対する機械的入力は増加しない。
Conventionally, the high-temperature and high-pressure refrigerating machine oil separated by the oil separator 10 is directly returned to the suction port of the first compressor 1 without being used for refrigerant heating on the way. In contrast, the heat of the high-temperature and high-pressure refrigerating machine oil is used in the refrigerant heating heat exchanger 11 to heat the refrigerant discharged from the first compressor 1 and entering the second compressor 2. This is the point of the configuration in the second embodiment.
Also in the second embodiment, the compressor work in the compressor can be reduced. Note that the amount of heat of the refrigerating machine oil used in the refrigerant heating heat exchanger 11 has not been used effectively conventionally, and even with such a configuration, the mechanical input to the heat pump does not increase.

実施の形態3.
図6に、実施の形態3でのヒートポンプの構成を説明する図を示す。この実施の形態3は、放熱器4から出る冷媒の一部を第2圧縮機2の吸入口に戻すバイパス路も存在するヒートポンプにおいて、第2圧縮機2の吸入口に戻る冷媒を冷凍機油で加熱するようにしたものである。
Embodiment 3 FIG.
FIG. 6 is a diagram illustrating the configuration of the heat pump in the third embodiment. The third embodiment is a heat pump in which there is also a bypass that returns a part of the refrigerant exiting from the radiator 4 to the suction port of the second compressor 2, and the refrigerant that returns to the suction port of the second compressor 2 is made of refrigeration oil. It is designed to be heated.

実施の形態3でのヒートポンプは、実施の形態2と同様な、第1圧縮機1、第2圧縮機2、放熱器4、減圧弁5、蒸発器6、油分離器10、第2減圧弁12とこれらをつなぐ冷媒配管7と冷凍機油配管13を有する。放熱器4に接続される水配管8とポンプ9も有る。さらにこれらに加えて、放熱器4と減圧弁5の間にある冷媒配管7Aの途中から冷媒を第2圧縮機2の吸入口に戻すバイパス路である第3減圧弁14及びバイパス冷媒配管7Cと、バイパス冷媒配管7Cを流れる冷媒に冷媒配管7Aを流れる冷媒の熱を移動させる過冷却用熱交換器15と、油分離器10で分離された高温高圧の冷凍機油の熱でバイパス冷媒配管7Cを流れる冷媒を加熱する冷媒加熱用熱交換器11とが有る。
ここで、第1圧縮機1の吐出口と第2圧縮機2の吸入口とを結ぶ冷媒配管7は、バイパス冷媒配管7Cとの接合点で区分して、第1圧縮機1の側を冷媒配管7Dとし、第2圧縮機2の側を冷媒配管7Eとする。
The heat pump in the third embodiment is similar to the second embodiment in the first compressor 1, the second compressor 2, the radiator 4, the pressure reducing valve 5, the evaporator 6, the oil separator 10, and the second pressure reducing valve. 12 and a refrigerant pipe 7 and a refrigerator oil pipe 13 connecting them. There are also a water pipe 8 and a pump 9 connected to the radiator 4. In addition to these, the third pressure reducing valve 14 and the bypass refrigerant pipe 7C, which are bypass paths for returning the refrigerant to the suction port of the second compressor 2 from the middle of the refrigerant pipe 7A between the radiator 4 and the pressure reducing valve 5, The heat exchanger 15 for supercooling that moves the heat of the refrigerant flowing through the refrigerant pipe 7A to the refrigerant flowing through the bypass refrigerant pipe 7C, and the bypass refrigerant pipe 7C with the heat of the high-temperature and high-pressure refrigeration oil separated by the oil separator 10 There is a refrigerant heating heat exchanger 11 that heats the flowing refrigerant.
Here, the refrigerant pipe 7 connecting the discharge port of the first compressor 1 and the suction port of the second compressor 2 is divided at the junction point with the bypass refrigerant pipe 7C, and the first compressor 1 side is refrigerant. A pipe 7D is used, and the second compressor 2 side is a refrigerant pipe 7E.

冷媒は2重のループで循環する。1個のループは、第1圧縮機1、第2圧縮機2、油分離器10、放熱器4、過冷却用熱交換器15、減圧弁5及び蒸発器6を通るループである。もう1個のループは、第2圧縮機2、油分離器10、放熱器4、過冷却用熱交換器15、第3減圧弁14、バイパス冷媒配管7Cを通るループである。バイパス冷媒配管7Cを通る冷媒の量は、全体の5〜10%程度である。   The refrigerant circulates in a double loop. One loop is a loop that passes through the first compressor 1, the second compressor 2, the oil separator 10, the radiator 4, the supercooling heat exchanger 15, the pressure reducing valve 5, and the evaporator 6. The other loop is a loop that passes through the second compressor 2, the oil separator 10, the radiator 4, the supercooling heat exchanger 15, the third pressure reducing valve 14, and the bypass refrigerant pipe 7C. The amount of refrigerant passing through the bypass refrigerant pipe 7C is about 5 to 10% of the whole.

次に動作を説明する。実施の形態3のヒートポンプでの冷媒の状態変化を説明する温度エントロピ図を図7に示す。図7(a)に蒸発器6を通る冷媒の軌跡を示し、図7(b)にバイパス冷媒配管7Cを通る冷媒の軌跡を示す。実線が本方式のヒートポンプの軌跡であり、破線が冷媒加熱用熱交換器11を有しない従来のヒートポンプの軌跡である。この実施の形態3におけるヒートポンプの構成での、冷媒の状態と対応する位置を説明する図を、図8に示す。
蒸発器6を通る冷媒は、第1圧縮機1に吸入されてから放熱器4を出るまでは、実施の形態1の場合と同様な、A−B−C−DーEという軌跡を通る。点Eのように軌跡の角にない点では、黒丸で点の位置を示す。
実施の形態2では冷媒加熱用熱交換器11で冷媒が加熱されることにより、B−Cの変化が発生していたのに対して、この実施の形態3でのB−Cの変化は、バイパス冷媒配管7Cからの冷媒と混合されることを意味する。
放熱器4を出た冷媒は、過冷却用熱交換器15によりさらに熱を奪われて、点E2で示される点Eよりも温度が低い状態に移動する。減圧弁5で減圧されることにより、低温低圧の気液2相の状態である点F2に冷媒の状態は移動する。蒸発器6では、外気から熱を奪って液体の冷媒が蒸発して、点Aで示される気体の状態に戻る。
Next, the operation will be described. FIG. 7 shows a temperature entropy diagram for explaining the state change of the refrigerant in the heat pump of the third embodiment. FIG. 7 (a) shows the locus of the refrigerant passing through the evaporator 6, and FIG. 7 (b) shows the locus of the refrigerant passing through the bypass refrigerant pipe 7C. The solid line is the locus of the heat pump of this system, and the broken line is the locus of the conventional heat pump that does not have the refrigerant heating heat exchanger 11. FIG. 8 is a view for explaining the position corresponding to the state of the refrigerant in the configuration of the heat pump in the third embodiment.
The refrigerant passing through the evaporator 6 passes through the trajectory A-B-C-D-E, similar to the case of the first embodiment, after being sucked into the first compressor 1 and exiting the radiator 4. For points that are not on the corner of the locus, such as point E, the positions of the points are indicated by black circles.
In the second embodiment, the refrigerant is heated by the refrigerant heating heat exchanger 11, so that the BC change occurs, whereas the BC change in the third embodiment is as follows: This means that the refrigerant is mixed with the refrigerant from the bypass refrigerant pipe 7C.
The refrigerant leaving the radiator 4 is further deprived of heat by the supercooling heat exchanger 15 and moves to a state where the temperature is lower than the point E indicated by the point E2. When the pressure is reduced by the pressure reducing valve 5, the state of the refrigerant moves to the point F2, which is a low-temperature low-pressure gas-liquid two-phase state. In the evaporator 6, the liquid refrigerant evaporates by taking heat from the outside air and returns to the gaseous state indicated by the point A.

バイパス冷媒配管7Cを通る冷媒は、第2圧縮機2に吸入されてから過冷却用熱交換器15を出るまでは、蒸発器6を通る冷媒と同じC−D−E−E2という軌跡を通る。過冷却用熱交換器15を出ると第3減圧弁14により減圧されて、冷媒は中間圧力の気体である点Gで示される状態になる。過冷却用熱交換器15で放熱器4から出る冷媒により加熱されて、少し温度が上昇した点Hで示される状態になる。そして、冷媒加熱用熱交換器11で第2圧縮機2から吐出される高温高圧の冷凍機油により加熱されて、冷媒の状態は中間圧力で高温の点Jで示される状態に変化する。第2圧縮機2の吸入側で第1圧縮機1から吐出される冷媒と混合されて、冷媒の温度が下がり点Cで示される状態に変化する。   The refrigerant passing through the bypass refrigerant pipe 7C passes through the same path C-D-E-E2 as the refrigerant passing through the evaporator 6 until it is drawn into the second compressor 2 and exits the supercooling heat exchanger 15. . Upon exiting the supercooling heat exchanger 15, the pressure is reduced by the third pressure reducing valve 14, and the refrigerant is in a state indicated by a point G that is a gas at an intermediate pressure. The supercooling heat exchanger 15 is heated by the refrigerant coming out of the radiator 4 and becomes a state indicated by a point H where the temperature is slightly increased. Then, the refrigerant is heated by the high-temperature and high-pressure refrigerating machine oil discharged from the second compressor 2 in the refrigerant heating heat exchanger 11, and the state of the refrigerant changes to a state indicated by a high-temperature point J at an intermediate pressure. The refrigerant is mixed with the refrigerant discharged from the first compressor 1 on the suction side of the second compressor 2, and the temperature of the refrigerant is changed to a state indicated by a point C.

冷媒加熱用熱交換器11を有しない従来のヒートポンプで本方式と同じ出力を得る場合の動作は、以下のようになる。出力を本方式と同じにすることから、第2圧縮機2に吸入されてから冷媒配管7Aを通って過冷却用熱交換器15を出るまでの冷媒の状態変化の軌跡は、本方式と同じC−D−E−E2となる。
バイパス冷媒配管7Cを通る冷媒は、減圧弁5を通って過冷却用熱交換器15を出るまでも、従来のヒートポンプでも本方式と同じ軌跡E2−GーHにより状態が変化する。第2圧縮機2に吸入される前に第1圧縮機1から吐出される冷媒と混合されて温度が上がり、点Hから点Cで示される状態に変化する。
The operation in the case of obtaining the same output as that of the present system with a conventional heat pump that does not have the heat exchanger 11 for heating the refrigerant is as follows. Since the output is the same as that in the present method, the locus of the state change of the refrigerant from the time when it is sucked into the second compressor 2 through the refrigerant pipe 7A to the subcooling heat exchanger 15 is the same as that in the present method. C-D-E-E2.
Even in the conventional heat pump, the state of the refrigerant passing through the bypass refrigerant pipe 7 </ b> C changes by the same locus E <b> 2 -G-H until it exits the supercooling heat exchanger 15 through the pressure reducing valve 5. Before being sucked into the second compressor 2, it is mixed with the refrigerant discharged from the first compressor 1, the temperature rises, and the state changes from the point H to the point C.

蒸発器6を通る冷媒は、減圧弁5では本方式と同様に点E2から点F2に状態が変化する。蒸発器6では、本方式での点Aよりも温度すなわち過熱度が高い点A3まで加熱される。過熱度が高いA3まで加熱する理由は、第1圧縮機1での圧縮後にバイパス配管7Cからの点Hという本方式での点Jよりも低温の冷媒と混合して、本方式と同じ点Cで示される状態とする必要があるからである。
圧縮前に点A3で示される冷媒の状態は、第1圧縮機1で圧縮されて第2圧縮機2の吸入口である点Cよりも高温高エントロピの点C2まで移動する。そして、バイパス冷媒配管7Cからの点Hで示される状態の低温低エントロピの冷媒と混合されて、点Cで示される状態となる。
The state of the refrigerant passing through the evaporator 6 changes from the point E2 to the point F2 in the pressure reducing valve 5 as in the present method. The evaporator 6 is heated to a point A3 where the temperature, that is, the degree of superheat, is higher than the point A in this method. The reason for heating to A3 having a high degree of superheat is that after compression in the first compressor 1, the refrigerant is mixed with a refrigerant having a temperature lower than the point J in this method, which is the point H from the bypass pipe 7C, and the same point C as in this method This is because it is necessary to be in the state indicated by.
Before compression, the state of the refrigerant indicated by the point A3 is compressed by the first compressor 1 and moves to a point C2 having a higher temperature and higher entropy than the point C that is the suction port of the second compressor 2. And it mixes with the refrigerant | coolant of the low temperature low entropy of the state shown by the point H from the bypass refrigerant | coolant piping 7C, and will be in the state shown by the point C.

従来のヒートポンプと比較すると、本方式の蒸発器6を通る冷媒では、軌跡A−A3−C2−C−B−Aで囲まれる面積分だけ圧縮機仕事量が少なくなる。本方式のバイパス冷媒配管7Cを通る冷媒では、軌跡H−C−J−Hで囲む面積はゼロであるため、圧縮機仕事量は変化しない。このように、この実施の形態3でも圧縮機仕事量を低減して、ヒートポンプの成績係数を向上できるという効果が有る。   Compared with the conventional heat pump, the refrigerant passing through the evaporator 6 of this system has a smaller amount of compressor work by the area surrounded by the locus A-A3-C2-CBA. In the refrigerant passing through the bypass refrigerant pipe 7C of this method, the area surrounded by the locus H-C-J-H is zero, so the compressor work does not change. Thus, this Embodiment 3 also has an effect that the compressor work amount can be reduced and the coefficient of performance of the heat pump can be improved.

この実施の形態3では、冷媒加熱用熱交換器11でバイパス冷媒配管7Cを流れる冷媒だけを加熱したが、バイパス冷媒配管7C、冷媒配管7D及び冷媒配管7Eの中の何れか少なくとも一つを流れる冷媒を加熱するようにしてもよい。第2圧縮機2に入る冷媒を第1圧縮機1から吐出される冷媒よりも高温になるように加熱するものであれば、冷媒加熱用熱交換器11はどのようなものでもよい。なお、加熱前の冷媒の温度はバイパス冷媒配管7Cを流れる冷媒が最も低いので、バイパス冷媒配管7Cを流れる冷媒と熱交換する方がより多くの熱を冷媒に与えることができ、圧縮機仕事量の低減量をより大きくできる。
2台の圧縮機を備えた場合で説明したが、中間圧力の流体を吸入可能な中間圧吸入口を有する1台の中間圧インジェクション圧縮機で、中間圧吸入口から吸入される冷媒を冷媒加熱用熱交換器11で加熱する場合でも、同様の効果が得られる。
In the third embodiment, only the refrigerant flowing through the bypass refrigerant pipe 7C is heated by the refrigerant heating heat exchanger 11, but flows through at least one of the bypass refrigerant pipe 7C, the refrigerant pipe 7D, and the refrigerant pipe 7E. The refrigerant may be heated. As long as the refrigerant entering the second compressor 2 is heated to a temperature higher than that of the refrigerant discharged from the first compressor 1, the refrigerant heating heat exchanger 11 may be any type. Since the refrigerant flowing through the bypass refrigerant pipe 7C has the lowest temperature before heating, the heat exchange with the refrigerant flowing through the bypass refrigerant pipe 7C can give more heat to the refrigerant, and the compressor work load The amount of reduction can be increased.
As described in the case of having two compressors, the refrigerant sucked from the intermediate pressure suction port is heated by the refrigerant in one intermediate pressure injection compressor having an intermediate pressure suction port capable of sucking an intermediate pressure fluid. The same effect can be obtained even when heating is performed with the industrial heat exchanger 11.

実施の形態4.
図9に、実施の形態4でのヒートポンプの構成を説明する図を示す。この実施の形態4は、放熱器4から出る冷媒の一部と高温高圧の冷凍機油とを、中間圧インジェクション圧縮機の中間圧力の吸入口から吸入するようにしたヒートポンプである。
この実施の形態4でも、実施の形態3と同様な、放熱器4、減圧弁5、蒸発器6、油分離器10、第2減圧弁12、第3減圧弁14及び過冷却用熱交換器15と、これらの間の冷媒配管7A、冷媒配管7B、バイパス冷媒配管7Cなどの冷媒配管7とを有する。放熱器4に接続される水配管8とポンプ9も有る。
Embodiment 4 FIG.
FIG. 9 is a diagram illustrating the configuration of the heat pump in the fourth embodiment. The fourth embodiment is a heat pump in which a part of the refrigerant coming out of the radiator 4 and high-temperature and high-pressure refrigerating machine oil are sucked from an intermediate pressure suction port of the intermediate pressure injection compressor.
Also in this fourth embodiment, similar to the third embodiment, the radiator 4, the pressure reducing valve 5, the evaporator 6, the oil separator 10, the second pressure reducing valve 12, the third pressure reducing valve 14, and the supercooling heat exchanger. 15 and refrigerant pipes 7 such as a refrigerant pipe 7A, a refrigerant pipe 7B, and a bypass refrigerant pipe 7C between them. There are also a water pipe 8 and a pump 9 connected to the radiator 4.

2台の圧縮機の替わりに1台の中間圧インジェクション圧縮機16が有る。冷凍機油配管13は、冷凍機油を中間圧インジェクション圧縮機16の低圧の吸入口である低圧吸入口16Aではなく中間圧力の吸入口である中間圧吸入口16Bに戻す。冷媒加熱用熱交換器11がなくて、第2減圧弁12からの冷凍機油配管13とバイパス冷媒配管7Cとが、中間圧インジェクション圧縮機16の中間圧吸入口16Bの手前にある配管接続個所13Aで接続される。
冷凍機油配管13をバイパス冷媒配管7Cと配管接続個所13Aで接続することが、実施の形態4での冷媒加熱手段である。
There is one intermediate pressure injection compressor 16 instead of two compressors. The refrigerating machine oil pipe 13 returns the refrigerating machine oil not to the low pressure suction port 16A that is the low pressure suction port of the intermediate pressure injection compressor 16 but to the intermediate pressure suction port 16B that is the suction port of the intermediate pressure. There is no heat exchanger 11 for heating the refrigerant, and the pipe connection point 13A where the refrigerating machine oil pipe 13 and the bypass refrigerant pipe 7C from the second pressure reducing valve 12 are in front of the intermediate pressure inlet 16B of the intermediate pressure injection compressor 16 is provided. Connected with.
Connecting the refrigerating machine oil pipe 13 to the bypass refrigerant pipe 7C at the pipe connection point 13A is the refrigerant heating means in the fourth embodiment.

次に動作を説明する。放熱器4、減圧弁5、蒸発器6、油分離器10、第2減圧弁12、第3減圧弁14及び過冷却用熱交換器15は、実施の形態3の場合と同様に動作する。中間圧インジェクション圧縮機16は低温低圧の冷媒を低圧吸入口16Aから吸入し、中間圧吸入口16Bからは高温の冷凍機油と混合されたバイパス冷媒配管7Cからの冷媒を吸入する。中間圧吸入口16Bから吸入される冷媒は、低圧吸入口16Aから吸入さる冷媒よりも高温である。 Next, the operation will be described. The radiator 4, the pressure reducing valve 5, the evaporator 6, the oil separator 10, the second pressure reducing valve 12, the third pressure reducing valve 14 and the supercooling heat exchanger 15 operate in the same manner as in the third embodiment. The intermediate-pressure injection compressor 16 sucks low-temperature and low-pressure refrigerant from the low-pressure suction port 16A, and sucks refrigerant from the bypass refrigerant pipe 7C mixed with high-temperature refrigeration oil from the intermediate-pressure suction port 16B. Refrigerant sucked from the intermediate-pressure suction inlet 16B is higher than the refrigerant that will be drawn from the low pressure inlet 16A.

中間圧吸入口16Bから吸入された冷凍機油は中間圧インジェクション圧縮機16の内部表面を伝って冷凍機油は低圧吸入口16Aの方にも移動する。そのため、中間圧吸入口16Bから冷凍機油を注入しても、低圧吸入口16Aから中間圧吸入口16Bまでの間で冷凍機油が不足して潤滑が不十分になる事態は発生しない。   The refrigerating machine oil sucked from the intermediate pressure suction port 16B travels along the inner surface of the intermediate pressure injection compressor 16 and moves to the low pressure suction port 16A. For this reason, even if the refrigerating machine oil is injected from the intermediate pressure suction port 16B, a situation where the refrigerating machine oil is insufficient between the low pressure suction port 16A and the intermediate pressure suction port 16B and the lubrication becomes insufficient does not occur.

実施の形態4のヒートポンプでの冷媒の状態変化を説明する温度エントロピ図は、実施の形態3と同様な図7となる。ただし、点Bが中間圧インジェクション圧縮機16の中間圧吸入口16Bからの冷媒と混合される前の冷媒の状態を意味し、点Cは混合された後の状態を意味する。
この実施の形態4でも圧縮機仕事量を低減して、ヒートポンプの成績係数を向上できるという効果が有る。このように、中間圧インジェクション圧縮機16の中間圧吸入口16Bよりも高圧側に入る冷媒の温度が中間圧インジェクション圧縮機16で圧縮された冷媒の中間圧吸入口16Bでの温度よりも高くなるように加熱することができれば、冷媒加熱手段はどのようなものでもよい。
A temperature entropy diagram for explaining the state change of the refrigerant in the heat pump of the fourth embodiment is the same as that of the third embodiment shown in FIG. However, the point B means the state of the refrigerant before being mixed with the refrigerant from the intermediate pressure inlet 16B of the intermediate pressure injection compressor 16, and the point C means the state after being mixed.
The fourth embodiment also has the effect of reducing the compressor work and improving the coefficient of performance of the heat pump. Thus, the temperature of the refrigerant entering the higher pressure side than the intermediate pressure inlet 16B of the intermediate pressure injection compressor 16 becomes higher than the temperature of the refrigerant compressed by the intermediate pressure injection compressor 16 at the intermediate pressure inlet 16B. As long as it can be heated in this way, any refrigerant heating means may be used.

中間圧インジェクション圧縮機の場合で説明したが、2台の圧縮機を直列に接続し、後段の圧縮機にバイパス冷媒配管7Cからの冷媒を混合して吸入させるヒートポンプでも、高温高圧の冷凍機油をバイパス冷媒配管7Cからの冷媒に混合することは適用でき、同様の効果が得られる。さらには、バイパス冷媒配管7Cを有しない2段圧縮のヒートポンプでも、第2圧縮機2から吐出された高温高圧の冷凍機油を第2圧縮機2の吸入口に戻すようにしてもよい。   As described in the case of the intermediate pressure injection compressor, even in a heat pump in which two compressors are connected in series and the refrigerant from the bypass refrigerant pipe 7C is mixed and sucked into the latter stage compressor, high-temperature and high-pressure refrigerating machine oil is used. Mixing with the refrigerant from the bypass refrigerant pipe 7C can be applied, and the same effect can be obtained. Further, even with a two-stage compression heat pump that does not have the bypass refrigerant pipe 7 </ b> C, the high-temperature and high-pressure refrigerating machine oil discharged from the second compressor 2 may be returned to the suction port of the second compressor 2.

実施の形態5.
図10に、実施の形態5でのヒートポンプの構成を説明する図を示す。この実施の形態5は、中間圧インジェクション圧縮機16の中間圧吸入口16Bに冷凍機油だけを注入するようにした場合である。
この実施の形態5でも、実施の形態2と同様な、放熱器4、減圧弁5、蒸発器6及び第2減圧弁12と、これらの間の冷媒配管7とを有する。放熱器4に接続される水配管8とポンプ9も有る。
Embodiment 5 FIG.
FIG. 10 illustrates a configuration of the heat pump in the fifth embodiment. In the fifth embodiment, only the refrigerating machine oil is injected into the intermediate pressure inlet 16B of the intermediate pressure injection compressor 16.
The fifth embodiment also includes the radiator 4, the pressure reducing valve 5, the evaporator 6, the second pressure reducing valve 12, and the refrigerant pipe 7 between them, as in the second embodiment. There are also a water pipe 8 and a pump 9 connected to the radiator 4.

この実施の形態5での中間圧インジェクション圧縮機16は、高圧密閉型の構造である。密閉容器16Cの中に、電動機16Dと圧縮機構16Eとが有る。ここで、圧縮機構とは、圧縮機から動力源(電動機)を除いたものとする。密閉容器16Cの中には高圧高温の気体の冷媒が充満しており、密閉容器16Cの下部には冷凍機油が溜まっている。
低圧吸入口16Aには蒸発器6からの冷媒配管7が接続される。中間圧吸入口16Bには、第2減圧弁12からの冷凍機油配管13が接続される。中間圧インジェクション圧縮機16の圧縮機構16Eが圧縮した冷媒を吐出する吐出口16Fは、密閉容器16Cの内部にある。密閉容器16Cの底と第2減圧弁12の間も冷凍機油配管13が接続される。密閉容器16Cの上の面には、放熱器4への冷媒配管7が有る。
中間圧吸入口16Bに接続される冷凍機油配管13が、実施の形態5での冷媒加熱手段である。
The intermediate pressure injection compressor 16 in the fifth embodiment has a high pressure hermetic structure. There are an electric motor 16D and a compression mechanism 16E in the sealed container 16C. Here, the compression mechanism means that the power source (electric motor) is removed from the compressor. The airtight container 16C is filled with a high-pressure and high-temperature gaseous refrigerant, and refrigerating machine oil is accumulated in the lower part of the airtight container 16C.
A refrigerant pipe 7 from the evaporator 6 is connected to the low pressure suction port 16A. A refrigerator oil pipe 13 from the second pressure reducing valve 12 is connected to the intermediate pressure suction port 16B. A discharge port 16F that discharges the refrigerant compressed by the compression mechanism 16E of the intermediate pressure injection compressor 16 is inside the sealed container 16C. The refrigerator oil piping 13 is also connected between the bottom of the hermetic container 16 </ b> C and the second pressure reducing valve 12. A refrigerant pipe 7 to the radiator 4 is provided on the upper surface of the sealed container 16C.
The refrigerating machine oil pipe 13 connected to the intermediate pressure suction port 16B is the refrigerant heating means in the fifth embodiment.

次に動作を説明する。放熱器4、減圧弁5及び蒸発器6は、実施の形態2と同様に動作する。中間圧インジェクション圧縮機16は、低圧吸入口16Aから吸入した冷媒を圧縮する。中間圧吸入口16Bから高温の冷凍機油が吸入されるので、冷媒は圧縮されるだけの場合よりも高温になる。中間圧インジェクション圧縮機16の吐出口16Fから密閉容器16Cの中に、高温高圧の冷媒と冷凍機油が吐出される。液体の冷凍機油は、密閉容器16Cの内部で下方に落ちてきて、冷媒と分離される。密閉容器16Cの下部には、冷凍機油が溜まる。冷媒は、密閉容器16Cの上の面に接続される冷媒配管7により、放熱器4に送られる。密閉容器16Cの内部では冷凍機油がいくらか浮遊しているので、この冷媒配管7に流れ出る冷媒の中には、いくらかの冷凍機油も含まれる。このように密閉容器16Cと冷媒配管7と冷凍機油配管13とにより、冷媒から冷凍機油を分離できる。   Next, the operation will be described. The radiator 4, the pressure reducing valve 5, and the evaporator 6 operate in the same manner as in the second embodiment. The intermediate pressure injection compressor 16 compresses the refrigerant sucked from the low pressure suction port 16A. Since high-temperature refrigerating machine oil is sucked from the intermediate pressure suction port 16B, the refrigerant has a higher temperature than when it is only compressed. High-temperature and high-pressure refrigerant and refrigerating machine oil are discharged from the discharge port 16F of the intermediate pressure injection compressor 16 into the sealed container 16C. The liquid refrigeration oil falls downward inside the sealed container 16C and is separated from the refrigerant. Refrigerating machine oil accumulates at the bottom of the sealed container 16C. The refrigerant is sent to the radiator 4 through the refrigerant pipe 7 connected to the upper surface of the sealed container 16C. Since some of the refrigerating machine oil is floating inside the sealed container 16C, some of the refrigerating machine oil is included in the refrigerant flowing out of the refrigerant pipe 7. In this manner, the refrigerating machine oil can be separated from the refrigerant by the sealed container 16C, the refrigerant pipe 7, and the refrigerating machine oil pipe 13.

密閉容器16Cの下部に溜まった冷凍機油は、第2減圧弁12の反対側が減圧されているため、冷凍機油配管13の中に吸い込まれる。第2減圧弁12で減圧された冷凍機油は、中間圧インジェクション圧縮機16の中間圧吸入口16Bにおける冷媒の圧力とほぼ等しい。冷凍機油は、中間圧インジェクション圧縮機16の中間圧吸入口16Bに吸入される。   The refrigerating machine oil accumulated in the lower portion of the sealed container 16C is sucked into the refrigerating machine oil pipe 13 because the pressure on the opposite side of the second pressure reducing valve 12 is reduced. The refrigerating machine oil decompressed by the second pressure reducing valve 12 is substantially equal to the refrigerant pressure at the intermediate pressure inlet 16B of the intermediate pressure injection compressor 16. The refrigerating machine oil is sucked into the intermediate pressure inlet 16B of the intermediate pressure injection compressor 16.

実施の形態5のヒートポンプでの冷媒の状態変化を説明する温度エントロピ図は、実施の形態1と同様な図2となる。この実施の形態5でも圧縮機仕事量を低減して、ヒートポンプの成績係数を向上できるという効果が有る。   A temperature entropy diagram for explaining the state change of the refrigerant in the heat pump of the fifth embodiment is FIG. 2 similar to that of the first embodiment. This Embodiment 5 also has an effect that the compressor work amount can be reduced and the coefficient of performance of the heat pump can be improved.

油分離器10を持たないで圧縮機の密閉容器と配管の配置を利用して冷凍機油を分離することは、他の実施の形態でも適用できる。   Separating the refrigerating machine oil without using the oil separator 10 by using the arrangement of the hermetic container and piping of the compressor can be applied to other embodiments.

この発明の実施の形態1でのヒートポンプの構成を説明する図である。It is a figure explaining the structure of the heat pump in Embodiment 1 of this invention. この発明の実施の形態1での冷媒の状態変化を説明する温度エントロピ図である。It is a temperature entropy figure explaining the state change of the refrigerant | coolant in Embodiment 1 of this invention. この発明の実施の形態1での冷媒の状態と対応する位置を説明する図である。It is a figure explaining the position corresponding to the state of the refrigerant in Embodiment 1 of this invention. この発明の実施の形態1での冷媒の状態変化を説明する圧力エンタルピ図である。It is a pressure enthalpy figure explaining the state change of the refrigerant in Embodiment 1 of this invention. この発明の実施の形態2でのヒートポンプの構成を説明する図である。It is a figure explaining the structure of the heat pump in Embodiment 2 of this invention. この発明の実施の形態3でのヒートポンプの構成を説明する図である。It is a figure explaining the structure of the heat pump in Embodiment 3 of this invention. この発明の実施の形態3での冷媒の状態変化を説明する温度エントロピ図である。It is a temperature entropy figure explaining the state change of the refrigerant | coolant in Embodiment 3 of this invention. この発明の実施の形態3での冷媒の状態と対応する位置を説明する図である。It is a figure explaining the position corresponding to the state of the refrigerant in Embodiment 3 of this invention. この発明の実施の形態4でのヒートポンプの構成を説明する図である。It is a figure explaining the structure of the heat pump in Embodiment 4 of this invention. この発明の実施の形態5でのヒートポンプの構成を説明する図である。It is a figure explaining the structure of the heat pump in Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 :第1圧縮機
2 :第2圧縮機
3 :冷媒加熱手段
4 :放熱器(第2熱交換器)
5 :減圧弁(帰還路)
6 :蒸発器(第1熱交換器)
7 :冷媒配管
7A:冷媒配管(帰還路)
7B:冷媒配管(帰還路)
7C:バイパス冷媒配管
7D:冷媒配管
7E:冷媒配管
8 :水配管
9 :ポンプ
10 :油分離器
11 :冷媒加熱用熱交換器(冷媒加熱手段)
12 :第2減圧弁
13 :冷凍機油配管(冷媒加熱手段)
13A:配管接続個所(冷媒加熱手段)
14 :第3減圧弁
15 :過冷却用熱交換器
16 :中間圧インジェクション圧縮機
16A:低圧吸入口
16B:中間圧吸入口
16C:密閉容器
16D:電動機
16E:圧縮機構
16F:吐出口
1: 1st compressor 2: 2nd compressor 3: Refrigerant heating means 4: Radiator (2nd heat exchanger)
5: Pressure reducing valve (return path)
6: Evaporator (first heat exchanger)
7: Refrigerant piping 7A: Refrigerant piping (return path)
7B: Refrigerant piping (return path)
7C: Bypass refrigerant pipe 7D: Refrigerant pipe 7E: Refrigerant pipe 8: Water pipe 9: Pump 10: Oil separator 11: Heat exchanger for refrigerant heating (refrigerant heating means)
12: Second pressure reducing valve 13: Refrigerating machine oil piping (refrigerant heating means)
13A: Piping connection location (refrigerant heating means)
14: Third pressure reducing valve 15: Supercooling heat exchanger 16: Intermediate pressure injection compressor 16A: Low pressure inlet 16B: Intermediate pressure inlet 16C: Sealed container 16D: Electric motor 16E: Compression mechanism 16F: Discharge port

Claims (2)

熱源により冷媒に熱を与える第1熱交換器と、
該第1熱交換器で熱を与えられた冷媒を圧縮する第1圧縮機と、
該第1圧縮機で圧縮された冷媒であって第1圧縮機から吐出された時点の温度以上に保たれた冷媒を圧縮する第2圧縮機と、
該第2圧縮機で圧縮された冷媒から熱を奪う第2熱交換器と、
該第2熱交換器で熱を奪われた冷媒を前記第1熱交換器に戻す帰還路と、
前記第1圧縮機から前記第2圧縮機に向かう冷媒配管に設けられ、前記第1圧縮機から吐出される冷媒よりも高温になるように前記第2圧縮機に入る冷媒を加熱する冷媒加熱手段と
を備えたヒートポンプ。
A first heat exchanger that applies heat to the refrigerant by a heat source;
A first compressor that compresses the refrigerant that is heated by the first heat exchanger;
A second compressor that compresses the refrigerant compressed by the first compressor and maintained at a temperature equal to or higher than the temperature at which the refrigerant was discharged from the first compressor;
A second heat exchanger that takes heat away from the refrigerant compressed by the second compressor;
A return path for returning the refrigerant deprived of heat by the second heat exchanger to the first heat exchanger;
Refrigerant heating means that is provided in a refrigerant pipe from the first compressor toward the second compressor and that heats the refrigerant entering the second compressor so that the temperature is higher than the refrigerant discharged from the first compressor. And a heat pump.
前記冷媒加熱手段が前記第2圧縮機から吐出される潤滑油の熱を利用することを特徴とする
請求項1に記載のヒートポンプ。
The heat pump according to claim 1, wherein the refrigerant heating unit uses heat of lubricating oil discharged from the second compressor.
JP2004200658A 2004-07-07 2004-07-07 heat pump Expired - Fee Related JP4608971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200658A JP4608971B2 (en) 2004-07-07 2004-07-07 heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200658A JP4608971B2 (en) 2004-07-07 2004-07-07 heat pump

Publications (2)

Publication Number Publication Date
JP2006023002A JP2006023002A (en) 2006-01-26
JP4608971B2 true JP4608971B2 (en) 2011-01-12

Family

ID=35796398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200658A Expired - Fee Related JP4608971B2 (en) 2004-07-07 2004-07-07 heat pump

Country Status (1)

Country Link
JP (1) JP4608971B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895883B2 (en) * 2007-03-26 2012-03-14 三菱電機株式会社 Air conditioner
JP4973493B2 (en) * 2007-12-28 2012-07-11 ダイキン工業株式会社 Refrigeration equipment
JP5145943B2 (en) * 2008-01-07 2013-02-20 ダイキン工業株式会社 Refrigeration equipment
JP2009216314A (en) * 2008-03-11 2009-09-24 Daikin Ind Ltd Refrigerating apparatus
JP5176897B2 (en) * 2008-11-19 2013-04-03 ダイキン工業株式会社 Refrigeration equipment
KR20110004152A (en) * 2009-07-07 2011-01-13 엘지전자 주식회사 Air conditioner
JP5645502B2 (en) * 2010-06-25 2014-12-24 三菱重工業株式会社 Heat pump water heater
JP5606262B2 (en) * 2010-10-19 2014-10-15 三菱重工業株式会社 Heat pump system
WO2015173848A1 (en) * 2014-05-15 2015-11-19 三菱電機株式会社 Vapor compression refrigeration cycle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237259A (en) * 1988-07-26 1990-02-07 Toshiba Corp Two-stage compression refrigerating cycle
JPH02146466A (en) * 1988-11-28 1990-06-05 Mitsubishi Electric Corp Refrigerant circuit
JPH04268165A (en) * 1991-02-20 1992-09-24 Matsushita Electric Ind Co Ltd Double-stage compression and freezing cycle device
JPH08313072A (en) * 1995-05-15 1996-11-29 Daikin Ind Ltd Refrigerating apparatus
JP2000274842A (en) * 1999-03-26 2000-10-06 Sanyo Electric Co Ltd Refrigerating circuit and refrigerator using it
JP2003035454A (en) * 2001-07-23 2003-02-07 Matsushita Electric Ind Co Ltd Heat pump hot water supply apparatus
JP2003214713A (en) * 2002-01-23 2003-07-30 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2004003703A (en) * 2002-05-30 2004-01-08 Denso Corp Heat pump system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237259A (en) * 1988-07-26 1990-02-07 Toshiba Corp Two-stage compression refrigerating cycle
JPH02146466A (en) * 1988-11-28 1990-06-05 Mitsubishi Electric Corp Refrigerant circuit
JPH04268165A (en) * 1991-02-20 1992-09-24 Matsushita Electric Ind Co Ltd Double-stage compression and freezing cycle device
JPH08313072A (en) * 1995-05-15 1996-11-29 Daikin Ind Ltd Refrigerating apparatus
JP2000274842A (en) * 1999-03-26 2000-10-06 Sanyo Electric Co Ltd Refrigerating circuit and refrigerator using it
JP2003035454A (en) * 2001-07-23 2003-02-07 Matsushita Electric Ind Co Ltd Heat pump hot water supply apparatus
JP2003214713A (en) * 2002-01-23 2003-07-30 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2004003703A (en) * 2002-05-30 2004-01-08 Denso Corp Heat pump system

Also Published As

Publication number Publication date
JP2006023002A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
CN101460789B (en) Multi-stage compressor unit for a refrigeration system
US6658888B2 (en) Method for increasing efficiency of a vapor compression system by compressor cooling
EP2752627B1 (en) Refrigeration device
US20120036854A1 (en) Transcritical thermally activated cooling, heating and refrigerating system
US7320228B2 (en) Refrigerant cycle apparatus
JP6456633B2 (en) Turbo refrigerator
JP6218922B2 (en) Refrigeration cycle equipment
CN102713463A (en) Refrigeration storage in a refrigerant vapor compression system
JP4849133B2 (en) Ejector refrigeration cycle
CN112840163B (en) Refrigeration cycle device
JPS60262A (en) Refrigeration cycle
JP2009133585A (en) Refrigerating device
JP2007315687A (en) Refrigerating cycle
JP4608971B2 (en) heat pump
EP1628088A2 (en) Refrigerant cycle apparatus
CN109269136A (en) air conditioning system
JP4442237B2 (en) Air conditioner
JP2009180426A (en) Refrigerating device
US7464563B2 (en) Air-conditioner having a dual-refrigerant cycle
JP2008082693A (en) Refrigerating cycle
JP6498299B2 (en) Refrigeration cycle equipment
JP5895662B2 (en) Refrigeration equipment
JP4273898B2 (en) Refrigeration air conditioner
JP5403047B2 (en) Refrigeration equipment
JP6765086B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4608971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees