JP4605525B2 - Force transducer - Google Patents
Force transducer Download PDFInfo
- Publication number
- JP4605525B2 JP4605525B2 JP2005144660A JP2005144660A JP4605525B2 JP 4605525 B2 JP4605525 B2 JP 4605525B2 JP 2005144660 A JP2005144660 A JP 2005144660A JP 2005144660 A JP2005144660 A JP 2005144660A JP 4605525 B2 JP4605525 B2 JP 4605525B2
- Authority
- JP
- Japan
- Prior art keywords
- strain
- beams
- force transducer
- force
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000003754 machining Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Measurement Of Force In General (AREA)
Description
本発明は、電気的に検出する力変換器に係り、小型高精度の力変換器に関する。 The present invention relates to a force transducer for electrical detection, and relates to a small and highly accurate force transducer.
(従来の技術)
外周部と中央部を放射状の梁で連結され、その放射状に配置された梁に側面から穴をあけ、起歪部とし、周縁部を固定し、中央部に力を加え、電気抵抗検出手段ひずみゲージを用いる力変換器が知られている。(Conventional technology)
Peripheral part and central part are connected by a radial beam, holes are drilled from the side of the radially arranged beam to form a strain-generating part, the peripheral part is fixed, a force is applied to the central part, and electrical resistance detection means strain Force transducers using gauges are known.
従来の力変換器例図3において、力変換器本体11の中央12には荷重を受ける加重印加部13が設けられ、加重印加部13と周縁部14との間は3個の梁21〜23を介して接続されている。各梁21〜23は横方向に穿設された円形穴を各梁に有し、貫通孔24〜26を通して深い位置に梁があり、24穴を貫通して梁21に円形穴があけられ、同様に各当該梁に円形穴があけられ、該円形穴の上下方向の厚さを薄くされた起歪部の上面及び下面に電気抵抗検出手段ひずみゲージが接着等で設けられている。 In FIG. 3, a load applying unit 13 that receives a load is provided at the center 12 of the force converter main body 11, and three beams 21 to 23 are provided between the load applying unit 13 and the peripheral portion 14. Connected through. Each beam 21-23 has a circular hole drilled in the transverse direction in each beam, there is a beam in a deep position through the through holes 24-26, a circular hole is drilled in the beam 21 through the 24 holes, Similarly, circular holes are formed in each of the beams, and electrical resistance detecting means strain gauges are provided by bonding or the like on the upper and lower surfaces of the strain-generating portion whose thickness in the vertical direction is reduced.
このような構成において加重印加部に力(F)が負荷されると、力(F)に比例した応力で当該各梁にあけられた円穴の周囲にひずみを生じ、このひずみを電気抵抗検出手段ひずみゲージで測定することで、力(F)の大きさを測定することができる。 In such a configuration, when a force (F) is applied to the load application unit, a strain is generated around the circular hole formed in each beam with a stress proportional to the force (F), and this strain is detected by electric resistance. By measuring with a means strain gauge, the magnitude of force (F) can be measured.
しかし、特に小型の力変換器では、穴の周囲のひずみは、力の大きさで起こる変形によって最大応力点が移動したり、要求位置間隔が小さすぎる等の制約があり、最大応力点にひずみゲージを設けられない問題があった。 However, especially in a small force transducer, the strain around the hole is limited by the deformation caused by the magnitude of the force and the maximum stress point moves or the required position interval is too small. There was a problem that the gauge could not be provided.
さらに、穴の上下のひずみゲージ設けられていない最弱部の位置には、最大剪断応力が働くため、ひずみ検出部以外で弾性域を逸脱してしまうため負荷される力(F)に制限を受け、起歪部での弾性限界より小さい力(F)を上限にされ、ひずみゲージからの値をも制限されるため、ダイナミックレンジが小さく制限されることで高精度を保てない問題があった。この最弱部は力(F)により変形し、最大応力点を移動させてしまうため直線性誤差の原因にもなっていた。 Furthermore, since the maximum shear stress works at the position of the weakest part where the strain gauge is not provided above and below the hole, the force (F) to be applied is limited because it deviates from the elastic region other than the strain detection part. However, since the force (F) smaller than the elastic limit at the strain generating portion is set as the upper limit and the value from the strain gauge is also limited, there is a problem that high accuracy cannot be maintained by limiting the dynamic range to be small. It was. The weakest part is deformed by force (F), and the maximum stress point is moved, which causes a linearity error.
梁の起歪部の加工に関して、周縁部の穴を貫通して内部の深い位置にある梁に起歪部となる加工するため、起歪部として必要な形状の加工や寸法精度を保つことが困難であり、起歪部として機能を十分に果たせない問題があった。 With regard to the processing of the strained portion of the beam, the processing of the shape required as the strained portion and the dimensional accuracy can be maintained because the strained portion is processed into the beam in the deep position inside through the hole at the periphery. There is a problem that it is difficult and cannot sufficiently function as a strain generating portion.
また、深い位置にある梁に、かろうじて加工できる円形の横穴により上下の厚さが薄くなった最弱部の位置には最大剪断応力が発生するためダイナミックレンジの制約、ひずみゲージ要求位置間隔が小さすぎるため、最大応力点にひずみゲージを設けられない制約や丸穴の形状で発生する変位による最大応点の移動などの原因により、直線性誤差、ステリシス誤差や再現性誤差、を引き起こしたり、出力を小さく抑えなければならないなどの問題があった。 In addition, since the maximum shear stress is generated at the weakest position where the thickness of the top and bottom is thin due to a circular horizontal hole that can be barely machined in a deep beam, the dynamic range is limited and the strain gauge required position interval is small. Therefore, the linear stress error, the steric error, the reproducibility error, etc. are caused by the restriction that the strain gauge cannot be provided at the maximum stress point and the movement of the maximum response point due to the displacement generated in the shape of the round hole. There were problems such as having to keep it small.
上記の問題点を解決するために、中心部から周縁部へほぼ等配放射状の複数の梁で結合されている梁の群が、軸方向に適宜離間して複数あり、当該上下の梁の群の位相を異にすることで、ロバーバル形成のための機械加工可能な開口部が上下の加重方向となるため、各々の梁にある起歪部の形状の自由度を大きく増すことが可能になる。 In order to solve the above-mentioned problem, there are a plurality of beams that are connected by a plurality of beams that are substantially equally spaced from the center to the periphery, and are separated from each other in the axial direction. By making the phases different, the opening that can be machined for the formation of the roval is in the vertical load direction, so that the degree of freedom of the shape of the strain-generating portion in each beam can be greatly increased. .
各梁における複数の起歪部は力(F)における各梁の中で最大歪を発生するような形状とし、電気抵抗歪検出手段ひずみゲージを最大歪を発生部へ配置することでダイナミックレンジを最大とし、最大応力点の移動を回避しようとするものである。 A plurality of strain generating portions in each beam are shaped so as to generate the maximum strain in each beam in force (F), and a dynamic range is provided by arranging an electric resistance strain detecting means strain gauge on the generating portion. The maximum is to avoid the movement of the maximum stress point.
以下、図1により本実施例を説明する。1の1は、本実施例の上面図であり、下にその1の2断面図が示されている。中心部12から周縁部14へ梁31から33の梁の群と軸方向へ適宜距離を離間した位置に梁34から36の梁の群があり、各々の梁の群の位相は60度ずれて配置されている。 Hereinafter, this embodiment will be described with reference to FIG. 1 of 1 is a top view of the present embodiment, and two cross-sectional views of the 1 are shown below. There is a group of beams 34 to 36 at an appropriate distance in the axial direction from the group of beams 31 to 33 from the central portion 12 to the peripheral portion 14, and the phase of each group of beams is shifted by 60 degrees. Has been placed.
このため、梁31の起歪部31a,31bの加工は図中下方からエンドミル加工を行うことができ、梁34については、図中上方からからエンドミル加工を行うことができ、従来ような奥まった部分の加工はなく、広い開口部から剛性の大きな工具で理想の起歪部の形を加工できる。31a、31bのような2ヶ所の半円形起歪部を設けることにより、たわみによって最大応力点の移動も阻止できる。 For this reason, the processing of the strained portions 31a and 31b of the beam 31 can be end milled from below in the figure, and the beam 34 can be end milled from above in the figure. There is no processing of the part, and the shape of the ideal strain generating part can be processed from a wide opening with a rigid tool. By providing two semicircular strain generating parts such as 31a and 31b, the movement of the maximum stress point can be prevented by the deflection.
梁の1つについて説明する。梁31にはその梁の最弱部を起歪部31aと31bとにして、ひずみゲージG1、G2が接着により設けられている。中心部12へ力(F)が図1断面図中上方から加わるとG1のひずみゲージは伸び、G4のひずみゲージは縮むことになる。
つまり、ひずみゲージの設けられている起歪部の他に最弱部が存在しないため、起歪部は弾性比例限界までひずませることが可能であり、大きな信号を得られる。One of the beams will be described. Strain gauges G1 and G2 are provided on the beam 31 by bonding, with the weakest portions of the beam as strain-generating portions 31a and 31b. When a force (F) is applied to the central portion 12 from above in the cross-sectional view of FIG. 1, the G1 strain gauge expands and the G4 strain gauge contracts.
That is, since the weakest part does not exist other than the strain generating part provided with the strain gauge, the strain generating part can be distorted to the elastic proportional limit, and a large signal can be obtained.
各梁とも同様に働き、図2では、これらのひずみゲージで作られるホイートストンブリッジである。なお図2には、温度補償抵抗、感度調整抵抗、入力抵抗調整抵抗、零点調整抵抗は表記していない。 Each beam works similarly, and in FIG. 2 is a Wheatstone bridge made of these strain gauges. In FIG. 2, the temperature compensation resistor, the sensitivity adjustment resistor, the input resistance adjustment resistor, and the zero point adjustment resistor are not shown.
以上のように請求項1又は2の発明によれば、各梁の起歪部形状を加工面から制約されることなく、最適な形状にすることができ、必要な数を必要な位置に設けることができ、各歪検出手段であるひずみゲージを最大応力点の移動のない最大応力点へ設けることができ、直線性誤差、ヒステレリシス誤差、再現性誤差、クリープ特性に関して測定範囲の大きい高精度な小型力変換機を得ることができる。 As described above, according to the first or second aspect of the present invention, the shape of the strained portion of each beam can be made an optimal shape without being constrained from the machining surface, and a necessary number is provided at a necessary position. Strain gauges that are each strain detection means can be installed at the maximum stress point where the maximum stress point does not move, and high accuracy with a large measurement range in terms of linearity error, hysteresis error, repeatability error, and creep characteristics. A small force transducer can be obtained.
11 力変換機
12 中央部
13 加重印加部
14 周縁部
15 検出ベース部材
21、22、23 梁
24、25、 26 貫通穴
31 梁
31a、31b 起歪部
G1〜G12 電気抵抗検出手段ひずみゲージDESCRIPTION OF SYMBOLS 11 Force converter 12 Center part 13 Weight application part 14 Peripheral part 15 Detection base member 21,22,23 Beam 24,25, 26 Through-hole 31 Beam 31a, 31b Strain generation part G1-G12 Electrical resistance detection means Strain gauge
Claims (2)
The force transducer according to claim 1, wherein the strained portion of the beam can be machine-cut only from the upper and lower openings in the vertical direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005144660A JP4605525B2 (en) | 2005-04-15 | 2005-04-15 | Force transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005144660A JP4605525B2 (en) | 2005-04-15 | 2005-04-15 | Force transducer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006300908A JP2006300908A (en) | 2006-11-02 |
JP4605525B2 true JP4605525B2 (en) | 2011-01-05 |
Family
ID=37469353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005144660A Active JP4605525B2 (en) | 2005-04-15 | 2005-04-15 | Force transducer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4605525B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2546625B1 (en) * | 2011-07-12 | 2016-04-13 | Sensata Technologies, Inc. | Force sensor assembly and method for assembling a force sensor assembly |
DE102016118045B4 (en) * | 2016-09-23 | 2024-08-14 | Minebea Intec GmbH | Shear force-insensitive measuring cell |
JP7015500B2 (en) * | 2017-11-17 | 2022-02-03 | ユニパルス株式会社 | Load transducer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003075278A (en) * | 2001-09-07 | 2003-03-12 | Teac Corp | Multi-component force detector |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2515645B2 (en) * | 1991-09-18 | 1996-07-10 | ティアック株式会社 | Load cell and its processing method |
-
2005
- 2005-04-15 JP JP2005144660A patent/JP4605525B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003075278A (en) * | 2001-09-07 | 2003-03-12 | Teac Corp | Multi-component force detector |
Also Published As
Publication number | Publication date |
---|---|
JP2006300908A (en) | 2006-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102080426B1 (en) | Force / torque sensor with instrumentation on less than 4 beam surfaces | |
CN108139288B (en) | Force sensor | |
US8966996B2 (en) | Force sensor | |
JP5007083B2 (en) | Force sensor chip | |
EP1953514B1 (en) | Force sensor | |
US7360456B2 (en) | Six-axis sensor | |
US20120180575A1 (en) | Capacitance-type force sensor | |
JP6966471B2 (en) | Coordinate measurement probe body | |
KR20170120040A (en) | Method of manufacturing a pressure sensor | |
JP2011500331A (en) | Tool holder and stepwise sheet forming method using the tool holder | |
JP3200026B2 (en) | Perimeter sensor | |
EP3759449B1 (en) | Tripedal flexure member and load/torque measurement systems using same | |
Okumura et al. | High dynamic range sensing by a multistage six-axis force sensor with stopper mechanism | |
Tian et al. | The novel structural design for pressure sensors | |
US5295399A (en) | Force moment sensor | |
JP4605525B2 (en) | Force transducer | |
JP7139998B2 (en) | pressure sensor | |
JPH0772026A (en) | Strain generating construction and multiaxis force detection sensor using the same | |
JP4407451B2 (en) | Electronic balance | |
JP5765648B1 (en) | Force sensor | |
JP2008215934A (en) | Force sensor, load detector and profile measuring apparatus | |
JPH0821721B2 (en) | Force detection device | |
JP2013234975A (en) | Force sensor | |
JP6696026B1 (en) | Load cell | |
JPH0584870B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080402 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100907 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100924 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4605525 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |