JP4696300B2 - Baseline stabilization method using wavelength difference for biological optical measurement using near infrared light - Google Patents
Baseline stabilization method using wavelength difference for biological optical measurement using near infrared light Download PDFInfo
- Publication number
- JP4696300B2 JP4696300B2 JP2005302828A JP2005302828A JP4696300B2 JP 4696300 B2 JP4696300 B2 JP 4696300B2 JP 2005302828 A JP2005302828 A JP 2005302828A JP 2005302828 A JP2005302828 A JP 2005302828A JP 4696300 B2 JP4696300 B2 JP 4696300B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- wavelength
- value
- measurement
- biological
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005259 measurement Methods 0.000 title claims description 67
- 238000000034 method Methods 0.000 title claims description 65
- 230000003287 optical effect Effects 0.000 title claims description 27
- 230000006641 stabilisation Effects 0.000 title description 3
- 238000011105 stabilization Methods 0.000 title description 3
- 238000012545 processing Methods 0.000 claims description 46
- 108010054147 Hemoglobins Proteins 0.000 claims description 35
- 102000001554 Hemoglobins Human genes 0.000 claims description 35
- 239000011159 matrix material Substances 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 23
- 230000001419 dependent effect Effects 0.000 claims description 21
- 238000010521 absorption reaction Methods 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 19
- 238000000691 measurement method Methods 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 230000003925 brain function Effects 0.000 claims description 11
- 238000002798 spectrophotometry method Methods 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims 2
- 230000008859 change Effects 0.000 description 27
- 238000002835 absorbance Methods 0.000 description 12
- 210000005013 brain tissue Anatomy 0.000 description 12
- 241000894007 species Species 0.000 description 8
- 230000017531 blood circulation Effects 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 230000002123 temporal effect Effects 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 230000007177 brain activity Effects 0.000 description 5
- 230000001537 neural effect Effects 0.000 description 5
- 210000004761 scalp Anatomy 0.000 description 5
- 238000000149 argon plasma sintering Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 230000001766 physiological effect Effects 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000001936 parietal effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 210000003792 cranial nerve Anatomy 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 230000008035 nerve activity Effects 0.000 description 2
- 238000005375 photometry Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 102000000634 Cytochrome c oxidase subunit IV Human genes 0.000 description 1
- 108090000365 Cytochrome-c oxidases Proteins 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 238000004497 NIR spectroscopy Methods 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000008822 capillary blood flow Effects 0.000 description 1
- 230000003727 cerebral blood flow Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 108010036302 hemoglobin AS Proteins 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008557 oxygen metabolism Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Theoretical Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
本発明は近赤外光を用いた脳機能計測法等の生体光計測法において、測定時のベースラインを安定化する方法および測定時のベースラインが安定化した、近赤外光を用いた生体光計測装置に関する。 The present invention uses a near-infrared light that stabilizes a baseline during measurement and a stable baseline during measurement in a biological optical measurement method such as a brain function measurement method using near-infrared light. The present invention relates to a biological light measurement device.
近赤外分光測光(NIRS)を用いた脳機能計測法とは、酸素結合型および酸素脱離型ヘモグロビンの近赤外吸収スペクトルの違いに基づき、脳組織中での各濃度を無侵襲で推定する手法である。fMRIと同じく脳活動に伴う酸素代謝をモニタできることや、サブ秒以下の時間分解能をもち、光計測であるためMRI、MEG、EEGなどに較べて電磁的ノイズへの耐性が
高いこと、測定解析装置や頭部への装着機具が小型軽量であることなどが利点としてあげられる。そのため医学、脳科学などをはじめとする幅広い分野で様々な対象への応用が期待されており、とくに定常光を用いた測定システムの普及が始まっている。
The brain function measurement method using near infrared spectrophotometry (NIRS) is a non-invasive estimation of each concentration in brain tissue based on the difference in near-infrared absorption spectra of oxygen-bound and oxygen-desorbed hemoglobin. It is a technique to do. Like fMRI, it can monitor oxygen metabolism associated with brain activity, has sub-second sub-second time resolution, and is an optical measurement, so it is more resistant to electromagnetic noise than MRI, MEG, EEG, etc. Another advantage is that the mounting equipment on the head is small and light. Therefore, it is expected to be applied to various objects in a wide range of fields including medicine and brain science, and the spread of measurement systems using stationary light has begun.
しかし定常光を用いたNIRSによる計測では、脳機能活動とは同期しない種々の変動が観察され(非特許文献1参照)、再現性の高い計測を実現する上で一つの問題となっている。これらの変動の一部は心拍、呼吸など脳活動以外の生理活動に同期していることが知られており(非特許文献2参照)、また頸部の屈曲や顎の咬合運動、およびファイバーケーブルを動かすことによっても容易に生じる。こうしたベースラインの時間変動を除去するために現状では時間平均、多重積算、線形近似によるドリフトの減算処理などが用いられているが、ベースライン変動の発生機序そのものの十分な検討と、それに基づく対策の提案はなされていない。 However, in NIRS measurement using stationary light, various fluctuations that are not synchronized with brain function activity are observed (see Non-Patent Document 1), which is a problem in realizing highly reproducible measurement. It is known that some of these fluctuations are synchronized with physiological activities other than brain activities such as heartbeat and respiration (see Non-Patent Document 2), and bending of the neck, articulation of the jaw, and fiber cable It is also easily generated by moving. Currently, temporal averaging, multiple multiplication, and drift subtraction processing by linear approximation are used to eliminate such baseline time fluctuations. No proposal for countermeasures has been made.
近年、NIRSを用いた各ヘモグロビン濃度の推定では、それ以外の物質による吸収や散乱、光減衰の時間変化を実質上考慮しない2自由度モデルが広く用いられている(非特許文献3および4参照)。しかし神経活動に伴い可視から近赤外の領域で散乱光やその他の吸収物質の吸光度が変化することはよく知られた事実である(非特許文献5参照)。またヘマトクリット値に依存して赤血球のMie散乱の様相が異なること(非特許文献6参照)な
どから、神経活動と毛細血流のカップリングが光散乱強度変化を生じさせる可能性も考えられる。さらに頭皮、脳髄液での光減衰の時間変化の寄与についても議論の余地がある。
In recent years, in estimation of each hemoglobin concentration using NIRS, a two-degree-of-freedom model that does not substantially take into account temporal changes in absorption, scattering, and light attenuation by other substances has been widely used (see Non-Patent Documents 3 and 4). ). However, it is a well-known fact that the absorbance of scattered light and other absorbing substances changes in the visible to near-infrared region with neural activity (see Non-Patent Document 5). In addition, since the aspect of Mie scattering of erythrocytes varies depending on the hematocrit value (see Non-Patent Document 6), the coupling between neural activity and capillary blood flow may cause a change in light scattering intensity. Furthermore, the contribution of temporal changes in light attenuation in the scalp and cerebrospinal fluid is also controversial.
上記のように、定常光を用いたNIRSによる計測では、脳機能活動とは同期しない種々の変動が観察されるという問題のある状況でいま一度、従来の推定モデルの検証を含めてベースライン変動の発生機序を考察することは有益と考えられる。本発明は、NIRSによる脳機能測定法におけるベースライン変動を除去し、正確な測定値を得ることを目的とする。 As described above, measurement with NIRS using stationary light is problematic in that various fluctuations that are not synchronized with brain functional activity are observed. It is considered useful to consider the mechanism of occurrence of An object of the present invention is to eliminate baseline fluctuations in a brain function measurement method using NIRS and obtain an accurate measurement value.
従来のNIRSによる計測の問題点には、以下のような理論的背景がある。
測定の分光学的モデル
頭皮表面に照射された光のうち、生体組織を伝播し脳組織に到達したのち一定距離離れた頭皮表面に至るものの光路は図1に示すようなバナナ型の概形を成すことが計算上知られている(Okada E. et al, Appl. Opt., 36, 21-31, (1997))。この光路での光減衰は
各種吸収分子の数Xi(t)と吸収係数μi,λおよび散乱の寄与Sλ(t)とを用いてmodified Lambert-Beerの法則により近似的に表せる。実際のNIRSでは、光源および受光器の間には脳組織以外に伝送ファイバー、頭皮、骨組織、脳髄液などの媒質が存在し、種々の条件下でそれぞれの特性に応じた光減衰が生じるので、この過程での減衰係数をいま総体的にUλ(t)と表すと、光源からIλ,0の強度で照射され、受光器に戻る光の強度Iλ(t)は以下のよ
うに表せる。本明細書において、推定値を表すハット記号を「Xハット」のように表す場
合があり、これはXの文字の上にハット記号が付くことを意味する。
Spectroscopic model of measurement Of the light irradiated on the scalp surface, the light path of the scalp surface that propagates through the living tissue and reaches the brain tissue and then a certain distance away has a banana-shaped outline as shown in Fig. 1. It is known by calculation (Okada E. et al, Appl. Opt., 36, 21-31, (1997)). The light attenuation in this optical path can be approximately expressed by the modified Lambert-Beer law using the number of various absorbing molecules X i (t), the absorption coefficient μ i, λ and the scattering contribution S λ (t). In actual NIRS, there are media such as transmission fiber, scalp, bone tissue, and cerebrospinal fluid in addition to brain tissue between the light source and the receiver, and light attenuation corresponding to the characteristics occurs under various conditions. If the attenuation coefficient in this process is now generally expressed as U λ (t), the intensity I λ (t) of light irradiated from the light source with the intensity of I λ, 0 and returning to the receiver is as follows: I can express. In the present specification, a hat symbol representing an estimated value may be represented as “X hat”, which means that a hat symbol is added on the letter X.
脳組織における吸光度は以下のように定義される。
ここで、任意に定めた時刻t=0での吸光度の値を基準にした時刻t での吸光度変化量aλ(t)を導入する。
各吸収分子の変化量xi(t)、脳組織での散乱の変化量sλ(t)およびその他の経路での光
減衰の変化量uλ(t)を以下のように定義することにより、
数(1)から以下の関係が成立する。
このaλ(t)を測定する上では上記以外の要因からも観測誤差が生じる。これらは誤差項nλ(t)の形で残し、以下のように観測量を表現する。
分子種iの変化量xi(t)は脳組織内での光の伝播経路の平均長さlλ(t)と平均濃度の変化量ci(t)の積として、以下のように表せる。
一般には系の吸収・散乱の時間変化に伴ってlλ(t)が時間変化することが考えられるが、吸収、散乱の変化量がわずかな場合、lλ(t)は時間的にほぼ安定と見なすことができる。したがって以下ではxi(t)を求めるべき量として議論を進める。数(8)からわかるように観測される吸光度変化量aλ(t)は、各吸収分子の光吸収、脳組織内の光路上の光散乱、測定経路の光減衰、およびその他に起因する雑音の寄与の総和である。この中から何らかの方法によりxi(t)を推定することが本発明の課題となる。 In general, it is considered that l λ (t) changes with time as the absorption and scattering of the system changes. However, if the amount of change in absorption and scattering is small, l λ (t) is almost stable over time. Can be considered. Therefore, in the following, the discussion proceeds as a quantity to obtain x i (t). As can be seen from Equation (8), the observed change in absorbance a λ (t) is the noise due to the light absorption of each absorbing molecule, light scattering on the light path in brain tissue, light attenuation in the measurement path, and others. Is the sum of contributions. It is an object of the present invention to estimate x i (t) from any of these by some method.
多波長測定による各物質分子数の推定
系がN種類の物質群で構成されているとき、xi(t)の推定は、N個以上の測定波長にお
いて吸光度測定を行い、その結果得られる数(8)の形を持つN本以上の式からなる線形連
立方程式を解くことに帰着する。いま各波長で得られたaλ(t)、sλ(t)、uλ(t)およびn(t)を縦ベクトル化したものをそれぞれa(t)、s(t)、u(t)、n(t)とし、各分子種iの分子数
変化量xi(t)の縦ベクトルをx(t)とすると、線形連立方程式は以下のように与えられる。
測定波長をN個選んだとすると、Mは波長λにおける分子種iの分子吸収係数μi,λを
行列要素にもつN×N次元の行列である。Mが正則であれば、逆行列M-1を用いてx(t)を求めることができる。すなわち、
ところで通常、s(t)、u(t)、n(t)についての正確な情報をもたずに分子数変化量の推定
値xハット(t)を算出せざるを得ない。すなわち、
このときxハット(t)として、以下を手にしていることになる。
数(13)には目的とするx(t)以外に散乱s(t)、測定経路とその状態に由来する光減衰u(t)、その他の雑音n(t)の寄与が付加されていることが分かる。これらの付加項の影響を抑制する手法として通常、時間平均、多重積算、線形近似によるドリフト減算などの処理が行われる。これらは、脳神経活動と無関係に変動する成分に限り、その寄与を低減させることができる。また時間分解能や測定所要時間が犠牲にされたり、ドリフトの時間変化に何らかの仮定を持ち込んでいる点には留意が必要である。 In addition to the target x (t), the number (13) includes the contribution of scattering s (t), light attenuation u (t) derived from the measurement path and its state, and other noise n (t). I understand that. As a technique for suppressing the influence of these additional terms, processing such as time averaging, multiple integration, and drift subtraction by linear approximation is usually performed. These can only reduce their contribution to components that vary independently of cranial nerve activity. It should also be noted that the time resolution and measurement time are sacrificed and some assumptions are introduced in the time variation of drift.
観測される分光学的変化と推定モデルの自由度
数(13)は任意の次元数の推定値ベクトルxハット(t)に対してそれに相応しいMを用意することにより解くことができる。従来、脳活動の観測から得られる分光学的変化を記述するモデルとして、酸素結合型ヘモグロビン(x1とする)と酸素脱離型ヘモグロビン(x2とする)の変化量にのみ着目し、脳組織による散乱s(t)およびその他での光減衰u(t)の変化は十分に小さいと仮定した2自由度モデルが広く用いられてきた(Obrig H. et al., J. Cereb. Blood Flow Metab., 23, 1-18, (2002);Boas DA, et al., NeuroImage, 23, S275-S288, (2004))。この立場では、推定モデルの自由度2よりも数(12)におけるa(t)の次
元数、すなわち選択波長の数が大きかった場合には、二乗誤差最小の意味での最も望ましい推定を行うためM-1に替えて擬似逆行列M+が用いられる(BoasDA. et al., NeuroImage, 23, S275-S288, (2004);Okamoto M. et al, NeuroImage, 21, 1275-1288, (2004))。
この手法により確かに唯一の推定値xハットp(t)を手にすることができるが、そのこと
故に2自由度モデルが妥当であると考えるのは誤謬である。いま試みに、3つ以上の複数の波長でaλ(t)を測定したとすると、その中の任意の2つの測定値ak(t)、al(t)を用いてx1(t)、x2(t)の推定が可能である。2自由度モデルが妥当であるなら、いかなるak(t)、al(t)の組み合わせを用いた推定でも、その推定値は互いによく一致しなければならないはずである。このような処理により求めた複数の推定値間での時間変化の不一致の例を図4Aに示す。測定は3つの観測波長780nm、805nm、830nmが設定された市販装置(島津製作所, NIRStation)を用いて行った。ここで得られた吸光度変化量a(t)を用い、a780nm(t)とa805nm(t)、a805nm(t)とa830nm(t)、a830nm(t)とa780nm(t)、の3つの組み合わせを用いて各々x1(t)、x2(t)の推定を行った。図4Aは成人男性がタッピング課題を行った際の頭頂
部での各ヘモグロビン変化量の推定例である。ここで示された各推定値間の不一致と同様の結果は、この計測の他のチャンネルでも見られ、また他の多くの測定例でもそれらと同様の結果が得られた。このような結果は2自由度モデルの妥当性への疑義を示すものと考えられる。
Although this method can certainly give you the only estimated value x hat p (t), it is an error to think that the two-degree-of-freedom model is valid. Assuming that a λ (t) is measured at a plurality of wavelengths of three or more, it is assumed that x 1 (t) using any two measured values a k (t) and a l (t). ), X 2 (t) can be estimated. If the two-degree-of-freedom model is valid, the estimates using any combination of a k (t), a l (t) should be in good agreement with each other. FIG. 4A shows an example of a discrepancy in time change between a plurality of estimated values obtained by such processing. The measurement was performed using a commercially available apparatus (Shimadzu Corporation, NIRStation) in which three observation wavelengths 780 nm, 805 nm, and 830 nm were set. Using the absorbance change a (t) obtained here, a 780 nm (t) and a 805 nm (t), a 805 nm (t) and a 830 nm (t), a 830 nm (t) and a 780 nm (t) X 1 (t) and x 2 (t) were estimated using the three combinations. FIG. 4A is an estimation example of the amount of change in each hemoglobin at the top of the head when an adult male performs a tapping task. Similar results to the discrepancies between the estimated values shown here were found in other channels of this measurement, and many other measurement examples gave similar results. Such a result is considered to show doubt about the validity of the two-degree-of-freedom model.
しかし、この推定値間の不一致が生じる原因の一つとして、数(13)中の行列Mの要素である分子吸収係数μi,λの誤差をあげることもできる。実際に過去に報告されたヘモグロビンの分子吸収係数(Takatani S. et al., IEEE Trans. Biomed.Eng., BME-26(12), 656-664,(1979); Wray S. et al., Biochim. Biophys.Acta, 933, 184-192,(1988); Matcher
SJ. et al., Anal. Biochem.227 (1): 54-68 (1995))の間には最大で10%程度の不一致が認められる。また実際の光源波長が想定波長と10nm程度の誤差を含む可能性も考えられる。その場合、報告値に従えば、やはり最大で10%程度の分子吸収係数の誤差が生じる。これらによりMに生じる誤差はx(t)の推定における誤差をもたらす。そこで、この誤差要因を排除する意味で、各推定値間の分散を最小にするように分子吸収係数を最適化した行列M’を求めた。実際に波長誤差が±10nm程度あり、それに応じて各吸収係数が誤差を持ち得ると仮定して、M’を最適化し、x1(t)、x2(t)の推定を行った結果を図4Bに示す。
各推定値の時間変動は図4Aとは異なるものの、やはり3つの推定値は互いに十分に一致
していない。従って、各推定値間の不一致は行列Mの誤差の観点からは十分説明できないことが分かる。
However, one of the causes of the discrepancy between the estimated values may be an error in the molecular absorption coefficient μ i, λ that is an element of the matrix M in the equation (13). Actually reported molecular absorption coefficient of hemoglobin (Takatani S. et al., IEEE Trans. Biomed. Eng., BME-26 (12), 656-664, (1979); Wray S. et al., Biochim. Biophys. Acta, 933, 184-192, (1988); Matcher
SJ. Et al., Anal. Biochem. 227 (1): 54-68 (1995)) shows a discrepancy of up to 10%. There is also a possibility that the actual light source wavelength includes an error of about 10 nm from the assumed wavelength. In that case, according to the reported value, an error of the molecular absorption coefficient of about 10% at maximum is generated. These errors in M result in errors in the estimation of x (t). Therefore, in order to eliminate this error factor, a matrix M ′ in which the molecular absorption coefficient is optimized so as to minimize the variance between the estimated values was obtained. Assuming that the wavelength error is actually about ± 10 nm and each absorption coefficient may have an error accordingly, the result of optimizing M ′ and estimating x 1 (t) and x 2 (t) Shown in FIG. 4B.
Although the time variation of each estimated value is different from that in FIG. 4A, the three estimated values still do not sufficiently match each other. Therefore, it can be seen that the discrepancy between the estimated values cannot be sufficiently explained from the viewpoint of the error of the matrix M.
一方、脳神経活動に付随する分光学的変化については、神経興奮(Malonek D. et al.,
Science, 272(26),551-554 (1996); Rector DM. et al, J. Neurophysiol. 78, 1707-1713 (1997))とそれに続いて生じる神経細胞の形態変化(Malonek D. et al., Science,272(26), 551-554 (1996);MacVicar BA. et al., J. Neourosci., 11, 1458-1469, (1991))
による脳組織の光散乱強度変化や、血流変化に伴う赤血球のMie 散乱の変化の可能性(Steinke JM. et al., Appl. Optics,27, 4027-4033, (1988))などがすでに指摘されている。これらは2自由度モデルには含まれない分光学的な自由度の存在を示唆している。
On the other hand, for spectroscopic changes associated with cranial nerve activity, neural excitation (Malonek D. et al.,
Science, 272 (26), 551-554 (1996); Rector DM. Et al, J. Neurophysiol. 78, 1707-1713 (1997)) and subsequent neuronal morphological changes (Malonek D. et al. , Science, 272 (26), 551-554 (1996); MacVicar BA. Et al., J. Neourosci., 11, 1458-1469, (1991))
Already pointed out the possibility of changes in light scattering intensity of brain tissue due to blood flow and changes in red blood cell Mie scattering due to changes in blood flow (Steinke JM. Et al., Appl. Optics, 27, 4027-4033, (1988)) Has been. These suggest the existence of spectroscopic degrees of freedom that are not included in the two-degree-of-freedom model.
以上から本発明者は、各ヘモグロビンに加えて脳組織の散乱s(t)とその他の要因による光減衰u(t)をまとめて第3成分として導入した3自由度モデルに基づく推定を行った。 From the above, the present inventor made an estimation based on a three-degree-of-freedom model in which the scattering s (t) of brain tissue and light attenuation u (t) due to other factors are collectively introduced as the third component in addition to each hemoglobin. .
本発明者は、定常光を用いたNIRSによる各ヘモグロビン濃度の推定の過程を分光学的に考察し、散乱やその他の時間変動要因が各ヘモグロビン変化量の推定にアーティファクトをもたらし得ることを示した。また実際の実験結果から、それらを考慮しない従来の2自由度モデルによる推定は選択波長により結果の差異が顕著であることを明らかにした。これらを踏まえて推定モデルの3自由度への拡張を提案し、非波長依存的な変動要因を除去するための波長差分法と安定化のためのウィーナフィルタの導入を行い、新しい推定法を定式化した。さらにこれらを実際の測定例に適用し、ベースラインの安定化を図る上で従来の2自由度モデルに依拠した推定法よりも有効であることを示した。 The present inventor spectroscopically considered the process of estimating each hemoglobin concentration by NIRS using steady light, and showed that scattering and other time-varying factors can lead to artifacts in estimating each hemoglobin change. . In addition, from the actual experimental results, it has been clarified that the estimation by the conventional two-degree-of-freedom model that does not take them into consideration has a significant difference in the results depending on the selected wavelength. Based on these considerations, we proposed an extension of the estimation model to three degrees of freedom, introduced a wavelength difference method to eliminate non-wavelength dependent fluctuation factors and a Wiener filter for stabilization, and formulated a new estimation method. Turned into. Furthermore, these were applied to actual measurement examples, and were shown to be more effective than the conventional estimation method based on the two-degree-of-freedom model in stabilizing the baseline.
本発明は、複数の波長の近赤外光を被検体の複数の照射位置に照射する光照射部、被検体内を透過しまたは被検体内で散乱もしくは反射した光を受光検出する光検出部ならびに該光検出部が検出した光信号を用いてデータ処理するデータ処理部を備えた生体光計測装置であって、前記データ処理部は信号を受け取り、該信号を波長差分法により処理し非波長依存性の信号成分を除去し、さらに非波長依存性の信号成分を除去した信号をウィーナフィルタを用いて処理し波長依存性の誤差成分およびノイズを除去することにより、測定値に生じるベースライン変動を除去することを特徴とする生体光計測方法である。 The present invention relates to a light irradiation unit that irradiates a plurality of irradiation positions of a subject with near-infrared light having a plurality of wavelengths, and a light detection unit that receives and detects light transmitted through the subject or scattered or reflected in the subject. And a biological light measurement device including a data processing unit that processes data using an optical signal detected by the light detection unit, wherein the data processing unit receives the signal, processes the signal by a wavelength difference method, and performs non-wavelength processing. Baseline fluctuations that occur in the measured values by removing the signal components that are dependent on wavelength and then processing the signal from which signal components that are not dependent on wavelength are removed using a Wiener filter to remove wavelength-dependent error components and noise. This is a biological light measurement method characterized by removing the light.
本発明の方法で用いる近赤外光を用いた生体光計測装置として、多波長の近赤外光を利用できる近赤外分光脳機能計測装置が挙げられ、例えば島津製作所 NIRStationがある。 As a biological light measuring device using near infrared light used in the method of the present invention, there is a near infrared spectral brain function measuring device capable of using multi-wavelength near infrared light, for example, Shimadzu Corporation NIRStation.
また、本発明は、波長差分法による信号処理が、光検出部が検出した検出信号に基づいて複数の波長での複数の分子種の吸収係数を行列要素とする係数行列を作成し信号の差分値をとることにより非波長依存性の変動成分を除去した推定値を得る処理であり、ウィー
ナフィルタを用いた処理が、前記推定値を入力値として観測値を推定する際に前記係数行列に関して所定の正則化パラメータを導入しウィーナフィルタを用いて正則化し、観測値を出力値として得る処理であることを特徴とする上記の生体光計測方法である。
Further, according to the present invention, the signal processing by the wavelength difference method creates a coefficient matrix having matrix elements of absorption coefficients of a plurality of molecular species at a plurality of wavelengths based on the detection signal detected by the light detection unit, and the signal difference This is a process for obtaining an estimated value from which a non-wavelength dependent variation component is removed by taking a value, and a process using a Wiener filter is performed with respect to the coefficient matrix when estimating an observed value using the estimated value as an input value. This biological light measurement method is characterized in that the regularization parameter is introduced and regularized using a Wiener filter to obtain an observation value as an output value.
さらに、本発明は、ウィーナフィルタにおける正則化パラメータがウィーナフィルタ処理する入力値に含まれる誤差成分およびノイズの大きさに相関して決定される上記の生体光計測方法、波長差分処理が波長変調分光測光測定値に基づいて行われる上記の生体光計測方法ならびに脳機能計測に用いられ、計測対象分子種が酸素結合型ヘモグロビンおよび酸素脱離型ヘモグロビンである上記の生体光計測方法である。 Furthermore, the present invention provides the biological light measurement method, wherein the regularization parameter in the Wiener filter is determined in correlation with the error component and the magnitude of noise included in the input value to be subjected to the Wiener filter processing, and the wavelength difference processing is wavelength modulation spectroscopy. The biological light measurement method described above, which is used for the biological light measurement method and the brain function measurement performed based on the photometric measurement value, and the measurement target molecular species are oxygen-binding hemoglobin and oxygen desorption hemoglobin.
さらにまた、本発明は上記の方法によりデータ処理を行う生体光計測装置である。すなわち、複数の波長の近赤外光を被検体の複数の照射位置に照射する光照射部、被検体内を透過しまたは被検体内で散乱もしくは反射した光を受光検出する光検出部ならびに該光検出部が検出した光信号を用いてデータ処理するデータ処理部を備えた生体光計測装置であって、前記データ処理部は信号を受け取り、波長差分法により処理し非波長依存性の信号成分を除去し、さらに非波長依存性の信号成分を除去した信号をウィーナフィルタを用いて処理し波長依存性の誤差成分およびノイズを除去することにより、測定値に生じるベースライン変動を除去することを特徴とする生体光計測装置である。 Furthermore, the present invention is a biological light measurement device that performs data processing by the above method. That is, a light irradiation unit that irradiates a plurality of irradiation positions of a subject with near-infrared light of a plurality of wavelengths, a light detection unit that receives and detects light transmitted through the subject, or scattered or reflected in the subject, and the A biological light measurement apparatus including a data processing unit that performs data processing using an optical signal detected by a light detection unit, wherein the data processing unit receives a signal, processes the signal by a wavelength difference method, and has a non-wavelength dependent signal component By removing the non-wavelength-dependent signal component and processing the signal using the Wiener filter to remove the wavelength-dependent error component and noise, it is possible to eliminate baseline fluctuations that occur in the measured value. It is the biological light measuring device characterized.
また、本発明は、波長差分法による信号処理が、光検出部が検出した検出信号に基づいて複数の波長での複数の分子種の吸収係数を行列要素とする係数行列を作成し信号の差分値をとることにより非波長依存性の変動成分を除去した推定値を得る処理であり、ウィーナフィルタを用いた処理が、前記推定値を入力値として観測値を推定する際に前記係数行列に関して所定の正則化パラメータを導入しウィーナフィルタを用いて正則化し、観測値を出力値として得る処理であることを特徴とする上記の生体光計測装置である。 Further, according to the present invention, the signal processing by the wavelength difference method creates a coefficient matrix having matrix elements of absorption coefficients of a plurality of molecular species at a plurality of wavelengths based on the detection signal detected by the light detection unit, and the signal difference This is a process for obtaining an estimated value from which a non-wavelength dependent variation component is removed by taking a value, and a process using a Wiener filter is performed with respect to the coefficient matrix when estimating an observed value using the estimated value as an input value. The above-mentioned biological light measurement apparatus is a process for introducing the regularization parameter of, normalizing using a Wiener filter, and obtaining an observation value as an output value.
さらに、本発明は、ウィーナフィルタにおける正則化パラメータがウィーナフィルタ処理する入力値に含まれる誤差成分およびノイズの大きさに相関して決定される上記の生体光計測装置、波長差分処理が波長変調分光測光測定値に基づいて行われる上記の生体光計測装置、ならびに脳機能計測に用いられ、計測対象分子種が酸素結合型ヘモグロビンおよび酸素脱離型ヘモグロビンである上記の生体光計測装置である。 Furthermore, the present invention provides the above-described biological light measurement device in which the regularization parameter in the Wiener filter is determined in correlation with the error component and the magnitude of noise included in the input value to be subjected to the Wiener filter processing, and the wavelength difference processing is performed by wavelength modulation spectroscopy. The biological light measurement device described above that is performed based on photometric measurement values, and the biological light measurement device that is used for brain function measurement and whose measurement target molecular species are oxygen-binding hemoglobin and oxygen desorption hemoglobin.
図3に示すように、近赤外光を用いた脳機能計測において、本発明の3自由度モデルに依拠した推定法によれば、ベースラインの安定化を図る上で従来の2自由度モデルに依拠した推定法よりも有効である。 As shown in FIG. 3, in the brain function measurement using near infrared light, according to the estimation method based on the three-degree-of-freedom model of the present invention, the conventional two-degree-of-freedom model is used to stabilize the baseline. It is more effective than the estimation method based on
本発明の方法に用いる生体光計測装置の概要を図2に示す。本発明の生体光計測装置は、所定の波長の光を発生する光源部10、被検体の検査部位に光を照射する光照射部および被検体の検査部位を透過、反射または散乱した光を検出する光検出部を含むプローブ12、光検出部で検出した光信号を計測する光計測部14、光計測部で計測した光をデータ処理するデータ処理部16ならびにデータ処理部で処理したデータを表示する表示部18を含む。光源部とプローブおよびプローブと光計測部の間は光ファイバ等の導光路で連結される。光源部の光源としてはLED(発光ダイオード)やLD(レーザダイオード)等を用
いることができ、光検出部はフォトダイオード、フォトトランジスタ等の受光素子を含み、さらに光電子増倍管等を含んでいてもよい。光検出部が検出した光信号は電気信号に変換され光計測部を介してデータ処理部に送られる。データ処理部は受け取ったデータを処理して、処理データを表示部に送り、表示部でデータが表示される。データ処理部は、パーソナルコンピュータ等を用いることができ、光計測部からの信号を記録するメモリ、光
計測部からの信号を処理する中央演算処理装置(CPU)、中央演算処理装置における演算
処理に必要な条件やパラメータを記憶し、かつ演算結果を記憶するハードディスク等の記憶装置を含んでいる。データ表示部は、データを表示するモニタやプリンタを含んでいる。
An outline of the biological light measurement device used in the method of the present invention is shown in FIG. The biological optical measurement device of the present invention detects a
データ処理部における処理のフローチャートを図3に示す。
以下において、本発明の方法におけるデータ処理部での信号処理方法の詳細を述べ、ベースラインを安定化させる上での有効性について従来の2自由度モデルに基づく推定法との比較を行う。
A flowchart of processing in the data processing unit is shown in FIG.
The details of the signal processing method in the data processing unit in the method of the present invention will be described below, and the effectiveness in stabilizing the baseline will be compared with the estimation method based on the conventional two-degree-of-freedom model.
波長差分法
脳活動に関与する物質群の変化量x(t)の推定には、それらと異なる何らかの時間的変動が付加する可能性を数(13)は示している。具体的にはs(t)に代表される上記の要因の脳組織内での変化、それ以外の生体組織での分光学的変化や光学プローブと被験体との接触状態、伝送ファイバーの曲げ損失などに起因するu(t)である。ここで脳組織や生体組織の散乱係数については種々の報告があり(Bevilacqua F. et al., Appl. Opt. 38 (22): 4939-4950(1999); Yaroslavsky AN. et al., Phys. Med. Biol., 47, 2059-2073, (2002))、そのほとんどが近赤外波長領域ではそれぞれ一定の有限値をとると考えて差し支えないことを示している。また実際に神経活動に伴う散乱強度の時間変化は波長に依存しないとの報告がある(Frostig RD. et al., Proc. Natl. Acad. Sci. USA., 87, 6081-6086, (1990))。しばしば指摘されるcytochrome c オキシダーゼの吸収係数変化ついては従来モデ
ルでの誤差評価では推定値の10%を超えない程度と考えられている(Uludag K. et al., J. Biomed.Opt. 7, 51-59, (2002))。
Wavelength difference method The number (13) indicates the possibility that some temporal variation different from them may be added to the estimation of the amount of change x (t) of the substance group involved in brain activity. Specifically, changes in the above-mentioned factors represented by s (t) in brain tissue, spectroscopic changes in other biological tissues, contact state between optical probe and subject, bending loss of transmission fiber U (t) due to the above. There are various reports on the scattering coefficient of brain tissue and living tissue (Bevilacqua F. et al., Appl. Opt. 38 (22): 4939-4950 (1999); Yaroslavsky AN. Et al., Phys. Med. Biol., 47, 2059-2073, (2002)), most of which can be considered to have a certain finite value in the near infrared wavelength region. In addition, it has been reported that the temporal change of the scattering intensity due to the neural activity does not depend on the wavelength (Frostig RD. Et al., Proc. Natl. Acad. Sci. USA., 87, 6081-6086, (1990) ). The change in absorption coefficient of cytochrome c oxidase, which is often pointed out, is considered to be no more than 10% of the estimated value in the error evaluation with the conventional model (Uludag K. et al., J. Biomed. Opt. 7, 51 -59, (2002)).
これらに依拠すればsλ(t)およびuλ(t)は時間変動はするものの、波長依存性をほとんど持たない第3番目の変数として扱うことが可能である。ただし、プローブと被験体の接触状態やファイバーの曲げ負荷による伝送損失についてもここでは波長依存性がないものと仮定した。この前提に基づいて行った波長差分法の概要について、以下に記す。 Based on these, s λ (t) and u λ (t) can be treated as a third variable having little wavelength dependence, though it varies with time. However, it is assumed here that the transmission loss due to the contact state between the probe and the subject and the bending load of the fiber has no wavelength dependence. The outline of the wavelength difference method performed based on this premise is described below.
sλ(t)およびuλ(t)が波長依存性を持たないという前提から数(8)は
吸光度変化量の観測誤差であるnλ(t)は各波長での観測ごとに独立の値をとるため、波長差分処理によって除去できずδnk,l(t)の形で残る。いま数(10)に倣って、N種類の異なる波長間の差分値δak,l(t)およびδn(t)の縦ベクトルを
とすると、以下のように定式化される。
Then, it is formulated as follows.
mが正則であれば、上式からx(t)が推測でき、
この結果を数(13)と比較すると、波長差分量δa(t)を用いた推定により、s(t)、u(t)などの変動項が除去され、より真に近い値を推定し得ることが分かる。 When this result is compared with the number (13), fluctuation terms such as s (t) and u (t) are removed by estimation using the wavelength difference amount δa (t), and a value closer to true can be estimated. I understand that.
ウィーナフィルタ
NIRS測定では、分子数推定のための分光学的な諸前提(例えば、波長が近ければ、光路はほぼ同一であり、散乱や他の変動要因はほぼ同一と見なすことができる等)から、測定波長はできるだけ近傍であることが要請される。この条件下では数(18)における行列mの
正則性は悪く、わずかなδnの存在がx(t)の推定に大きな影響を及ぼす。これに対処する
ためmの正則化の手続きとしてウィーナフィルタKを用いて、推定値xハットw(t)を求めた。
NIRS measurement is based on spectroscopic assumptions to estimate the number of molecules (for example, if the wavelength is close, the optical path is almost the same, and scattering and other fluctuation factors can be considered to be almost the same). The wavelength is required to be as close as possible. Under this condition, the regularity of the matrix m in the number (18) is poor, and the presence of a small δn greatly affects the estimation of x (t). In order to cope with this, the estimated value x hat w (t) was obtained using the Wiener filter K as a procedure for regularizing m.
ここで、RxおよびRδnはxとδn(t)の自己相関行列である。簡単のためにxおよび観測誤差n(t)の性質としてそれぞれの自己相関行列がそれぞれσ2Iおよびζ2Iとなることを仮定すると、
脳活動の観測に関与する主要な分子として酸素結合型ヘモグロビン(x1)と酸素脱離型ヘモグロビン(x2)を考え、それらの吸収係数をμo,λ、μd,λとすると、mは以下で与えられる。
結果
図4の推定で用いた吸光度変化量δa(t)のデータに基づき、波長差分法と逆行列の組み合わせ(数19)および波長差分法とウィーナフィルタの組み合わせ(数20)により新たに各ヘモグロビン変化量の推定を行い、従来法による推定(数14)と結果を比較した。ヘモグロビンの吸収係数は既存の報告値(Matcher SJ. et al, Anal. Biochem.227 (1): 54-68
(1995))を用いた。正則化パラメータζ2/σ2は10-3とした。図4の測定データに基づく
各ヘモグロビン変化量の推定結果を図5に示す。従来法では2自由度モデルに基づくため長周期のベースライン変動が生じているのに対して、3自由度モデルに基づく二つの推定ではこの種の変動が顕著に低減していることが分かる。また3自由度モデルによる二つの推定の間では、逆行列m-1を用いた場合と比較して、ウィーナフィルタKを用いた場合の
方が、白色雑音的な微細変動がより低減していることが分かる。
Results Based on the data of the change in absorbance δa (t) used in the estimation of FIG. 4, each hemoglobin is newly obtained by the combination of the wavelength difference method and the inverse matrix (Equation 19) and the combination of the wavelength difference method and the Wiener filter (Equation 20). The amount of change was estimated, and the results were compared with those estimated by the conventional method (Equation 14). The absorption coefficient of hemoglobin is the existing reported value (Matcher SJ. Et al, Anal. Biochem. 227 (1): 54-68.
(1995)). The regularization parameter ζ 2 / σ 2 was set to 10 −3 . FIG. 5 shows an estimation result of each hemoglobin change amount based on the measurement data of FIG. It can be seen that the conventional method is based on the two-degree-of-freedom model and thus has a long-period baseline fluctuation, whereas the two estimations based on the three-degree-of-freedom model significantly reduce this kind of fluctuation. Also, between the two estimations using the three-degree-of-freedom model, white noise-like fine fluctuations are reduced more when the Wiener filter K is used than when the inverse matrix m −1 is used. I understand that.
ベースラインに含まれる各周波数の変動の低減効果を調べるため、成人男性の立座位安静時の頭頂部での各ヘモグロビン変化量の推定値をFFT解析し、パワースペクトルを求め
た。波長差分法とウィーナフィルタKを用いた推定と従来法による推定との比較を図6に示す。どちらの方法による推定でも約1Hz以下の低周波数領域に、白色雑音とは異なり周波数依存性を持つ雑音が含まれることが分かる。従来法による酸素結合型ヘモグロビンの変化量推定では、これに加え、1.2Hz付近に心拍に由来する顕著なピークが認められた。
これに対して波長差分法とウィーナフィルタKを用いた推定ではこのピークは認められなかった。このことから3自由度モデルの基づく推定では、従来時間平均処理や多重積算を用いなければ低減が困難だった生理活動に由来するベースライン変動を除去できていることが分かる。
In order to investigate the effect of reducing fluctuations in each frequency included in the baseline, FFT analysis was performed on the estimated value of each hemoglobin change in the parietal region of an adult male while resting in the sitting position, and a power spectrum was obtained. FIG. 6 shows a comparison between the estimation using the wavelength difference method and the Wiener filter K and the estimation using the conventional method. It can be seen that in both methods, noise having frequency dependence is included in the low frequency region of about 1 Hz or less, unlike white noise. In addition to this, in the estimation of the amount of oxygen-linked hemoglobin change by the conventional method, a remarkable peak derived from the heartbeat was observed around 1.2 Hz.
On the other hand, this peak was not recognized in the estimation using the wavelength difference method and the Wiener filter K. From this, it can be seen that in the estimation based on the three-degree-of-freedom model, baseline fluctuations derived from physiological activities that were difficult to reduce without using conventional time-average processing and multiple integration can be removed.
従来、NIRSの測定値には様々な周期のベースライン変動が生じることが知られており(Chance CE. et al., Proc. Natl. Acad. Sci. USA, 90, 3770-3774, (1993))、生理活動との関係が論じられてきた(Obrig H. et al., Neouroimage 12(6): 623-639 (2000))。以上に述べた手法により、これらのうち数10秒以上の時間領域で生じるベースラインの変動は、図5に見られるように安定化しうることが分かった。またより短い時間領域に関しても、心拍に対応する変動成分がこの手法で除去できることが長期安静時の推定値のパワ
ースペクトルの比較(図6)から分かった。従来法では、推定結果に内在するベースライン変動を時間平均、多重積算、線形近似によるドリフト減算などを用いて低減してきたが、それらは時間分解能や測定所要時間を犠牲にしたり、線形近似の妥当性を不問にしている点などで問題があった。本手法はそれらの処理を用いずに、しかも従来の多波長測定装置による測定値をそのまま用いてベースラインの安定化を実現できる点で有用性が高いと考えられる。
Traditionally, NIRS measurements are known to have baseline fluctuations of various periods (Chance CE. Et al., Proc. Natl. Acad. Sci. USA, 90, 3770-3774, (1993) ), The relationship with physiological activity has been discussed (Obrig H. et al., Neouroimage 12 (6): 623-639 (2000)). According to the method described above, it has been found that the fluctuation of the baseline occurring in the time domain of several tens of seconds or more can be stabilized as seen in FIG. Moreover, it was found from the comparison of the power spectra of the estimated values at the long-term rest (FIG. 6) that the fluctuation component corresponding to the heartbeat can be removed by this method even in a shorter time region. In the conventional method, baseline fluctuations inherent in the estimation results have been reduced by using time averaging, multiple integration, drift subtraction by linear approximation, etc., but these are at the expense of time resolution and measurement time, or are appropriate for linear approximation. There was a problem in that the sex was unquestioned. This method is considered to be highly useful in that it can realize the stabilization of the baseline by using the measurement values obtained by the conventional multi-wavelength measurement apparatus as they are without using these processes.
分光測光を用いた多成分系の物質濃度推定は、数学的には逆問題の一例と捉えることができる。近赤外領域で観測を行う利点は、もちろん生体組織に対する透過性の高さにあるが、一方で次に述べる測定対象の分光学的性質から逆問題解法上の不安定性の発生を余儀なくされる。すなわち、多波長測定でも光路をほぼ同一と見なす必要上、測定は数10nm以内の近接した波長間に限定されるが、この波長領域では数10nm程度の範囲では物質は緩慢なスペクトル構造しか示さないのである。この条件下では、係数行列のランクはこの系の成分数よりも実質的に低減する傾向を示す。このため各成分の変化量の推定において、その出力値は係数行列の精度および入力値の精度に依存した不安定性を示す。この不安定性を回避するために、以下のように入力値の精度向上と係数行列の正則化を図った。 Multi-component substance concentration estimation using spectrophotometry can be viewed mathematically as an example of an inverse problem. The advantage of observing in the near-infrared region is, of course, its high permeability to living tissue, but on the other hand, the instability in solving the inverse problem is inevitably generated due to the spectroscopic properties of the measurement target described below. . That is, even in multi-wavelength measurement, the optical path must be regarded as almost the same, so the measurement is limited to close wavelengths within several tens of nm, but in this wavelength region, the substance shows only a slow spectral structure in the range of several tens of nm. It is. Under this condition, the rank of the coefficient matrix tends to be substantially reduced from the number of components of this system. For this reason, in estimating the amount of change of each component, the output value exhibits instability that depends on the accuracy of the coefficient matrix and the accuracy of the input value. In order to avoid this instability, the accuracy of input values was improved and the coefficient matrix was regularized as follows.
まず波長差分法を用いることで非波長依存性の変動成分を除去し、入力値の安定化を図った。従来、ベースライン変動の要因とされていた生理活動は血液循環における血流量や血流速度の変化を伴う。それによる組織中の血球数の変動を考慮するのみでも、光路上の光散乱強度の変化は十分想定し得る。本発明者のモデルでは非波長依存性の成分を新たに導入したため、実際に波長依存性をほとんど持たない散乱に起因する時間変動が除去でき、入力値の精度向上に寄与したと考えられる。 First, the wavelength difference method was used to eliminate non-wavelength dependent fluctuation components and to stabilize the input value. Conventionally, physiological activities that have been regarded as a cause of baseline fluctuation are accompanied by changes in blood flow volume and blood flow velocity in the blood circulation. A change in the light scattering intensity on the optical path can be sufficiently assumed only by considering the variation in the number of blood cells in the tissue. In the inventor's model, a non-wavelength-dependent component was newly introduced, so that it was possible to remove temporal fluctuations caused by scattering that actually had almost no wavelength dependence, and contributed to improving the accuracy of the input value.
また係数行列に関して正則化パラメータζ2/σ2を導入し、ウィーナフィルタによる正
則化を試みた。その結果として出力値である各ヘモグロビンの変化量を安定に推定することができた。正則化パラメータζ2/σ2の大きさは入力値に含まれる雑音の大きさと相関
して決定される。その際、行列の正則性を確保する代償として出力情報の自由度は縮退する。入力値の精度が向上すれば、正則化パラメータがよりゼロに近い、すなわち真の逆行列により近いものを用いることができる。このとき入力情報の本来の自由度により近い自由度を持った出力情報を得ることができる。その意味で入力値の測定精度を向上させることは、NIRSを用いた脳機能計測において本質的に重要である。本発明者の提案した波長差分処理の手法を波長変調分光測光などと結びつけることにより、入力値の測定精度を向上させることができる。
In addition, we introduced regularization parameter ζ 2 / σ 2 for coefficient matrix and tried to regularize by Wiener filter. As a result, it was possible to stably estimate the amount of change in each hemoglobin as the output value. The magnitude of the regularization parameter ζ 2 / σ 2 is determined in correlation with the magnitude of noise included in the input value. At that time, the degree of freedom of the output information is reduced as a price for securing the regularity of the matrix. If the accuracy of the input value is improved, the regularization parameter closer to zero, that is, closer to the true inverse matrix can be used. At this time, output information having a degree of freedom closer to the original degree of freedom of the input information can be obtained. In that sense, improving the measurement accuracy of input values is essential in brain function measurement using NIRS. By combining the wavelength difference processing method proposed by the present inventor with wavelength modulation spectrophotometry and the like, it is possible to improve the measurement accuracy of the input value.
頸部の屈曲や光ケーブルへの接触はNIRS測定の吸光度値に変動をもたらす。この結果として従来法の各ヘモグロビン変化量の推定値にアーティファクトが生じることはよく知られている。本手法による推定の場合でもこの種のアーティファクトの少なくとも一部は除去できないことが確認されている。その理由として、これらの撹乱によって生じる頭皮と光プローブの接触状態の変化による光減衰が波長依存的である可能性が考えられる。上記手法において本発明者は数(15)で脳組織での散乱項S(t)およびその他の要因での光減衰U(t)をともに非波長依存的としたが、U(t)に波長依存性を導入して取り扱うことも可能である。 Bending of the neck and contact with the optical cable causes fluctuations in the absorbance value of NIRS measurement. As a result of this, it is well known that artifacts occur in the estimated values of each hemoglobin change amount in the conventional method. It has been confirmed that at least a part of this kind of artifact cannot be removed even in the estimation by this method. The reason may be that the light attenuation due to the change in the contact state between the scalp and the optical probe caused by these disturbances may be wavelength-dependent. In the above technique, the present inventor made the scattering term S (t) in the brain tissue and the light attenuation U (t) due to other factors both non-wavelength dependent in the number (15), but the wavelength in U (t) It is also possible to introduce and handle dependencies.
10 光源部
12 プローブ(光照射部および光検出部)
14 光計測部
16 データ処理部
18 表示部
10
14
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005302828A JP4696300B2 (en) | 2005-10-18 | 2005-10-18 | Baseline stabilization method using wavelength difference for biological optical measurement using near infrared light |
PCT/JP2006/318487 WO2007046206A1 (en) | 2005-10-18 | 2006-09-19 | Base line stabilizing method using wave length difference for biophotometry using near-infrared radiation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005302828A JP4696300B2 (en) | 2005-10-18 | 2005-10-18 | Baseline stabilization method using wavelength difference for biological optical measurement using near infrared light |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007111101A JP2007111101A (en) | 2007-05-10 |
JP4696300B2 true JP4696300B2 (en) | 2011-06-08 |
Family
ID=37962305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005302828A Expired - Fee Related JP4696300B2 (en) | 2005-10-18 | 2005-10-18 | Baseline stabilization method using wavelength difference for biological optical measurement using near infrared light |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4696300B2 (en) |
WO (1) | WO2007046206A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5126481B2 (en) | 2007-04-20 | 2013-01-23 | スズキ株式会社 | Split-type seat back opening prevention structure |
JP5182856B2 (en) * | 2007-12-05 | 2013-04-17 | 独立行政法人産業技術総合研究所 | Optical measuring device |
JP5295584B2 (en) * | 2008-02-14 | 2013-09-18 | 国立大学法人 筑波大学 | Blood flow measuring device and brain activity measuring device using blood flow measuring device |
US9125626B2 (en) | 2009-01-29 | 2015-09-08 | Shimadzu Corporation | Light measurement device |
JP6969506B2 (en) * | 2018-06-20 | 2021-11-24 | 日本電信電話株式会社 | Optical frequency division coherent OTDR, test method, signal processing device, and program |
KR102214686B1 (en) * | 2018-12-27 | 2021-02-09 | 원광대학교산학협력단 | Method and apparatus for accurately and consistently estimating a heart rate based on a finite state machine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10165365A (en) * | 1996-12-10 | 1998-06-23 | Fuji Photo Film Co Ltd | Endoscope |
JP2000237194A (en) * | 1999-02-19 | 2000-09-05 | Hitachi Ltd | Light measuring method and device |
JP2004528913A (en) * | 2001-05-15 | 2004-09-24 | マシモ・コーポレイション | Pulse oximetry data reliability indicator |
JP2005534428A (en) * | 2002-08-05 | 2005-11-17 | インフラレドックス インコーポレーティッド | Near-infrared spectroscopic analysis of blood vessel walls |
-
2005
- 2005-10-18 JP JP2005302828A patent/JP4696300B2/en not_active Expired - Fee Related
-
2006
- 2006-09-19 WO PCT/JP2006/318487 patent/WO2007046206A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10165365A (en) * | 1996-12-10 | 1998-06-23 | Fuji Photo Film Co Ltd | Endoscope |
JP2000237194A (en) * | 1999-02-19 | 2000-09-05 | Hitachi Ltd | Light measuring method and device |
JP2004528913A (en) * | 2001-05-15 | 2004-09-24 | マシモ・コーポレイション | Pulse oximetry data reliability indicator |
JP2005534428A (en) * | 2002-08-05 | 2005-11-17 | インフラレドックス インコーポレーティッド | Near-infrared spectroscopic analysis of blood vessel walls |
Also Published As
Publication number | Publication date |
---|---|
WO2007046206A1 (en) | 2007-04-26 |
JP2007111101A (en) | 2007-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yücel et al. | Best practices for fNIRS publications | |
Yamada et al. | Separation of fNIRS signals into functional and systemic components based on differences in hemodynamic modalities | |
Jahani et al. | Motion artifact detection and correction in functional near-infrared spectroscopy: a new hybrid method based on spline interpolation method and Savitzky–Golay filtering | |
Abdelnour et al. | Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model | |
Chiarelli et al. | A kurtosis-based wavelet algorithm for motion artifact correction of fNIRS data | |
Huppert | Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy | |
Scholkmann et al. | A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology | |
Machado et al. | Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions | |
Myllylä et al. | Assessment of the dynamics of human glymphatic system by near‐infrared spectroscopy | |
US9103793B2 (en) | Intrinsic Raman spectroscopy | |
Novi et al. | Functional near-infrared spectroscopy for speech protocols: characterization of motion artifacts and guidelines for improving data analysis | |
EP1746930A1 (en) | OPTIMIZED WAVELENGTH GAP FOR IMPROVED StO2 MEASUREMENT | |
Kamran et al. | Differential path-length factor's effect on the characterization of brain's hemodynamic response function: a functional near-infrared study | |
US10925525B2 (en) | Combined pulse oximetry and diffusing wave spectroscopy system and control method therefor | |
US20150238091A1 (en) | Photoacoustic monitoring technique with noise reduction | |
JP4361822B2 (en) | Method and apparatus for measuring component concentration of target object | |
Gröhl et al. | Estimation of blood oxygenation with learned spectral decoloring for quantitative photoacoustic imaging (LSD-qPAI) | |
WO2007046206A1 (en) | Base line stabilizing method using wave length difference for biophotometry using near-infrared radiation | |
Andresen et al. | Cerebral oxygenation and blood flow in normal term infants at rest measured by a hybrid near-infrared device (BabyLux) | |
Yamada et al. | Removal of motion artifacts originating from optode fluctuations during functional near-infrared spectroscopy measurements | |
JP2014018478A (en) | Method and device for blood sugar level measurement | |
Borrell et al. | Laterality index calculations in a control study of functional near infrared spectroscopy | |
Lanka et al. | Correction of global physiology in resting-state functional near-infrared spectroscopy | |
Mirbagheri et al. | Simulation and in vivo investigation of light-emitting diode, near infrared Gaussian beam profiles | |
Klein | Optimizing spatial specificity and signal quality in fNIRS: an overview of potential challenges and possible options for improving the reliability of real-time applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4696300 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140311 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |