[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4604492B2 - SOI semiconductor integrated circuit device and manufacturing method thereof - Google Patents

SOI semiconductor integrated circuit device and manufacturing method thereof Download PDF

Info

Publication number
JP4604492B2
JP4604492B2 JP2004003743A JP2004003743A JP4604492B2 JP 4604492 B2 JP4604492 B2 JP 4604492B2 JP 2004003743 A JP2004003743 A JP 2004003743A JP 2004003743 A JP2004003743 A JP 2004003743A JP 4604492 B2 JP4604492 B2 JP 4604492B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
single crystal
silicon single
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004003743A
Other languages
Japanese (ja)
Other versions
JP2005203387A (en
Inventor
和男 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004003743A priority Critical patent/JP4604492B2/en
Publication of JP2005203387A publication Critical patent/JP2005203387A/en
Application granted granted Critical
Publication of JP4604492B2 publication Critical patent/JP4604492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、特にSOI(Silicon On Insulator)基板に形成されるロジックセルを含むSOI半導体集積回路装置及びその製造方法に関する。   In particular, the present invention relates to an SOI semiconductor integrated circuit device including a logic cell formed on an SOI (Silicon On Insulator) substrate and a manufacturing method thereof.

SOI(Silicon On Insulator)技術は、埋め込み絶縁膜上に形成されたシリコン単結晶にMOSFETなどの集積回路デバイスを構成する技術として知られている。SOI MOSFETは、通常のバルクMOSFETに比べてソース/ドレイン接合容量が小さく抑えられる利点を有する。SOI MOSFETは、低電圧電源でも高速に動作するため、低消費電力LSIへの応用が検討されている。   The SOI (Silicon On Insulator) technique is known as a technique for forming an integrated circuit device such as a MOSFET on a silicon single crystal formed on a buried insulating film. The SOI MOSFET has an advantage that the source / drain junction capacitance can be suppressed smaller than that of a normal bulk MOSFET. Since an SOI MOSFET operates at high speed even with a low voltage power supply, application to a low power consumption LSI is being studied.

SOIにおけるCMOSトランジスタによるロジックセルレイアウトを考えた場合、PチャネルMOSFETとNチャネルMOSFETを所定距離離して配置する。このような構成は、通常のバルクMOSFETの技術と同様である(例えば、特許文献1参照)。両トランジスタの離間領域にはコンタクト形成領域が形成される。
特開平7−161944(第3頁、図1)
When considering a logic cell layout using CMOS transistors in SOI, a P-channel MOSFET and an N-channel MOSFET are arranged at a predetermined distance. Such a configuration is the same as the technology of a normal bulk MOSFET (see, for example, Patent Document 1). A contact formation region is formed in a separation region between the two transistors.
JP 7-161944 (3rd page, FIG. 1)

PチャネルMOSFETとNチャネルMOSFETの配置距離を離せばその距離だけレイアウト面積が増大する。また、ドレインどうしを隣接させる横置き形態を考えることもできる。しかし、ボディー電位のためのコンタクトを形成する場合にセル面積の増大が著しい。   If the arrangement distance between the P-channel MOSFET and the N-channel MOSFET is increased, the layout area is increased by that distance. Further, it is possible to consider a horizontal arrangement in which the drains are adjacent to each other. However, when a contact for body potential is formed, the cell area is remarkably increased.

本発明は上記のような事情を考慮してなされたもので、異なる導電型のドレインどうしを隣接させる横置き形態でボディー電位のためのコンタクトを簡便に設けると共にセル面積増大を最小限に抑えるようレイアウト可能なSOI半導体集積回路装置及びその製造方法を提供しようとするものである。   The present invention has been made in consideration of the above-mentioned circumstances. In order to minimize the increase in the cell area, a contact for body potential can be simply provided in a horizontal configuration in which drains of different conductivity types are adjacent to each other. It is an object of the present invention to provide a layoutable SOI semiconductor integrated circuit device and a manufacturing method thereof.

本発明に係るSOI半導体集積回路装置は、絶縁層上の第1導電型のシリコン単結晶基体と、前記絶縁層上において前記第1導電型のシリコン単結晶基体に隣接する第2導電型のシリコン単結晶基体と、前記第1導電型のシリコン単結晶基体に設けられた、第2導電型の第1領域及び第2導電型の第2領域と、前記第1領域、前記第2領域両者間の前記第1導電型のシリコン単結晶基体とつながり、少なくとも前記第1領域に隣り合う第1導電型高濃度領域と、前記第2導電型のシリコン単結晶基体に設けられた、第1導電型の第3領域及び前記第2領域と隣り合う第1導電型の第4領域と、前記第3領域、前記第4領域両者間の前記第2導電型のシリコン単結晶基体とつながり、少なくとも前記第3領域に隣り合う第2導電型高濃度領域と、前記第1領域、前記第2領域両者間の前記第1導電型のシリコン単結晶基体上から、前記第1導電型高濃度領域と隣接する前記第1導電型のシリコン単結晶基体上に、かつ、前記第3領域、前記第4領域両者間の前記第2導電型のシリコン単結晶基体上から、前記第2導電型高濃度領域と隣接する前記第2導電型のシリコン単結晶基体上に、ゲート絶縁膜を介して設けられたゲート電極と、を含む。   An SOI semiconductor integrated circuit device according to the present invention includes a first conductivity type silicon single crystal substrate on an insulating layer, and a second conductivity type silicon adjacent to the first conductivity type silicon single crystal substrate on the insulation layer. A single crystal base, a second conductive type first region and a second conductive type second region provided on the first conductive type silicon single crystal base, and between the first region and the second region The first conductivity type provided in the first conductivity type high concentration region adjacent to the first region and at least the first conductivity type high concentration region adjacent to the first conductivity type silicon single crystal substrate, and the second conductivity type silicon single crystal substrate A first conductivity type fourth region adjacent to the third region and the second region, and the second conductivity type silicon single crystal substrate between the third region and the fourth region, and at least the first region A second conductivity type high concentration region adjacent to the three regions; From the first conductivity type silicon single crystal substrate between both the first region and the second region, to the first conductivity type silicon single crystal substrate adjacent to the first conductivity type high concentration region, and From the second conductivity type silicon single crystal substrate between both the third region and the fourth region, to the second conductivity type silicon single crystal substrate adjacent to the second conductivity type high concentration region, And a gate electrode provided through a gate insulating film.

上記本発明に係るSOI半導体集積回路装置によれば、第1導電型及び第2導電型のシリコン単結晶基体を互いに隣接させ、それぞれ第2導電型の第1、第2領域、第1導電型の第3、第4領域を設けている。このような構成により、導電型の異なるデバイスの組み合わせとして、第2領域と第4領域が隣り合い、ドレイン共通接続に適する。かつ、各ボディーのシリコン単結晶基体とつながる第1導電型高濃度領域は第1領域と、第2導電型高濃度領域は第3領域とそれぞれ隣り合い、ボディーのソース・タイ構造に適する。これにより、導電型の異なるデバイス間の距離を大幅に縮小し、ボディー電位のためのコンタクトを設けてもセル面積増大を最小限に抑える。   According to the SOI semiconductor integrated circuit device of the present invention, the first conductivity type and the second conductivity type silicon single crystal bases are adjacent to each other, and the first conductivity type, the first region, the second region, and the first conductivity type, respectively. The third and fourth regions are provided. With such a configuration, the second region and the fourth region are adjacent to each other as a combination of devices having different conductivity types, which is suitable for common drain connection. The first conductivity type high concentration region connected to the silicon single crystal substrate of each body is adjacent to the first region, and the second conductivity type high concentration region is adjacent to the third region, which is suitable for the source / tie structure of the body. This greatly reduces the distance between devices of different conductivity types and minimizes the increase in cell area even if a contact for body potential is provided.

本発明に係るより好ましい実施態様としてのSOI半導体集積回路装置は、絶縁層上の第1導電型のシリコン単結晶基体と、前記絶縁層上において前記第1導電型のシリコン単結晶基体に隣接する第2導電型のシリコン単結晶基体と、前記第1導電型のシリコン単結晶基体に設けられた、第2導電型の第1領域及び第2導電型の第2領域と、前記第1領域、前記第2領域両者間の前記第1導電型のシリコン単結晶基体とつながり、前記第1領域に隣り合う第1導電型高濃度領域と、前記第2導電型のシリコン単結晶基体に設けられた、第1導電型の第3領域及び前記第2領域と隣り合う第1導電型の第4領域と、前記第3領域、前記第4領域両者間の前記第2導電型のシリコン単結晶基体とつながり、前記第3領域に隣り合う第2導電型高濃度領域と、前記第1導電型高濃度領域と前記第2導電型高濃度領域の分離領域と、前記第1領域、前記第2領域両者間の前記第1導電型のシリコン単結晶基体上から、前記第1導電型高濃度領域と隣接する前記第1導電型のシリコン単結晶基体上に、かつ、前記第3領域、前記第4領域両者間の前記第2導電型のシリコン単結晶基体上から、前記第2導電型高濃度領域と隣接する前記第2導電型のシリコン単結晶基体上に、ゲート絶縁膜を介して設けられたゲート電極と、前記ゲート電極のサイドウォールと、少なくとも前記サイドウォールを除き、前記第1領域と前記第1導電型高濃度領域の総合領域、前記第2領域と前記第4領域の総合領域、前記第3領域と前記第2導電型高濃度領域の総合領域、及び前記ゲート電極のそれぞれの上面に設けられたシリサイド化物と、を含む。   An SOI semiconductor integrated circuit device as a more preferred embodiment according to the present invention includes a first conductivity type silicon single crystal substrate on an insulating layer, and adjacent to the first conductivity type silicon single crystal substrate on the insulating layer. A second conductivity type silicon single crystal substrate, a second conductivity type first region and a second conductivity type second region provided on the first conductivity type silicon single crystal substrate, the first region, The first conductivity type silicon single crystal substrate between both the second regions is connected to the first conductivity type high concentration region adjacent to the first region, and the second conductivity type silicon single crystal substrate is provided. A third region of the first conductivity type and a fourth region of the first conductivity type adjacent to the second region; and the second conductivity type silicon single crystal substrate between the third region and the fourth region; Connected, adjacent to the third region, the second conductivity type high concentration A region, an isolation region between the first conductivity type high concentration region and the second conductivity type high concentration region, and the first conductivity type silicon single crystal substrate between both the first region and the second region, From the first conductivity type silicon single crystal substrate adjacent to the first conductivity type high concentration region and from the second conductivity type silicon single crystal substrate between both the third region and the fourth region. A gate electrode provided on the second conductivity type silicon single crystal substrate adjacent to the second conductivity type high concentration region via a gate insulating film, a sidewall of the gate electrode, and at least the sidewall Except for the total region of the first region and the first conductivity type high concentration region, the total region of the second region and the fourth region, the total region of the third region and the second conductivity type high concentration region, And the upper surface of each of the gate electrodes Including a silicide product provided, a.

上記本発明に係るSOI半導体集積回路装置によれば、第1導電型及び第2導電型のシリコン単結晶基体を互いに隣接させ、それぞれ第2導電型の第1、第2領域、第1導電型の第3、第4領域を設けている。このような構成により、導電型の異なるデバイスの組み合わせとして、第2領域と第4領域が隣り合い、ドレイン共通接続に適する。かつ、各ボディーのシリコン単結晶基体とつながる第1導電型高濃度領域は第1領域と、第2導電型高濃度領域は第3領域とそれぞれ隣り合い、ボディーのソース・タイ構造に適する。第1導電型高濃度領域と第2導電型高濃度領域は分離領域により離間する。分離領域は、ゲート電極のサイドウォールと共に自己整合的シリサイド形態の構成要素となっている。これにより、導電型の異なるデバイス間の距離を大幅に縮小し、ボディー電位のためのコンタクトを設けてもシリサイド化の構成がコンパクトであり、セル面積増大を最小限に抑える。   According to the SOI semiconductor integrated circuit device of the present invention, the first conductivity type and the second conductivity type silicon single crystal bases are adjacent to each other, and the first conductivity type, the first region, the second region, and the first conductivity type, respectively. The third and fourth regions are provided. With such a configuration, the second region and the fourth region are adjacent to each other as a combination of devices having different conductivity types, which is suitable for common drain connection. The first conductivity type high concentration region connected to the silicon single crystal substrate of each body is adjacent to the first region, and the second conductivity type high concentration region is adjacent to the third region, which is suitable for the source / tie structure of the body. The first conductivity type high concentration region and the second conductivity type high concentration region are separated by a separation region. The isolation region is a component in the form of a self-aligned silicide together with the sidewall of the gate electrode. As a result, the distance between devices of different conductivity types is greatly reduced, and even if a contact for body potential is provided, the silicidation configuration is compact and the increase in cell area is minimized.

また、上記本発明に係るSOI半導体集積回路装置において、前記ゲート電極は、前記第1導電型のシリコン単結晶基体上から前記第2導電型のシリコン単結晶基体上に跨る共有電極である。
また、上記本発明に係るSOI半導体集積回路装置において、前記ゲート電極は、前記分離領域上に伸び、前記第1導電型のシリコン単結晶基体上から前記第2導電型のシリコン単結晶基体上に跨る共有電極である。
In the SOI semiconductor integrated circuit device according to the present invention, the gate electrode is a shared electrode extending from the first conductivity type silicon single crystal substrate to the second conductivity type silicon single crystal substrate.
In the SOI semiconductor integrated circuit device according to the present invention, the gate electrode extends on the isolation region and extends from the first conductivity type silicon single crystal substrate to the second conductivity type silicon single crystal substrate. It is a shared electrode that straddles.

本発明に係るSOI半導体集積回路装置の製造方法は、絶縁層上において、互いに隣接する領域と、絶縁分離領域により互いが離間して隣り合う領域とを含む第1導電型のシリコン単結晶基体及び第2導電型のシリコン単結晶基体を形成する工程と、前記第1導電型及び第2導電型のシリコン単結晶基体上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上において、前記第1導電型のシリコン単結晶基体上のゲート伸長領域及び前記第2導電型のシリコン単結晶基体上のゲート伸長領域を通り、かつ前記ゲート伸長領域両者の端部どうしを結ぶ前記第1導電型及び第2導電型のシリコン単結晶基体に共有のゲート電極を形成する工程と、前記第1導電型のシリコン単結晶基体上において前記ゲート電極の所定領域をマスクとした所定領域に第2導電型の不純物を導入する工程と、前記第2導電型のシリコン単結晶基体上において前記ゲート電極の所定領域をマスクとした所定領域に第1導電型の不純物を導入する工程と、前記ゲート電極のサイドウォールを形成する工程と、前記第1導電型のシリコン単結晶基体側に前記ゲート電極のゲート伸長領域の部分及び前記サイドウォールの領域をマスクとして第2導電型の不純物を導入することにより前記ゲート電極を隔てて第2導電型の第1領域及び第2導電型の第2領域を形成する工程と、前記第2導電型のシリコン単結晶基体側に前記ゲート電極のゲート伸長領域の部分及び前記サイドウォールの領域をマスクとして第1導電型の不純物を導入することにより前記ゲート電極を隔てて第1導電型の第3領域及び前記第2領域と隣り合う第1導電型の第4領域を形成する工程と、前記第1領域、前記第2領域両者間の前記第1導電型のシリコン単結晶基体とつながり、少なくとも前記第1領域に隣り合う第1導電型高濃度領域を形成する工程と、前記第3領域、前記第4領域両者間の前記第2導電型のシリコン単結晶基体とつながり、少なくとも前記第3領域に隣り合う第2導電型高濃度領域を形成する工程と、少なくとも前記サイドウォールを除き、前記第1領域と前記第1導電型高濃度領域の総合領域、前記第2領域と前記第4領域の総合領域、前記第3領域と前記第2導電型高濃度領域の総合領域、及び前記ゲート電極のそれぞれの上面をシリサイド化する工程と、を含む。   A method for manufacturing an SOI semiconductor integrated circuit device according to the present invention includes a first conductivity type silicon single crystal substrate including regions adjacent to each other on an insulating layer and regions adjacent to each other by an insulating isolation region, and Forming a second conductive type silicon single crystal substrate; forming a gate insulating film on the first conductive type and second conductive type silicon single crystal substrates; and The first conductivity type passing through the gate extension region on the one conductivity type silicon single crystal substrate and the gate extension region on the second conductivity type silicon single crystal substrate and connecting the ends of both of the gate extension regions and A step of forming a common gate electrode on the second conductivity type silicon single crystal substrate; and a predetermined region on the first conductivity type silicon single crystal substrate using the predetermined region of the gate electrode as a mask. Introducing a second conductivity type impurity into the first conductivity type impurity, a step of introducing a first conductivity type impurity into a predetermined region on the second conductivity type silicon single crystal substrate using the predetermined region of the gate electrode as a mask, Forming a sidewall of the gate electrode; and introducing a second conductivity type impurity into the first conductivity type silicon single crystal substrate side using the gate extension region portion of the gate electrode and the sidewall region as a mask. Forming a second conductive type first region and a second conductive type second region across the gate electrode, and extending the gate electrode to the second conductive type silicon single crystal substrate side. The first conductivity type third region and the second region are separated from the gate electrode by introducing a first conductivity type impurity using the region portion and the sidewall region as a mask. Forming a fourth region of adjacent first conductivity type, and connecting to the first conductivity type silicon single crystal substrate between both the first region and the second region, and adjacent to at least the first region; A step of forming one conductivity type high concentration region, and a second conductivity type high concentration adjacent to at least the third region, connected to the second conductivity type silicon single crystal substrate between the third region and the fourth region. Forming a concentration region, excluding at least the sidewall, a total region of the first region and the first conductivity type high concentration region, a total region of the second region and the fourth region, the third region, Siliciding the total area of the second conductivity type high concentration area and the upper surface of each of the gate electrodes.

上記本発明に係るSOI半導体集積回路装置の製造方法によれば、異なる導電型のデバイスを形成するための第1導電型のシリコン単結晶基体及び第2導電型のシリコン単結晶基体の形状は、隣接する領域と、絶縁分離領域により離間して隣り合う領域が含まれる。また、ゲート電極は絶縁分離領域上に形成される部分を有し、両デバイス間共有のゲート電極となる。また、導電型の異なるデバイスの組み合わせとして、第2領域と第4領域が隣り合い、ドレイン共通接続に適する。かつ、各ボディーのシリコン単結晶基体とつながる、第1導電型高濃度領域は第1領域と、第2導電型高濃度領域は第3領域とそれぞれ隣り合い、ボディーのソース・タイ構造に適する。絶縁分離領域は、ゲート電極のサイドウォールと共に自己整合的シリサイド形態を実現するために重要である。これにより、導電型の異なるデバイス間の距離を大幅に縮小し、ボディー電位のためのコンタクトを設けてもシリサイド化の構成がコンパクトであり、セル面積増大を最小限に抑える。   According to the method for manufacturing an SOI semiconductor integrated circuit device of the present invention, the shapes of the first conductivity type silicon single crystal substrate and the second conductivity type silicon single crystal substrate for forming devices of different conductivity types are: An adjacent region and an adjacent region separated by an insulating isolation region are included. The gate electrode has a portion formed on the insulating isolation region, and serves as a gate electrode shared between both devices. Further, as a combination of devices having different conductivity types, the second region and the fourth region are adjacent to each other, and are suitable for common drain connection. In addition, the first conductivity type high concentration region and the second conductivity type high concentration region, which are connected to the silicon single crystal substrate of each body, are adjacent to the first region, respectively, and are suitable for the source / tie structure of the body. The isolation region is important for realizing a self-aligned silicide configuration together with the sidewall of the gate electrode. As a result, the distance between devices of different conductivity types is greatly reduced, and even if a contact for body potential is provided, the silicidation configuration is compact and the increase in cell area is minimized.

なお、上記本発明に係るSOI半導体集積回路装置の製造方法において、前記第1導電型高濃度領域を形成する工程は、前記第3領域及び第4領域を形成する工程の少なくとも一部と同一の工程で達成され、前記第2導電型高濃度領域を形成する工程は、前記第1領域及び第2領域を形成する工程の少なくとも一部と同一の工程で達成される。   In the method for manufacturing an SOI semiconductor integrated circuit device according to the present invention, the step of forming the first conductivity type high concentration region is the same as at least a part of the step of forming the third region and the fourth region. The step of forming the second conductivity type high concentration region is achieved in the same step as at least a part of the step of forming the first region and the second region.

また、本発明に係るより好ましい実施態様としてのSOI半導体集積回路装置は、絶縁層上の第1導電型のシリコン単結晶基体と、前記絶縁層上において前記第1導電型のシリコン単結晶基体に隣接する第2導電型のシリコン単結晶基体と、前記第1導電型のシリコン単結晶基体に設けられた、第2導電型の第1領域及び第2導電型の第2領域と、前記第1領域、前記第2領域両者間の前記第1導電型のシリコン単結晶基体とつながり、前記第1領域に隣り合う第1導電型高濃度領域と、前記第2導電型のシリコン単結晶基体に設けられた、第1導電型の第3領域及び前記第2領域と隣り合う第1導電型の第4領域と、
前記第3領域、前記第4領域両者間の前記第2導電型のシリコン単結晶基体とつながり、前記第3領域に隣り合う第2導電型高濃度領域と、前記第1導電型高濃度領域と前記第2導電型高濃度領域の分離領域と、前記第1領域、前記第2領域両者間の前記第1導電型のシリコン単結晶基体上から、前記第1導電型高濃度領域と隣接する前記第1導電型のシリコン単結晶基体上に、かつ、前記第3領域、前記第4領域両者間の前記第2導電型のシリコン単結晶基体上から、前記第2導電型高濃度領域と隣接する前記第2導電型のシリコン単結晶基体上に、ゲート絶縁膜を介して設けられたゲート電極と、前記ゲート電極のサイドウォールと、少なくとも前記サイドウォール、前記第2領域と前記第1導電型高濃度領域の境界を含む所定領域とその近傍の前記ゲート電極部分、及び前記第4領域と前記第2導電型高濃度領域の境界を含む所定領域とその近傍の前記ゲート電極部分を除き、前記第1領域と前記第1導電型高濃度領域の総合領域、前記第2領域と前記第4領域の総合領域、前記第3領域と前記第2導電型高濃度領域の総合領域、及び前記ゲート電極の所定領域それぞれの上面に設けられたシリサイド化物と、を含む。
Further, an SOI semiconductor integrated circuit device as a more preferred embodiment according to the present invention includes a first conductivity type silicon single crystal substrate on an insulating layer, and the first conductivity type silicon single crystal substrate on the insulating layer. The adjacent second conductive type silicon single crystal substrate, the second conductive type first region and the second conductive type second region provided on the first conductive type silicon single crystal substrate, the first conductive type A first conductivity type high-concentration region adjacent to the first region, and a second conductivity type silicon single crystal substrate between the first region and the second region; The first conductivity type third region and the first conductivity type fourth region adjacent to the second region,
A second conductivity type high concentration region adjacent to the third region, connected to the second conductivity type silicon single crystal substrate between both the third region and the fourth region; and the first conductivity type high concentration region; The isolation region of the second conductivity type high concentration region and the first conductivity type silicon single crystal substrate between both the first region and the second region are adjacent to the first conductivity type high concentration region. Adjacent to the second conductivity type high-concentration region on the first conductivity type silicon single crystal substrate and on the second conductivity type silicon single crystal substrate between the third region and the fourth region. A gate electrode provided on the second conductivity type silicon single crystal substrate through a gate insulating film, a sidewall of the gate electrode, at least the sidewall, the second region, and the first conductivity type high The predetermined area including the boundary of the density area and its The first region and the first conductivity type high concentration except for the gate electrode portion in the vicinity and the predetermined region including the boundary between the fourth region and the second conductivity type high concentration region and the gate electrode portion in the vicinity thereof. Silicide provided on the upper surface of the total region of the region, the total region of the second region and the fourth region, the total region of the third region and the second conductivity type high concentration region, and the predetermined region of the gate electrode Including.

上記本発明に係るSOI半導体集積回路装置によれば、第1導電型及び第2導電型のシリコン単結晶基体を互いに隣接させ、それぞれ第2導電型の第1、第2領域、第1導電型の第3、第4領域を設けている。このような構成により、導電型の異なるデバイスの組み合わせとして、第2領域と第4領域が隣り合い、ドレイン共通接続に適する。かつ、各ボディーのシリコン単結晶基体とつながる第1導電型高濃度領域は第1領域と、第2導電型高濃度領域は第3領域とそれぞれ隣り合い、ボディーのソース・タイ構造に適する。第1導電型高濃度領域と第2導電型高濃度領域は分離領域により離間する。分離領域は、ゲート電極のサイドウォールと共に自己整合的シリサイド形態の構成要素となっている。また、シリサイド化による短絡の防止が必要な部分があり、第2領域と第1導電型高濃度領域の境界を含む所定領域とその近傍のゲート電極部分、及び第4領域と第2導電型高濃度領域の境界を含む所定領域とその近傍のゲート電極部分はシリサイドを設けない形態となっている。これにより、導電型の異なるデバイス間の距離を大幅に縮小し、ボディー電位のためのコンタクトを設けてもシリサイド化の構成がコンパクトであり、セル面積増大を最小限に抑える。   According to the SOI semiconductor integrated circuit device of the present invention, the first conductivity type and the second conductivity type silicon single crystal bases are adjacent to each other, and the first conductivity type, the first region, the second region, and the first conductivity type, respectively. The third and fourth regions are provided. With such a configuration, the second region and the fourth region are adjacent to each other as a combination of devices having different conductivity types, which is suitable for common drain connection. The first conductivity type high concentration region connected to the silicon single crystal substrate of each body is adjacent to the first region, and the second conductivity type high concentration region is adjacent to the third region, which is suitable for the source / tie structure of the body. The first conductivity type high concentration region and the second conductivity type high concentration region are separated by a separation region. The isolation region is a component in the form of a self-aligned silicide together with the sidewall of the gate electrode. In addition, there is a portion that needs to be prevented from being short-circuited by silicidation, a predetermined region including a boundary between the second region and the first conductivity type high concentration region, a gate electrode portion in the vicinity thereof, and a fourth region and the second conductivity type high region. The predetermined region including the boundary of the concentration region and the gate electrode portion in the vicinity thereof are not provided with silicide. As a result, the distance between devices of different conductivity types is greatly reduced, and even if a contact for body potential is provided, the silicidation configuration is compact and the increase in cell area is minimized.

また、上記本発明に係るSOI半導体集積回路装置において、前記ゲート電極は、前記第1導電型のシリコン単結晶基体上から前記第2導電型のシリコン単結晶基体上に跨る共有電極である。
また、上記本発明に係るSOI半導体集積回路装置において、前記ゲート電極は、前記分離領域とは反対側の各端部を結ぶ前記第1導電型のシリコン単結晶基体上から前記第2導電型のシリコン単結晶基体上に跨る共有電極である。
In the SOI semiconductor integrated circuit device according to the present invention, the gate electrode is a shared electrode extending from the first conductivity type silicon single crystal substrate to the second conductivity type silicon single crystal substrate.
Further, in the SOI semiconductor integrated circuit device according to the present invention, the gate electrode has the second conductivity type from above the first conductivity type silicon single crystal substrate connecting each end on the side opposite to the isolation region. It is a shared electrode straddling on a silicon single crystal substrate.

本発明に係るSOI半導体集積回路装置の製造方法は、絶縁層上において、互いに隣接する領域と、絶縁分離領域により互いが離間して隣り合う領域とを含む第1導電型のシリコン単結晶基体及び第2導電型のシリコン単結晶基体を形成する工程と、前記第1導電型及び第2導電型のシリコン単結晶基体上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上において、前記第1導電型のシリコン単結晶基体上のゲート伸長領域及び前記第2導電型のシリコン単結晶基体上のゲート伸長領域を通り、かつ前記ゲート伸長領域両者の端部どうしを結ぶ前記第1導電型及び第2導電型のシリコン単結晶基体に共有のゲート電極を形成する工程と、前記第1導電型のシリコン単結晶基体上において前記ゲート電極の所定領域をマスクとした所定領域に第2導電型の不純物を導入する工程と、前記第2導電型のシリコン単結晶基体上において前記ゲート電極の所定領域をマスクとした所定領域に第1導電型の不純物を導入する工程と、前記ゲート電極のサイドウォールを形成する工程と、前記第1導電型のシリコン単結晶基体側に前記ゲート電極のゲート伸長領域の部分及び前記サイドウォールの領域をマスクとして第2導電型の不純物を導入することにより前記ゲート電極を隔てて第2導電型の第1領域及び第2導電型の第2領域を形成する工程と、前記第2導電型のシリコン単結晶基体側に前記ゲート電極のゲート伸長領域の部分及び前記サイドウォールの領域をマスクとして第1導電型の不純物を導入することにより前記ゲート電極を隔てて第1導電型の第3領域及び前記第2領域と隣り合う第1導電型の第4領域を形成する工程と、前記第1領域、前記第2領域両者間の前記第1導電型のシリコン単結晶基体とつながり、少なくとも前記第1領域に隣り合う第1導電型高濃度領域を形成する工程と、前記第3領域、前記第4領域両者間の前記第2導電型のシリコン単結晶基体とつながり、少なくとも前記第3領域に隣り合う第2導電型高濃度領域を形成する工程と、少なくとも前記第2領域と前記第1導電型高濃度領域の境界を含む所定領域とその近傍の前記ゲート電極部分、及び前記第4領域と前記第2導電型高濃度領域の境界を含む所定領域とその近傍の前記ゲート電極部分を覆う保護層を形成する工程と、少なくとも前記サイドウォール、前記保護層を除き、前記第1領域と前記第1導電型高濃度領域の総合領域、前記第2領域と前記第4領域の総合領域、前記第3領域と前記第2導電型高濃度領域の総合領域、及び前記ゲート電極の所定領域それぞれの上面をシリサイド化する工程と、を含む。   A method for manufacturing an SOI semiconductor integrated circuit device according to the present invention includes a first conductivity type silicon single crystal substrate including regions adjacent to each other on an insulating layer and regions adjacent to each other by an insulating isolation region, and Forming a second conductive type silicon single crystal substrate; forming a gate insulating film on the first conductive type and second conductive type silicon single crystal substrates; and The first conductivity type passing through the gate extension region on the one conductivity type silicon single crystal substrate and the gate extension region on the second conductivity type silicon single crystal substrate and connecting the ends of both of the gate extension regions and A step of forming a common gate electrode on the second conductivity type silicon single crystal substrate; and a predetermined region on the first conductivity type silicon single crystal substrate using the predetermined region of the gate electrode as a mask. Introducing a second conductivity type impurity into the first conductivity type impurity, a step of introducing a first conductivity type impurity into a predetermined region on the second conductivity type silicon single crystal substrate using the predetermined region of the gate electrode as a mask, Forming a sidewall of the gate electrode; and introducing a second conductivity type impurity into the first conductivity type silicon single crystal substrate side using the gate extension region portion of the gate electrode and the sidewall region as a mask. Forming a second conductive type first region and a second conductive type second region across the gate electrode, and extending the gate electrode to the second conductive type silicon single crystal substrate side. The first conductivity type third region and the second region are separated from the gate electrode by introducing a first conductivity type impurity using the region portion and the sidewall region as a mask. Forming a fourth region of adjacent first conductivity type, and connecting to the first conductivity type silicon single crystal substrate between both the first region and the second region, and adjacent to at least the first region; A step of forming one conductivity type high concentration region, and a second conductivity type high concentration adjacent to at least the third region, connected to the second conductivity type silicon single crystal substrate between the third region and the fourth region. A step of forming a concentration region, a predetermined region including at least a boundary between the second region and the first conductivity type high concentration region, the gate electrode portion in the vicinity thereof, and the fourth region and the second conductivity type high concentration. A step of forming a protective layer covering a predetermined region including a boundary of the region and the gate electrode portion in the vicinity thereof, and at least the sidewall and the protective layer except for the first region and the first conductivity type high concentration region. General area, Silicidizing the upper surface of each of the second region and the fourth region, the third region and the second conductivity type high concentration region, and the predetermined region of the gate electrode.

上記本発明に係るSOI半導体集積回路装置の製造方法によれば、異なる導電型のデバイスを形成するための第1導電型のシリコン単結晶基体及び第2導電型のシリコン単結晶基体の形状は、隣接する領域と、絶縁分離領域により離間して隣り合う領域が含まれる。また、ゲート電極は絶縁分離領域上に形成される部分を有し、両デバイス間共有のゲート電極となる。また、導電型の異なるデバイスの組み合わせとして、第2領域と第4領域が隣り合い、ドレイン共通接続に適する。かつ、各ボディーのシリコン単結晶基体とつながる、第1導電型高濃度領域は第1領域と、第2導電型高濃度領域は第3領域とそれぞれ隣り合い、ボディーのソース・タイ構造に適する。絶縁分離領域と保護層は、ゲート電極のサイドウォールと共に自己整合的シリサイド形態を実現するために重要である。これにより、導電型の異なるデバイス間の距離を大幅に縮小し、ボディー電位のためのコンタクトを設けてもシリサイド化の構成がコンパクトであり、セル面積増大を最小限に抑える。   According to the method for manufacturing an SOI semiconductor integrated circuit device of the present invention, the shapes of the first conductivity type silicon single crystal substrate and the second conductivity type silicon single crystal substrate for forming devices of different conductivity types are: An adjacent region and an adjacent region separated by an insulating isolation region are included. The gate electrode has a portion formed on the insulating isolation region, and serves as a gate electrode shared between both devices. Further, as a combination of devices having different conductivity types, the second region and the fourth region are adjacent to each other, and are suitable for common drain connection. In addition, the first conductivity type high concentration region and the second conductivity type high concentration region, which are connected to the silicon single crystal substrate of each body, are adjacent to the first region, respectively, and are suitable for the source / tie structure of the body. The isolation region and the protective layer are important for realizing a self-aligned silicide configuration together with the sidewall of the gate electrode. As a result, the distance between devices of different conductivity types is greatly reduced, and even if a contact for body potential is provided, the silicidation configuration is compact and the increase in cell area is minimized.

なお、上記本発明に係るSOI半導体集積回路装置の製造方法において、前記第1導電型高濃度領域を形成する工程は、前記第3領域及び第4領域を形成する工程の少なくとも一部と同一の工程で達成され、前記第2導電型高濃度領域を形成する工程は、前記第1領域及び第2領域を形成する工程の少なくとも一部と同一の工程で達成される。   In the method for manufacturing an SOI semiconductor integrated circuit device according to the present invention, the step of forming the first conductivity type high concentration region is the same as at least a part of the step of forming the third region and the fourth region. The step of forming the second conductivity type high concentration region is achieved in the same step as at least a part of the step of forming the first region and the second region.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

図1〜図4は、それぞれ本発明の第1実施形態に係るSOI半導体集積回路装置の要部構成を示す各図であり、図1は平面図、図2は、図1に示したF2−F2線断面図、図3は、図1に示したF3−F3線断面図、図4は、図1に示したF4−F4線断面図である。
SOI基板11は、図示しないベース基板等に設けられた埋め込み絶縁層10上に単結晶基体を配している。素子分離領域12に囲まれた素子領域における単結晶基体13は、N型ウェル領域(Nwell)131及びP型ウェル領域(Pwell)132で構成されている。Nwell領域131及びPwell領域132は、互いに隣接する領域と素子分離領域12の部分12aで離間して隣り合う領域を有する。各領域の関係を示す場合について、「隣接する」とは、領域双方の接触が伴い、「隣り合う」とは領域双方が非接触の位置関係にあることを意味する。
1 to 4 are each a diagram showing a main configuration of the SOI semiconductor integrated circuit device according to the first embodiment of the present invention. FIG. 1 is a plan view, and FIG. 3 is a cross-sectional view taken along line F3-F3 shown in FIG. 1, and FIG. 4 is a cross-sectional view taken along line F4-F4 shown in FIG.
The SOI substrate 11 has a single crystal substrate disposed on a buried insulating layer 10 provided on a base substrate (not shown). The single crystal substrate 13 in the element region surrounded by the element isolation region 12 includes an N-type well region (N well) 131 and a P-type well region (P well) 132. The N well region 131 and the P well region 132 have a region adjacent to each other and a region adjacent to each other at the portion 12 a of the element isolation region 12. In the case of showing the relationship between the regions, “adjacent” means that both regions are in contact with each other, and “adjacent” means that both regions are in a non-contact positional relationship.

well領域131にはP型のソース領域S1、ドレイン領域D1が形成されている。ソース領域S1、ドレイン領域D1はそれぞれ比較的低濃度の不純物領域(Nエクステンション領域)、比較的高濃度の不純物領域(N領域)でなる。また、N領域BC1は、Nwell領域131より高濃度のボディーコンタクト領域である。N領域BC1は、ソース領域S1、ドレイン領域D1間のNwell領域131とつながり、ソース領域S1に隣り合うように形成されている。 In the N well region 131, a P-type source region S1 and a drain region D1 are formed. The source region S1 and the drain region D1 are each composed of a relatively low concentration impurity region (N extension region) and a relatively high concentration impurity region (N + region). The N + region BC1 is a body contact region having a higher concentration than the N well region 131. The N + region BC1 is connected to the N well region 131 between the source region S1 and the drain region D1, and is formed adjacent to the source region S1.

一方、Pwell領域132にはN型のソース領域S2、ドレイン領域D2が形成されている。ソース領域S2、ドレイン領域D2はそれぞれ比較的低濃度の不純物領域(Pエクステンション領域)、比較的高濃度の不純物領域(P領域)でなる。また、P領域BC2は、Pwell領域132より高濃度のボディーコンタクト領域である。P領域BC2は、ソース領域S2、ドレイン領域D2間のPwell領域132とつながり、ソース領域S2に隣り合うように形成されている。 On the other hand, an N-type source region S2 and drain region D2 are formed in the P - well region 132. The source region S2 and the drain region D2 are each composed of a relatively low concentration impurity region (P extension region) and a relatively high concentration impurity region (P + region). Further, the P + region BC2 is a body contact region having a higher concentration than the P well region 132. The P + region BC2 is connected to the P well region 132 between the source region S2 and the drain region D2, and is formed adjacent to the source region S2.

ゲート電極15は、ソース領域S1、ドレイン領域D1間のNwell領域131上から、N領域BC1とドレイン領域D1の間におけるNwell領域131上に、かつ、ソース領域S2、ドレイン領域D2間のPwell領域132上から、P領域BC2とドレイン領域D2の間におけるPwell領域132上に、ゲート絶縁膜14を介して設けられている。このゲート電極15は、素子分離領域12の部分12a上に伸び、Nwell領域131上からPwell領域132上に跨る共有電極となっている。ゲート電極15にはサイドウォール16が形成されている。 The gate electrode 15, the source region S1, N between the drain region D1 - over well region 131, N between the N + region BC1 and the drain region D1 - on well region 131 and source region S2, the drain region D2 over well region 132, P between P + region BC2 and the drain region D2 - - P between the upper well region 132, it is provided via a gate insulating film 14. The gate electrode 15 extends on the portion 12 a of the element isolation region 12, and serves as a common electrode extending from the N well region 131 to the P well region 132. Side walls 16 are formed on the gate electrode 15.

上記構成から、PチャネルMOSFET Qpは、Nwell領域131において形成されたN領域BC1、ソース領域S1、ドレイン領域D1、その間のゲート絶縁膜14及びゲート電極15を含む。また、NチャネルMOSFET Qnは、Pwell領域132において形成されたP領域BC2、ソース領域S2、ドレイン領域D2、その間のゲート絶縁膜14及びゲート電極15を含む。 From the above configuration, the P-channel MOSFET Qp includes the N + region BC1 formed in the N well region 131, the source region S1, the drain region D1, the gate insulating film 14 and the gate electrode 15 therebetween. The N-channel MOSFET Qn includes a P + region BC2 formed in the P - well region 132, a source region S2, a drain region D2, a gate insulating film 14 therebetween, and a gate electrode 15.

また、シリサイド層17は、サイドウォール16を除き、ソース領域S1とN領域BC1の総合領域、ドレイン領域D1,D2の総合領域、ソース領域S2とP領域BC2の総合領域、及びゲート電極15それぞれの上面に設けられている。これにより、各領域がより低抵抗化される。 In addition, the silicide layer 17, except for the sidewall 16, includes a total region of the source region S 1 and the N + region BC 1, a total region of the drain regions D 1 and D 2, a total region of the source region S 2 and the P + region BC 2, and the gate electrode 15. It is provided on each upper surface. Thereby, each region is further reduced in resistance.

上記実施形態の構成によれば、シリコン単結晶基体としてN型ウェル領域(Nwell)131及びP型ウェル領域(Pwell)132を互いに隣接させ、それぞれの基体においてソース/ドレイン領域を設けるようにした。このような横置きのPチャネルMOSFET Qp、NチャネルMOSFET Qnの組み合わせとして、ドレイン領域D1,D2が隣り合い、ドレイン共通接続に適する。かつ、各ボディーコンタクトのN領域BC1はソース領域S1と、P領域BC2はソース領域S2とそれぞれ隣り合い、ボディーのソース・タイ構造に適する。また、N領域BC1とP領域BC2は、ゲート電極15下の素子分離領域12により離間される。ゲート電極15下の素子分離領域12は、サイドウォール16と共に自己整合的シリサイド形態の構成要素となっている。このような構成によって、導電型の異なるデバイス間の距離を大幅に縮小し、ボディー電位のためのコンタクトを設けてもセル面積増大を最小限に抑えることができる。 According to the configuration of the above embodiment, the N-type well region (N - well) 131 and the P-type well region (P - well) 132 are adjacent to each other as the silicon single crystal substrate, and the source / drain regions are provided in the respective substrates. I did it. As a combination of such a horizontally placed P-channel MOSFET Qp and N-channel MOSFET Qn, the drain regions D1 and D2 are adjacent to each other and are suitable for common drain connection. In addition, the N + region BC1 of each body contact is adjacent to the source region S1 and the P + region BC2 is adjacent to the source region S2, which is suitable for the source tie structure of the body. Further, the N + region BC1 and the P + region BC2 are separated by the element isolation region 12 under the gate electrode 15. The element isolation region 12 under the gate electrode 15 is a component in a self-aligned silicide form together with the sidewall 16. With such a configuration, the distance between devices of different conductivity types can be greatly reduced, and even if a contact for body potential is provided, an increase in cell area can be minimized.

図5〜図7は、それぞれ本発明の第2実施形態に係るSOI半導体集積回路装置の製造方法の要部を工程順に示す平面図である。前記図1の構成を実現するための一例方法であり、図1と同様の箇所には同一の符号を付して説明する。
図5に示すように、埋め込み絶縁膜10上のSOI基板11において、トレンチ素子分離法等を用いて素子分離領域12を形成する。素子分離領域の部分12aは、後に形成されるゲート電極と共にボディーコンタクトのイオン注入レジストとなり、また、シリサイドブロックになる。次に、単結晶基体13において、犠牲酸化膜(図示せず)形成の後、イオン注入法を用いて互いに隣接するN型ウェル領域(Nwell)131とP型ウェル領域(Pwell)132を形成する。図示しないが、各チャネルのしきい値調整用の不純物イオン注入もなされる。
5 to 7 are plan views showing the main part of the manufacturing method of the SOI semiconductor integrated circuit device according to the second embodiment of the present invention in the order of steps. This is an example method for realizing the configuration shown in FIG. 1, and the same parts as those in FIG.
As shown in FIG. 5, in the SOI substrate 11 on the buried insulating film 10, an element isolation region 12 is formed using a trench element isolation method or the like. The element isolation region portion 12a becomes a body contact ion-implanted resist together with a gate electrode to be formed later, and becomes a silicide block. Next, in the single crystal substrate 13, after forming a sacrificial oxide film (not shown), an N-type well region (N - well) 131 and a P-type well region (P - well) that are adjacent to each other using an ion implantation method. 132 is formed. Although not shown, impurity ion implantation for adjusting the threshold value of each channel is also performed.

次に、図6に示すように、ウェットエッチング等で犠牲酸化膜を除去した後、ウェット酸化法等を用い、図示しないゲート絶縁膜(例えば図2の14)を形成、次いで、例えばCVD法等によりポリシリコン層を堆積する。次に、所定の導電性を得るためのイオン注入を経た後、ポリシリコン電極としてパターニングする。これにより、ゲート電極15を形成する。ここでゲート電極15のパターンは、Nwell領域131上のゲート伸長領域、Pwell領域132上のゲート伸長領域、及び素子分離領域部分12a上を通り、かつ上記ゲート伸長領域両者の端部どうしを結ぶNwell領域131、Pwell領域132に共有の電極パターンとする。 Next, as shown in FIG. 6, after the sacrificial oxide film is removed by wet etching or the like, a gate insulating film (for example, 14 in FIG. 2) (not shown) is formed by using a wet oxidation method or the like. To deposit a polysilicon layer. Next, after ion implantation for obtaining predetermined conductivity, patterning is performed as a polysilicon electrode. Thereby, the gate electrode 15 is formed. Here, the pattern of the gate electrode 15 passes through the gate extension region on the N well region 131, the gate extension region on the P well region 132, and the element isolation region portion 12 a, and ends of both of the gate extension regions. A common electrode pattern is used for the N - well region 131 and the P - well region 132 that connect each other.

次に、図示しないが、Nwell領域131の所定領域に対し、ゲート電極15の領域をマスクとした所定条件のPチャネル用の不純物イオン注入を経る。同様に、Pwell領域132の所定領域に対し、ゲート電極15の領域をマスクとした所定条件のNチャネル用の不純物イオン注入を経る。これらイオン注入は、LDD構造等に代表されるエクステンション領域やポケットイオン注入(ハロー)等が考えられる。 Next, although not shown, P channel impurity ion implantation under a predetermined condition is performed on a predetermined region of the N well region 131 using the region of the gate electrode 15 as a mask. Similarly, N channel impurity ion implantation under a predetermined condition is performed on the predetermined region of the P - well region 132 using the region of the gate electrode 15 as a mask. As these ion implantations, extension regions represented by an LDD structure or the like, pocket ion implantation (halo), or the like can be considered.

次に、CVD法によりゲート電極15上を覆うように絶縁膜を堆積し、異方性ドライエッチングを実施する。これにより、サイドウォール16を形成する。次に、Nwell領域131の所定領域には、ゲート電極15の領域及びサイドウォール16をマスクとした所定条件の不純物イオン注入を実施することによりP領域を形成する。これにより、ソース領域S1、ドレイン領域D1を形成する。また、Pwell領域132の所定領域には、後に形成されるソース領域S2と隣り合うように、Pwell領域132とつながるP領域BC2を形成する。ソース領域S1、ドレイン領域D1のP領域とP領域BC2は、図示しないイオン注入マスクが共有で、同一工程で形成されてもよい。また、別々のイオン注入マスクを用い、別工程で形成されることも考えられる。 Next, an insulating film is deposited so as to cover the gate electrode 15 by CVD, and anisotropic dry etching is performed. Thereby, the sidewall 16 is formed. Next, in a predetermined region of the N well region 131, a P + region is formed by performing impurity ion implantation under a predetermined condition using the region of the gate electrode 15 and the sidewall 16 as a mask. Thereby, the source region S1 and the drain region D1 are formed. Also, P - in a predetermined area of the well area 132, so that adjacent to the source region S2 to be formed later, P - forming a P + region BC2 connect with well region 132. The P + region and the P + region BC2 of the source region S1 and the drain region D1 may be formed in the same process by sharing an ion implantation mask (not shown). It is also conceivable that a separate ion implantation mask is used and formed in a separate process.

次に、図7に示すように、Pwell領域131の所定領域には、ゲート電極15の領域及びサイドウォール16をマスクとした所定条件の不純物イオン注入を実施することによりN領域を形成する。これにより、ソース領域S2、ドレイン領域D2を形成する。また、ソース領域S1と隣り合うように、Nwell領域131とつながるN領域BC1を形成する。ソース領域S2、ドレイン領域D2のN領域とN領域BC1は、図示しないイオン注入マスクが共有で、同一工程で形成されてもよい。また、別々のイオン注入マスクを用い、別工程で形成されることも考えられる。 Next, as shown in FIG. 7, an N + region is formed in a predetermined region of the P well region 131 by performing impurity ion implantation under a predetermined condition using the region of the gate electrode 15 and the sidewall 16 as a mask. To do. Thereby, the source region S2 and the drain region D2 are formed. Further, an N + region BC1 connected to the N well region 131 is formed so as to be adjacent to the source region S1. The N + region and the N + region BC1 of the source region S2 and the drain region D2 may be formed in the same process by sharing an ion implantation mask (not shown). It is also conceivable that a separate ion implantation mask is used and formed in a separate process.

さらに、図7の構成に対してサリサイドプロセスを経る。すなわち、素子領域において、サイドウォール16を除き、ゲート電極15及び各ソース/ドレイン領域S1,D1,S2,D2の表面を自己整合的にシリサイド化する。これにより、シリサイド層17を形成する(図1参照)。   Further, a salicide process is performed on the configuration of FIG. That is, in the element region, except for the sidewall 16, the surfaces of the gate electrode 15 and the source / drain regions S1, D1, S2, and D2 are silicided in a self-aligning manner. Thereby, the silicide layer 17 is formed (see FIG. 1).

上記実施形態の方法によれば、Nwell領域131及びPwell領域132の形状は、異なる導電型のデバイス(MOSFET Qp,Qn)を形成するために、隣接する領域と、素子分離領域部分12aにより離間して隣り合う領域が含まれる。また、ゲート電極15は素子分離領域部分12a上に形成される部分を有し、両デバイス(Qp,Qn)間共有のゲート電極となる。また、導電型の異なるデバイス(Qp,Qn)の組み合わせとして、ドレインD1,D2が隣り合い、ドレイン共通接続に適する。かつ、Nwell領域131とつながるN領域BC1はソース領域S1と、Pwell領域132とつながるP領域BC2はソース領域S2とそれぞれ隣接し、ボディーのソース・タイ構造に適する。素子分離領域部分12aは、サイドウォール16と共に自己整合的シリサイド形態を実現するために重要である。これにより、MOSFET Qp、Qn間の距離を大幅に縮小し、ボディー電位のためのコンタクトを設けてもシリサイド化の構成がコンパクトであり、セル面積増大を最小限に抑える。 According to the method of the above embodiment, the N - well region 131 and the P - well region 132 have different shapes from each other in order to form devices (MOSFETs Qp, Qn) having different conductivity types. The area | region adjacently separated by 12a is contained. The gate electrode 15 has a portion formed on the element isolation region portion 12a, and serves as a gate electrode shared between both devices (Qp, Qn). Further, as a combination of devices (Qp, Qn) having different conductivity types, the drains D1, D2 are adjacent to each other and are suitable for common drain connection. The N + region BC1 connected to the N well region 131 is adjacent to the source region S1 and the P + region BC2 connected to the P well region 132 is adjacent to the source region S2 and is suitable for the source / tie structure of the body. The element isolation region portion 12 a is important for realizing a self-aligned silicide form together with the sidewall 16. As a result, the distance between the MOSFETs Qp and Qn is greatly reduced, and even if a contact for body potential is provided, the silicidation configuration is compact and the increase in cell area is minimized.

図8〜図11は、それぞれ本発明の第3実施形態に係るSOI半導体集積回路装置の要部構成を示す各図であり、図8は平面図、図9は、図8に示したF9−F9線断面図、図10は、図8に示したF10−F10線断面図、図11は、図8に示したF11−F11線断面図である。
SOI基板21は、図示しないベース基板等に設けられた埋め込み絶縁層20上に単結晶基体を配している。素子分離領域22に囲まれた素子領域における単結晶基体23は、N型ウェル領域(Nwell)231及びP型ウェル領域(Pwell)232で構成されている。Nwell領域231及びPwell領域232は、互いに隣接する領域と素子分離領域22の部分22aで離間して隣り合う領域を有する。
8 to 11 are each a diagram showing a configuration of a main part of an SOI semiconductor integrated circuit device according to the third embodiment of the present invention. FIG. 8 is a plan view, and FIG. 9 is F9− shown in FIG. FIG. 10 is a sectional view taken along line F9, FIG. 10 is a sectional view taken along line F10-F10 shown in FIG. 8, and FIG. 11 is a sectional view taken along line F11-F11 shown in FIG.
The SOI substrate 21 has a single crystal substrate disposed on a buried insulating layer 20 provided on a base substrate (not shown). The single crystal substrate 23 in the element region surrounded by the element isolation region 22 includes an N-type well region (N well) 231 and a P-type well region (P well) 232. The N well region 231 and the P well region 232 have regions adjacent to each other and separated from each other by the portion 22 a of the element isolation region 22.

well領域231にはP型のソース領域S1、ドレイン領域D1が形成されている。ソース領域S1、ドレイン領域D1はそれぞれ比較的低濃度の不純物領域(Nエクステンション領域)、比較的高濃度の不純物領域(N領域)でなる。また、N領域BC1は、Nwell領域231より高濃度のボディーコンタクト領域である。N領域BC1は、ソース領域S1、ドレイン領域D1間のNwell領域231とつながり、ソース領域S1に隣接するように形成されている。 In the N well region 231, a P-type source region S1 and a drain region D1 are formed. The source region S1 and the drain region D1 are each composed of a relatively low concentration impurity region (N extension region) and a relatively high concentration impurity region (N + region). The N + region BC1 is a body contact region having a higher concentration than the N well region 231. The N + region BC1 is connected to the N well region 231 between the source region S1 and the drain region D1, and is formed adjacent to the source region S1.

一方、Pwell領域232にはN型のソース領域S2、ドレイン領域D2が形成されている。ソース領域S2、ドレイン領域D2はそれぞれ比較的低濃度の不純物領域(Pエクステンション領域)、比較的高濃度の不純物領域(P領域)でなる。また、P領域BC2は、Pwell領域232より高濃度のボディーコンタクト領域である。P領域BC2は、ソース領域S2、ドレイン領域D2間のPwell領域232とつながり、ソース領域S2に隣接するように形成されている。 On the other hand, an N-type source region S2 and drain region D2 are formed in the P - well region 232. The source region S2 and the drain region D2 are each composed of a relatively low concentration impurity region (P extension region) and a relatively high concentration impurity region (P + region). Further, the P + region BC2 is a body contact region having a higher concentration than the P well region 232. The P + region BC2 is connected to the P well region 232 between the source region S2 and the drain region D2, and is formed adjacent to the source region S2.

ゲート電極25は、ソース領域S1、ドレイン領域D1間のNwell領域231上から、N領域BC1とドレイン領域D1の間におけるNwell領域231上に、かつ、ソース領域S2、ドレイン領域D2間のPwell領域232上から、P領域BC2とドレイン領域D2の間におけるPwell領域232上に、ゲート絶縁膜24を介して設けられている。このゲート電極25は、素子分離領域22の部分22aとは反対側の素子分離領域22の部分22b上に伸び、Nwell領域231上からPwell領域232上に跨る共有電極となっている。ゲート電極25にはサイドウォール26が形成されている。 The gate electrode 25, the source regions S1, N between the drain region D1 - over well region 231, N between the N + region BC1 and the drain region D1 - on well region 231 and source region S2, the drain region D2 over well region 232, P between P + region BC2 and the drain region D2 - - P between the upper well region 232, it is provided via a gate insulating film 24. The gate electrode 25 extends on the part 22 b of the element isolation region 22 opposite to the part 22 a of the element isolation region 22, and serves as a shared electrode extending from the N well region 231 to the P well region 232. . A sidewall 26 is formed on the gate electrode 25.

上記構成から、PチャネルMOSFET Qpは、Nwell領域231において形成されたN領域BC1、ソース領域S1、ドレイン領域D1、その間のゲート絶縁膜24及びゲート電極25を含む。また、NチャネルMOSFET Qnは、Pwell領域232において形成されたP領域BC2、ソース領域S2、ドレイン領域D2、その間のゲート絶縁膜24及びゲート電極25を含む。 From the above configuration, the P-channel MOSFET Qp includes the N + region BC1 formed in the N well region 231, the source region S1, the drain region D1, the gate insulating film 24 and the gate electrode 25 therebetween. The N-channel MOSFET Qn includes a P + region BC2 formed in the P - well region 232, a source region S2, a drain region D2, a gate insulating film 24 and a gate electrode 25 therebetween.

また、シリサイド層27は、サイドウォール26、ドレイン領域D1とN領域BC1の境界を含む所定領域31とその近傍のゲート電極25の部分251、及びドレイン領域D2とP領域BC2の境界を含む所定領域32とその近傍のゲート電極25部分252を除き、ソース領域S1とN領域BC1の総合領域、ドレイン領域D1,D2の総合領域、ソース領域S2とP領域BC2の総合領域、及びゲート電極25の所定領域それぞれの上面に設けられている。これにより、各領域がより低抵抗化され、S1とBC1、S2とBC2がそれぞれ電気的に接続される。 The silicide layer 27 includes the sidewall 26, the predetermined region 31 including the boundary between the drain region D1 and the N + region BC1, the portion 251 of the gate electrode 25 in the vicinity thereof, and the boundary between the drain region D2 and the P + region BC2. Except for the predetermined region 32 and the gate electrode 25 portion 252 in the vicinity thereof, the total region of the source region S1 and the N + region BC1, the total region of the drain regions D1 and D2, the total region of the source region S2 and the P + region BC2, and the gate The electrode 25 is provided on the upper surface of each predetermined region. Thereby, each region has a lower resistance, and S1 and BC1, and S2 and BC2 are electrically connected to each other.

上記実施形態の構成によれば、シリコン単結晶基体としてN型ウェル領域(Nwell)231及びP型ウェル領域(Pwell)232を互いに隣接させ、それぞれの基体においてソース/ドレイン領域を設けるようにした。このような横置きのPチャネルMOSFET Qp、NチャネルMOSFET Qnの組み合わせとして、ドレイン領域D1,D2の共通接続に適する。かつ、各ボディーコンタクトのN領域BC1はソース領域S1と、P領域BC2はソース領域S2とそれぞれ隣接し、ボディーのソース・タイ構造に適する。 According to the configuration of the above embodiment, the N-type well region (N - well) 231 and the P-type well region (P - well) 232 are adjacent to each other as the silicon single crystal substrate, and the source / drain regions are provided in the respective substrates. I did it. A combination of such a horizontally placed P-channel MOSFET Qp and N-channel MOSFET Qn is suitable for common connection of the drain regions D1 and D2. In addition, the N + region BC1 of each body contact is adjacent to the source region S1 and the P + region BC2 is adjacent to the source region S2, respectively, which is suitable for the source tie structure of the body.

また、N領域BC1とP領域BC2は、ゲート電極25下の素子分離領域22により離間される。ゲート電極25下の素子分離領域22は、サイドウォール26と共に自己整合的シリサイド形態の構成要素となっている。また、シリサイド化による短絡を防止すべき部分がある。すなわち、ドレイン領域D1とN領域BC1の境界を含む所定領域31とその近傍のゲート電極25の部分251、及びドレイン領域D2とP領域BC2の境界を含む所定領域32とその近傍のゲート電極25部分252はシリサイドを設けない形態となっている。このような構成によって、導電型の異なるデバイス間の距離を大幅に縮小し、ボディー電位のためのコンタクトを設けてもセル面積増大を最小限に抑えることができる。 Further, the N + region BC1 and the P + region BC2 are separated by the element isolation region 22 below the gate electrode 25. The element isolation region 22 under the gate electrode 25 is a component in the form of a self-aligned silicide together with the sidewall 26. In addition, there is a portion where a short circuit due to silicidation should be prevented. That is, the predetermined region 31 including the boundary between the drain region D1 and the N + region BC1 and the portion 251 of the gate electrode 25 in the vicinity thereof, and the predetermined region 32 including the boundary between the drain region D2 and the P + region BC2 and the gate electrode in the vicinity thereof. The 25 portion 252 is not provided with silicide. With such a configuration, the distance between devices of different conductivity types can be greatly reduced, and even if a contact for body potential is provided, an increase in cell area can be minimized.

図12〜図15は、それぞれ本発明の第4実施形態に係るSOI半導体集積回路装置の製造方法の要部を工程順に示す平面図である。前記図8の構成を実現するための一例方法であり、図8と同様の箇所には同一の符号を付して説明する。
図12に示すように、埋め込み絶縁膜20上のSOI基板21において、トレンチ素子分離法等を用いて素子分離領域22を形成する。次に、単結晶基体23において、犠牲酸化膜(図示せず)形成の後、イオン注入法を用いて互いに隣接するN型ウェル領域(Nwell)231とP型ウェル領域(Pwell)232を形成する。図示しないが、各チャネルのしきい値調整用の不純物イオン注入もなされる。
12 to 15 are plan views showing the main part of the method for manufacturing an SOI semiconductor integrated circuit device according to the fourth embodiment of the present invention in the order of steps. This is an example method for realizing the configuration of FIG. 8, and the same parts as those in FIG.
As shown in FIG. 12, in the SOI substrate 21 on the buried insulating film 20, an element isolation region 22 is formed using a trench element isolation method or the like. Next, in the single crystal substrate 23, after forming a sacrificial oxide film (not shown), an N-type well region (N - well) 231 and a P-type well region (P - well) that are adjacent to each other using an ion implantation method. 232 is formed. Although not shown, impurity ion implantation for adjusting the threshold value of each channel is also performed.

次に、図13に示すように、ウェットエッチング等で犠牲酸化膜を除去した後、ウェット酸化法等を用い、図示しないゲート絶縁膜(例えば図9の24)を形成、次いで、例えばCVD法等によりポリシリコン層を堆積する。次に、所定の導電性を得るためのイオン注入を経た後、ポリシリコン電極としてパターニングする。これにより、ゲート電極25を形成する。ここでゲート電極25のパターンは、Nwell領域231上のゲート伸長領域、Pwell領域232上のゲート伸長領域、及び素子分離領域部分22b上を通り、かつ上記ゲート伸長領域両者の端部どうしを結ぶNwell領域231、Pwell領域232に共有の電極パターンとする。 Next, as shown in FIG. 13, after removing the sacrificial oxide film by wet etching or the like, a gate insulating film (for example, 24 in FIG. 9) (not shown) is formed by using a wet oxidation method or the like. To deposit a polysilicon layer. Next, after ion implantation for obtaining predetermined conductivity, patterning is performed as a polysilicon electrode. Thereby, the gate electrode 25 is formed. Here, the pattern of the gate electrode 25 passes through the gate extension region on the N well region 231, the gate extension region on the P well region 232, and the element isolation region portion 22 b, and ends of both the gate extension regions. A common electrode pattern is used for the N - well region 231 and the P - well region 232 that connect each other.

次に、図示しないが、Nwell領域231の所定領域に対し、ゲート電極25の領域をマスクとした所定条件のPチャネル用の不純物イオン注入を経る。同様に、Pwell領域232の所定領域に対し、ゲート電極25の領域をマスクとした所定条件のNチャネル用の不純物イオン注入を経る。これらイオン注入は、LDD構造等に代表されるエクステンション領域やポケットイオン注入(ハロー)等が考えられる。 Next, although not shown, P channel impurity ion implantation under a predetermined condition is performed on the predetermined region of the N well region 231 using the region of the gate electrode 25 as a mask. Similarly, N channel impurity ion implantation under a predetermined condition is performed on a predetermined region of the P well region 232 using the region of the gate electrode 25 as a mask. As these ion implantations, extension regions represented by an LDD structure or the like, pocket ion implantation (halo), or the like can be considered.

次に、CVD法によりゲート電極25上を覆うように絶縁膜を堆積し、異方性ドライエッチングを実施する。これにより、サイドウォール26を形成する。次に、Nwell領域231の所定領域には、ゲート電極25の領域及びサイドウォール26をマスクとした所定条件の不純物イオン注入を実施することによりP領域を形成する。これにより、ソース領域S1、ドレイン領域D1を形成する。また、Pwell領域232の所定領域には、後に形成されるソース領域S2と接続すべく、Pwell領域232とつながるP領域BC2を形成する。ソース領域S1、ドレイン領域D1のP領域とP領域BC2は、図示しないイオン注入マスクが共有で、同一工程で形成されてもよい。また、別々のイオン注入マスクを用い、別工程で形成されることも考えられる。 Next, an insulating film is deposited by CVD to cover the gate electrode 25, and anisotropic dry etching is performed. Thereby, the sidewall 26 is formed. Next, in a predetermined region of the N well region 231, a P + region is formed by performing impurity ion implantation under a predetermined condition using the region of the gate electrode 25 and the sidewall 26 as a mask. Thereby, the source region S1 and the drain region D1 are formed. In addition, a P + region BC2 connected to the P well region 232 is formed in a predetermined region of the P well region 232 so as to be connected to the source region S2 to be formed later. The P + region and the P + region BC2 of the source region S1 and the drain region D1 may be formed in the same process by sharing an ion implantation mask (not shown). It is also conceivable that a separate ion implantation mask is used and formed in a separate process.

次に、図14に示すように、Pwell領域231の所定領域には、ゲート電極25の領域及びサイドウォール26をマスクとした所定条件の不純物イオン注入を実施することによりN領域を形成する。これにより、ソース領域S2、ドレイン領域D2を形成する。また、ソース領域S1と接続すべく、Nwell領域231とつながるN領域BC1を形成する。ソース領域S2、ドレイン領域D2のN領域とN領域BC1は、図示しないイオン注入マスクが共有で、同一工程で形成されてもよい。また、別々のイオン注入マスクを用い、別工程で形成されることも考えられる。 Next, as shown in FIG. 14, an N + region is formed in a predetermined region of the P well region 231 by performing impurity ion implantation under a predetermined condition using the region of the gate electrode 25 and the side wall 26 as a mask. To do. Thereby, the source region S2 and the drain region D2 are formed. Further, an N + region BC1 connected to the N well region 231 is formed so as to be connected to the source region S1. The N + region and the N + region BC1 of the source region S2 and the drain region D2 may be formed in the same process by sharing an ion implantation mask (not shown). It is also conceivable that a separate ion implantation mask is used and formed in a separate process.

次に、図15に示すように、シリサイドブロックのための保護層PRTを形成する。保護層PRTは、ドレイン領域D1とN領域BC1の境界を含む所定領域31とその近傍のゲート電極25の部分251、及びドレイン領域D2とP領域BC2の境界を含む所定領域32とその近傍のゲート電極25の部分252を覆うようパターニングされる。保護層PRTは、例えば酸化膜を用い、図のように素子分離領域部分22a上を横切る長方形状でよい。保護層PRTは、位置合わせ余裕の確保のために、ソース領域S1とN領域BC1の境界側やソース領域S2とP領域BC2の境界側にわずかにかかる。次に、サリサイドプロセスを経る。すなわち、素子領域において、サイドウォール26及び保護層PRTを除き、ゲート電極25及び各ソース/ドレイン領域S1,D1,S2,D2の表面を自己整合的にシリサイド化する。これにより、シリサイド層27を形成する(図8参照)。 Next, as shown in FIG. 15, a protective layer PRT for the silicide block is formed. The protective layer PRT includes the predetermined region 31 including the boundary between the drain region D1 and the N + region BC1 and the portion 251 of the gate electrode 25 in the vicinity thereof, and the predetermined region 32 including the boundary between the drain region D2 and the P + region BC2 and the vicinity thereof. Patterning is performed so as to cover the portion 252 of the gate electrode 25. The protective layer PRT uses, for example, an oxide film, and may have a rectangular shape that crosses over the element isolation region portion 22a as shown in the figure. The protective layer PRT slightly covers the boundary side between the source region S1 and the N + region BC1 and the boundary side between the source region S2 and the P + region BC2 in order to secure a positioning margin. Next, the salicide process is performed. That is, in the element region, the surfaces of the gate electrode 25 and the source / drain regions S1, D1, S2, and D2 are silicided in a self-aligned manner except for the sidewall 26 and the protective layer PRT. Thereby, the silicide layer 27 is formed (see FIG. 8).

上記実施形態の方法によれば、Nwell領域231及びPwell領域232の形状は、異なる導電型のデバイス(MOSFET Qp,Qn)を形成するために、隣接する領域と、素子分離領域部分22aにより離間して隣り合う領域が含まれる。また、ゲート電極25は素子分離領域部分22b上に形成される部分を有し、両デバイス(Qp,Qn)間共有のゲート電極となる。また、導電型の異なるデバイス(Qp,Qn)の組み合わせとして、ドレインD1,D2の共通接続に適する。そして、Nwell領域231とつながるN領域BC1はソース領域S1と、Pwell領域232とつながるP領域BC2はソース領域S2とそれぞれ隣接し、ボディーのソース・タイ構造に適する。素子分離領域部分22a及び保護層PRTは、サイドウォール26と共に自己整合的シリサイド形態を実現するために重要である。これにより、MOSFET Qp、Qn間の距離を大幅に縮小し、ボディー電位のためのコンタクトを設けてもシリサイド化の構成がコンパクトであり、セル面積増大を最小限に抑える。 According to the method of the above-described embodiment, the N - well region 231 and the P - well region 232 have different shapes from each other in order to form devices (MOSFETs Qp, Qn) having different conductivity types. The area | region which is spaced apart and adjacent by 22a is included. The gate electrode 25 has a portion formed on the element isolation region portion 22b, and serves as a common gate electrode between both devices (Qp, Qn). Moreover, it is suitable for the common connection of the drains D1, D2 as a combination of devices (Qp, Qn) having different conductivity types. The N + region BC1 connected to the N well region 231 is adjacent to the source region S1 and the P + region BC2 connected to the P well region 232 is adjacent to the source region S2 and is suitable for the source / tie structure of the body. The element isolation region portion 22a and the protective layer PRT are important for realizing a self-aligned silicide form together with the sidewall 26. As a result, the distance between the MOSFETs Qp and Qn is greatly reduced, and even if a contact for body potential is provided, the silicidation configuration is compact and the increase in cell area is minimized.

なお、上記各実施形態または方法において、前記図1には、ドレイン領域D1とD2や、ソースS1とN領域BC1、ソースS2とP領域BC2がそれぞれ接触せず、隣り合うようにしたイオン注入領域(破線)を示した。図2においてもドレイン領域D1,D2が接触せずに隣り合うように示した。一方、図8では、ドレイン領域D1とD2や、ソースS1とN領域BC1、ソースS2とP領域BC2がそれぞれ隣接(接触)しているイオン注入領域(破線)を示した。図9においてもドレイン領域D1,D2が隣接する(接触する)ように示した。このような図示における差は、実際には明確でなく、イオン注入精度、その他のプロセスマージンに依存するものであり、互いにどちらの形態を用いても構わない。 In each of the embodiments or methods described above, FIG. 1 shows that the drain regions D1 and D2, the source S1 and the N + region BC1, and the source S2 and the P + region BC2 are not in contact with each other and are adjacent to each other. The injection region (dashed line) is shown. Also in FIG. 2, the drain regions D1 and D2 are shown adjacent to each other without contact. On the other hand, FIG. 8 shows ion implantation regions (broken lines) in which the drain regions D1 and D2, the source S1 and the N + region BC1, and the source S2 and the P + region BC2 are adjacent (contacted). Also in FIG. 9, the drain regions D1 and D2 are shown to be adjacent (contact). Such a difference in illustration is not clear in practice and depends on ion implantation accuracy and other process margins, and either form may be used.

以上説明したように、各実施形態の構成及び方法によれば、コンパクトなPチャネルMOSFET Qp、NチャネルMOSFET Qnの横置きロジックセルが得られる。すなわち、互いに逆導電型のシリコン単結晶基体のNwell領域とPwell領域を隣接して形成する。その後、Nwell領域側とPwell領域側にそれぞれゲート電極及びサイドウォールの領域をマスクとした逆導電型の不純物を導入する。また、各ボディーコンタクトの領域は、素子分離領域や保護層によってそれぞれが離間された形態を得る。また、ゲート電極、各ソース/ドレイン領域及びボディーコンタクト領域の表面を自己整合的にシリサイド化するサリサイドプロセスを利用し易い。これにより、デバイスの低抵抗化、高速動作に寄与するコンパクトなロジックセルが構成される。この結果、異なる導電型のドレインどうしを隣接させる横置き形態でボディー電位のためのコンタクトを簡便に設けると共にセル面積増大を最小限に抑えるようレイアウト可能なSOI半導体集積回路装置及びその製造方法を提供することができる。 As described above, according to the configuration and method of each embodiment, a horizontally placed logic cell of a compact P-channel MOSFET Qp and N-channel MOSFET Qn can be obtained. That is, the N - well region and the P - well region of the silicon single crystal substrate having opposite conductivity types are formed adjacent to each other. After that, reverse conductivity type impurities are introduced into the N - well region side and the P - well region side using the gate electrode and sidewall regions as masks, respectively. Each body contact region is separated from each other by an element isolation region and a protective layer. Further, it is easy to use a salicide process in which the surfaces of the gate electrode, each source / drain region and the body contact region are silicided in a self-aligning manner. As a result, a compact logic cell that contributes to low resistance and high-speed operation of the device is configured. As a result, an SOI semiconductor integrated circuit device which can be laid out so as to easily provide a body potential contact in a horizontal configuration in which drains of different conductivity types are adjacent to each other and minimize an increase in cell area, and a method for manufacturing the same. can do.

第1実施形態に係るSOI半導体集積回路装置の要部構成を示す平面図。FIG. 2 is a plan view showing the main configuration of the SOI semiconductor integrated circuit device according to the first embodiment. 図1のF2−F2線断面図。F2-F2 sectional view taken on the line of FIG. 図1のF3−F3線断面図。F3-F3 sectional view taken on the line of FIG. 図1のF4−F4線断面図。F4-F4 sectional view taken on the line of FIG. 第2実施形態に係るSOI半導体集積回路装置の製造方法の要部工程を示す第1平面図。The 1st top view showing the principal part process of the manufacturing method of the SOI semiconductor integrated circuit device concerning a 2nd embodiment. 図5に続く第2平面図。FIG. 6 is a second plan view following FIG. 5. 図6に続く第3平面図。The 3rd top view following FIG. 第3実施形態に係るSOI半導体集積回路装置の要部構成を示す平面図。The top view which shows the principal part structure of the SOI semiconductor integrated circuit device which concerns on 3rd Embodiment. 図8のF9−F9線断面図。F9-F9 sectional view taken on the line of FIG. 図8のF10−F10線断面図。F10-F10 sectional view taken on the line of FIG. 図8のF11−F11線断面図。F11-F11 sectional view taken on the line of FIG. 第4実施形態に係るSOI半導体集積回路装置の製造方法の要部工程を示す第1平面図。The 1st top view showing the principal part process of the manufacturing method of the SOI semiconductor integrated circuit device concerning a 4th embodiment. 図12に続く第2平面図。FIG. 13 is a second plan view following FIG. 12. 図13に続く第3平面図。FIG. 14 is a third plan view following FIG. 13. 図14に続く第3平面図。The 3rd top view following FIG.

符号の説明Explanation of symbols

10,20…埋め込み絶縁膜、11,21…SOI基板、12,22…素子分離領域、13,23…単結晶基体、131,231…N型ウェル領域(Nwell)、132,232…P型ウェル領域(Pwell)、14,24…ゲート絶縁膜、15,25…ゲート電極、16,26…サイドウォール、17,27…シリサイド層、Qp…PチャネルMOSFET、Qn…NチャネルMOSFET、S1,S2…ソース領域、D1,D2…ドレイン領域、BC1…N領域(ボディーコンタクト領域)、BC2…P領域(ボディーコンタクト領域)、PRT…保護層。 10, 20 ... buried insulating film, 11, 21 ... SOI substrate, 12, 22 ... element isolation region, 13, 23 ... single crystal substrate, 131, 231 ... N-type well region (N - well), 132, 232 ... P Type well region (P - well), 14, 24 ... gate insulating film, 15, 25 ... gate electrode, 16, 26 ... sidewall, 17, 27 ... silicide layer, Qp ... P channel MOSFET, Qn ... N channel MOSFET, S1, S2 ... source region, D1, D2 ... drain region, BC1 ... N + region (body contact region), BC2 ... P + region (body contact region), PRT ... protective layer.

Claims (5)

絶縁層上の第1導電型のシリコン単結晶基体と、
前記絶縁層上において前記第1導電型のシリコン単結晶基体に接触する第2導電型のシリコン単結晶基体と、
前記第1導電型のシリコン単結晶基体に設けられた、第2導電型の第1領域及び第2導電型の第2領域と、
前記第1領域、前記第2領域両者間の前記第1導電型のシリコン単結晶基体とつながり、前記第1領域に隣り合う第1導電型高濃度領域と、
前記第2導電型のシリコン単結晶基体に設けられた、第1導電型の第3領域及び前記第2領域と隣り合う第1導電型の第4領域と、
前記第3領域、前記第4領域両者間の前記第2導電型のシリコン単結晶基体とつながり、前記第3領域に隣り合う第2導電型高濃度領域と、
前記第1導電型高濃度領域と前記第2導電型高濃度領域の分離領域と、
前記第1領域、前記第2領域両者間の前記第1導電型のシリコン単結晶基体上から、前記第1導電型高濃度領域と隣接する前記第1導電型のシリコン単結晶基体上に、かつ、前記第3領域、前記第4領域両者間の前記第2導電型のシリコン単結晶基体上から、前記第2導電型高濃度領域と隣接する前記第2導電型のシリコン単結晶基体上に、ゲート絶縁膜を介して設けられたゲート電極と、
前記ゲート電極のサイドウォールと、
少なくとも前記サイドウォール、前記第2領域と前記第1導電型高濃度領域の境界を含む所定領域とその近傍の前記ゲート電極部分、及び前記第4領域と前記第2導電型高濃度領域の境界を含む所定領域とその近傍の前記ゲート電極部分を除き、前記第1領域と前記第1導電型高濃度領域の総合領域、前記第2領域と前記第4領域の総合領域、前記第3領域と前記第2導電型高濃度領域の総合領域、及び前記ゲート電極の所定領域それぞれの上面に設けられたシリサイド化物と、
を含むSOI半導体集積回路装置。
A first conductivity type silicon single crystal substrate on an insulating layer;
A second conductivity type silicon single crystal substrate in contact with the first conductivity type silicon single crystal substrate on the insulating layer;
A first region of a second conductivity type and a second region of a second conductivity type provided on the first conductivity type silicon single crystal substrate;
A first conductivity type high concentration region adjacent to the first region, connected to the first conductivity type silicon single crystal substrate between the first region and the second region;
A first conductivity type third region provided on the second conductivity type silicon single crystal substrate and a first conductivity type fourth region adjacent to the second region;
A second conductivity type high-concentration region connected to the second conductivity type silicon single crystal substrate between both the third region and the fourth region, and adjacent to the third region;
A separation region of the first conductivity type high concentration region and the second conductivity type high concentration region;
From the first conductivity type silicon single crystal substrate between both the first region and the second region, to the first conductivity type silicon single crystal substrate adjacent to the first conductivity type high concentration region, and From the second conductivity type silicon single crystal substrate between both the third region and the fourth region, to the second conductivity type silicon single crystal substrate adjacent to the second conductivity type high concentration region, A gate electrode provided via a gate insulating film;
A sidewall of the gate electrode;
A predetermined region including at least the sidewall, a boundary between the second region and the first conductivity type high concentration region, the gate electrode portion in the vicinity thereof, and a boundary between the fourth region and the second conductivity type high concentration region; Excluding the predetermined region including the gate electrode portion in the vicinity thereof, the total region of the first region and the first conductivity type high concentration region, the total region of the second region and the fourth region, the third region and the A silicide formed on the upper surface of each of the total region of the second conductivity type high concentration region and the predetermined region of the gate electrode;
SOI semiconductor integrated circuit device.
前記ゲート電極は、前記第1導電型のシリコン単結晶基体上から前記第2導電型のシリコン単結晶基体上に跨る共有電極である請求項記載のSOI半導体集積回路装置。 Wherein the gate electrode, SOI semiconductor integrated circuit device of claim 1, wherein a first conductivity type silicon single crystal substrate on which a common electrode extending over the second conductivity type silicon single crystal substrate. 前記ゲート電極は、前記分離領域とは反対側の各端部を結ぶ前記第1導電型のシリコン単結晶基体上から前記第2導電型のシリコン単結晶基体上に跨る共有電極である請求項記載のSOI半導体集積回路装置。 The gate electrode may claim a common electrode and the isolation region spanning from the first conductivity type silicon single crystal substrate connecting the end opposite to the second conductivity type silicon single crystal substrate 1 The SOI semiconductor integrated circuit device described. 絶縁層上において、互いに接触する領域と、絶縁分離領域により互いが離間して隣り合う領域とを含む第1導電型のシリコン単結晶基体及び第2導電型のシリコン単結晶基体を形成する工程と、
前記第1導電型及び第2導電型のシリコン単結晶基体上にゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上において、前記第1導電型のシリコン単結晶基体上のゲート伸長領域及び前記第2導電型のシリコン単結晶基体上のゲート伸長領域を通り、かつ前記ゲート伸長領域両者の端部どうしを結ぶ前記第1導電型及び第2導電型のシリコン単結晶基体に共有のゲート電極を形成する工程と、
前記第1導電型のシリコン単結晶基体上において前記ゲート電極の所定領域をマスクとした所定領域に第2導電型の不純物を導入する工程と、
前記第2導電型のシリコン単結晶基体上において前記ゲート電極の所定領域をマスクとした所定領域に第1導電型の不純物を導入する工程と、
前記ゲート電極のサイドウォールを形成する工程と、
前記第1導電型のシリコン単結晶基体側に前記ゲート電極のゲート伸長領域の部分及び前記サイドウォールの領域をマスクとして第2導電型の不純物を導入することにより前記ゲート電極を隔てて第2導電型の第1領域及び第2導電型の第2領域を形成する工程と、
前記第2導電型のシリコン単結晶基体側に前記ゲート電極のゲート伸長領域の部分及び前記サイドウォールの領域をマスクとして第1導電型の不純物を導入することにより前記ゲート電極を隔てて第1導電型の第3領域及び前記第2領域と隣り合う第1導電型の第4領域を形成する工程と、
前記第1領域、前記第2領域両者間の前記第1導電型のシリコン単結晶基体とつながり、少なくとも前記第1領域に隣り合う第1導電型高濃度領域を形成する工程と、
前記第3領域、前記第4領域両者間の前記第2導電型のシリコン単結晶基体とつながり、少なくとも前記第3領域に隣り合う第2導電型高濃度領域を形成する工程と、
少なくとも前記第2領域と前記第1導電型高濃度領域の境界を含む所定領域とその近傍の前記ゲート電極部分、及び前記第4領域と前記第2導電型高濃度領域の境界を含む所定領域とその近傍の前記ゲート電極部分を覆う保護層を形成する工程と、
少なくとも前記サイドウォール、前記保護層を除き、前記第1領域と前記第1導電型高濃度領域の総合領域、前記第2領域と前記第4領域の総合領域、前記第3領域と前記第2導電型高濃度領域の総合領域、及び前記ゲート電極の所定領域それぞれの上面をシリサイド化する工程と、
を含むSOI半導体集積回路装置の製造方法。
Forming a first conductivity type silicon single crystal substrate and a second conductivity type silicon single crystal substrate including a region in contact with each other on the insulating layer and a region adjacent to each other by an insulating isolation region; ,
Forming a gate insulating film on the first conductivity type and second conductivity type silicon single crystal substrates;
On the gate insulating film, it passes through a gate extension region on the first conductivity type silicon single crystal substrate and a gate extension region on the second conductivity type silicon single crystal substrate, and ends of both gate extension regions. Forming a common gate electrode on the silicon single crystal substrates of the first conductivity type and the second conductivity type that connect each other;
Introducing a second conductivity type impurity into a predetermined region using the predetermined region of the gate electrode as a mask on the first conductivity type silicon single crystal substrate;
Introducing a first conductivity type impurity into a predetermined region using the predetermined region of the gate electrode as a mask on the second conductivity type silicon single crystal substrate;
Forming a sidewall of the gate electrode;
By introducing a second conductivity type impurity into the first conductivity type silicon single crystal substrate side using the gate extension region portion of the gate electrode and the sidewall region as a mask, the second conductivity type is separated from the gate electrode. Forming a first region of a mold and a second region of a second conductivity type;
By introducing a first conductivity type impurity into the second conductivity type silicon single crystal substrate side using the gate extension region portion of the gate electrode and the sidewall region as a mask, the first conductivity type is separated from the gate electrode. Forming a third region of the mold and a fourth region of the first conductivity type adjacent to the second region;
Forming a first conductivity type high concentration region adjacent to at least the first region connected to the first conductivity type silicon single crystal substrate between both the first region and the second region;
Forming a second conductivity type high concentration region adjacent to at least the third region, connected to the second conductivity type silicon single crystal substrate between both the third region and the fourth region;
A predetermined region including at least a boundary between the second region and the first conductivity type high concentration region, the gate electrode portion in the vicinity thereof, and a predetermined region including a boundary between the fourth region and the second conductivity type high concentration region; Forming a protective layer covering the gate electrode portion in the vicinity thereof;
Except at least the sidewall and the protective layer, the first region and the first conductivity type high concentration region, the second region and the fourth region, the third region and the second conductivity Silicidizing the upper surface of each of the integrated region of the high concentration region of the mold and the predetermined region of the gate electrode;
Of manufacturing an SOI semiconductor integrated circuit device.
前記第1導電型高濃度領域を形成する工程は、前記第3領域及び第4領域を形成する工程の少なくとも一部と同一の工程で達成され、前記第2導電型高濃度領域を形成する工程は、前記第1領域及び第2領域を形成する工程の少なくとも一部と同一の工程で達成される請求項記載のSOI半導体集積回路装置の製造方法。 The step of forming the first conductivity type high concentration region is achieved by the same step as the step of forming the third region and the fourth region, and the step of forming the second conductivity type high concentration region. 5. The method for manufacturing an SOI semiconductor integrated circuit device according to claim 4 , wherein the method is achieved in the same step as at least a part of the step of forming the first region and the second region.
JP2004003743A 2003-10-29 2004-01-09 SOI semiconductor integrated circuit device and manufacturing method thereof Expired - Fee Related JP4604492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003743A JP4604492B2 (en) 2003-10-29 2004-01-09 SOI semiconductor integrated circuit device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003369065 2003-10-29
JP2003421879 2003-12-19
JP2004003743A JP4604492B2 (en) 2003-10-29 2004-01-09 SOI semiconductor integrated circuit device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005203387A JP2005203387A (en) 2005-07-28
JP4604492B2 true JP4604492B2 (en) 2011-01-05

Family

ID=34830952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003743A Expired - Fee Related JP4604492B2 (en) 2003-10-29 2004-01-09 SOI semiconductor integrated circuit device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4604492B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3078436B1 (en) 2018-02-23 2020-03-20 Stmicroelectronics (Crolles 2) Sas INTEGRATED CIRCUIT COMPRISING A SUBSTRATE EQUIPPED WITH A TRAP-RICH REGION, AND MANUFACTURING METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231951A (en) * 2001-01-29 2002-08-16 Sony Corp Semiconductor device and its manufacturing method
JP2002289872A (en) * 2001-03-12 2002-10-04 Samsung Electronics Co Ltd Semiconductor element having silicon structure on insulation film and manufacturing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3784438B2 (en) * 1995-12-05 2006-06-14 株式会社ルネサステクノロジ Semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231951A (en) * 2001-01-29 2002-08-16 Sony Corp Semiconductor device and its manufacturing method
JP2002289872A (en) * 2001-03-12 2002-10-04 Samsung Electronics Co Ltd Semiconductor element having silicon structure on insulation film and manufacturing method therefor

Also Published As

Publication number Publication date
JP2005203387A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
US7804132B2 (en) Semiconductor device
TWI412106B (en) Integrated circuit
EP3217432B1 (en) Semiconductor device capable of high-voltage operation
CN107180870B (en) Semiconductor device with a plurality of transistors
US20070257277A1 (en) Semiconductor Device and Method for Manufacturing the Same
JP2001352057A (en) Semiconductor device and its manufacturing method
JP2012164699A (en) Semiconductor device
US7402885B2 (en) LOCOS on SOI and HOT semiconductor device and method for manufacturing
JP4579512B2 (en) Semiconductor device and manufacturing method thereof
TWI723379B (en) Silicon on insulator semiconductor device with mixed doped regions
JP4604492B2 (en) SOI semiconductor integrated circuit device and manufacturing method thereof
JP2006128160A (en) Semiconductor apparatus and its manufacturing method
JPH06216380A (en) Semiconductor device and manufacture thereof
JPH11345968A (en) Semiconductor device and its manufacture
JP2001250950A (en) Semiconductor device
JP2005129635A (en) Soi semiconductor integrated circuit device and its manufacturing method
JP6184057B2 (en) Semiconductor device
JP3719370B2 (en) Manufacturing method of semiconductor device
JP5280121B2 (en) Semiconductor device and manufacturing method thereof
TW200411831A (en) Semiconductor device
JP2004342821A (en) Semiconductor device
JP2005093875A (en) Semiconductor device and method of manufacturing semiconductor device
KR100247814B1 (en) Semiconductor device and method for manufacturing the same
JP2002343884A (en) Semiconductor device and its manufacturing method
JP5071652B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Ref document number: 4604492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees