JP4696656B2 - High tensile alloyed hot dip galvanized steel sheet with excellent plating adhesion - Google Patents
High tensile alloyed hot dip galvanized steel sheet with excellent plating adhesion Download PDFInfo
- Publication number
- JP4696656B2 JP4696656B2 JP2005117774A JP2005117774A JP4696656B2 JP 4696656 B2 JP4696656 B2 JP 4696656B2 JP 2005117774 A JP2005117774 A JP 2005117774A JP 2005117774 A JP2005117774 A JP 2005117774A JP 4696656 B2 JP4696656 B2 JP 4696656B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- mass
- plating
- plating layer
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007747 plating Methods 0.000 title claims description 177
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 22
- 239000008397 galvanized steel Substances 0.000 title claims description 22
- 229910000831 Steel Inorganic materials 0.000 claims description 82
- 239000010959 steel Substances 0.000 claims description 82
- 238000002441 X-ray diffraction Methods 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 229910052794 bromium Inorganic materials 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 86
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 37
- 238000005275 alloying Methods 0.000 description 32
- 238000000034 method Methods 0.000 description 25
- 238000005246 galvanizing Methods 0.000 description 17
- 239000011701 zinc Substances 0.000 description 13
- 238000000137 annealing Methods 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 239000010960 cold rolled steel Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 4
- 235000011130 ammonium sulphate Nutrition 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229920000298 Cellophane Polymers 0.000 description 3
- 241000316887 Saissetia oleae Species 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910021575 Iron(II) bromide Inorganic materials 0.000 description 1
- 229910021576 Iron(III) bromide Inorganic materials 0.000 description 1
- 102100040160 Rabankyrin-5 Human genes 0.000 description 1
- 101710086049 Rabankyrin-5 Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- QXYHCTRKUSRDPG-UHFFFAOYSA-L iron(2+);iron(3+);sulfate Chemical compound [Fe+2].[Fe+3].[O-]S([O-])(=O)=O QXYHCTRKUSRDPG-UHFFFAOYSA-L 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- YAZJAPBTUDGMKO-UHFFFAOYSA-L potassium selenate Chemical compound [K+].[K+].[O-][Se]([O-])(=O)=O YAZJAPBTUDGMKO-UHFFFAOYSA-L 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- FEONEKOZSGPOFN-UHFFFAOYSA-K tribromoiron Chemical compound Br[Fe](Br)Br FEONEKOZSGPOFN-UHFFFAOYSA-K 0.000 description 1
Images
Landscapes
- Coating With Molten Metal (AREA)
Description
本発明は、自動車、建材、家電製品等の使途に好適な高張力溶融亜鉛めっき鋼板に係り、とくに合金化処理後のめっき密着性改善に関する。 The present invention relates to a high-tensile hot-dip galvanized steel sheet suitable for use in automobiles, building materials, home appliances, and the like, and particularly relates to improving plating adhesion after alloying.
近年、自動車、建材、家電製品等の使途で、高張力鋼板の使用が増加している。とくに、地球環境保全の観点から自動車の燃費向上が要望され、自動車車体の軽量化の観点から、またさらに、自動車車体の衝突安全性の向上の観点から、自動車車体への高張力鋼板の使用が急増している。
自動車車体用として好適な高張力鋼板として、例えば、特許文献1には、C:0.007%以下、Si:0.2〜1.0%、Mn:0.2〜1.5%を含み、さらにP、Al、Tiを適正量含有する強度−延性バランスの優れた深絞り用高強度冷延鋼板が提案されている。しかし、特許文献1に記載された鋼板では、とくにSiを多量に含有するため、焼鈍時に鋼板表面にSi酸化物膜が形成され、溶融亜鉛めっきを施した際にめっき性が劣化し、部分的に溶融亜鉛が鋼板表面に付着しない、いわゆる不めっきが発生することが知られている。またこのような高張力鋼板を原板として使用する溶融亜鉛めっき鋼板では、不めっきが発生せず仮にめっきできたとしても、めっき層と地鉄との界面に酸化物膜が生成していることに起因してめっき密着性が低下し、実用上問題があることが知られている。
In recent years, the use of high-tensile steel sheets has been increasing for the use of automobiles, building materials, home appliances, and the like. In particular, from the viewpoint of global environmental protection, there is a demand for improved automobile fuel consumption. From the viewpoint of reducing the weight of automobile bodies, and from the viewpoint of improving collision safety of automobile bodies, the use of high-tensile steel plates for automobile bodies is required. It is increasing rapidly.
As a high-tensile steel plate suitable for an automobile body, for example,
また、このような界面に酸化物膜が生成した溶融亜鉛めっき鋼板では、酸化物膜がバリヤー層となってFe−Zn合金化反応が遅延するため、高温での合金化処理が必要となる。このため、Fe−Zn系合金相のなかで最も硬く脆いとされるΓ相が多量に生成し、曲げ加工時のめっき密着性が著しく低下するという問題がある。
このような問題に対し、例えば特許文献2には、酸化帯燃焼空気比0.95〜1.10で、かつ予熱帯を除く酸化帯での平均酸化速度を30Å/sec以上とする急速酸化後、還元帯水素濃度10%以下なる雰囲気中で焼鈍し、溶融亜鉛めっきする、めっき密着性の良好な高Si高張力溶融亜鉛めっき鋼板の製造方法が提案されている。特許文献2に記載された技術によれば、酸化帯での焼鈍ではSiの酸化物が鋼板表面に濃化することなく、Fe酸化物のみが生成し、還元帯で容易に還元されるため、溶融亜鉛めっき処理後のめっき密着性の向上および外観の均一性を図ることができるとしている。
Further, in a hot-dip galvanized steel sheet in which an oxide film is generated at such an interface, the oxide film becomes a barrier layer and the Fe—Zn alloying reaction is delayed, so that an alloying treatment at a high temperature is required. For this reason, there is a problem that a large amount of the Γ phase, which is the hardest and most brittle among the Fe—Zn alloy phases, is generated, and the plating adhesion during bending is significantly reduced.
For example,
また、特許文献3には、Siが0.2%以上含まれるSi含有高強度鋼板に溶融亜鉛めっきを行うに際し、硫黄または硫黄化合物をS量として0.1〜1000mg/m2付着させ、あるいはさらに予熱工程として弱酸化性雰囲気で行った後、水素を含む非酸化性雰囲気で680℃以上の温度で焼鈍し、その後少なくとも0.05〜0.30%のAlを含む溶融亜鉛浴に浸漬してめっきを行う皮膜の均一性および密着性に優れたSi含有高強度溶融亜鉛めっき鋼板の製造方法が提案されている。特許文献3に記載された技術によれば、表面外観が良好で、めっき皮膜の均一性および密着性に優れたSi含有高強度溶融亜鉛めっき鋼板が得られ、また合金化ムラが発生せず、耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板が得られるとしている。
しかしながら、溶融亜鉛めっき鋼板のめっき原板としてSi含有量が高い鋼板を用いる場合には、鋼中Si含有量の増加に伴い、鋼板表面における酸化速度が大きく低下するため、特許文献2に記載されたような技術によっては酸化が進まず、Siの表面濃化を抑制するために必要な十分な酸化物量を確保することが困難である。そのため、不めっきを生じたり、あるいは合金化処理する場合には著しい合金化の遅延を生じるという問題があった。 However, when a steel sheet having a high Si content is used as the plating base plate of the hot dip galvanized steel sheet, the oxidation rate on the steel sheet surface is greatly reduced with the increase of the Si content in the steel. Depending on such a technique, oxidation does not proceed and it is difficult to secure a sufficient amount of oxide necessary for suppressing the surface concentration of Si. Therefore, there has been a problem that non-plating occurs or a significant delay in alloying occurs when alloying is performed.
また、特許文献3に記載された技術によっても、溶融亜鉛めっき鋼板のめっき原板としてSi含有量が高い鋼板を用いる場合には、溶融亜鉛との濡れ性を十分に改善することができず不めっきが生じたリ、合金化の遅延を完全には解消するまでに至っていないのが現状である。
本発明は、かかる従来技術の問題に鑑みて成されたものであり、Siを含みさらにMn、Alを含有する高張力鋼板をめっき原板とする、めっき表面外観に優れ、かつめっき密着性に優れた高張力合金化溶融亜鉛めっき鋼板を提案することを目的とする。
In addition, even when the technique described in
The present invention has been made in view of the problems of the prior art, and uses a high-strength steel plate containing Si and further containing Mn and Al as a plating base plate, which has excellent plating surface appearance and excellent plating adhesion. The purpose is to propose a high-tensile alloyed hot-dip galvanized steel sheet.
本発明者らは、上記した課題を達成するために、高張力合金化溶融亜鉛めっき鋼板のめっき密着性に及ぼす各種要因について鋭意検討した。その結果、めっき層中のAlバランスとめっき層中(Fe−Zn合金層)中のΓ相量を適正範囲に調整することにより、あるいはさらにめっき層中にS、Se、Cl、Br、Na、Kのうちから選ばれた1種または2種以上の元素を、合計で片面当たり1mg/m2 以上含有することにより、めっき性が改善されるとともにめっき密着性が大幅に向上することを新規に見出した。 In order to achieve the above-described problems, the present inventors diligently studied various factors affecting the plating adhesion of the high-tensile alloyed hot-dip galvanized steel sheet. As a result, by adjusting the Al balance in the plating layer and the amount of Γ phase in the plating layer (Fe-Zn alloy layer) to an appropriate range, or further in the plating layer, S, Se, Cl, Br, Na, It has been newly added that, by containing one or more elements selected from K in total at least 1 mg / m 2 per side, plating properties are improved and plating adhesion is greatly improved. I found it.
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)鋼板表面にめっき層を形成してなる合金化溶融亜鉛めっき鋼板であって、前記鋼板が、mass%で、C:0.25%以下、Si:0.1〜3.0%、Mn:0.5〜3.0%、Al:0.01〜3.0%を含む組成の高張力鋼板で、前記めっき層が、7〜15mass%のFeを含有し、次(1)式
A値=めっき層中Al(g/m2 )−(めっき層中Fe(g/m2 )×鋼板中Al(mass% ))/100−めっき層中Zn(g/m2 )×0.0012 ………(1)
で定義されるA値が0.04〜0.20を満足し、かつ結晶格子間隔dが1.22ÅのΓ相の蛍光X線回折強度I(Γ1.22)(cps)がFe含有量に応じ次(2)または(3)式
めっき層中Fe:7mass%以上8mass%未満の場合
200≦I(Γ1.22)≦600 ………(2)
めっき層中Fe:8mass%以上15mass%以下の場合
Max[3000cps,{Fe(mass%)×C値+200−8×C値}×3]≧I(Γ1.22)≧{Fe(mass%)×C値+200−8×C値} ………(3)
ここで、Max[α,β]:α,βのうち大きい方の値
Fe(mass%):めっき層中のFe含有量
C値=200:(鋼板中のSi含有量が0.375mass%未満の場合)
=75/鋼板中Si含有量:(鋼板中のSi含有量が0.375mass%以上3mass%以下の場合)
を満足することを特徴とするめっき密着性に優れる高張力合金化溶融亜鉛めっき鋼板。
(2)(1)において、前記めっき層が、S、Se、Cl、Br、Na、Kのうちから選ばれた1種または2種以上の元素を、合計で片面当たり1mg/m2 以上含有することを特徴とする高張力合金化溶融亜鉛めっき鋼板。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) An alloyed hot-dip galvanized steel sheet formed by forming a plating layer on the steel sheet surface, wherein the steel sheet is mass%, C: 0.25% or less, Si: 0.1-3.0%, Mn: 0.5-3.0% , Al: a high-tensile steel plate having a composition containing 0.01 to 3.0%, the plating layer contains 7 to 15 mass% Fe, and the following formula (1) A value = Al (g / m 2 ) − in the plating layer (Fe in coating layer (g / m 2 ) x Al in steel plate (mass% )) / 100-Zn in plating layer (g / m 2 ) × 0.0012 (1)
The γ-phase fluorescence X-ray diffraction intensity I (Γ1.22) (cps) of the Γ-phase satisfying the A value of 0.04 to 0.20 and the crystal lattice spacing d of 1.22Å depending on the Fe content (2) Or (3) Fe in the plating layer: 7 mass% or more and less than 8 mass%
200 ≦ I (Γ1.22) ≦ 600 (2)
Fe in the plating layer: 8 mass% or more and 15 mass% or less
Max [3000 cps, {Fe (mass%) × C value + 200−8 × C value} × 3] ≧ I (Γ1.22) ≧ {Fe (mass%) × C value + 200−8 × C value} (3)
Where Max [α, β]: the larger of α and β
Fe (mass%): Fe content in the plating layer
C value = 200: (when the Si content in the steel sheet is less than 0.375 mass%)
= 75 / Si content in steel sheet: (When the Si content in the steel sheet is 0.375 mass% or more and 3 mass% or less)
A high-strength galvannealed steel sheet with excellent plating adhesion, characterized by satisfying
(2) In (1), the plating layer contains one or more elements selected from S, Se, Cl, Br, Na, and K in total at least 1 mg / m 2 per side. A high-strength galvannealed steel sheet characterized by:
本発明によれば、Si、Mn、Al等の合金元素を含有する高張力鋼板をめっき原板として用いても、良好なめっき外観およびめっき密着性を有する高張力合金化溶融亜鉛めっき鋼板を容易にかつ安価に製造できるという、産業上格段の効果を奏する。 According to the present invention, even when a high-strength steel plate containing alloy elements such as Si, Mn, and Al is used as a plating base plate, a high-tensile alloyed hot-dip galvanized steel plate having good plating appearance and plating adhesion can be easily obtained. In addition, there is a remarkable industrial effect that it can be manufactured at low cost.
本発明では、被めっき材である、めっき原板として高張力鋼板を使用する。使用する高張力鋼板は、C:0.25mass%以下、Si:0.1〜3.0mass%、Mn:0.5〜3.0mass%、Al:0.01〜3.0mass%を含む組成の鋼板とする。
つぎに、めっき原板として使用する高張力鋼板の組成限定理由について説明する。以下、組成におけるmass%は単に%で記す。
In the present invention, a high-tensile steel plate is used as a plating original plate that is a material to be plated. The high-tensile steel plate to be used is a steel plate having a composition including C: 0.25 mass% or less, Si: 0.1 to 3.0 mass%, Mn: 0.5 to 3.0 mass%, and Al: 0.01 to 3.0 mass%.
Next, the reasons for limiting the composition of the high-tensile steel plate used as the plating original plate will be described. Hereinafter, mass% in the composition is simply expressed as%.
C:0.25%以下
Cは、鋼の強度増加に寄与する有用な元素であり、さらに強度−延性バランスを向上させる残留オーステナイト相(以下、残留γ相ともいう)の生成を促進させる作用を有する。このような作用は0.05%以上の含有で顕著に発現する。一方、0.25%を超える含有は溶接性を劣化させる。このため、Cは0.25%以下に限定した。
C: 0.25% or less C is a useful element that contributes to increasing the strength of steel, and further has an action of promoting the generation of a retained austenite phase (hereinafter also referred to as a residual γ phase) that improves the strength-ductility balance. Such an effect is remarkably exhibited when the content is 0.05% or more. On the other hand, the content exceeding 0.25% deteriorates the weldability. For this reason, C was limited to 0.25% or less.
Si:0.1〜3.0%
Siは、鋼の強度増加に寄与する有用な元素であり、強度確保のために0.1%以上の含有を必要とする。一方、3.0%を越えて含有すると、めっき層中のAlバランスやΓ相量を適正量に調整してもめっき密着性の改善が困難となる。このため、Siは0.1〜3.0%の範囲に限定した。
Si: 0.1-3.0%
Si is a useful element that contributes to increasing the strength of steel, and needs to be contained in an amount of 0.1% or more to ensure strength. On the other hand, if the content exceeds 3.0%, it is difficult to improve the plating adhesion even if the Al balance and the Γ phase content in the plating layer are adjusted to appropriate amounts. For this reason, Si was limited to the range of 0.1 to 3.0%.
Mn:0.5〜3.0%
Mnは、鋼の強度増加に寄与する有用な元素であり、強度確保のために0.5%以上の含有を必要とする。一方、3.0%を超える含有は、強度−延性バランスや溶接性に悪影響を及ぼすとともに、めっき層中のAlバランスやΓ相量を適正量に調整してもめっき密着性の改善が困難となる。このため、Mnは0.5〜3.0%の範囲に限定した。
Mn: 0.5-3.0%
Mn is a useful element that contributes to increasing the strength of steel and needs to be contained in an amount of 0.5% or more in order to ensure strength. On the other hand, if the content exceeds 3.0%, the strength-ductility balance and weldability are adversely affected, and even if the Al balance and the Γ phase content in the plating layer are adjusted to appropriate amounts, it is difficult to improve plating adhesion. For this reason, Mn was limited to the range of 0.5 to 3.0%.
Al:0.01〜3.0%
Alは、Siと補完的に添加される元素であり、結晶粒微細化のためには、0.01%以上の含有を必要とするが、3.0%を超える含有は、強度−延性バランスや溶接性に悪影響を及ぼすとともに、めっき密着性の改善が困難となる。このため、Alは0.1〜3.0%の範囲に限定した。
Al: 0.01-3.0%
Al is an element added in a complementary manner to Si, and in order to refine crystal grains, it is necessary to contain 0.01% or more. However, if it exceeds 3.0%, strength-ductility balance and weldability are required. In addition to adverse effects, it is difficult to improve plating adhesion. For this reason, Al was limited to the range of 0.1 to 3.0%.
Si、Mn、Alは、焼鈍時に鋼板表面に酸化膜を形成し、不めっきやめっき密着性に悪影響を及ぼす元素であるため、本発明では上記した範囲に限定した。なお、本発明でめっき原板として使用する高張力鋼板には、これら以外の元素を必要に応じて含有してもよい。例えば、強度―延性バランスを調整するために、Cr:1%以下、Mo:1%以下、Nb:0.2%以下、Ti:0.2%以下のうちから選ばれる1種または2種以上を含有してもよい。 Since Si, Mn, and Al are elements that form an oxide film on the surface of the steel sheet during annealing and adversely affect non-plating and plating adhesion, the present invention is limited to the above-described range. In addition, you may contain elements other than these in the high tension steel plate used as a plating original plate by this invention as needed. For example, in order to adjust the strength-ductility balance, Cr: 1% or less, Mo: 1% or less, Nb: 0.2% or less, Ti: 0.2% or less Also good.
Cr、Mo、Nb、Tiはいずれも、強度―延性バランスを調整する作用を有する。さらに、Cr、Mo、NbはSi、Alが鋼板表面ではなく内部で酸化する、いわゆる内部酸化を促進させる作用を有し、Si、Alの鋼板表面での酸化を抑制する効果を有する。このような効果はCr:0.01%以上、Mo:0.01%以上、Nb:0.005%以上、Ti:0.005%以上の含有で顕著となる。一方、1%を超えるCrの含有は、Cr自体が表面濃化してめっき密着性を低下させるとともに溶接性に悪影響を及ぼす。このため、Crは1%以下に限定することが好ましい。また、1%を超えるMoの含有は、製造コストを高騰させ、経済的に不利となる。このため、Moは1.0%以下に限定することが好ましい。また、0.2%を超えるNbの含有は、コストアップに繋がるため、Nbは0.2%以下に限定することが好ましい。また、0.2%を超えるTiの含有は、めっき密着性を低下させる。このため、Tiは0.2%以下に限定することが好ましい。 Cr, Mo, Nb, and Ti all have an effect of adjusting the strength-ductility balance. Further, Cr, Mo, and Nb have a function of promoting so-called internal oxidation in which Si and Al are oxidized not on the steel sheet surface but on the inside, and have an effect of suppressing oxidation of Si and Al on the steel sheet surface. Such an effect becomes remarkable when Cr: 0.01% or more, Mo: 0.01% or more, Nb: 0.005% or more, Ti: 0.005% or more. On the other hand, if the Cr content exceeds 1%, the Cr itself is concentrated on the surface to lower the plating adhesion and adversely affect the weldability. For this reason, it is preferable to limit Cr to 1% or less. Further, if the Mo content exceeds 1%, the production cost increases, which is economically disadvantageous. For this reason, it is preferable to limit Mo to 1.0% or less. Moreover, since containing Nb exceeding 0.2% leads to an increase in cost, Nb is preferably limited to 0.2% or less. Moreover, the content of Ti exceeding 0.2% lowers the plating adhesion. For this reason, Ti is preferably limited to 0.2% or less.
また、残留γ相の形成促進のために、Cu:0.5以下、Ni:1.0%以下、B:0.01%以下のうちから選ばれる1種または2種以上を含有してもよい。
Cu、Ni、Bは、いずれも残留γ相の形成を促進させる作用を有し、またCuはさらに、Si、Alの内部酸化を促進させる作用を有し、Si、Alの鋼板表面での酸化を抑制する効果を有し、必要に応じて選択して含有できる。このような効果は、Cu:0.01%以上、Ni:0.01%以上、B:0.0005%以上の含有で顕著となる。一方、Cu:0.5%、Ni:1.0%を超える含有は、製造コストを高騰させ、経済的に不利となるため、Cu:0.5%以下、Ni:1.0%以下に限定することが好ましい。また、B:0.01%を超える含有は、めっき密着性が劣化するため、Bは0.01%以下に限定することが好ましい。
In order to promote the formation of the residual γ phase, one or more selected from Cu: 0.5 or less, Ni: 1.0% or less, and B: 0.01% or less may be contained.
Cu, Ni and B all have a function of promoting the formation of a residual γ phase, and Cu further has a function of promoting the internal oxidation of Si and Al, and oxidation of Si and Al on the steel sheet surface. Can be selected and contained as necessary. Such an effect becomes remarkable when Cu: 0.01% or more, Ni: 0.01% or more, and B: 0.0005% or more. On the other hand, the content exceeding Cu: 0.5% and Ni: 1.0% raises the manufacturing cost and is economically disadvantageous. Therefore, it is preferable to limit to Cu: 0.5% or less and Ni: 1.0% or less. Further, if the content exceeds B: 0.01%, the plating adhesion deteriorates, so B is preferably limited to 0.01% or less.
上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、P:0.1%以下、S:0.2%以下が許容できる。
Pは、溶接性、表面品質等を劣化させ、さらに非合金化の場合にはめっき密着性を劣化させ、めっき合金化の場合には合金化温度を上昇させ、延性を低下させると同時に合金化めっき層の密着性を低下させるため、できるだけ低減することが好ましいが0.1%までは許容できる。また、Sの多量含有は溶接性を劣化させるため、できるだけ低減することが好ましいが、0.2%までは許容できる。
The balance other than the above components is Fe and inevitable impurities. As unavoidable impurities, P: 0.1% or less and S: 0.2% or less are acceptable.
P deteriorates weldability, surface quality, etc., further deteriorates plating adhesion in the case of non-alloying, raises the alloying temperature in the case of plating alloying, lowers the ductility and alloying at the same time In order to reduce the adhesion of the plating layer, it is preferable to reduce it as much as possible, but 0.1% is acceptable. Further, since a large amount of S deteriorates weldability, it is preferable to reduce it as much as possible, but it is acceptable up to 0.2%.
本発明の溶融亜鉛めっき鋼板は、上記した組成を有する高張力鋼板の表面にめっき層を形成してなる合金化溶融亜鉛めっき鋼板である。本発明の合金化溶融亜鉛めっき鋼板表面に形成されるめっき層は、7〜15mass%のFeを含有し、残部Znおよび不可避的不純物からなるものとする。めっき層中のFe含有量が7mass%未満では、めっき層表面に柔らかいζ相が多量に生成し加工時の摺動性を低下させる。また、合金化ムラなどのめっき外観不良も発生しやすくなる。一方、めっき層中のFe含有量が15masss%を超えると、めっき層中の地鉄界面に硬くて脆いΓ相が形成され、めっき密着性が劣化する。このため、本発明ではめっき層中のFe含有量を7〜15mass%に限定した。 The hot-dip galvanized steel sheet of the present invention is an alloyed hot-dip galvanized steel sheet formed by forming a plating layer on the surface of a high-tensile steel sheet having the above-described composition. The plated layer formed on the surface of the galvannealed steel sheet of the present invention contains 7 to 15 mass% Fe, and is composed of the balance Zn and inevitable impurities. When the Fe content in the plating layer is less than 7 mass%, a large amount of soft ζ phase is generated on the surface of the plating layer, and the slidability during processing is lowered. Also, plating appearance defects such as alloying irregularities are likely to occur. On the other hand, when the Fe content in the plating layer exceeds 15 mass%, a hard and brittle Γ phase is formed at the base metal interface in the plating layer, and the plating adhesion deteriorates. For this reason, in this invention, Fe content in a plating layer was limited to 7-15 mass%.
めっき層中にはZn以外に、めっき浴中に微量添加されるPb、Sb、Niを含んでもめっき特性上何ら問題はない。また、めっき浴中に溶出したFeがめっき層中へ混入しても同様に何ら問題はない。なお、めっき層の組成は、めっき層を溶解し、得られた液について、ICP(Inductively Coupled Plasma)や原子吸光法で分析する方法を用いることが好ましい。めっき層の溶解方法はとくに限定する必要はないが、例えば、20mass%NaOH−10mass%トリエタノールアミン水溶液195ccと35mass%過酸化水素溶液7ccを使用直前に混合し、該混合液にめっき鋼板を浸漬してめっき層を溶解する方法や、0.05mass%インヒビターを混合した5mass%HCl水溶液にめっき鋼板を浸漬して溶解する方法等が例示できる。 In addition to Zn, the plating layer may contain Pb, Sb, and Ni added in a small amount in the plating bath without any problem in plating characteristics. Similarly, there is no problem even if Fe eluted in the plating bath is mixed into the plating layer. In addition, it is preferable that the composition of a plating layer uses the method of melt | dissolving a plating layer and analyzing the obtained liquid by ICP (Inductively Coupled Plasma) or an atomic absorption method. The method for dissolving the plating layer is not particularly limited. For example, 20 mass% NaOH-10 mass% triethanolamine aqueous solution 195 cc and 35 mass% hydrogen peroxide solution 7 cc are mixed immediately before use, and the plated steel sheet is immersed in the mixed solution. And a method of dissolving a plating layer, a method of immersing a plated steel sheet in a 5 mass% HCl aqueous solution mixed with 0.05 mass% inhibitor, and the like.
なお、本発明ではめっき付着量は、片面当たり20〜90 g/m2 とすることが好ましい。めっき付着量が、20 g/m2 未満では、耐食性が低下し、一方、90 g/m2 を超えると密着性が低下し、曲げ加工時に剥離しやすくなる。なお、より好ましくは30〜50 g/m2 である。
また、本発明の合金化溶融亜鉛めっき鋼板表面に形成されるめっき層は、次(1)式で定義されるA値が0.04〜0.20を満足するめっき層とする。 A値=めっき層中Al(g/m2 )−(めっき層中Fe(g/m2 )×鋼板中Al(mass% ))/100−めっき層中Zn(g/m2 )×0.0012 ………(1)
A値は、めっき初期におけるFe-Al合金層量を表す指標で、めっき層中のAl量(g/m2 )から、母材からの拡散Fe中のAl量を表す量である、(めっき層中Fe(g/m2 )×鋼板中Al(mass% ))/100と、Zn中に固溶するAl量を表す量である、めっき層中Zn(g/m2 )×0.0012を差し引いた値である。A値が0.04未満では、めっき層中へのAlの取り込み量が少なく、Γ相が形成しやすく良好なめっき密着性を確保することが困難となる。一方、A値が0.20を超えて大きくなると、めっき層中へのAlの取り込み量が多すぎて、めっき層の合金化が遅延しすぎ良好なめっき密着性が確保できなくなる。このため、本発明では(1)式で定義されるA値を0.04〜0.20の範囲に限定した。
In the present invention, the plating adhesion amount is preferably 20 to 90 g / m 2 per side. When the coating weight is less than 20 g / m 2 , the corrosion resistance is lowered. On the other hand, when it is more than 90 g / m 2 , the adhesion is lowered and it is easy to peel off during bending. More preferably, it is 30 to 50 g / m 2 .
Further, the plating layer formed on the surface of the galvannealed steel sheet of the present invention is a plating layer satisfying an A value defined by the following formula (1) of 0.04 to 0.20. A value = Al in plating layer (g / m 2 ) − (Fe in plating layer (g / m 2 ) × Al in steel sheet (mass%) )) / 100-Zn in plating layer (g / m 2 ) × 0.0012 (1)
The A value is an index that represents the amount of Fe—Al alloy layer in the initial stage of plating, and is an amount that represents the amount of Al in diffusion Fe from the base material from the amount of Al (g / m 2 ) in the plating layer. Fe in layer (g / m 2 ) x Al in steel plate (mass% )) / 100 and a value obtained by subtracting Zn (g / m 2 ) × 0.0012 in the plating layer, which is an amount representing the amount of Al dissolved in Zn. If the A value is less than 0.04, the amount of Al incorporated into the plating layer is small, and a Γ phase is easily formed, making it difficult to ensure good plating adhesion. On the other hand, if the A value exceeds 0.20, the amount of Al incorporated into the plating layer is too large, and alloying of the plating layer is too delayed to ensure good plating adhesion. For this reason, in this invention, A value defined by (1) Formula was limited to the range of 0.04-0.20.
本発明の合金化溶融亜鉛めっき鋼板表面に形成されるめっき層は、A値を上記した範囲内に調整したうえさらに、結晶格子間隔dが1.22ÅのΓ相の蛍光X線回折強度I(Γ1.22)(cps)が、めっき層中Fe含有量に応じて、次(2)式または次(3)式を満足するめっき層とする。
めっき層中Fe:7mass%以上8mass%未満の場合
200≦I(Γ1.22)≦600 ………(2)
めっき層中Fe:8mass%以上15mass%以下の場合
Max[3000cps,{Fe(mass%)×C値+200−8×C値}×3]≧I(Γ1.22)≧{Fe(mass%)×C値+200−8×C値} ………(3)
ここで、Max[α,β]:α,βのうち大きい方の値
Fe(mass%):めっき層中のFe含有量
C値=200:(鋼板中のSi含有量が0.375mass%未満の場合)
=75/鋼板中Si含有量:(鋼板中のSi含有量が0.375mass%以上3mass%以下の場合)
本発明では、めっき外観およびめっき密着性の指標として、めっき層中のΓ相の生成量を使用する。めっき層中のΓ相生成量は、結晶格子間隔dが1.22ÅのΓ相が測定しやすいため、d=1.22ÅのΓ相の蛍光X線回折強度I(Γ1.22)(cps)を指標とした。なお、I(Γ1.22)(cps)はつぎのようにして得られた値を用いるものとする。
The plated layer formed on the surface of the alloyed hot-dip galvanized steel sheet of the present invention has an A value adjusted within the above-described range and further has a Γ-phase fluorescence X-ray diffraction intensity I (Γ1) having a crystal lattice spacing d of 1.22Å. .22) A plating layer in which (cps) satisfies the following formula (2) or the following formula (3) according to the Fe content in the plating layer.
Fe in the plating layer: 7 mass% or more and less than 8 mass%
200 ≦ I (Γ1.22) ≦ 600 (2)
Fe in the plating layer: 8 mass% or more and 15 mass% or less
Max [3000 cps, {Fe (mass%) × C value + 200−8 × C value} × 3] ≧ I (Γ1.22) ≧ {Fe (mass%) × C value + 200−8 × C value} (3)
Where Max [α, β]: the larger of α and β
Fe (mass%): Fe content in the plating layer
C value = 200: (when the Si content in the steel sheet is less than 0.375 mass%)
= 75 / Si content in steel sheet: (When the Si content in the steel sheet is 0.375 mass% or more and 3 mass% or less)
In the present invention, the amount of Γ phase in the plating layer is used as an indicator of plating appearance and plating adhesion. The amount of Γ phase generated in the plating layer is easily measured by the Γ phase with a crystal lattice spacing d of 1.22Å, so the fluorescent X-ray diffraction intensity I (Γ1.22) (cps) of the Γ phase with d = 1.22Å is used as an index. It was. Note that I (Γ1.22) (cps) uses a value obtained as follows.
めっき鋼板を良く脱脂し、例えば幅25×長さ100mmの大きさに剪断したのち、同一サイズの冷延鋼板にエポキシ系接着剤で接着面積25×13mm、接着剤厚さ2mmとなるように接着し、170℃×30minで焼付け硬化させる。その後引張試験機で引張り、めっき層を、めっき層と鋼板との界面で剥離させる。剥離しためっき層が付着した冷延鋼板を15mmφの大きさに打抜き、剥離界面側からX線回析強度を測定する。X線回析強度の測定は、θ−2θ法で次条件
X線管球:Cu
管電圧:50kV
管電流:250mA
で行い、 得られたX線回折の結果から、めっき層中の結晶格子間隔dが1.22ÅのΓ相のX線回折強度I(Γ1.22)(cps)を求める。なお、cpsは、1s当たりのカウント数を意味する。
For example, after degreasing the plated steel plate and shearing it to a size of width 25
Tube voltage: 50kV
Tube current: 250mA
From the result of X-ray diffraction obtained, the X-ray diffraction intensity I (Γ1.22) (cps) of the Γ phase having a crystal lattice spacing d of 1.22Å in the plating layer is obtained. Note that cps means the number of counts per 1 s.
I(Γ1.22)が大きいことは、めっき層中にΓ相の生成量が多いことを意味する。本発明では、めっき層中のΓ相の生成量を適正範囲に限定する。I(Γ1.22)が、(2)式または(3)式の下限値未満では、ζ相が多量に生成し合金化不良となり、結果的に合金化ムラが生じ、めっき外観に劣ることになる。一方、I(Γ1.22)が、(2)式または(3)式の上限値を超えて大きくなると、Γ相が多量に生成しめっき密着性に劣ることとなる。めっき層中のFe含有量に応じて、I(Γ1.22)が、(2)式または(3)式を満足することにより、めっき外観およびめっき密着性が良好になる。 A large I (Γ1.22) means that a large amount of Γ phase is generated in the plating layer. In the present invention, the amount of Γ phase in the plating layer is limited to an appropriate range. If I (Γ1.22) is less than the lower limit of the formula (2) or (3), a large amount of ζ phase is generated, resulting in poor alloying, resulting in uneven alloying and poor plating appearance. Become. On the other hand, if I (Γ1.22) exceeds the upper limit of the formula (2) or (3), a large amount of Γ phase is generated and the plating adhesion is poor. Depending on the Fe content in the plating layer, when I (Γ1.22) satisfies the formula (2) or (3), the plating appearance and plating adhesion are improved.
なお、めっき層中のFe含有量が8mass%以上の場合には、Γ相の生成は鋼板中のSi含有量により影響され、Si含有量が多いと生成が抑制される傾向になる。この現象は、(3)式において、鋼板中のSi含有量に応じてI(Γ1.22)に対する閾値が変化することに対応する。このSi含有量に応じた閾値の変化に対応するのがC値である。C値に及ぼす鋼板中Si含有量の影響を図2に示す。鋼板中のSi含有量が0.375mass%未満では、Γ相生成に対する抑制効果が飽和し、C値は一定となる。めっき層中のFe含有量が8mass%未満の場合には、I(Γ1.22)が200未満であると合金化度が低く未合金化相当であり、また、Fe含有量が8mass%未満ではI(Γ1.22)は600超とはならないため、(2)式のように、I(Γ1.22)を200〜600の範囲に限定した。 In addition, when the Fe content in the plating layer is 8 mass% or more, the generation of the Γ phase is affected by the Si content in the steel sheet, and when the Si content is large, the generation tends to be suppressed. This phenomenon corresponds to a change in the threshold value for I (Γ1.22) in accordance with the Si content in the steel sheet in equation (3). The C value corresponds to the change in the threshold according to the Si content. The influence of the Si content in the steel sheet on the C value is shown in FIG. When the Si content in the steel sheet is less than 0.375 mass%, the inhibitory effect on the Γ phase formation is saturated and the C value is constant. When the Fe content in the plating layer is less than 8 mass%, if I (Γ1.22) is less than 200, the degree of alloying is low, which is equivalent to non-alloying, and if the Fe content is less than 8 mass%, Since I (Γ1.22) does not exceed 600, I (Γ1.22) is limited to the range of 200 to 600 as shown in Equation (2).
また、本発明の合金化溶融亜鉛めっき鋼板表面に形成されるめっき層は、S、Se、Cl、Br、Na、Kのうちから選ばれた1種または2種以上の元素を、合計で片面当たり1mg/m2 以上含有することが好ましい。これにより、A値が上記した範囲内を、さらにI(Γ1.22)が上記した(2)または(3)式を満足するようになり、めっき外観およびめっき密着性が顕著に向上する。 これら元素のめっき層中への取り込み方法はとくに限定されないが、例えば、予めこれら元素を被めっき材であるめっき原板の表面に付着させ、そのまま再結晶焼鈍し、溶融亜鉛めっき処理を施す方法とすることが好ましい。これら元素は合金化処理時にめっき層に取り込まれる。なお、これら元素のめっき原板への付着は、例えば、ロールコータ等でこれら元素を含む薬剤の水溶液をめっき原板表面に塗布し、乾燥する方法が好ましい。また、塗布する方法に代えて、これら元素を焼鈍炉の雰囲気中に微量混入させる方法としても、また、めっき処理直前に焼鈍炉内でこれら元素を含むガスを鋼板表面に噴霧して、そのままめっき処理する方法としてもよい。 Moreover, the plating layer formed on the surface of the galvannealed steel sheet of the present invention is composed of one or more elements selected from S, Se, Cl, Br, Na, and K on one side in total. It is preferable to contain 1 mg / m 2 or more per unit. As a result, the A value falls within the above-described range, and I (Γ1.22) further satisfies the above-described expression (2) or (3), and the plating appearance and plating adhesion are remarkably improved. The method for incorporating these elements into the plating layer is not particularly limited. For example, these elements are previously attached to the surface of the plating original plate that is the material to be plated, and then recrystallized and annealed to perform hot dip galvanizing treatment. It is preferable. These elements are taken into the plating layer during the alloying process. For the adhesion of these elements to the plating original plate, for example, a method of applying an aqueous solution of a chemical containing these elements to the surface of the plating original plate with a roll coater or the like and drying is preferable. Also, instead of the coating method, these elements can be mixed in a trace amount in the atmosphere of the annealing furnace. Alternatively, the gas containing these elements is sprayed on the surface of the steel plate in the annealing furnace immediately before the plating treatment, and plating is performed as it is. It is good also as the method of processing.
なお、S、Na、Clの薬剤としては、硫酸ナトリウム、硫酸アンモニウム、硫酸鉄(III)、硫酸アンモニウム鉄(II)、硫酸アンモニウム鉄(III)、リン酸水素ナトリウム、塩化鉄(II)、塩化鉄(III)、塩化ナトリウム、チオ硫酸ナトリウム等が例示できる。また、K、Br、Seの薬剤としては、硫酸カリウム、硫酸アンモニウム、セレン酸カリウム、リン酸水素カリウム、臭化鉄(II)、臭化鉄(III)、臭化カリウム、塩化カリウム等が例示できる。 In addition, as a chemical | medical agent of S, Na, and Cl, sodium sulfate, ammonium sulfate, iron (III) sulfate, ammonium iron (II) sulfate, iron iron (III) sulfate, sodium hydrogen phosphate, iron chloride (II), iron chloride (III ), Sodium chloride, sodium thiosulfate and the like. Examples of the K, Br, and Se agents include potassium sulfate, ammonium sulfate, potassium selenate, potassium hydrogen phosphate, iron (II) bromide, iron (III) bromide, potassium bromide, potassium chloride, and the like. .
本発明の合金化溶融亜鉛めっき鋼板表面に形成されるめっき層中の上記した元素の含有量の分析は、本発明ではつぎのように行うものとする。
めっき層を希酸、またはアルカリ水溶液で溶解し、得られた液をICPや原子吸光法で上記した元素を定量する方法を用いる。めっき層の溶解方法はとくに限定する必要はない。上記しためっき層の溶解方法が同様に適用できる。
The analysis of the content of the element in the plating layer formed on the surface of the galvannealed steel sheet of the present invention is performed as follows in the present invention.
A method is used in which the plating layer is dissolved with a dilute acid or an alkaline aqueous solution, and the obtained liquid is quantified by ICP or atomic absorption method. The method for dissolving the plating layer is not particularly limited. The above-described method for dissolving the plating layer can be similarly applied.
次に、めっき密着性に及ぼすめっき層中のSの有無の影響について調査した結果の一例を図1に示す。 mass%で、0.15%C−0.6〜1.5%Si−1.5%Mn−0.01%P−0.004%S−0.03Alを含む組成のスラブを1200℃×60minに加熱して、熱間圧延により3.2mm厚の熱延鋼板とした。ついでこれら熱延鋼板を酸洗し黒皮スケールを除去したのち、冷間圧延により1.6mm厚の冷延鋼板とした。これら冷延鋼板をめっき原板とし、表面に硫酸アンモニウム水溶液を、S換算で片面で50mg/m2となるように塗布し乾燥した。なお、硫酸アンモニウム水溶液を塗布しない場合も実験した。これら鋼板に、直火型(DFF)加熱炉を有する連続式溶融亜鉛めっきラインで、溶融亜鉛めっき処理を施し、ついで、合金化処理を施した。なお、溶融亜鉛めっき処理は、めっき浴中Al量:0.13%、浴温度:470℃の条件とした。また、合金化処理は460〜580℃とした。得られた鋼板について、めっき層中のΓ相の生成量の指数であるI(Γ1.22)をX線回折法を用いて測定した。また、めっき層中のFe含有量、Al含有量、およびS含有量を化学分析で測定した。得られたI(Γ1.22)とめっき層中のFe含有量との関係を図1に示す。 Next, an example of the result of investigating the influence of the presence or absence of S in the plating layer on the plating adhesion is shown in FIG. A slab having a composition of 0.15% C-0.6 to 1.5% Si-1.5% Mn-0.01% P-0.004% S-0.03Al is heated to 1200 ° C x 60min and hot rolled to a thickness of 3.2mm. The hot-rolled steel sheet. Next, these hot-rolled steel sheets were pickled to remove the black scale, and then cold-rolled to obtain 1.6 mm-thick cold-rolled steel sheets. These cold-rolled steel plates were used as plating base plates, and an aqueous ammonium sulfate solution was applied to the surface so that the surface was 50 mg / m 2 on one side in terms of S and dried. In addition, it experimented also when not apply | coating ammonium sulfate aqueous solution. These steel sheets were subjected to a hot dip galvanizing treatment in a continuous hot dip galvanizing line having a direct fire type (DFF) heating furnace, and then subjected to an alloying treatment. The hot dip galvanizing treatment was performed under the conditions of Al content in the plating bath: 0.13% and bath temperature: 470 ° C. Moreover, the alloying process was 460-580 degreeC. About the obtained steel plate, I (Γ1.22), which is an index of the amount of Γ phase generated in the plating layer, was measured using an X-ray diffraction method. Moreover, Fe content, Al content, and S content in the plating layer were measured by chemical analysis. The relationship between the obtained I (Γ1.22) and the Fe content in the plating layer is shown in FIG.
図1から、Sを含有するめっき層は、いずれもA値が0.08〜0.10の本発明範囲内〈図示せず〉で、しかもI(Γ1.22)が本発明の(2)式あるいは(3)式を満足して、めっき密着性が良(黒○、黒△、黒□)となっている。一方、Sを含有しないめっき層は、いずれもA値が0.02〜0.038であり本発明範囲を低く外れ、しかもI(Γ1.22)が本発明の(2)式あるいは(3)式の下限未満でめっき密着性が不良(○、△、□)となっている。これにより、S等の元素をめっき層内に含有することにより、めっき密着性が顕著に良好なめっき層を安定して得ることができることがわかる。 From FIG. 1, all of the plating layers containing S are within the scope of the present invention (not shown) with an A value of 0.08 to 0.10, and I (Γ1.22) is the expression (2) or (3) of the present invention. ) Expression is satisfied, and the plating adhesion is good (black ○, black Δ, black □). On the other hand, all the plating layers not containing S have an A value of 0.02 to 0.038, which is out of the range of the present invention, and I (Γ1.22) is less than the lower limit of the formula (2) or (3) of the present invention. The plating adhesion is poor (◯, Δ, □). Thus, it can be seen that by containing an element such as S in the plating layer, a plating layer with significantly good plating adhesion can be obtained stably.
つぎに、本発明の溶融亜鉛めっき鋼板の好ましい製造方法について説明する。 上記した高張力鋼組成の鋼素材(スラブ)を加熱し、熱間圧延を行い、ついで酸洗等により黒皮スケールを除去したのち冷間圧延を行って、所定板厚の冷延鋼板とする。ついで、これら冷延鋼板に再結晶焼鈍を施し、引き続いて溶融亜鉛めっき処理を施し、所定量のめっき層を形成した後、合金化処理を施して合金化溶融亜鉛めっき鋼板とすることが好ましい。再結晶焼鈍、溶融亜鉛めっき処理、合金化処理は、連続式溶融亜鉛めっきラインを用いて行うことが好ましい。なお、連続式溶融亜鉛めっきラインの加熱帯は、直火型加熱としても、無酸化型加熱としてもいずれでもよい。加熱帯の雰囲気は、酸化性雰囲気とし、露点を0℃以上とすることが好ましい。また、均熱帯は還元性雰囲気とすることが好ましい。これにより、S等の元素をめっき層中に取り入れることが容易となる。露点が0℃未満ではS等の元素が鋼板に付着せず加熱帯中に放出されやすくなる。また、均熱帯は還元性雰囲気とすることが好ましい。 Below, the preferable manufacturing method of the hot dip galvanized steel plate of this invention is demonstrated. The steel material (slab) having the above-described high-tensile steel composition is heated and hot-rolled, and then the black scale is removed by pickling or the like, followed by cold-rolling to obtain a cold-rolled steel sheet having a predetermined thickness. . Next, it is preferable to subject these cold-rolled steel sheets to recrystallization annealing, subsequently to hot-dip galvanizing treatment, and after forming a predetermined amount of plating layer, to alloying treatment to obtain alloyed hot-dip galvanized steel plates. The recrystallization annealing, hot dip galvanizing treatment and alloying treatment are preferably performed using a continuous hot dip galvanizing line. The heating zone of the continuous hot dip galvanizing line may be either direct flame heating or non-oxidation heating. The atmosphere in the heating zone is preferably an oxidizing atmosphere and the dew point is preferably 0 ° C. or higher. The soaking zone is preferably a reducing atmosphere. Thereby, it becomes easy to incorporate elements such as S into the plating layer. When the dew point is less than 0 ° C., elements such as S do not adhere to the steel sheet and are easily released into the heating zone. The soaking zone is preferably a reducing atmosphere.
本発明では、めっき層中のAlバランスである、A値が本発明範囲内となるように、溶融亜鉛めっき処理における、めっき浴中のAl添加量、めっき浴温度、めっき処理時間を調整することが好ましい。また、Γ相の生成量の調整は合金化処理における合金化温度を調節することにより可能である。本発明ではI(Γ1.22)が(2)式または(3)式を満足するように合金化温度を調節する。 In the present invention, the amount of Al added in the plating bath, the plating bath temperature, and the plating processing time are adjusted in the hot dip galvanizing process so that the A value that is the Al balance in the plating layer is within the range of the present invention. Is preferred. Moreover, the production amount of the Γ phase can be adjusted by adjusting the alloying temperature in the alloying treatment. In the present invention, the alloying temperature is adjusted so that I (Γ1.22) satisfies the formula (2) or (3).
なお、めっき層中のA値、I(Γ1.22)を本発明範囲内に調整するために、本発明では、めっき層中にS、Cl、Na、K、Se、Br等の各元素の所定量を含有させることがより好ましい。このためには、これら元素を含む薬剤の水溶液をめっき原板表面に塗布し乾燥させたのち、再結晶焼鈍を施し、ついで溶融亜鉛めっき処理および合金化処理を施すことが好ましい。これにより、再結晶焼鈍時にSi、Mn、Al等が選択酸化されて表面に濃化することが抑制でき、再結晶焼鈍時にこれら元素の酸化物が鋼板表面に膜状に成長することを抑制でき、また溶融亜鉛めっき処理の加熱時に、Si、Mn、Al等の易酸化性元素の酸化物の膜状生成を抑制できる。そしてこれにより、表面で酸化スケールの成長が促進され、その後に行われる還元性雰囲気での加熱に際し、酸化スケールが還元され、結果として表面が活性化して、表面の反応性が向上する。このため、めっき時にめっき浴中に添加されたAlが地鉄表面で十分に反応してめっき層中に取り込まれる。 In order to adjust the A value and I (Γ1.22) in the plating layer within the range of the present invention, in the present invention, each element such as S, Cl, Na, K, Se, and Br is included in the plating layer. It is more preferable to contain a predetermined amount. For this purpose, it is preferable to apply an aqueous solution of a chemical agent containing these elements to the surface of the plating original plate and dry it, and then to perform recrystallization annealing, followed by hot dip galvanizing treatment and alloying treatment. As a result, Si, Mn, Al, etc. can be selectively oxidized and concentrated on the surface during recrystallization annealing, and oxides of these elements can be prevented from growing in the form of a film on the steel sheet surface during recrystallization annealing. In addition, during heating in the hot dip galvanizing treatment, film formation of oxides of oxidizable elements such as Si, Mn, and Al can be suppressed. As a result, the growth of oxide scale is promoted on the surface, and the oxide scale is reduced during the subsequent heating in a reducing atmosphere, and as a result, the surface is activated and the reactivity of the surface is improved. For this reason, Al added to the plating bath at the time of plating sufficiently reacts on the surface of the ground iron and is taken into the plating layer.
またこれにより、Siは、地鉄最表層で酸化物として固定されるため、Si含有量が高い高張力鋼板でも、めっき密着性に関与する最表層部の実質的なSi活量が大幅に低減し、Γ相の生成量が増加するとともに、合金化反応が促進されるため、合金化処理を比較的低温でおこなうことができ、Γ相生成量の調整が容易となり、めっき密着性を容易に向上させることができる。 As a result, Si is fixed as an oxide on the outermost surface layer of the steel, so that even in high-tensile steel sheets with high Si content, the substantial Si activity in the outermost layer part that is involved in plating adhesion is greatly reduced. As the Γ phase generation amount increases and the alloying reaction is accelerated, the alloying process can be performed at a relatively low temperature, the Γ phase generation amount can be easily adjusted, and the plating adhesion can be easily achieved. Can be improved.
つぎに、実施例に基づき本発明をさらに詳細に説明する。 Next, the present invention will be described in more detail based on examples.
表1に示す組成の鋼素材(スラブ)を、加熱炉で1260℃で60min間加熱し、熱間圧延により2.8mm厚の熱延鋼板とし580℃で巻き取った。その後、酸洗により黒皮スケールを除去し、ついで冷間圧延により1.6mm厚の冷延鋼板とした。これら冷延鋼板表面に、ロールコータ法で表2に示す種類の薬剤の水溶液を塗布し、乾燥した。薬剤の塗布量は、水溶液の濃度を変化して変化させた。ついで、これら鋼板に、直火型加熱炉を有する連続式溶融亜鉛めっきラインで、830℃での再結晶焼鈍と、溶融亜鉛めっき処理および合金化処理を行って、合金化溶融亜鉛めっき鋼板とした。なお、溶融亜鉛めっき処理はめっき浴温度:460℃、めっき浴:表2に示すAl量添加の溶融亜鉛とし、めっき層の付着量はガスワイピングにより調整し表2に示す量とした。また、合金化処理温度は表2中に示す温度とした。 A steel material (slab) having the composition shown in Table 1 was heated in a heating furnace at 1260 ° C. for 60 minutes, and hot rolled into a 2.8 mm thick hot-rolled steel sheet and wound at 580 ° C. Thereafter, the black scale was removed by pickling, and then cold rolled to form a cold-rolled steel sheet having a thickness of 1.6 mm. An aqueous solution of the type of chemicals shown in Table 2 was applied to the surface of these cold-rolled steel sheets by a roll coater method and dried. The amount of drug applied was changed by changing the concentration of the aqueous solution. Next, these steel sheets were subjected to recrystallization annealing at 830 ° C., hot dip galvanizing treatment and alloying treatment in a continuous hot dip galvanizing line having a direct-fired heating furnace to obtain alloyed hot dip galvanized steel sheets. . In addition, the hot dip galvanizing treatment was performed by using a plating bath temperature: 460 ° C., a plating bath: hot dip zinc added with an Al amount shown in Table 2, and the adhesion amount of the plating layer was adjusted by gas wiping to an amount shown in Table 2. The alloying treatment temperature was set to the temperature shown in Table 2.
なお、めっき層中に含有される元素の含有量は、20mass%NaOH−10mass%トリエタノールアミン水溶液195ccと35mass%過酸化水素溶液7ccの混合液にめっき鋼板を浸漬してめっき層を溶解し、得られた液をICP法で各元素を定量し、片面単位面積当たりの含有量として算出した。また、得られた各元素の含有量から、(1)式で定義されるA値を算出した。また、めっき層中のΓ相生成量を前記した蛍光X線回折法と同様に、I(Γ1.22)を測定した。また、得られた合金化溶融亜鉛めっき鋼板について、めっき外観を目視で調査し、不めっきのない場合をめっき外観:○(良好)とし、不めっきのある場合をめっき外観不良(×)と判定した。なお、合金化処理時の合金化遅延による外観ムラの有無も考慮した。 In addition, content of the element contained in the plating layer is obtained by immersing the plated steel sheet in a mixed solution of 195cc of 35mass% NaOH-10mass% triethanolamine aqueous solution and 7cc of 35mass% hydrogen peroxide solution, Each element of the obtained liquid was quantified by the ICP method and calculated as the content per unit area of one side. Moreover, A value defined by (1) Formula was computed from content of each obtained element. Further, I (Γ1.22) was measured in the same manner as in the fluorescent X-ray diffraction method described above for the Γ phase generation amount in the plating layer. Moreover, about the obtained galvannealed steel sheet, the appearance of plating was visually examined, and when there was no unplating, the appearance of plating was judged as ◯ (good), and when there was no plating, the appearance of plating was judged as poor (x). did. In addition, the presence or absence of uneven appearance due to alloying delay during the alloying treatment was also considered.
また、得られた合金化溶融亜鉛めっき鋼板について、めっき密着性を調査した。めっき密着性は、得られた合金化溶融亜鉛めっき鋼板にセロハンテープを貼り、セロハンテープ面を90°曲げ−曲げ戻しした。90°曲げ−曲げ戻し後のセロハンテープ面に、蛍光X線を照射し、Znカウント数を測定して、単位長さ当たりの剥離量の指標とした。Znカウント数が、0〜500カウントの場合をランク1、500超〜1000カウントの場合をランク2、1000超〜2000カウントの場合をランク3、2000超〜3000カウントの場合をランク4、3000カウント超の場合をランク5とした。ランク1が耐剥離性が良、ランク5が劣である。ランク1,2の場合をめっき密着性が良好(○、△)とし、ランク3以上の場合を不良(×)と評価した。
Moreover, about the obtained galvannealed steel plate, plating adhesiveness was investigated. The plating adhesion was obtained by applying a cellophane tape to the obtained galvannealed steel sheet and bending the cellophane tape surface by 90 °. The cellophane tape surface after bending at 90 ° was irradiated with fluorescent X-rays, and the Zn count number was measured as an index of the amount of peeling per unit length. If the Zn count is 0 to 500 counts,
得られた結果を表2に示す。 The obtained results are shown in Table 2.
本発明はいずれも、めっき層の剥離は少なく、Si、Mn、Alを多量に含有する高張力鋼板をめっき原板に使用しているにもかかわらず、めっき密着性に優れている。一方、本発明の範囲を外れる比較例は、めっき密着性および/またはめっき外観が劣化している。 In any of the present inventions, peeling of the plating layer is small, and the plating adhesion is excellent even though a high-strength steel plate containing a large amount of Si, Mn, and Al is used as the plating base plate. On the other hand, in comparative examples that are outside the scope of the present invention, plating adhesion and / or plating appearance are deteriorated.
Claims (2)
記
A値=めっき層中Al(g/m2 )−(めっき層中Fe(g/m2 )×鋼板中Al(mass% ))/100−めっき層中Zn(g/m2 )×0.0012 ………(1)
めっき層中Fe:7mass%以上8mass%未満の場合
200≦I(Γ1.22)≦600 ………(2)
めっき層中Fe:8mass%以上15mass%以下の場合
Max[3000cps,{Fe(mass%)×C値+200−8×C値}×3]≧I(Γ1.22)≧{Fe(mass%)×C値+200−8×C値} ………(3)
ここで、Max[α,β]:α,βのうち大きい方の値
Fe(mass%):めっき層中のFe含有量
C値=200:(鋼板中のSi含有量が0.375mass%未満の場合)
=75/(鋼板中Si含有量):(鋼板中のSi含有量が0.375mass%以上3mass%以下の場合) An alloyed hot-dip galvanized steel sheet formed by forming a plating layer on the steel sheet surface, wherein the steel sheet is mass%, C: 0.25% or less, Si: 0.1-3.0%, Mn: 0.5-3.0%, Al: A high-tensile steel plate having a composition containing 0.01 to 3.0%, wherein the plating layer contains 7 to 15 mass% Fe, and the A value defined by the following formula (1) satisfies 0.04 to 0.20, and the crystal lattice Plating adhesion characterized in that the fluorescent X-ray diffraction intensity I (Γ1.22) (cps) of the Γ phase with an interval d of 1.22Å satisfies the following formula (2) or (3) depending on the Fe content: High strength alloyed hot dip galvanized steel sheet with excellent resistance.
A value = Al (g / m 2 ) in plating layer-(Fe (g / m 2 ) in plating layer) Al in steel plate (mass% )) / 100-Zn in plating layer (g / m 2 ) × 0.0012 (1)
Fe in the plating layer: 7 mass% or more and less than 8 mass%
200 ≦ I (Γ1.22) ≦ 600 (2)
Fe in the plating layer: 8 mass% or more and 15 mass% or less
Max [3000 cps, {Fe (mass%) × C value + 200−8 × C value} × 3] ≧ I (Γ1.22) ≧ {Fe (mass%) × C value + 200−8 × C value} (3)
Where Max [α, β]: the larger of α and β
Fe (mass%): Fe content in the plating layer
C value = 200: (when the Si content in the steel sheet is less than 0.375 mass%)
= 75 / (Si content in steel sheet): (When Si content in steel sheet is 0.375 mass% or more and 3 mass% or less)
The plating layer contains one or more elements selected from S, Se, Cl, Br, Na, and K in total at least 1 mg / m 2 per side. 1. A high-strength galvannealed steel sheet according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005117774A JP4696656B2 (en) | 2005-04-15 | 2005-04-15 | High tensile alloyed hot dip galvanized steel sheet with excellent plating adhesion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005117774A JP4696656B2 (en) | 2005-04-15 | 2005-04-15 | High tensile alloyed hot dip galvanized steel sheet with excellent plating adhesion |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006299288A JP2006299288A (en) | 2006-11-02 |
JP4696656B2 true JP4696656B2 (en) | 2011-06-08 |
Family
ID=37467941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005117774A Active JP4696656B2 (en) | 2005-04-15 | 2005-04-15 | High tensile alloyed hot dip galvanized steel sheet with excellent plating adhesion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4696656B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000212715A (en) * | 1998-11-18 | 2000-08-02 | Kawasaki Steel Corp | Galvannealed steel sheet excellent in press-workability and production thereof |
JP2001279411A (en) * | 2000-03-29 | 2001-10-10 | Kawasaki Steel Corp | Manufacturing method for galvanized steel sheet |
JP2001303225A (en) * | 2000-04-21 | 2001-10-31 | Kawasaki Steel Corp | Method for producing galvanized steel sheet |
JP2005060742A (en) * | 2003-08-19 | 2005-03-10 | Nippon Steel Corp | High-strength galvannealed steel sheet with superior adhesiveness, and manufacturing method therefor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52123936A (en) * | 1976-04-13 | 1977-10-18 | Nisshin Steel Co Ltd | Alloyed zinc iron plate |
JPS6468456A (en) * | 1987-09-08 | 1989-03-14 | Nippon Steel Corp | Alloyed and zinc hot dipped steel sheet having excellent powdering resistance and flaking resistance |
JP3114108B2 (en) * | 1993-03-24 | 2000-12-04 | 日新製鋼株式会社 | Measuring method of alloying degree of alloyed zinc coated steel sheet |
JPH10226862A (en) * | 1996-12-09 | 1998-08-25 | Kawasaki Steel Corp | Galvannealed steel sheet excellent in press formability and smoothness of plating film |
JPH1150223A (en) * | 1997-08-05 | 1999-02-23 | Nkk Corp | Silicon-containing high strength hot-dip galvanized steel sheet and its production |
-
2005
- 2005-04-15 JP JP2005117774A patent/JP4696656B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000212715A (en) * | 1998-11-18 | 2000-08-02 | Kawasaki Steel Corp | Galvannealed steel sheet excellent in press-workability and production thereof |
JP2001279411A (en) * | 2000-03-29 | 2001-10-10 | Kawasaki Steel Corp | Manufacturing method for galvanized steel sheet |
JP2001303225A (en) * | 2000-04-21 | 2001-10-31 | Kawasaki Steel Corp | Method for producing galvanized steel sheet |
JP2005060742A (en) * | 2003-08-19 | 2005-03-10 | Nippon Steel Corp | High-strength galvannealed steel sheet with superior adhesiveness, and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2006299288A (en) | 2006-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100540718C (en) | Surface treated steel plate and manufacture method thereof | |
JP4972775B2 (en) | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion | |
JP3898923B2 (en) | High-strength hot-dip Zn-plated steel sheet excellent in plating adhesion and ductility during high processing and method for producing the same | |
US10837074B2 (en) | Method for manufacturing high strength galvanized steel sheet and high strength galvanized steel sheet | |
JP5417797B2 (en) | High strength hot dip galvanized steel sheet and method for producing the same | |
JP2010255100A (en) | High-strength hot-dip galvanized steel plate and method for producing the same | |
JP5513216B2 (en) | Method for producing galvannealed steel sheet | |
WO2020148944A1 (en) | Method for manufacturing hot-dip galvanized steel sheet | |
CN106661657A (en) | Method for manufacturing high-strength hot-dip galvanized steel sheet | |
JP5552862B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP2010255106A (en) | High-strength hot dip galvanized steel plate and method for producing the same | |
JPH06256903A (en) | Galvannealed steel sheet excellent in press workability and plating peeling resistance | |
JP5906633B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance after painting | |
JP2010059510A (en) | Method for producing high strength hot dip galvanized steel sheet and high strength galvannealed steel sheet excellent in surface appearance and plating adhesion | |
JP3966670B2 (en) | Method for producing hot-dip galvanized steel sheet | |
JP4696656B2 (en) | High tensile alloyed hot dip galvanized steel sheet with excellent plating adhesion | |
JP4816068B2 (en) | Method for producing hot-dip galvanized steel sheet with excellent plating adhesion | |
JP4655366B2 (en) | High strength alloyed hot dip galvanized steel sheet with excellent plating adhesion and corrosion resistance and method for producing the same | |
JP4747656B2 (en) | Method for producing high-tensile hot-dip galvanized steel sheet and method for producing high-tensile alloyed hot-dip galvanized steel sheet | |
KR101978014B1 (en) | High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, and methods for producing said steel sheets | |
JP5354178B2 (en) | Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet | |
JP3058911B2 (en) | Method for producing hot-dip galvanized steel sheet with good workability and excellent perforation corrosion resistance | |
JPH0770726A (en) | Production of galvannealed steel sheet for ultra-deep drawing | |
JP2008144267A (en) | Method for manufacturing hot-dip galvannealed steel sheet | |
JP2019031721A (en) | Method for manufacturing high strength hot-dip galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4696656 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |