[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4694646B1 - 信号処理方法、信号処理装置、およびコリオリ流量計 - Google Patents

信号処理方法、信号処理装置、およびコリオリ流量計 Download PDF

Info

Publication number
JP4694646B1
JP4694646B1 JP2010035225A JP2010035225A JP4694646B1 JP 4694646 B1 JP4694646 B1 JP 4694646B1 JP 2010035225 A JP2010035225 A JP 2010035225A JP 2010035225 A JP2010035225 A JP 2010035225A JP 4694646 B1 JP4694646 B1 JP 4694646B1
Authority
JP
Japan
Prior art keywords
frequency
signal
output
converter
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010035225A
Other languages
English (en)
Other versions
JP2011169820A (ja
Inventor
大一 北見
英樹 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010035225A priority Critical patent/JP4694646B1/ja
Application filed by Oval Corp filed Critical Oval Corp
Priority to SG2012010823A priority patent/SG178452A1/en
Priority to CA2771500A priority patent/CA2771500A1/en
Priority to KR1020127010899A priority patent/KR101352306B1/ko
Priority to CN2010800534901A priority patent/CN102639972A/zh
Priority to RU2012129541/28A priority patent/RU2504737C1/ru
Priority to PCT/JP2010/070255 priority patent/WO2011102032A1/ja
Priority to TW099140562A priority patent/TWI431254B/zh
Priority to US12/957,727 priority patent/US8725433B2/en
Priority to EP10015386A priority patent/EP2363693A1/en
Priority to EP13000672.9A priority patent/EP2597434A3/en
Application granted granted Critical
Publication of JP4694646B1 publication Critical patent/JP4694646B1/ja
Publication of JP2011169820A publication Critical patent/JP2011169820A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)

Abstract

【課題】被測定流体の温度の変化、気泡の混入、気体から液体への急速な変化があった場合でも常に一定の精度で計測でき、高いフィルタリング能力をもち位相計測を少ない演算量で行うことのできる信号処理方法、信号処理装置、およびコリオリ流量計を提供する。
【解決手段】被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,一対の振動検出センサそれぞれからの出力信号を入力するA/D変換器と,フローチューブの振動周波数θを計測する周波数計測器と,周波数計測器から出力されるデジタル周波数信号のθ(1−1/N)の周波数信号を生成する発信器と,発信器によって生成された信号を用いて、A/D変換器から出力される一対の振動検出センサに対応する2つのデジタル信号のそれぞれを周波数変換し、1/Nの周波数のデジタル信号を生成する一対の直交周波数変換器とを備え,直交周波数変換器によって生成された信号を用いて位相差を得る。
【選択図】図2

Description

本発明は、流管に作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより被計測流体の質量流量及び/又は密度を得るコリオリ流量計に関する。
コリオリ流量計は、被測定流体の流通する流管の両端を支持し、その支持点回りに流管の流れ方向と垂直な方向に振動を加えたときに、流管(以下、振動が加えられるべき流管をフローチューブという)に作用するコリオリの力が質量流量に比例することを利用した質量流量計である。コリオリ流量計は周知のものであり、コリオリ流量計におけるフローチューブの形状は直管式と湾曲管式とに大別されている。
そして、コリオリ流量計は、被測定流体が流れる測定管を両端で支持し、支持された測定管の中央部を支持線に対し、直角な方向に交番駆動したとき、測定管の両端支持部と中央部との間の対称位置に質量流量に比例した位相差信号を検出する質量流量計である。位相差信号は質量流量に比例している量であるが、駆動周波数を一定とすると、位相差信号は測定管の観測位置における時間差信号として検出することができる。
測定管の交番駆動の周波数を測定管の固有の振動数と等しくすると、被測定流体の密度に応じた一定の駆動周波数が得られ、小さい駆動エネルギで駆動することが可能となることから、最近では測定管を固有振動数で駆動するのが一般的となっており、位相差信号は時間差信号として検出される。
直管式のコリオリ流量計は、両端が支持された直管の中央部直管軸に垂直な方向の振動を加えたとき、直管の支持部と中央部との間でコリオリの力による直管の変位差、すなわち位相差信号が得られ、その位相差信号に基づいて質量流量を検知するように構成されている。このような直管式のコリオリ流量計は、シンプル、コンパクトで堅牢な構造を有している。しかしながら、高い検出感度を得ることができないという問題点もあわせ持っている。
これに対して、湾曲管式のコリオリ流量計は、コリオリの力を有効に取り出すための形状を選択できる面で、直管式のコリオリ流量計よりも優れており、実際、高感度の質量流量を検出することができている。
そして、フローチューブを駆動するための駆動手段としては、コイルとマグネットの組み合わせで用いられることが一般的になっている。そのコイルとマグネットの取り付けに関しては、フローチューブの振動方向に対してオフセットしてない位置に取り付けることが、コイルとマグネットの位置関係のズレを最小にする上で好ましい。そこで、並列二本のフローチューブを備える湾曲管式のコリオリ流量計のような並列二本のフローチューブにあっては、コイルとマグネットとを挟み込む状態に取り付けられている。そのため、相対する二本のフローチューブの距離が少なくともコイルとマグネットとを挟み込む分だけ離れるような設計がなされている。
二本のフローチューブがそれぞれ平行する面内に存在するコリオリ流量計であって、口径が大きいコリオリ流量計やフローチューブの剛性が高いコリオリ流量計の場合には、駆動手段のパワーを高める必要があることから、大きな駆動手段を二本のフローチューブの間に挟み込まなければならない。そのため、フローチューブの根元である固定端部においても、そのフローチューブ同士の距離が必然的に広くなるように設計されている。
一般的に知られているU字管の測定チューブからなるコリオリ流量計1は、図28に示す如く、2本のU字管状の測定チューブ2,3の検出器4と、変換器5とを有して構成されている。
測定チューブ2,3の検出器4には、測定チューブ2,3を共振振動させる加振器6と、該加振器6によって振動したときに測定チューブ2,3の左側に生じる振動速度を検出する左速度センサ7と、該加振器6によって振動したときに測定チューブ2,3の右側に生じる振動速度を検出する右速度センサ8と、振動速度検出時の測定チューブ2,3内を流れる被測定流体の温度を検出する温度センサ9とを備えている。これら加振器6と、左速度センサ7と、右速度センサ8と、温度センサ9は、それぞれ変換器5に接続されている。
このコリオリ流量計1の測定チューブ2,3内に流れる被測定流体は、測定チューブ2,3の右側(右速度センサ8が設置されている側)から左側(左速度センサ7が設置されている側)に流れるようになっている。
したがって、右速度センサ8によって検出される速度信号は、測定チューブ2,3に流入する被測定流体の入口速度信号となる。また、左速度センサ7によって検出される速度信号は、測定チューブ2,3から流出する被測定流体の出口速度信号となる。
なお、振動速度を検出する左速度センサ7、右速度センサ8は、各々加速度センサであっても、もちろんよい。
コリオリ流量計変換器5は、図29に示す如きブロック構成を有している。
このコリオリ流量計変換器5は、駆動制御部10と、位相計測部11と、温度計測部12とによって構成されている。
すなわち、コリオリ流量計変換器5は、入出力ポート15を有している。この入出力ポート15には、駆動制御部10を構成する駆動信号出力端子16が設けられている。駆動制御部10は、測定チューブ2,3に取り付けられた加振器6に、所定のモードの信号を駆動信号出力端子16から出力し、測定チューブ2,3が共振振動させている。
この駆動信号出力端子16には、増幅器17を介して、駆動回路18が接続されている。この駆動回路18においては、測定チューブ2,3を共振振動させる駆動信号を生成し、該駆動信号を増幅器17に出力する。この増幅器においては、入力した駆動信号を増幅して、駆動信号出力端子16に出力する。この駆動信号出力端子16においては、増幅器17から出力されてくる駆動信号を加振器6に出力する。
また、入出力ポート15には、加振器6によって振動したときに測定チューブ2,3の左側に生じる振動速度の検出信号を入力する左速度信号入力端子19が設けられており、この左速度信号入力端子19は、位相計測部11を構成している。
また、入出力ポート15には、加振器6によって振動したときに測定チューブ2,3の右側に生じる振動速度の検出信号を入力する右速度信号入力端子20が設けられており、この右速度信号入力端子20は、位相計測部11を構成している。
よって、測定チューブが安定して共振振動している時は、駆動信号出力端子16から出力される出力信号周波数と、左速度信号入力端子19、及び右速度信号入力端子20から入力される入力信号周波数が収斂して等価となる。
位相計測部11は、測定チューブ2,3に取り付けられた加振器6に、所定のモードの信号を駆動信号出力端子16から出力して、加振器6によって測定チューブ2,3を振動したときの一対の速度センサの振動信号をA/D変換しデジタル変換処理をした後、変換された信号の位相差を求めている。
左速度信号入力端子19には、増幅器21の入力端子が接続されており、この増幅器21の出力端子には、A/D変換器22が接続されている。このA/D変換器22においては、左速度信号入力端子19から出力される振動信号を増幅器21で増幅したアナログ信号をデジタル値に変換している。
A/D変換器22には、演算器23が接続されている。
また、右速度信号入力端子20には、増幅器24の入力端子が接続されており、この増幅器24の出力端子には、A/D変換器25が接続されている。このA/D変換器25においては、右速度信号入力端子20から出力される振動信号を増幅器24で増幅したアナログ信号をデジタル値に変換している。
そして、A/D変換器25の出力されるデジタル信号は、演算器23に入力される。
さらに、入出力ポート15には、温度センサ9からの検出値を入力する温度計測部11を構成する温度信号入力端子26が設けられている。温度計測部12は、測定チューブ2,3内に設けられ測定チューブ2,3内の温度を検出する温度センサ9による検出温度によってチューブ温度の補償を行っている。
この温度センサ9には、一般に抵抗型温度センサが用いられており、抵抗値を計測することによって温度を算出している。
温度信号入力端子26には、温度計測回路27が接続されており、この温度計測回路27によって温度センサ9から出力される抵抗値に基づいて測定チューブ2,3内の温度を算出している。この温度計測回路27において算出した測定チューブ2,3内の温度は、演算器23に入力されるようになっている。
このようなコリオリ流量計1による位相計測方法は、測定チューブ2,3に取り付けられた加振器6から、測定チューブ2,3に1次モードで振動が与えられ、この振動が与えられた状態で、測定チューブ2,3内に被測定流体が流れると、測定チューブ2,3に位相モードが生成される。
したがって、コリオリ流量計1の右速度センサ8からの信号(入口速度信号)と左速度センサ7からの信号(出口速度信号)は、この2つの信号が重畳された形で出力される。この2つの信号が重畳された形で出力される信号は、流量信号だけでなく不要なノイズ成分を多く含んでおり、さらに計測流体の密度変化などによっても振動数が変化してしまう。
そのために、左速度センサ7と右速度センサ8からの信号の内、不要な信号を取り除く必要がある。しかしながら、左速度センサ7と右速度センサ8からの信号の内、不要な信号を取り除き、位相を計算することは非常に難しい。
さらに、コリオリ流量計1は、非常に高精度な計測と高速な応答性を要求されることがしばしばある。この要求を満足するためには、非常に複雑な演算と高い処理能力をもった演算器を必要とし、コリオリ流量計1そのものが非常に高価なものになっている。
このようなことから、コリオリ流量計1には、常に計測周波数に合わせた最適なフィルタと高速な演算方法を併せ持った位相差計測方法の確立が必要とされている。
従来の流量を計算するための位相差計測方法において、ノイズを除去するためのフィルタ処理方法としては、アナログフィルタを用いた方法と、デジタルフィルタを用いた方法とがある。
アナログフィルタを用いた方法は、比較的安価に構成できる(例えば、特許文献1、特許文献2参照)。しかし、この特許文献1、特許文献2においてフィルタの能力を上げることには限界があり、コリオリ流量計のフィルタとしては、十分ではないという問題点がある。
近年、デジタル信号処理を用いたコリオリ流量計が数多く開発されており、
従来の流量を計算するための位相差計測方法において、ノイズを除去するためのフィルタ処理方法としてデジタルフィルタを用いた方法が開発されている。
デジタル信号処理を用いたコリオリ流量計のタイプとしては、従来、フーリエ変換を用いて位相を計測する方法(例えば、特許文献3参照)、ノッチフィルタ、バンドパスフィルタなどのフィルタテーブルを持つことによって、入力周波数に併せた最適なテーブルを選択し、位相を計測する方法(例えば、特許文献4、特許文献5参照)などがある。
《フーリエ変換を用いた位相計測方法》
フーリエ変換を用いた位相計測方法によるコリオリ流量計変換器は、図30に示す如きブロック構成を用いて行われる。
図30において、左速度センサ7によって検出される加振器6によって振動したときに測定チューブ2,3の左側に生じる振動速度の検出信号(出口側速度信号)を入力する入出力ポート15に設けられている左速度信号入力端子19には、ローパスフィルタ30が接続されている。このローパスフィルタ30は、加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3の左側に生じる振動速度を検出する左速度センサ7から出力される左速度信号(出口側速度信号)を周波数フィルタを通して、低い周波数の左速度信号(出口側速度信号)のみを取り出す回路である。
このローパスフィルタ30には、A/Dコンバータ31が接続されている。このA/Dコンバータ31は、ローパスフィルタ30から出力されてくるアナログ信号である左速度信号をデジタル信号に変換するものである。このA/Dコンバータ31においてデジタル信号に変換された左速度信号は、位相差計測器32に入力される。
また、このA/Dコンバータ31には、タイミング発生器33が接続されている。このタイミング発生器33は、入力周波数のM倍(Mは自然数)のサンプリングのタイミングを生成するものである。
一方、右速度センサ8によって検出される加振器6によって振動したときに測定チューブ2,3の右側に生じる振動速度の検出信号(入口側速度信号)を入力する入出力ポート15に設けられている右速度信号入力端子20には、ローパスフィルタ34が接続されている。このローパスフィルタ34は、加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3の右側に生じる振動速度を検出する右速度センサ8から出力される右速度信号(入口側速度信号)を周波数フィルタを通して、低い周波数の右速度信号(入口側速度信号)のみを取り出す回路である。
このローパスフィルタ34には、A/Dコンバータ35が接続されている。このA/Dコンバータ35は、ローパスフィルタ34から出力されてくるアナログ信号である右速度信号をデジタル信号に変換するものである。このA/Dコンバータ35においてデジタル信号に変換された右速度信号は、位相差計測器32に入力される。
また、このA/Dコンバータ35には、タイミング発生器33が接続されている。このタイミング発生器33は、入力周波数のM倍(Mは自然数)のサンプリングのタイミングを生成するものである。
また、右速度センサ8によって検出される加振器6によって振動したときに測定チューブ2,3の右側に生じる振動速度の検出信号(入口側速度信号)を入力する入出力ポート15に設けられている右速度信号入力端子20には、周波数計測器36が接続されている。この周波数計測器36は、右速度センサ8によって検出される加振器6によって振動したときに測定チューブ2,3の右側に生じる振動速度の検出信号(入口側速度信号)の周波数を計測するものである。
この周波数計測器36には、タイミング発生器33が接続されている。この周波数計測器36において計測された周波数は、タイミング発生器33に出力され、タイミング発生器33において入力周波数のM倍(Mは自然数)のサンプリングのタイミングが生成され、A/Dコンバータ31,35に出力される。
この位相差計測器32と、タイミング発生器33と、周波数計測器36とによって位相計測演算器40が構成されている。
図30に示すように構成されるフーリエ変換を用いた位相計測方法においては、右速度センサ8からの入力信号(入口側速度信号)が、まず、周波数計測器36に入力され周波数が計測される。この周波数計測器36において計測された周波数は、タイミング発生器33に入力され、このタイミング発生器33においては、入力周波数のM倍(Mは自然数)のサンプリングのタイミングが生成され、A/Dコンバータ31,35に入力される。
また、A/Dコンバータ31においてデジタル信号に変換された測定チューブ2,3の左側に生じる振動速度の検出信号(出口側速度信号)と、A/Dコンバータ35においてデジタル信号に変換された測定チューブ2,3の右側に生じる振動速度の検出信号(入口側速度信号)は、位相差計測器32に入力される。そして、この位相差計測器32において、内蔵されるディスクリートフーリエ変換器でフーリエ変換され、その変換された信号の実数成分と虚数成分との比から位相差が演算される。
《デジタルフィルタを用いた位相計測方法》
デジタルフィルタを用いた位相計測方法によるコリオリ流量計変換器は、図31,図32に示されるブロック構成図を用いて説明する。
デジタルフィルタには、ノッチフィルタやバンドパスフィルタなどの周波数選択手段があり、このノッチフィルタやバンドパスフィルタなどの周波数選択手段を用い入力信号のS/N比を向上させるものである。
図31には、デジタルフィルタとしてノッチフィルタを用いたコリオリ流量計変換器のブロック構成が示されている。
図31に図示の入出力ポート15、左速度信号入力端子19、右速度信号入力端子20、ローパスフィルタ30,34、A/Dコンバータ31,35は、図30に図示の入出力ポート15、左速度信号入力端子19、右速度信号入力端子20、ローパスフィルタ30,34、A/Dコンバータ31,35と同一の構成を有するものである。
図31において、A/Dコンバータ31には、ノッチフィルタ51が接続されている。このノッチフィルタ51は、A/Dコンバータ31においてデジタル信号に変換された左速度信号を基に周波数を選択し、入力信号のS/N比を向上して出力するものである。
このノッチフィルタ51には、位相計測器52が接続されており、この位相計測器52は、ノッチフィルタ51によってS/N比を向上させた後のデジタル信号に変換された左速度信号の位相を計測するものである。
また、ノッチフィルタ51には、周波数計測器53が接続されている。この周波数計測器53は、ノッチフィルタ51によってS/N比を向上させた後のデジタル信号に変換された左速度信号の周波数を計測するものである。
そして、この周波数計測器53において計測された周波数は、ノッチフィルタ51に入力される。
また、A/Dコンバータ35には、ノッチフィルタ54が接続されている。このノッチフィルタ54は、A/Dコンバータ31においてデジタル信号に変換された左速度信号を基に周波数を選択し、入力信号のS/N比を向上して出力するものである。
このノッチフィルタ54には、位相計測器52が接続されており、この位相計測器52は、ノッチフィルタ54によってS/N比を向上させた後のデジタル信号に変換された右速度信号の位相を計測するものである。
また、ノッチフィルタ54には、周波数計測器53において計測された周波数が、入力されるようになっている。
図31において、クロック55は、同期を取るためのもので、A/Dコンバータ31,35に入力され、A/Dコンバータ31とA/Dコンバータ35の同期を取っている。
このノッチフィルタ51,54と、位相計測器52と、周波数計測器53と、クロック55とによって位相計測演算器50が構成されている。
図32には、デジタルフィルタとしてバンドパスフィルタ(BPF)を用いたコリオリ流量計変換器のブロック構成が示されている。
図32に図示の入出力ポート15、左速度信号入力端子19、右速度信号入力端子20、ローパスフィルタ30,34、A/Dコンバータ31,35は、図31に図示の入出力ポート15、左速度信号入力端子19、右速度信号入力端子20、ローパスフィルタ30,34、A/Dコンバータ31,35と同一の構成を有するものである。
図32において、A/Dコンバータ31には、バンドパスフィルタ(BPF)61が接続されている。このバンドパスフィルタ61は、A/Dコンバータ31においてデジタル信号に変換された加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3の左側に生じる振動速度を検出する左速度センサ7から出力される左速度信号(出口側速度信号)を、周波数フィルタを通して、設定された周波数の左速度信号(出口側速度信号)のみを取り出す回路である。
このバンドパスフィルタ61には、位相計測器62が接続されており、この位相計測器62は、バンドパスフィルタ61によってS/N比を向上させた後のデジタル信号に変換された左速度信号の位相を計測するものである。
また、バンドパスフィルタ61には、周波数計測器63が接続されている。この周波数計測器63は、A/Dコンバータ31によってデジタル信号に変換され、バンドパスフィルタ61によってS/N比を向上させた後の左速度信号の周波数を計測するものである。
そして、この周波数計測器63において計測された周波数は、バンドパスフィルタ61に入力される。
また、A/Dコンバータ35には、バンドパスフィルタ64が接続されている。このバンドパスフィルタ64は、A/Dコンバータ35においてデジタル信号に変換された加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3の右側に生じる振動速度を検出する右速度センサ8から出力される右速度信号(入口側速度信号)を、周波数フィルタを通して、設定された周波数の右速度信号(入口側速度信号)のみを取り出す回路である。
このバンドパスフィルタ64には、位相計測器62が接続されており、この位相計測器62は、バンドパスフィルタ64によってS/N比を向上させた後のデジタル信号に変換された左速度信号の位相を計測するものである。
また、バンドパスフィルタ64には、周波数計測器63が接続されている。そして、この周波数計測器63において計測された周波数は、バンドパスフィルタ64に入力される。
図32において、クロック65は、同期を取るためのもので、クロック65からのクロック信号は、A/Dコンバータ31,35に入力され、A/Dコンバータ31とA/Dコンバータ35の同期を取っている。
このバンドパスフィルタ61,64と、位相計測器62と、周波数計測器63と、クロック65とによって位相計測演算器60が構成されている。
特開平2−66410号公報 特表平10−503017号公報 特許第2799243号公報 特許第2930430号公報 特許第3219122号公報
特許文献3に示すようなフーリエ変換を用いた位相計測方法にあっては、入力される振動速度の検出信号の入力周波数が一定である場合、周波数の選択においてフーリエ変換を用いるために、非常に周波数選択性の高い位相計測方法を行うことができる。
しかし、この特許文献3に示すようなフーリエ変換を使う方法にあっては、入力される振動速度の検出信号の入力周波数が、密度や温度などによって変化した場合、変換方法やサンプリングレートを変えなければならないために、演算周期や演算方法が変わり、測定値が変動し不安定になってしまう。
さらに、特許文献3に示すようなフーリエ変換を使う方法にあっては、入力される振動速度の検出信号の入力周波数が、密度や温度などによって変化した場合、サンプリングレートを入力される振動速度信号の入力周波数に正確に同期させなければならないために、設計が非常に複雑なものになる。
このために被測定流体の温度や、気泡などが流体に混ざり密度が急激に変化した場合、極端に計測精度が落ちてしまうという問題点を有している。
加えて、特許文献3に示すようなフーリエ変換を使う方法にあっては、フーリエ変換を行うため、非常に演算処理が多くなってしまうという問題点を有している。
特許文献4、特許文献5に示すようなノッチフィルタ、バンドパスフィルタなどのフィルタテーブルを持つことによって、入力周波数に併せた最適なテーブルを選択し、位相を計測する方法にあっては、サンプリングレートを固定することによって設計を単純化することができる。
しかし、特許文献4、特許文献5に示すようなデジタルフィルタを用いた位相計測方法も特許文献3に示すようなフーリエ変換を使う方法と同様に、入力周波数の変化に対して非常に多くのフィルタテーブルを持つこととなり、演算器のメモリの消費が大きくなってしまうという問題点を有している。
また、特許文献4、特許文献5に示すようなデジタルフィルタを用いた位相計測方法にあっては、入力周波数が急激に変化した場合に最適なフィルタを選択することが困難になってしまうという問題点を有している。
さらに、特許文献4、特許文献5に示すようなデジタルフィルタを用いた位相計測方法にあっては、周波数の選択能力を上げるために、非常に多くの演算をしなければならないという問題点を有している。
この特許文献4、特許文献5に示すようなデジタルフィルタを用いた位相計測方法にあっては、以下に示す如き問題を有している。
(1)入力周波数の変化に対して精度良く追従することができない。すなわち、被測定流体の密度が急速に変化する気泡混入時での計測などを実現することが非常に困難である。
(2)周波数の選択能力を向上させるためには、非常に多くの演算をしなければならない。このため高速な応答性を実現させることが困難であり、短時間でのバッチ処理などに不向きである。
(3)演算器メモリの消費が大きく、設計が複雑になってしまう。したがって、回路構成や設計が複雑になり、コスト的に非常にデメリットになる。
以上総合すると、従来のデジタルフィルタ処理による位相計測方法にあっては、いずれも測定チューブ2,3のチューブ振動数以外の帯域のノイズを取り除くため、常に測定チューブ2,3のチューブ周波数に追従するようにフィルタテーブルの切り替えや演算方法の変更、さらには、サンプリングレートの変更などを行う必要があるために、非常に複雑且つ高速性に欠ける演算を行わなければならないという問題点を有していた。
このため、加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3の右側に生じる振動速度を検出する右速度センサ8,測定チューブ2,3の左側に生じる振動速度を検出する左速度センサ7によって検出される振動速度信号の入力周波数が変動するたびに演算誤差を生じ易く、非常に計測精度が悪いものであるという問題点を有していた。
本発明の目的は、被測定流体の温度が変化したり、被測定流体に気泡が混入したり、被測定流体が気体から液体に急速に変化した場合であっても、常に一定の精度で計測することができ、高いフィルタリング能力をもった位相計測を実現し、極めて少ない演算処理量で行うことのできる信号処理方法、信号処理装置、およびコリオリ流量計を提供することにある。
上記課題を解決するためなされた請求項1に記載の信号処理方法は、測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、前記フローチューブの左右に設けられる一対の振動検出センサである速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
前記一対の振動検出センサのそれぞれから出力されるアナログ信号をデジタル振動周波数信号に変換する第1のステップと,
前記フローチューブの振動周波数を前記加振器への制御信号に基づいて計測する第2のステップと,
前記第2のステップにおいて計測される前記一対の振動検出センサから出力されるデジタル振動周波数信号に基づいて、前記第1のステップにおいて変換されたデジタル信号の周波数が1/Nになるように常に制御する制御信号を生成する第3のステップと,
前記第1のステップにおいて変換されたデジタル振動周波数信号を、前記第3のステップにおいて生成される制御信号によって直交変換して、該第1のステップにおいて変換されたデジタル振動周波数信号の1/Nの周波数信号を得る第4のステップとを備え,
前記第4のステップにおいて変換された前記デジタル振動周波数信号の1/Nの周波数信号を用いて前記一対の振動検出センサの検出信号の位相差を検出できるようにしたことを特徴としている。
上記課題を解決するためなされた請求項2に記載の信号処理方法は、測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、振動検出センサである一対の速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
前記フローチューブの振動周波数を前記加振器への制御信号に基づいて計測し、
前記計測した周波数に基づいて制御信号を発信し,
前記速度センサ若しくは加速度センサから検出される前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数の入力信号をA/D変換して得る2つの流量信号の各々について前記発信する制御信号に基づいて合成して周波数が常に一定となるように変換し,
前記制御された各々の変換合成周波数の信号から位相を計測することにより位相差信号成分を得るようにしたことを特徴としている。
上記課題を解決するためなされた請求項3に記載の信号処理装置は、測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、前記フローチューブの左右に設けられる一対の振動検出センサである速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
前記一対の振動検出センサのそれぞれから出力されるアナログ信号をデジタル信号に変換するためのA/D変換器と,
前記フローチューブの振動周波数θを前記加振器への制御信号に基づいて計測する周波数計測器と,
前記周波数計測器から出力されるデジタル周波数信号のθ(1−1/N)の周波数信号を生成する発信器と,
前記発信器によって生成された信号を用いて、前記A/D変換器から出力される前記一対の振動検出センサに対応する2つのデジタル信号のそれぞれを周波数変換し、1/Nの周波数のデジタル信号を生成する一対の直交周波数変換器とを備え,
前記直交周波数変換器によって生成された信号を用いて位相差を得るようにしたことを特徴としている。
上記課題を解決するためなされた請求項4に記載の信号処理装置は、測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、振動検出センサである速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
前記フローチューブの周波数を前記加振器への制御信号に基づいて計測する周波数計測器と,
前記周波数計測器において計測した周波数に基づいて所望の周波数信号を発信出力する発信器と,
前記速度センサ若しくは加速度センサから検出される前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数のそれぞれの入力信号と、前記発信器の出力周波数を加算(又は減算)して、それぞれの周波数値が常に一定になるように周波数変換する周波数変換部と,
前記周波数変換器によって変換される速度センサ若しくは加速度センサから検出されたそれぞれの周波数信号の位相差の計測を行う位相差計測部と,
によって構成してなることを特徴としている。
上記課題を解決するためなされた請求項5に記載の信号処理装置は、測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、振動検出センサである速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
前記フローチューブの周波数を前記加振器への制御信号に基づいて計測する周波数計測器と,
前記周波数計測器において計測した周波数に基づいて所望の周波数信号を発信出力する発信器と,
前記一対の振動検出センサの一方のセンサを第1のA/Dコンバータによってデジタル信号に変換された該入力信号周波数と、前記発信器から出力される出力周波数とを加算(または減算)して該周波数値が常に一定になるように周波数変換する第1の周波数変換部と,
前記一対の振動検出センサの他方のセンサを第2のA/Dコンバータによってデジタル信号に変換された該入力信号周波数と、前記発信器から出力される出力周波数とを加算(または減算)して該周波数値が常に一定になるように周波数変換する第2の周波数変換部と,
前記第1の周波数変換部において変換され出力される第1の周波数信号と前記第2の周波数変換部において変換され出力される第2の周波数信号との位相差の計測を行う位相差計測部と,
によって構成してなることを特徴としている。
上記課題を解決するためなされた請求項6に記載の信号処理装置は、測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、振動検出センサである一対の速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
前記フローチューブの周波数を前記加振器への制御信号に基づいて計測する周波数計測器と,
前記周波数計測器において計測した周波数に基づいて所望の周波数信号を発信出力する発信器と,
前記一対の振動検出センサの一方の速度センサが第1のA/Dコンバータによってデジタル信号に変換されて出力されてくる入力信号周波数を、前記発信器から出力される出力周波数を用いて、常に一定の周波数信号に周波数シフトして別の周波数帯域に移動する第1の周波数変換部と,
前記一対の振動検出センサの他方の速度センサが第2のA/Dコンバータによってデジタル信号に変換されて出力されてくる入力信号周波数を、前記発信器から出力される出力周波数を用いて、常に一定の周波数信号に周波数シフトして別の周波数帯域に移動する第2の周波数変換部と,
前記第1の周波数変換部において変換され出力される一定の周波数信号に変換された第1の周波数信号と、前記第2の周波数変換部において変換され出力される一定の周波数信号に変換された第2の周波数信号との位相差の計測を行う位相差計測部と,
によって構成したことを特徴としている。
上記課題を解決するためなされた請求項7に記載のコリオリ流量計は、測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し該フローチューブを振動させて、振動検出センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
前記一対の振動検出センサのそれぞれから出力されるアナログ信号をデジタル信号に変換するためのA/D変換器と,
前記フローチューブの振動周波数θを前記加振器への制御信号に基づいて計測する周波数計測器と,
前記周波数計測器から出力されるデジタル周波数信号のθ(1−1/N)の周波数信号を生成する発信器と,
前記発信器によって生成された信号を用いて、前記A/D変換器から出力される前記一対の振動検出センサに対応する2つのデジタル信号のそれぞれを周波数変換し、1/Nの周波数のデジタル信号を生成する一対の直交周波数変換器とを備え,
前記直交周波数変換器によって生成された信号を用いて位相差を得る信号処理装置を設けたことを特徴としている。
上記課題を解決するためなされた請求項8に記載のコリオリ流量計は、測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、振動検出センサである速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
前記フローチューブの周波数を前記加振器への制御信号に基づいて計測する周波数計測器と,
前記周波数計測器において計測した周波数に基づいて所望の周波数信号を発信出力する発信器と,
前記一対の振動検出センサの一方の速度センサを第1のA/Dコンバータによってデジタル信号に変換されて出力されてくる入力信号周波数を、前記発信器から出力される出力周波数を用いて、常に一定の周波数信号に周波数シフトして別の周波数帯域に移動する第1の周波数変換部と,
前記一対の振動検出センサの他方の速度センサを第2のA/Dコンバータによってデジタル信号に変換されて出力されてくる入力信号周波数を、前記発信器から出力される出力周波数を用いて、常に一定の周波数信号に周波数シフトして別の周波数帯域に移動する第2の周波数変換部と,
前記第1の周波数変換部から出力される一定の周波数信号に変換された第1の周波数信号と、前記第2の周波数変換部から出力される一定の周波数信号に変換された第2の周波数信号との位相差の計測を行う位相差計測部とを備え,
前記第1の周波数変換部から出力される一定の周波数信号に変換された第1の周波数信号と、前記第2の周波数変換部から出力される一定の周波数信号に変換された第2の周波数信号との位相差を得る信号処理装置を設けたことを特徴としている。
コリオリ式流量計にはさまざまな測定管の形状がある。たとえば湾曲管のものやストレート管などである。また測定管を駆動するモードにおいても1次や2次のモードなどさまざまなモードにおいて駆動されるタイプが存在する。
周知の如く振動管から得られる駆動周波数帯域は数十Hz〜数KHzに及ぶ、たとえばU字管を用いて1次のモードで測定管を振動させた場合、周波数は100Hz前後であり、またストレート形状の測定管を1次のモードで振動させた場合は500Hz〜1000Hz程度が実現されている。
しかし、ひとつの流量計変換器に於いて、コリオリ式流量計の位相計測を、数十Hz〜数KHzの周波数帯域で常に同様な処理を用いて位相計測を行うことは非常に困難で、数種のタイプに分けて設計する必要があった。
本発明に係る信号処理方法によれば、同定のアルゴリズムに基づく有利な信号処理によって、上記の如き本質的な課題を払拭でき、かつ被測定流体の温度変化や、気泡混入、さらに被測定流体が気体から液体に急速に変化した場合であっても、常に安定した一定の精度で計測することができ、高いフィルタリング能力をもった位相計測を特長にして、高い性能を提供できる。
本発明に係る信号処理装置によれば、被測定流体の温度が変化したり、被測定流体に気泡が混入したり、被測定流体が気体から液体に急速な変化があった場合であっても、常に一定の精度で安定した計測をすることができ、高いフィルタリング能力をもった位相計測を少ない演算処理量で行うことができる。
本発明に係るコリオリ流量計によれば、被測定流体の温度が変化したり、被測定流体に気泡が混入したり、被測定流体が気体から液体に急速な変化があった場合であっても、常に一定の精度で安定した計測をすることができ、高いフィルタリング能力をもった位相計測を少ない演算処理量で行うことができる。
本発明に係る信号処理方法、およびその装置の原理を示すブロック図である。 図1に図示の信号処理装置における駆動周波数が100Hzのコリオリ流量計と駆動周波数が1000Hzのコリオリ流量計の周波数波形を示す図である。 図1に図示の信号処理装置における駆動周波数が100Hzのコリオリ流量計の駆動周波数を分周したときの周波数波形を示す図である。 図1に図示の信号処理装置における駆動周波数が100Hzのコリオリ流量計の駆動周波数をシフトしたときの周波数波形を示す図である。 図1に図示の信号処理装置の具体的構成図である。 図5に図示のローパスフィルタから出力される測定チューブの左側に生じる振動速度の検出信号を示す図である。 図5に図示のA/Dコンバータにおいてから出力される図6に図示の信号を任意の一定周期でサンプリングしてデジタル信号化した信号を示す図である。 図5に図示の発信器から出力される発信周波数信号(θXn)を示す図である。 図5に図示の直交変調器の内部において生成したA/Dコンバータからの出力信号(cosθ)の90度シフト信号を示す図である。 図5に図示の直交変調器の内部において生成した発信器からの出力信号(cosθXn)の90度シフト信号を示す図である。 図5に図示の直交変調器において直交周波数変換をした信号を示す図である。 図5に図示の信号処理装置の具体的構成図のタイムチャートを示す図である。 図5に図示の信号処理装置の具体的構成図のタイムチャートを示す図である。 図5に図示の信号処理装置の具体的構成図の動作フローチャートである。 図5に図示の周波数計測器のブロック図である。 本発明に係る実施例4における信号処理装置の原理を示すブロック図である。 図16に図示の信号処理装置の具体的構成を示すブロック図である。 図17に図示の信号処理装置のフィードフォワード制御の方法による具体的構成を示すブロック図である。 図18に図示のLPFからの出力信号を示す図である。 図18に図示のA/Dコンバータからの出力信号を示す図である。 図18に図示の発信器からの出力信号を示す図である。 図18に図示の周波数変換部の掛け算器における出力信号を示す図である。 図18に図示の周波数変換部からの出力信号を示す図である。 図18に図示の信号処理装置の具体的構成図のタイムチャートを示す図である。 図18に図示の信号処理装置の具体的構成図の動作フローチャートである。 図18に図示の信号処理装置の周波数変換部のブロック構成図である。 図18に図示の信号処理装置の周波数計測部のブロック構成図である。 本発明が適用される一般的なコリオリ流量計の構成図である。 図28に図示のコリオリ流量計のコリオリ流量計変換器のブロック構成図である。 図29に図示のコリオリ流量計変換器のフーリエ変換を用いた位相計測方法を示すブロック図である。 図29に図示のコリオリ流量計変換器のノッチフィルタを用いた位相計測方法を示すブロック図である。 図29に図示のコリオリ流量計変換器のバンドパスフィルタを用いた位相計測方法を示すブロック図である。
本発明は、常に一定の精度で計測することができ、高いフィルタリング能力をもった位相計測を実現し、極めて少ない演算処理量で行うことができるという目的を、被測定流体の温度が変化したり、被測定流体に気泡が混入したり、被測定流体が気体から液体に急速に変化した場合においても、実現できるようにした。
以下、本発明を実施するための形態の実施例1について図1〜図13を用いて説明する。
図1は本発明に係る信号処理方法、およびその装置の原理図、図2は駆動周波数が100Hzのコリオリ流量計と駆動周波数が1000Hzのコリオリ流量計の周波数波形を示す図、図3は駆動周波数が100Hzのコリオリ流量計の駆動周波数を分周したときの周波数波形を示す図、図4は駆動周波数が100Hzのコリオリ流量計の駆動周波数をシフトしたときの周波数波形を示す図、図5は図1に図示の信号処理装置の具体的構成図、図6は図5に図示のローパスフィルタから出力される測定チューブの左側に生じる振動速度の検出信号を示す図、図7は図5に図示のA/Dコンバータから出力される図6に図示の信号を任意の一定周期でサンプリングしてデジタル信号化した信号を示す図、図8は図5に図示の発信器から出力される発信周波数信号(θXn)を示す図、図9は図5に図示の直交変調器の内部において生成したA/Dコンバータからの出力信号(cosθ)の90度シフト信号を示す図、図10は図5に図示の直交変調器の内部において生成した発信器からの出力信号(cosθXn)の90度シフト信号を示す図、図11は図5に図示の直交変調器において直交周波数変換をした信号を示す図、図12は図5に図示の信号処理装置の具体的構成図のタイムチャートを示す図、図13は図5に図示の信号処理装置の具体的構成図のタイムチャートを示す図である。
図1には、本発明に係る信号処理方法、およびその装置の原理図が示されている。
図1において、加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3に生じる振動速度は、振動速度センサ70によって検出され、この検出された振動速度は、振動速度信号演算器80において演算処理される。この振動速度センサ70は、図28における左速度センサ7と右速度センサ8に相当している。
振動速度信号演算器80は、直交変調器85と、発信器90と、位相計測器95とによって構成される。
直交変調器85は、振動速度センサ70によって検出される加振器6によって測定チューブ2,3を振動したときに測定チューブ2,3に生じる振動速度を直交変調するものである。この直交変調器85には、発信器90からの信号が入力されるようになっている。
そして、この直交変調器85において直交変調された信号は、直交変調器85の後段に設けられている位相計測器95に入力される。この位相計測器95は、振動速度センサ70からの速度信号をA/D変換しデジタル変換処理をした後、その位相差を求めるものである。
図1に図示の信号処理方法、およびその装置は、入力信号を1/Nに直交周波数変換し、周波数変換後に位相計測を行うことによって、入力周波数の帯域を1/Nにし、かつ安定的な位相計測が行えるようにしたものである。
前述のように本発明では、センサから入力される位相/及び速度信号を周波数変換を用い1/N(Nは任意の数)の周波数に変換し、変換後の位相差を計測することにより、常に同じ帯域のフィルタを用いることで実現している。また測定流体の密度や温度などが変化することによる位相及び速度信号の周波数変化に対しても、計算精度や演算周期が影響をほとんど受けずに流量を計測することができる。
例えば、図2に示すような駆動周波数が100Hzのコリオリ流量計においては、フィルタの周波数帯域を95〜105Hzとした場合、密度や温度の変化により駆動周波数がフィルタの周波数帯域の外に出てしまう場合がある。このため、その前後の周波数帯域のフィルタテーブル、例えば、85Hz〜95Hzと105Hz〜115Hzのテーブルが必要である。フィルタの周波数帯域を拡げれば少ない数のテーブルですむが、計測波形がノイズの多い位相及び速度信号となってしまうため、非常に計測精度を悪化させてしまう。
さらに駆動周波数が1000Hzのコリオリ流量計の位相及び速度信号を計測しようとした場合、サンプリングレートやフィルタテーブルを変えなければならないため、計算精度や演算周期が変化する。
本発明に係る信号処理における駆動周波数が100Hzのコリオリ流量計では、図3に示すように、例えばNの値を4に設定することによって、センサから入力される位相及び速度信号が100Hzの場合、100/4の25Hzに周波数変換され、周波数変換した位相及び速度信号をフィルタリング後、位相計算を行う。
使用するフィルタの帯域は、20Hz〜30Hz程度の帯域を使用することによって、密度や温度の変化により駆動周波数が変化しても80Hz〜120Hzの帯域外であれば常に同じフィルタテーブルを用いることができるため、常に安定した計算精度と演算周期で計測をすることができる。
また、駆動周波数が1000Hzのコリオリ流量計では、Nの値を40に設定することによって駆動周波数が100Hzのコリオリ流量計とまったく同様なフィルタの帯域を用いて流量計測を行うことができる。
さらに、本発明においては、図4に示すように、位相及び速度信号の1/N変換する方法において、入力周波数を分周せずに周波数シフトする方法がある。この図4に図示のコリオリ流量計の場合、入力周波数を分周せずに周波数シフトするために、フィルタリングの効果を損なわずに流量計算を行うことができるという特長を有している。
たとえば、図3に図示のコリオリ流量計のように入力される信号を全て1/N分周する場合は、ノイズ成分も同様に1/Nされてしまうため、フィルタリングの帯域を狭めてもあまり効果が期待できない。
したがって、図4に図示のコリオリ流量計のように、周波数シフトによって位相及び速度信号の1/N変換した場合、ノイズ成分も同時に周波数シフトされるが、フィルタの帯域を1/Nにすることができるため、周波数シフト前にくらべ非常に効果的なフィルタリングを行うことができる。
図5には、図1に図示の信号処理装置の具体的構成が示されている。
図5において、レフトピックオフ(LPO)7(左速度センサ7に相当)には、ローパスフィルタ30が接続されている。すなわち、加振器6によって振動したときに測定チューブ2,3の左側に生じる振動速度の検出信号(出口側速度信号)をレフトピックオフ7が検出すると、この振動速度の検出信号(出口側速度信号)は、ローパスフィルタ30に入力される。
このローパスフィルタ30は、加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3の左側に生じる振動速度を検出する左速度センサ7から出力される左速度信号(出口側速度信号)を周波数フィルタを通して、低い周波数の左速度信号(出口側速度信号)のみを取り出す回路である。
このローパスフィルタ30には、A/Dコンバータ31が接続されている。このA/Dコンバータ31は、ローパスフィルタ30から出力されてくるアナログ信号である左速度信号(出口側速度信号)をデジタル信号に変換するものである。このA/Dコンバータ31においてデジタル信号に変換された左速度信号(出口側速度信号)は、信号処理装置100に入力される。
一方、ライトピックオフ(RPO)8(右速度センサ8に相当)には、ローパスフィルタ34が接続されている。すなわち、加振器6によって振動したときに測定チューブ2,3の右側に生じる振動速度の検出信号(入口側速度信号)をライトピックオフ8が検出すると、この振動速度の検出信号(入口側速度信号)は、ローパスフィルタ34に入力される。
このローパスフィルタ34は、加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3の右側に生じる振動速度を検出する右速度センサ8から出力される右速度信号(入口側速度信号)を周波数フィルタを通して、低い周波数の右速度信号(入口側速度信号)のみを取り出す回路である。
このローパスフィルタ34には、A/Dコンバータ35が接続されている。このA/Dコンバータ35は、ローパスフィルタ34から出力されてくるアナログ信号である右速度信号(入口側速度信号)をデジタル信号に変換するものである。
また、この信号処理装置100は、A/Dコンバータ35に接続されている。この信号処理装置100は、右速度信号(入口側速度信号)、左速度信号(出口側速度信号)の各々を1/Nに直交周波数変換し、周波数変換後に位相計測を行うことによって、入力周波数の帯域を1/Nにし、かつ安定的な位相計測が行えるようにするものである。
信号処理装置100においてA/Dコンバータ31からの信号は、直交変調器110に入力されている。この直交変調器110は、左速度信号(出口側速度信号)を1/Nに直交周波数変換するものである。
また、A/Dコンバータ31からの信号は、周波数計測器120にも入力されている。この周波数計測器120は、加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3の左側に生じる振動速度を検出する左速度センサ7から出力される左速度信号(出口側速度信号)をA/Dコンバータ31によってデジタル信号に変換された左速度信号(出口側速度信号)の周波数を計測するものである。
ゆえに、ここで計測される周波数は、測定チューブが安定して共振振動している状態で加振器6から出力される駆動信号と等しい周波数になる。
ここではピックオフからの入力信号の周波数を計測しているが、当然駆動信号の周波数を計測してもよい。
また、A/Dコンバータ35からの信号は、直交変調器130に入力されている。この直交変調器130は、右速度信号(入口側速度信号)を1/Nに直交周波数変換するものである。
周波数計測器120において計測された周波数計測値は、発信器140に出力される。この発信器140は、周波数計測器120から出力される周波数計測値に基づいて、所定の周波数信号を発信出力するものである。
この発信器140の出力信号は、直交変調器110と直交変調器130に入力される。
この周波数計測器120→発信器140→直交変調器110によって搬送周波数を求め、A/Dコンバータ31からの入力される左速度信号(出口側速度信号)の入力周波数と発信器140から出力される出力周波数を直交変調器110で変調する。その結果得られる、つまり加法定理に基づく両入力信号の周波数の和と差のいずれかを用いて周波数をシフトさせる。そして変調周波数が、入力される左速度信号(出口側速度信号)の入力周波数の1/Nになるように発信器140の出力周波数をコントロールする。
このように発信器140がコントロールされると、この発信器140から出力される出力周波数によって、直交変調器110同様、直交変調器130においても、周波数変換を行った後の周波数が、A/Dコンバータ35から入力される右速度信号(入口速度信号)の入力周波数の1/Nになるように制御される。
直交変調器110及び直交変調器130には、位相差計測器150が接続されている。この位相差計測器150は、直交変調器110から出力されてくるA/Dコンバータ31から入力される左速度信号(出口側速度信号)の入力周波数の1/Nの出力周波数信号と、直交変調器130から出力されてくるA/Dコンバータ35から入力される右速度信号(入口側速度信号)の入力周波数の1/Nの出力周波数信号とを用いて位相計測を行うものである。
このように構成することにより、本実施の形態によれば、入力周波数(左速度信号,右速度信号)を低い周波数帯域(1/Nの周波数)に変換することによって、入力周波数(左速度信号,右速度信号)の帯域を1/Nにし、フィルタのテーブル数を大幅に減らし、さらに位相計測処理をより効果的に行うことができる。
A/Dコンバータ31とA/Dコンバータ35には、クロック160から、クロック信号が入力するようになっている。このクロック160は、A/Dコンバータ31とA/Dコンバータ35の出力の同期を取るもので、A/Dコンバータ31から出力される左速度信号のデジタル信号と、A/Dコンバータ35から出力される右速度信号のデジタル信号の同期を取るためのものである。
この直交変調器110と、周波数計測器120と、直交変調器130と、発信器140と、位相差計測器150と、クロック160とによって信号処理装置100が構成されている。
次に、図5に図示の信号処理装置100における位相差計測演算の具体的な演算方法について説明する。
コリオリ流量計1の加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3に設けられる振動速度センサ80(レフトピックオフ7,ライトピックオフ8)からの出力信号(左速度信号,右速度信号)を図2に図示の如く、LPO、RPOの入力信号として得る。
このとき、LPO、RPOの入力信号を定義すると、(δφ:LPOとRPO間の位相差とする)
〔式1〕
ライトピックオフ : sin(θ) ………………(1)
〔式2〕
レフトピックオフ : sin(θ+δφ) ………………(2)
となる。
この2つのセンサ(レフトピックオフ7,ライトピックオフ8)からの出力信号(左速度信号LPO,右速度信号RPO)は、コリオリ流量計1の変換器の内部のローバスフィルタ30,34をそれぞれ通って、A/D変換器31,35によってアナログ値からデジタル値に変換され、信号処理装置100に送られる。
この信号処理装置100は、前述した如く、直交変調器110,130と、周波数計測器120と、発信器140と、位相差計測器150の4つのブロックによって構成されており、レフトピックオフ7からの出力信号LPOと、ライトピックオフ8からの出力信号RPOの位相差を演算した後、周波数計測器120から出力される周波数信号と、温度センサ9によって検出される温度のデータをもとに流量信号に変換する。
レフトピックオフ7によって検出された測定チューブ2,3の左側に生じる振動速度の検出信号(出口側速度信号)は、図5に図示のローパスフィルタ30に入力され、このローパスフィルタ30において、高調波ノイズを取り除きA/D変換時の折り返しノイズの影響を取り除いた、図6に示す如きsin信号(sinθ)が出力される。
このローパスフィルタ30から出力された図6に示す如きsin信号(sinθ)は、A/Dコンバータ31において、任意の一定周期でサンプリングしてデジタル信号化が行われ、図7に示す如きサンプリング信号(sinθ)が得られ、A/Dコンバータ31から出力される。
このローパスフィルタ30から出力され、A/Dコンバータ31においてサンプリングされデジタル信号化が行われた図7に示す如き信号(sinθ)は、図5に図示の信号処理装置100の直交変調器110と周波数計測器120に入力される。そして、この直交変調器110には、発信器140から出力される発信器出力信号が入力される。
この発信器140においては、周波数計測部120から出力される出力信号周波数の計測値の入力によって、この出力信号周波数の計測値に基づいて、所望の周波数で発信器140における発信周波数信号(θXn)を発信し、発信出力レートを入力信号のA/Dコンバータ31におけるサンプリング周期と同じレートで図8に示す如きcos信号(cosθXn)を出力する。
この直交変調器110においては、A/Dコンバータ31においてサンプリングされデジタル信号化が行われた図7に示す如き信号(sinθ)を入力すると、直交変調器110の内部において、A/Dコンバータ31からの入力信号(sinθ)を90度シフトして、図9に示す如き信号(cosθ)を生成する。また、直交変調器110においては、発信器140から出力される図8に示す如き信号(cosθXn)を入力すると、直交変調器110の内部において、発信器140からの入力信号(cosθXn)を90度シフトして、図10に示す如き信号(sinθXn)を生成する。
そして、この直交変調器110においては、A/Dコンバータ31からの入力信号(sinθ)の0度、90度の信号と、発信器140からの入力信号(cosθXn)の0度、90度の信号とを用いて、直交周波数変換をし、変調シフトして、A/Dコンバータ31からの入力信号(sinθ)の1/Nの信号(sinθcosθXn−cosθsinθXn)を図11に示す如く生成し、図5に図示の信号処理装置100の直交変調器110から出力する。
コリオリ流量計1の加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3に設けられる振動速度センサ80(レフトピックオフ7,ライトピックオフ8)からの出力信号(左速度信号,右速度信号)は、図5に図示の信号処理装置100を構成する直交変調器110,130と、発信器140と、位相差計測器150と、周波数計測器120の4つのブロックにおいて、位相差が演算された後、周波数計測器120から出力される周波数信号と、温度センサ9によって検出される温度のデータをもとに流量信号に変換される。
次に、図12,図13に示すタイムチャートを用いて、図5に図示の信号処理装置100における動作について説明する。
まず、図5に図示のローパスフィルタ30において、高調波ノイズを取り除きA/D変換時の折り返しノイズの影響を取り除くと、図6に示す如きsin信号(sinθ)が出力される。
この図6に示されるsin信号(sinθ)が出力されると、この図6に図示のsin信号(sinθ)がA/Dコンバータ31に入力される。そして、このA/Dコンバータ31においては、任意の一定周期でサンプリングしてデジタル信号化が行われ、図12(A)に示す如きサンプリング信号(Y1=sinθ)が得られ、A/Dコンバータ31から出力される。
このA/Dコンバータ31から出力された図12(A)に図示のサンプリング信号(sinθ)は、図5に図示の信号処理装置100の直交変調器110と、周波数計測部120に入力される。
この信号処理装置100の周波数計測部120においては、A/Dコンバータ31によってデジタル信号に変換された左速度信号(出口側速度信号)の周波数を計測するものである。
この図5に図示の信号処理装置100の直交変調器110においては、A/Dコンバータ31によってデジタル信号に変換された左速度信号(出口側速度信号)が入力されると、内部において、A/Dコンバータ31からの入力信号(sinθ)を90度シフトして、図12(B)に示す如き信号(cosθ)を生成する。
この信号処理装置100の周波数計測部120においては、A/Dコンバータ31から出力されるデジタル信号に基づいて計測された周波数信号が出力される。
この周波数計測部120から出力される出力信号周波数の計測値は、発信器120に入力され、この出力信号周波数が入力される発信器120においては、この出力信号周波数に基づいて、
θXn=θ×(1−1/N)
の式を満たす発信周波数信号(θXn)を発信し、発信出力レートを入力信号のA/Dコンバータ31におけるサンプリング周期と同じレートで図12(C)に示す如きcos信号(Y3=cosθXn)を出力する。
この発信器120から出力される図12(C)に図示のcos信号(Y3=cosθXn)は、直交変調器110に入力される。この図12(C)に図示のcos信号(Y3=cosθXn)が入力されると、直交変調器110においては、発信器140からの入力される図12(C)に図示のcos信号(Y3=cosθXn)を90度シフトして、図12(D)に示す如きsin信号(Y4=sinθXn)を生成する。
そして、この直交変調器110においては、A/Dコンバータ31からの入力信号(sinθ)の0度、90度の信号と、発信器140からの入力信号(cosθXn)の0度、90度の信号とを用いて、直交周波数変換をし、変調シフトして、A/Dコンバータ31からの入力信号(sinθ)の1/Nの信号(sinθcosθXn−cosθsinθXn)を図13(E)に示す如きsin信号(Y5=sinθcosθXn−cosθsinθXn=sin(θ/N))を生成する。この直交変調器110において生成された図13(E)に図示のsin信号(Y5=sinθcosθXn−cosθsinθXn=sin(θ/N))は、図5に図示の信号処理装置100の直交変調器110から出力されて、位相差計測器150に入力される。
また、図5に図示のローパスフィルタ34において、高調波ノイズを取り除きA/D変換時の折り返しノイズの影響を取り除くと、sin信号(sin(θ+δφ))が出力される。
このローパスフィルタ34からsin信号(sin(θ+δφ))が出力されると、このsin信号(sin(θ+δφ))は、A/Dコンバータ35に入力される。そして、このA/Dコンバータ35においては、任意の一定周期でサンプリングしてデジタル信号化が行われる。
そして、このA/Dコンバータ35から出力されるサンプリング信号(sin(θ+δφ))は、直交変調器130の内部において、90度シフトして、cos信号(cos(θ+δφ))を生成する。
また、発信器120から出力される図12(C)に図示のcos信号(Y3=cosθXn)は、直交変調器130に入力される。この図12(C)に図示のcos信号(Y3=cosθXn)が入力されると、直交変調器130においては、発信器140からの入力される図12(C)に図示のcos信号(Y3=cosθXn)を90度シフトして、図12(D)に示す如きsin信号(Y4=sinθXn)を生成する。
そして、この直交変調器130においては、A/Dコンバータ35からの入力信号(sin(θ+δφ))の0度、90度の信号と、発信器140からの入力信号(cosθXn)の0度、90度の信号とを用いて、直交周波数変換をし、変調シフトして、A/Dコンバータ35からの入力信号(sinθ)の1/Nの信号として、図13(F)に示す如きsin信号(Y6=(sin(θ+δφ−θXn)=sin(θ/N+δφ))を生成する。この直交変調器130において生成された図13(F)に図示のsin信号(Y6=(sin(θ+δφ−θXn)=sin(θ/N+δφ))は、図5に図示の信号処理装置100の直交変調器130から出力されて、位相差計測器150に入力される。
このように直交変調器110から出力される図13(E)に図示のsin信号(Y5=sin(θ/N))と、直交変調器130から出力される図13(F)に図示のsin信号(Y6=sin(θ/N+δφ))とは、共に位相差計測器150に入力される。
この位相差計測器150においては、直交変調器110から出力されて位相差計測器150に入力される図13(E)に図示のsin信号(Y5=sin(θ/N))と、直交変調器130から出力されて位相差計測器150に入力される図13(F)に図示のsin信号(Y6sin(θ/N+δφ))とに基づいて、図13(G)に示す如き信号(Y7=δφ)を、その位相差δφとして出力する。
このように演算周期をサンプリング時間と同期させることによって、位相計測時のリアルタイム性をあげることができる。
また、一対の振動速度信号(sinθ,sin(θ+δφ))は、どちらも同じ処理を行い位相計算されるため演算誤差がほとんど無く、正確な位相計算を行うことができる。
以下、本発明を実施するための形態の実施例2について図14,図15を用いて説明する。
図14は図5に図示の信号処理装置の具体的構成図の動作フローチャートを示す図、図15は図5に図示の信号処理装置の周波数計測器のブロック図である。
図14には、図5に図示の信号処理装置100に用いられる図1に図示の振動速度信号演算器90における位相差計測演算の直行周波数変調および位相計測におけるフローチャートが示されている。
図14において、ステップ200では、図1に図示の振動速度信号演算器90のパラメータを初期化する。このステップ200において振動速度信号演算器90のパラメータの初期化が行われると、ステップ210において、2つのセンサ(レフトピックオフ7,ライトピックオフ8)からの位相/及び速度信号をA/Dコンバータ31、A/Dコンバータ35によって任意のサンプリング周期でサンプリングし、このサンプリングしたデータからsin波形、cos波形を生成する。
このステップ210においてsin波形、cos波形を生成すると、ステップ220において、周波数計測器120でサンプリングしたデータの周波数を計測し、その計測周波数を基にN値を決定する。
このステップ220においてN値を決定すると、ステップ230において、計測した周波数を設定した目標分周値Nで除算し、直交周波数変調後の周波数を決定する。
このステップ230において直交周波数変調後の周波数を決定すると、ステップ240において、参照信号発信器140よりsinの参照信号波形、cosの参照信号波形を生成し、参照波形を用いて直交周波数変調器110,130において直交周波数変調を行う。この結果、周波数変調を行った信号は入力周波数の1/Nの値となる。
このステップ240において直交周波数変調を行うと、ステップ250において、直交周波数変調器110,130は、位相/及び速度信号をA/Dコンバータ31、A/Dコンバータ35によって任意のサンプリング周期でサンプリングした信号を入力周波数の1/Nの周波数のsin波形、cos波形を参照波形によって直交周波数変調して生成したsin信号、cos信号を位相差計測器150に送る。
このステップ250においてsin信号、cos信号を位相差計測器150に送ると、ステップ260において、位相差計測器150は、直交周波数変調器110,130から出力される周波数変調された1/Nの周波数の位相/及び速度信号のsin信号、cos信号を用いて位相差を計算する。そして、この周波数変換された位相/及び速度信号を用いて位相計測を行う。
(1)周波数計測器
周波数の計測方法としては、本実施の形態においては、PLL(PLL; Phase-locked loop 位相同期回路)の原理を用いた方法を用いている。このPLLは、入力される交流信号と周波数が等しく、かつ位相が同期した信号を、フィードバック制御により別の発振器から出力する電子回路である。
このようにPLLは、もともと位相を同期するための回路で、入力信号に対して位相の同期した信号を作ることができるようになっている。
このPLLは、外部から入力された基準信号と、ループ内の発振器からの出力との位相差が一定になるよう、ループ内発振器にフィードバック制御をかけて発振させる発振回路で、演算器で構成することが比較的簡単で、さらに高速で演算することが可能である。
周波数計測器120は、図15に示す如く構成されている。
すなわち、A/Dコンバータ31には、掛け算器121が接続されている。このA/Dコンバータ31からは、加振器6によって測定チューブ2,3を交番駆動したときに一対の測定チューブ2,3の左側に生じるコリオリの力に比例した位相差及び/又は振動周波数を有する振動速度の検出信号(出口側速度信号)をレフトピックオフ7で検出し、ローパスフィルタ30に入力され、低い周波数の左速度信号(出口側速度信号)のみが取り出され、デジタル信号に変換された左速度信号(出口側速度信号)sinθが出力されている。
そして、この掛け算器121は、A/Dコンバータ31によってデジタル信号に変換された左速度信号(出口側速度信号)sinθと、周波数計測用発信器123から出力される出力信号cosδの位相を比較し、ローパスフィルタ122に出力するものである。
したがって、掛け算器121の出力端子には、ローパスフィルタ122が接続されている。このローパスフィルタ122は、掛け算器121から出力される出力信号を周波数フィルタを通して、低い周波数の信号のみ取り出すものである。
したがって、掛け算器121では左速度信号sinθと周波数計測用発信器出力cosδの積により、θとδの和及び差信号が生成されるが、ここでは、掛け算器121から出力される出力信号の中で差の成分のみを取り出している。
また、ローパスフィルタ122には、周波数計測用発信器123が接続されている。この周波数計測用発信器123は、ローパスフィルタ122から出力される低い周波数の信号を基に位相データδを生成するものである。
そして、この周波数計測用発信器123においては、掛け算器121に出力信号cosδを出力し、この掛け算器121において、A/Dコンバータ31においてデジタル値に変換された入力データ(sinθ)の位相と、出力信号cosδの位相とが比較され、その差信号と和信号としてローパスフィルタ122から出力され、このローパスフィルタ122によって濾波出力される差の成分のみの出力データV(周波数演算関数V)が0になるように帰還ループが形成される。
このような構成を数式的に表現すると、図15に図示の周波数計測器120のように入力信号をsinθ、周波数計測用発信器123の出力信号をcosδとおき、その2つの波形を掛け算器121において掛け算すると、
〔式3〕
Figure 0004694646
となる。
この掛け算値(sinθ・cosδ)をローパスフィルタ122に掛けると、このローパスフィルタ122によって高い周波数成分を除去され、ローパスフィルタ122からの出力される周波数演算関数Vは、
〔式4〕
V=sin(θ−δ) ………………(4)
となる。
この式(4)における(θ−δ)の値が十分小さい値(V≒0)のときは、周波数演算関数Vは、
〔式5〕
V=θ−δ≒0 ………………(5)
と近似することができる。
ここで、周波数演算関数Vが0になるように、周波数計測用発信器123の出力信号の出力波形をコントロールすることによって、式(5)の位相θを求めることができる。
このような方法によって、計測サンプリング周期をTaとしたとき求めた周波数変換前の位相θを、次の式(6)、式(7)、式(8)を用いて演算することによって周波数fを求めることができる。
〔式6〕
Figure 0004694646
ΔTは時間変化をあらわし演算周期(サンプリングレート)と等しくなる。
よって位相θは、
〔式7〕
θ=2・π・f・Ta …………………(7)
但)Ta:時間変化(サンプリング周期)(sec)
f:入力周波数(Hz)
θ:位相変化(rad)
〔式8〕
Figure 0004694646
このような計算を周波数計測器120において行うことによって、高速な周波数計測を行うことができる。
(2)直交周波数変調器
図5において直交周波数変調器110,130は、それぞれ同じ構成となっており、各々入力された2つの信号の周波数差を求め出力し、さらにその信号に直交した信号を同時に生成し出力するものである。
すなわち、加振器6によって振動したときに測定チューブ2,3の左側に生じる振動速度の検出信号(出口速度信号)をレフトピックオフ7が検出し、このレフトピックオフ7が検出した振動速度の検出信号(出口側速度信号)は、ローパスフィルタ30に入力される。
このローパスフィルタ30においては、左速度センサ7から出力される左速度信号(出口側速度信号)のうち、低い周波数の左速度信号(出口側速度信号)のみのアナログ信号を取り出し、A/Dコンバータ31によってデジタル信号に変換して直交周波数変調器110に入力される。
直交周波数変調器110においては、直交周波数変調器110に入力されるA/Dコンバータ31から出力される左速度センサ7で検出される左速度信号(出口側速度信号)と、周波数計測器120から出力される周波数計測値に基づいて、発信器140において発信出力される所定の周波数信号との周波数差を求めて、この周波数信号に直交した信号を同時に生成し出力する。
また、加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3の右側に生じる振動速度の検出信号(入口側速度信号)をライトピックオフ8が検出し、このライトピックオフ8が検出した振動速度の検出信号(入口側速度信号)は、ローパスフィルタ34に入力される。
このローパスフィルタ34においては、右速度センサ7から出力される右速度信号(入口側速度信号)のうち、低い周波数の右速度信号(入口側速度信号)のみのアナログ信号を取り出し、A/Dコンバータ35によってデジタル信号に変換して直交周波数変調器130に入力される。
直交周波数変調器130においては、直交周波数変調器130に入力されるA/Dコンバータ35から出力される右速度センサ8で検出される右速度信号(入口側速度信号)と、周波数計測器120から出力される周波数計測値に基づいて、発信器140において発信出力される所定の周波数信号との周波数差を求めて、この周波数信号に直交した信号を同時に生成し出力する。
振動速度の検出信号を検出する振動速度センサ(レフトピックオフ7,ライトピックオフ8)からの出力信号(左速度信号LPO,右速度信号RPO)と、直交周波数変調器(具体的には、直交周波数変調器110,130)に入力される発信器140からの出力される信号のそれぞれを、
〔式9〕
振動速度センサ信号: sin(θ)
発信器の出力信号 : cos(θ) ……………………(9)
とおく。
すると、直交周波数変調器110,130においては、振動速度センサ(レフトピックオフ7,ライトピックオフ8)からの出力信号(左速度信号LPO,右速度信号RPO)と、直交周波数変調器(具体的には、直交周波数変調器110,130)に入力される発信器140からのそれぞれについて、式10、式11により、90°シフト信号が得られる。
〔式10〕
センサ信号 : sin(θ)
センサ信号90°シフト信号: cos(θ) …………………(10)
〔式11〕
発信器の出力信号 : sin(θ
発信器90°シフト信号: cos(θ) …………………(11)
さらに、式(10),式(11)の各信号から周波数変換した信号と、周波数変換後の90゜シフト信号をより周波数差、つまり(θ―θ)成分が算出される。
〔式12〕
Figure 0004694646
〔式13〕
Figure 0004694646
したがって、周波数変調器110,130においては、A/Dコンバータ31,35からの入力信号周波数と、発信器140からの出力信号周波数との周波数差のIQ信号を生成し、各々の直交変調出力より送出される。
(3)発信器
発信器140は、周波数計測器120の計測結果θに基づいて発信器140の周波数を制御する。
すなわち、発信器140は、加振器6によって測定チューブ2,3を振動したときにレフトピックオフ7によって検出され周波数変調器110に入力される測定チューブ2,3の左側に生じる振動速度の検出信号(出口側速度信号)の周波数θに比して直交変調器110の出力周波数が1/Nになるように発信器140出力cosθxnを確定させる。
この周波数変調器110と周波数変調器130とが同じく構成されているため、周波数変調器110から出力される周波数同様、周波数変調器130から出力される周波数は、加振器6によって測定チューブ2,3を振動したときにライトピックオフ8によって検出され周波数変調器130に入力される測定チューブ2,3の右側に生じる振動速度の検出信号(入口側速度信号)の周波数θに比して直交変調器130の出力周波数が1/Nとなる。
この周波数変調器110と周波数変調器130は、式(12),式(13)に基づきそれぞれの周波数変調器に入力された2つの周波数の差を求めるように構成され、かつ左速度信号、右速度信号周波数に対して1/Nとなる条件を備えて次式(式14)が成り立つ。
〔式14〕
Figure 0004694646
前述の如く発信器140出力cosθの確定にてθをコントロールすればよいことになる。
直交周波数変調器110,130の出力は、入力信号の1/Nになり、さらにレフトピックオフ7とライトピックオフ8のそれぞれの直交周波数変調器110,130の出力結果は、
〔式15〕
Figure 0004694646
〔式16〕
Figure 0004694646
と表される。
コリオリ式流量計1の左速度センサ7の駆動周波数と、右速度センサ8の駆動周波数は、高いものでも1KHzである。したがって、いま、仮に、Nの値を32とした場合、直交周波数変調器110,130において変調出力される周波数は、30Hz程度になり、非常に低い周波数で、かつ狭い帯域のフィルタを用意するだけで良いことになる。
式(15),式(16)においてN値は上記の如く流量計のタイプにより異なることになる。ここでNの取り扱いについての一例を以下に述べる。
センサの駆動周波数を50Hz〜1600Hzとし、変換器のフィルタ周波数帯域を10Hz〜40Hzとしたとき、以下の表のように決定することができる。
なお、N値とフィルタ帯域の設定条件として、直交変調後の周波数が50Hz〜60Hz(商用周波数)帯域と重ならないようにすることも重要である。
駆動周波数 N値(分周値) 直交変調後の周波数
50Hz〜200Hz 5 10Hz〜40Hz
100Hz〜400Hz 10 10Hz〜40Hz
200Hz〜800Hz 20 10Hz〜40Hz
400Hz〜1600Hz 40 10Hz〜40Hz
上記のようにN値を選択することによって位相計測時に用いるフィルタリング帯域を同一化し、駆動周波数(入力周波数)に影響されないフィルタリングが行える。
ただし、ここで述べたN値の取り扱いは具体例として挙げたものであり、実際のN値の取り扱いは、適応させるセンサや変換器で用いるフィルタの帯域などの設計条件によって異なることはいうまでもない。
(4)位相計測器
直交周波数変調器の出力結果を以下に関係式に代入し算出すると、
〔式17〕
Figure 0004694646
となる。
ここで
〔式18〕
Figure 0004694646
とすると、
〔式19〕
Figure 0004694646
となり、位相差を求めることができる。
また、別の計算方法では、
〔式20〕
Figure 0004694646
及び、
〔式21〕
Figure 0004694646
より、それぞれのアークタンジェントを計算し、その差をとることにより位相差を計算することができる。
《周波数変換を用いた位相計測方法の特長》
本発明に係る位相計測システムの特徴は、直交周波数変調器(具体的には、直交周波数変調器110,130)に入力される振動速度の検出信号を検出する振動速度センサ(レフトピックオフ7,ライトピックオフ8)からの出力信号(左速度信号LPO,右速度信号RPO)の周波数とは無関係なサンプリング周期で振動速度センサ(レフトピックオフ7,ライトピックオフ8)からの出力信号(左速度信号LPO,右速度信号RPO)をサンプリングできるので、非常に構成が簡単で、フィルタのテーブルを大幅に減らすことができ、さらに誤差が少ない演算を可能とすることができる。
また、入力周波数による位相計測の帯域制限が殆ど無いため、さまざまな駆動周波数のセンサと結合することが可能であり、本システムにて多種に渉るタイプに適用させることができる利点を有する。更には入力周波数によって演算精度が影響されないため、常に高精度な位相計測が可能となる。
測定用の流管を構成する少なくとも一本、若しくは一対のフローチューブからなる測定チューブ2,3を駆動装置によって加振器6を作動させる。この加振器によって、少なくとも一本、若しくは一対のフローチューブからなる測定チューブ2,3を交番駆動して、このフローチューブを振動させる。
そして、フローチューブ2,3の左右に設けられるレフトピックオフ(LPO)7とライトピックオフ(RPO)8とによって構成される振動検出センサである一対の速度センサ若しくは加速度センサによって、少なくとも一本、若しくは一対のフローチューブからなる測定チューブ2,3に作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計が構成されている。
このコリオリ流量計に、速度センサ若しくは加速度センサから検出される一対のフローチューブからなる測定チューブ2,3に作用するコリオリの力に比例した位相差及び/又は振動周波数の2つのアナログ入力信号のそれぞれをデジタル信号に変換して得る2つの流量信号の内、少なくとも一方のセンサ(例えば、レフトピックオフ7)から出力され、A/D変換器31を介してデジタル変換されたデジタル入力信号(出口側速度信号)の入力信号周波数に基づいて周波数を計測する周波数計測器120を設ける。
また、この周波数計測器120から出力されるデジタル周波数信号のθ(1−1/N)の周波数信号を生成発信して、出力する発信器140を設ける。
さらに、一対の振動検出センサ(レフトピックオフ7,ライトピックオフ8)のそれぞれの速度センサ(例えば、レフトピックオフ7から入力される入力信号(出口側速度信号))を2つのA/Dコンバータ31,35によってそれぞれデジタル信号に変換する。そして、この入力信号周波数θを、発信器140から出力される出力周波数θXnを用いて、加算(又は減算)して、それぞれの周波数を直交変調する一対の直交周波数変換器110,130を設ける。
またさらに、一対の直交周波数変換器110,130から一定の周波数信号に変換された周波数信号sinθ,sin(θ+δφ)の位相差の計測を行う位相差計測部150を設ける。
そして、直交変調器110から出力されてくるつまりは、A/Dコンバータ31から入力される左速度信号(出口側速度信号)の入力周波数の1/Nの出力周波数信号と、直交変調器130から出力されてくるつまりはA/Dコンバータ35から入力される右速度信号(入口側速度信号)の入力周波数の1/Nの出力周波数信号とを用いて位相差を得る信号処理装置100を設けてコリオリ流量計を構成する。
本発明は、常に一定の精度で計測することができ、高いフィルタリング能力をもった位相計測を実現し、極めて少ない演算処理量で行うことができるという目的を、被測定流体の温度が変化したり、被測定流体に気泡が混入したり、被測定流体が気体から液体に急速に変化した場合においても、実現できるようにした。
以下、本発明を実施するための形態の実施例4について図16,図17を用いて説明する。
図16は本発明に係る信号処理方法、およびその装置の原理を示すブロック図、図17は図16に図示の信号処理装置の具体的構成を示すブロック図の詳細回路図である。
図16には、本発明に係る信号処理方法、およびその装置の原理を示すブロック図が示されている。
図16において、加振器(例えば、電磁オシレータ)6によって測定チューブ2,3を振動したときに、測定チューブ2,3に生じる振動速度は、振動検出センサ(例えば、速度センサ又は加速度センサ)80によって検出され、この検出された振動速度は、振動速度信号演算器90において演算処理される。この振動検出センサ80は、図28における左速度センサ7と右速度センサ8に相当している。
振動速度信号演算器90は、周波数変換部98と、発信器94と、位相差計測器96とによって構成される。
周波数変換部98は、振動検出センサ80によって検出される加振器6によって測定チューブ2,3を振動したときに測定チューブ2,3に生じる振動速度を周波数変換するものである。この周波数変換部98には、発信器94からの信号が入力されるようになっている。
そして、この周波数変換部98において周波数変換された信号は、周波数変換部98の後段に設けられている位相差計測器96に入力される。この位相差計測器96は、振動検出センサ80(左速度センサ7、右速度センサ8)によって検出される左右それぞれの速度信号をA/D変換し、デジタル変換処理をした後、その2つの速度信号の位相差を求めるものである。
図16に図示の信号処理方法、およびその装置は、入力信号を周波数変換し、周波数変換後の周波数が一定になるようにコントロールし、周波数変換後に位相計測を行うことによって、入力信号の周波数が変化しても高速で、かつ常に一定な高精度な位相計測を行なうことができるフィルタ処理装置を実現している。
すなわち、図16に図示の信号処理方法、およびその装置90は、振動検出センサ80から出力される信号の入力周波数FINと発信器94の出力周波数Fを周波数変換部98で掛け算し、その結果、両信号の位相差を加算(又は減算)し、周波数変換後の周波数が一定になるように発信器94をコントロールすることによって、位相計測部96に入力される周波数が常に一定となるように制御し、周波数変換後の信号から位相計測を行うものである。
このように構成することにより、入力周波数に応じた多くのフィルタや、演算方法の変更など複雑な処理を一切行うことなく、常に一定で誤差のほとんどない高速な演算を行うことができる。
〔式22〕
Fc=F+FIN (or Fc=F−FIN) ………………(22)
図17には、図16に図示の信号処理装置の具体的構成が示されている。
図17において、レフトピックオフ(LPO)7(左速度センサ7に相当)には、ローパスフィルタ30が接続されている。すなわち、加振器(例えば、電磁オシレータ)6によって振動したときに、被計測流体の出口側の速度センサ(振動検出センサ)7によって、測定チューブ2,3の左側に生じる振動速度の検出信号(出口側速度信号)を検出すると、この振動速度の検出信号(出口側速度信号)は、ローパスフィルタ30に入力される。
このローパスフィルタ30は、加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3の左側に生じる振動速度を検出する左速度センサ7から出力される左速度信号(出口側速度信号)を周波数フィルタを通して、低い周波数の左速度信号(出口側速度信号)のみを取り出す回路である。
このローパスフィルタ30には、A/Dコンバータ31が接続されている。このA/Dコンバータ31は、ローパスフィルタ30から出力されてくるアナログ信号である左速度信号(出口側速度信号)をデジタル信号に変換するものである。このA/Dコンバータ31においてデジタル信号に変換された左速度信号(出口側速度信号)は、信号処理装置300に入力される。
また、この信号処理装置300は、A/Dコンバータ31に接続されている。この信号処理装置300は、入力信号(出口側速度信号)を後段の位相差計測部で処理される所望な周波数に周波数変換し、周波数変換後に位相計測を行うことによって、入力周波数の帯域をシフトさせ、かつ安定的な位相計測が行えるようにするものである。
一方、ライトピックオフ(RPO)8(右速度センサ8に相当)には、ローパスフィルタ34が接続されている。すなわち、加振器(例えば、電磁オシレータ)6によって振動したときに、被計測流体の入口側の速度センサ(振動検出センサ)8によって、測定チューブ2,3の右側に生じる振動速度の検出信号(入口側速度信号)を検出すると、この振動速度の検出信号(入口側速度信号)は、ローパスフィルタ34に入力される。
このローパスフィルタ34は、加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3の右側に生じる振動速度を検出する右速度センサ8から出力される右速度信号(入口側速度信号)を周波数フィルタを通して、低い周波数の右速度信号(入口側速度信号)のみを取り出す回路である。
このローパスフィルタ34には、A/Dコンバータ35が接続されている。このA/Dコンバータ35は、ローパスフィルタ34から出力されてくるアナログ信号である右速度信号(入口側速度信号)をデジタル信号に変換するものである。 また、この信号処理装置300は、A/Dコンバータ35に接続されている。この信号処理装置300は、入力信号(入口側速度信号)を後段の位相差計測部で処理される所望な周波数に周波数変換し、周波数変換後に位相計測を行うことによって、入力周波数の帯域をシフトさせ、かつ安定的な位相計測が行えるようにするものである。
A/Dコンバータ31には、周波数変換部310が接続されている。この周波数変換部310は、A/Dコンバータ31から出力されて入力される左速度信号(出口側速度信号)のデジタル信号を後段の位相差計測部で処理される所望な周波数に周波数変換するものである。
また、A/Dコンバータ35には、周波数変換部340が接続されている。この周波数変換部340は、A/Dコンバータ35から出力されて入力される右速度信号(入口側速度信号)のデジタル信号を前記同様、所望な周波数に周波数変換するものである。
また、周波数変換部310には、発信器320からの信号が入力するように構成されている。この発信器320から出力される信号が周波数変換部310に入力されることによって、周波数変換部310においては、レフトピックオフ(LPO)7から入力される入力信号(出口側速度信号)を発信器320から出力される信号によって周波数変換している。
この周波数変換部310において周波数変換された信号は、発信器320の出力信号によって所望の周波数信号に変換されるようになっている。
また、周波数変換部340にも、発信器320からの信号が入力するように構成されている。この発信器320から出力される信号が周波数変換部340に入力されることによって周波数変換部340においては、ライトピックオフ(RPO)8から入力される入力信号(入口側速度信号)を発信器320から出力される信号によって周波数変換している。
この周波数変換部340において周波数変換された信号は、発信器320の出力信号によって所望の周波数信号に変換されるようになっている。
このように発信器320によってコントロールされると、この発信器320から出力される出力周波数によって、周波数変換部310同様、周波数変換部340においても、周波数変換を行った後の周波数が、A/Dコンバータ35から入力される右速度信号(入口側速度信号)は後段の位相差計測部330で処理される所望な周波数に制御される。
この位相差計測部330は、A/Dコンバータ31から出力され周波数変換部310に入力される左速度信号(出口側速度信号)とが同時に周波数変換されて入力され、位相差計測が行われる。
このように構成することにより、本実施の形態によれば、入力周波数(左速度信号,右速度信号)を所望の周波数帯域に同時に変換することによって、入力周波数(左速度信号,右速度信号)が変わっても、常に位相計測処理周波数を一定化して、フィルタのテーブル数を大幅に減らし、また位相計測処理をより効果的に行うことができる。
本発明の効果として、入力周波数に応じた多くのフィルタや、演算方法の変更など複雑な処理を一切行うことなく、常に一定で誤差のほとんどない高速な演算を行うことが可能となることである。もちろん位相計測部の処理は、DFT(Discrete Fourier Transform:離散フーリエ変換)でも、FFT(Fast Fourier Transform:高速フーリエ変換)でも実現が可能である。
A/Dコンバータ31とA/Dコンバータ35には、クロック350から、クロック信号が入力するようになっている。このクロック350は、A/Dコンバータ31から出力される左速度信号のデジタル信号と、A/Dコンバータ35から出力される右速度信号のデジタル信号の同期を計り、同時サンプリングを実現している。
この周波数変換部310と、発信器320と、位相差計測部330と、周波数変換部340と、クロック350とによって信号処理装置300が構成されている。
このようにA/Dコンバータ31,35によってデジタル信号に変換されたそれぞれの入力信号(左速度信号,右速度信号)は、周波数変換部310,340において、発信器320からの出力信号を用いて周波数変換される。
次に、図17に図示の信号処理装置300における位相差計測演算の具体的な演算方法について説明する。
コリオリ流量計1の加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3に設けられる振動検出センサ80(レフトピックオフ7,ライトピックオフ8)からの出力信号(左速度信号,右速度信号)を図17に図示の如く、LPO(レフトピックオフ7)、RPO(ライトピックオフ8)の入力信号として得る。
このとき、LPO、RPOの入力信号を定義すると、(δφ:LPOとRPO間の位相差とする)
〔式23〕
ライトピックオフ : sin(θ) …………………(23)
〔式24〕
レフトピックオフ : sin(θ+δφ) …………………(24)
となる。
この2つの振動検出センサ(レフトピックオフ7,ライトピックオフ8)からの出力信号(左速度信号LPO,右速度信号RPO)は、コリオリ流量計1の変換器の内部のローパスフィルタ30,34をそれぞれ通って、A/D変換器31,35によってアナログ値からデジタル値に変換され、信号処理装置300に送られる。
この信号処理装置300は、前述した如く、周波数変換部310と、発信器320と、位相差計測部130と,周波数変換部340の4つのブロックによって構成されており、レフトピックオフ7からの出力信号LPOと、ライトピックオフ8からの出力信号RPOの位相差を演算した後、振動速度センサから出力される周波数と、温度センサ9によって検出される温度のデータをもとに流量信号に変換する。
なお、温度計測については、図中において説明しない。
この周波数変換部310から出力される変換周波数は、レフトピックオフ(左速度センサ)7によって検出され、ローパスフィルタ30によって取り出された低い周波数の左速度信号(出口側速度信号)がA/Dコンバータ31においてデジタル信号に変換され出力されてくる入力信号周波数θと、発信器320から出力される出力周波数θXnとを加算(または減算)して求められる。
このように、周波数変換部310から出力され位相計測部130に入力される入力信号周波数は、周波数変換部310において、発信器320から出力される出力周波数θXnを用いて、A/Dコンバータ31から出力されるデジタル信号の低い周波数の左速度信号(出口側速度信号)である入力信号周波数θを周波数シフトして別の周波数帯域に移動したものとなる。
このように周波数変換部310において周波数シフトされ出力される信号と、同様に処理される周波数変換部340において周波数シフトされ出力される信号は、位相計測部130において位相計算が行われる。
周波数変換部310から出力される周波数計測値(θ+θXn)の値は、
〔式25〕
θ=θ+θXn ……………………(25)
と、最終的に任意に設定した位相計測周波数設定値θとなるように制御する。
このように位相計測部130に入力される周波数計測値(θ+θXn)が常に一定周波数θになるように発信器320をコントロールすることによって後段の位相計測の高速処理を可能にすることができる。
本発明における周波数の制御方法は、式(25)の条件をすべて周波数変換部(310,340)の出力周波数がθcに等しくなる様に発信器320の周波数を変化させる方式、すなわちフィードフォワード制御の方法によって構成してある。
以下、本発明に係る信号処理方法、信号処理装置の実施の形態について説明する。
図18には、図17に図示の信号処理装置のフィードフォワード制御の方法による具体的構成が示されている。
図18に図示の信号処理装置400は、入力信号(出入口側速度信号)を所望に周波数変換し、周波数変換後に位相計測を行うことによって、入力周波数の帯域を気遣うことなしに、かつ安定的な位相計測が行えるようにするものである。
図18において、A/Dコンバータ31には、周波数計測器450が接続されている。この周波数計測器450は、A/Dコンバータ31によってデジタル信号に変換され出力される入力信号周波数θを計測する(計測周波数θ)ものである。
ゆえに、ここで計測される周波数は、測定チューブが安定して共振振動している状態で加振器6から出力される駆動信号と等しい周波数になる。
ここではピックオフからの入力信号の周波数を計測しているが、当然駆動信号の周波数を計測してもよい。
また、A/Dコンバータ35には、周波数変換部340が接続されている。この周波数変換部340は、A/Dコンバータ35から出力されて入力される右速度信号(入口側速度信号)のデジタル信号を周波数変換するものである。
この周波数計測器450には、発信器320が接続されている。この発信器320は、任意に設定した発信周波数θを有し、この発信周波数θは、位相計測周波数設定値である、この発信器320においては、位相計測周波数設定値θと、計測周波数θとを比較し、
〔式26〕
θXn=θ−θ (or θXn=θ+θ) ………………(26)
と、その差分の周波数θXnが、出力される。すなわち、発信器320からは、cosθXnが出力される。
この周波数計測器450において計測された周波数計測値θは、発信器320に出力される。この発信器320においては、周波数計測器450で計測された信号周波数θが入力されると、(26)式に基づき、所定の周波数信号θXnを発信し、発信器320から周波数変換部310と周波数変換部340に出力する。
同様にして、この周波数変換部310から出力される変換周波数は、レフトピックオフ(左速度センサ)7によって検出され、ローパスフィルタ30によって取り出された低い周波数の左速度信号(出口側速度信号)がA/Dコンバータ31においてデジタル信号に変換され出力されてくる入力信号周波数θと、発信器320から出力される出力周波数θXnとを加算(または減算)して求められる。
また、周波数変換部340から出力される変換周波数は、ライトピックオフ(右速度センサ)8によって検出され、ローパスフィルタ34によって取り出された低い周波数の右速度信号(入口側速度信号)がA/Dコンバータ35においてデジタル信号に変換され出力されてくる入力信号周波数(θ+δφ)と、発信器320から出力される出力周波数θXnとを加算(または減算)して求められる。
このように、周波数変換部340から出力され位相差計測部330に入力される入力信号周波数は、周波数変換部340において、発信器320から出力される出力周波数θXnを用いて、A/Dコンバータ35から出力されるデジタル信号の低い周波数の右速度信号(入口側速度信号)である入力信号周波数(θ+δφ)を周波数シフトして別の周波数帯域に移動する。
このように発信器320には、周波数変換部310と周波数変換部340が接続されており、この発信器320から出力される周波数信号θXnは、周波数変換部310と周波数変換部340に入力されるようになっている。
この発信器320から出力される周波数信号θXnが、周波数変換部310、周波数変換部340に入力されると、この周波数変換部310、周波数変換部340の出力周波数θは、
〔式27〕
θXn+θ=θ ……………………(27)
となる。
したがって、この発信器320から出力される周波数信号θXnが、周波数変換部310に入力されると、この周波数変換部310からは、
〔式28〕
Figure 0004694646
なる信号が出力される。
また、この発信器320から出力される周波数信号θXnが、周波数変換部340に入力されると、この周波数変換部340からは、
〔式29〕
Figure 0004694646
なる信号が出力される。
また、周波数変換部310には、発信器320からの信号が入力するように構成されている。この発信器320から出力される信号が周波数変換部310に入力されることによって、周波数変換部310においては、レフトピックオフ7から入力される入力信号(出口側速度信号)を発信器320から出力される信号によって周波数変換している。
この周波数変換部310において周波数変換された信号は、発信器320の出力信号によって一定の周波数信号に変換されるようになっている。
また、周波数変換部340にも、発信器320からの信号が入力するように構成されている。この発信器320から出力される信号が周波数変換部340に入力されることによって周波数変換部340においては、ライトピックオフ8から入力される入力信号(入口側速度信号)を発信器320から出力される信号によって周波数変換している。
この周波数変換部340において周波数変換された信号は、発信器320の出力信号によって一定の周波数信号に変換されるようになっている。
このように可変調な発信器320によってコントロールされると、この発信器320から出力される出力周波数によって、周波数変換部310と同様、周波数変換部340においても、周波数変換される。
周波数変換部340から出力される変換周波数は、ライトピックオフ(右速度センサ)8によって検出され、ローパスフィルタ34によって取り出された低い周波数の右速度信号(入口側速度信号)がA/Dコンバータ35においてデジタル信号に変換され出力されてくる入力信号周波数(θ+δφ)と、発信器320から出力される出力周波数θXnとを加算(または減算)して求められる。
このように、周波数変換部340から出力され位相差計測部330に入力される入力信号周波数は、周波数変換部340において、発信器320から出力される出力周波数θXnを用いて、A/Dコンバータ35から出力されるデジタル信号の低い周波数の右速度信号(入口側速度信号)である入力信号周波数(θ+δφ)を周波数シフトして別の周波数帯域に移動させることが可能となる。
このように発信器320がコントロールされると、この発信器320から出力される出力周波数θXnによって、周波数変換部310と同様、周波数変換部340においても、周波数変換が行なわれる。
可変調な発信器320は、このように極めて容易な算式によって周波数コントロールされる。
また、周波数変換部310には、位相差計測部330が接続されている。また、周波数変換部340には、位相差計測部330が接続されている。
この位相差計測部330は、A/Dコンバータ31から出力され周波数変換部310に入力される左速度信号(出口側速度信号)の周波数θと、A/Dコンバータ35から出力され周波数変換部340に入力される右速度信号(入口側速度信号)の周波数(θ+δφ)は共に同一の一定した所望の周波数に変換されて位相差計測を行う。
このように構成することにより、本実施の形態によれば、入力周波数(左速度信号,右速度信号)を所望の周波数帯域に変換することによって、入力周波数(左速度信号,右速度信号)の帯域をシフトさせ、フィルタのテーブル数を大幅に減らし、また位相計測処理をより効果的に行うことができる。
本発明の効果として、入力周波数に応じた多くのフィルタや、演算方法の変更など複雑な処理を一切行うことなく、常に一定で誤差のほとんどない高速な演算を行うことが可能となることである。もちろん位相計測部の処理は、DFT(Discrete Fourier Transform:離散フーリエ変換)でも、FFT(Fast Fourier Transform:高速フーリエ変換)でも実現が可能である。
A/Dコンバータ31とA/Dコンバータ35には、クロック350から、クロック信号が入力するようになっている。このクロック350は、A/Dコンバータ31とA/Dコンバータ35の出力の同期を取るもので、A/Dコンバータ31から出力される左速度信号のデジタル信号と、A/Dコンバータ35から出力される右速度信号のデジタル信号とのサンプリング誤差をなくす重要な役割を担っている。
このようにA/Dコンバータ31,35によってデジタル信号に変化されたそれぞれの入力信号(左速度信号,右速度信号)は、周波数変換部310,340において、発信器320からの出力信号を用いて周波数変換される。
図18に図示のローパスフィルタ30において、高調波ノイズを取り除きA/D変換時の折り返しノイズの影響を取り除くと、図19に示す如きsin信号(sinθ)が出力される。
このローパスフィルタ30から出力された図19に示す如きsin信号(sinθ)は、A/Dコンバータ31において、任意の一定周期でサンプリングしてデジタル信号化が行われ、図20に示す如きサンプリング信号(sinθ)が得られ、A/Dコンバータ31から出力される。
このローパスフィルタ30から出力され、A/Dコンバータ31においてサンプリングされデジタル信号化が行われた図20に示す如き信号(sinθ)は、図18に図示の信号処理装置400の周波数変換部310に入力される。また、この周波数変換部310には、発信器320から出力される発信器出力信号が入力される。
この発信器320においては、周波数計測器450で計測された信号周波数θが入力されると、(26)式に基づき、所望な周波数で発信器320における発信周波数信号θXnを発信し、発信出力レートを入力信号のA/Dコンバータ31におけるサンプリング周期と同じレートで図21に示す如きcos信号(cosθXn)を出力する。
発信器320からの出力信号(cosθXn)が周波数変換部310に入力されると、周波数変換部310においては、A/Dコンバータ31においてサンプリングされデジタル信号化が行われた図20に示す如き信号(sinθ)と、発信器320から出力される図21に示す如き出力信号(cosθXn)とを周波数変換部310内の掛け算器において掛け算(sinθ×cosθXn)を行って、図22に示す如き信号(sinθ×cosθXn)を得る。
この周波数変換部310内の掛け算器において掛け算(sinθ×cosθXn)を行って得た図22に示す如き信号(sinθ×cosθXn)は、周波数変換部310内において、ハイパスフィルタ(HPF)を通して、低い周波数成分を取り除いて、図23に示す如き信号(sinθ)を得る。この図23に示す如き信号(sinθ)は、周波数変換部310から出力されて、位相差計測部330に入力される。
コリオリ流量計1の加振器6によって測定チューブ2,3を振動したときに、測定チューブ2,3に設けられる振動速度センサ80(レフトピックオフ7,ライトピックオフ8)からの出力信号(左速度信号,右速度信号)は、図18に図示の信号処理装置400を構成する周波数変換部310,340と、発信器320と、位相差計測部330と、周波数計測部160の4つのブロックにおいて、位相差が演算された後、周波数計測器450から出力される周波数信号と、温度センサ9によって検出される温度のデータをもとに流量信号に変換される。
次に、図24に示すタイムチャートを用いて、図18に図示の信号処理装置400における動作について説明する。
まず、図18に図示のローパスフィルタ30において、高調波ノイズを取り除きA/D変換時の折り返しノイズの影響を取り除くと、図20に示す如きsin信号(sinθ)が出力される。
この図20に示されるsin信号(sinθ)が出力されると、この図20に図示のsin信号(sinθ)がA/Dコンバータ31に入力される。そして、このA/Dコンバータ31においては、任意の一定周期でサンプリングしてデジタル信号化が行われ、図24(A)に示す如きサンプリング信号(Y1=sinθ)が得られ、A/Dコンバータ31から出力される。
このA/Dコンバータ31から出力された図24(A)に図示のサンプリング信号(sinθ)は、図18に図示の信号処理装置400の周波数変換部310に入力されると共に、信号処理装置400の周波数計測器450に入力される。
信号処理装置400の周波数計測器450、及び発信器320においては、A/Dコンバータ31から出力された図24(A)に図示のサンプリング信号(sinθ)に基づいて所望の発信周波数信号θXnを発信し、発信出力レートを入力信号のA/Dコンバータ31におけるサンプリング周期と同じレートで図24(B)に示す如きcos信号(Y2=cosθXn)を図18に図示の信号処理装置400の周波数変換部310に出力する。
発信器320から図24(B)に図示のcos信号(Y2=cosθXn)が出力され、このcos信号(Y2=cosθXn)が周波数変換部310に入力されると、周波数変換部310内の掛け算器においては、A/Dコンバータ31から出力される図24(A)に図示のサンプリング信号(Y1=sinθ)と掛け算(sinθ×cosθXn)を行って、図24(C)に示す如き信号(Y3=sinθ×cosθXn)を得る。
この周波数変換部310内の掛け算器において掛け算(sinθ×cosθXn)を行って得た図24(C)に図示の信号(Y3=sinθ×cosθXn)は、周波数変換部310内において、ハイパスフィルタ(HPF)を通して、低い周波数成分を取り除いて、図24(D)に示す如き信号(Y4=1/2・sinθ)を得る。この図24(D)図示の信号(Y4=1/2・sinθ)は、周波数変換部310から出力されて、位相差計測部330に入力される。
また、図18に図示のローパスフィルタ34において、高調波ノイズを取り除きA/D変換時の折り返しノイズの影響を取り除くと、sin信号(sin(θ+δφ))が出力される。
このsin信号(sin(θ+δφ))が出力されると、このsin信号(sin(θ+δφ))は、A/Dコンバータ35に入力される。そして、このA/Dコンバータ35においては、任意の一定周期でサンプリングしてデジタル信号化が行われる。
そして、このA/Dコンバータ35から出力される信号と、A/Dコンバータ35から出力されるサンプリング信号とを周波数変換部340内の掛け算器において掛け算を行って信号を得る。
この周波数変換部340内の掛け算器において掛け算を行って得た信号は、周波数変換部340内において、ハイパスフィルタ(HPF)を通して、低い周波数成分を取り除いて、図24(E)に示す如き信号(Y5=1/2・sin(θ+δφ))を得る。この図24(E)図示の信号(Y5=1/2・sin(θ+δφ))は、周波数変換部340から出力されて、位相差計測部330に入力される。
位相差計測部330においては、周波数変換部310から出力されて、位相差計測部330に入力される図24(D)図示の信号(Y4=1/2・sinθ)と、周波数変換部340から出力されて、位相差計測部330に入力される図24(E)図示の信号(Y5=1/2・sin(θ+δφ))とに基づいて、図24(F)に示す如き信号(Y6=δφ)を、その位相差δφとして出力する。
このように演算周期をサンプリング時間と同期させることによって、位相計測時のリアルタイム性をあげることができる。
また、一対の振動速度信号(sinθ,sin(θ+δφ))は、どちらも同じ処理を行い位相計算されるため演算誤差がほとんど無く、正確な位相計算を行うことができる。
次に、図25に図示の動作フローチャートを用いて、図18に図示の信号処理装置400の具体的構成図の信号処理方法について説明する。
図25には、フィードフォワードを用いた場合の周波数変調および位相計測におけるフローチャートが示されている。
図25において、ステップ500では、演算器である信号処理装置400のパラメータを初期化する。この信号処理装置400のパラメータの初期化が行われると、ステップ500において、周波数変調における目標周波数、すなわち、周波数変調後の目標周波数の設定を行う。
ステップ500において、演算器である信号処理装置400のパラメータの初期化が行われ、周波数変調後の目標周波数の設定が行われると、ステップ510において、レフトピックオフ(LPO)7(左速度センサ7)から出力される位相/及び速度信号をA/Dコンバータ31において任意のサンプリング周期でサンプリングしてデジタル信号化し、ライトピックオフ(RPO)8(右速度センサ8)から出力される位相/及び速度信号をA/Dコンバータ35において任意のサンプリング周期でサンプリングしてデジタル信号化する。
そして、このA/Dコンバータ31において任意のサンプリング周期でサンプリングしてデジタル信号化された位相/及び速度信号は、周波数計測器450と周波数変換部310に、A/Dコンバータ35において任意のサンプリング周期でサンプリングしてデジタル信号化された位相/及び速度信号は、周波数変換部340に、それぞれ入力される。
このステップ510において任意のサンプリング周期でサンプリングしデジタル信号化されると、ステップ520において、周波数を計測する。すなわち、A/Dコンバータ31において任意のサンプリング周期でサンプリングしてデジタル信号化された位相/及び速度信号に基づいて、該位相/及び速度信号の入力により周波数計測器450において周波数を計測する。
このステップ520において周波数を計測すると、ステップ530において、参照信号の出力周波数を計算する。すなわち、ステップ530では、周波数計測器450によって計測した周波数を初期設定した目標周波数と比較する。
このステップ530において計測した周波数を初期設定した目標周波数と比較すると、ステップ540において、当該比較した結果に基づいて、参照信号用の発信器320に出力周波数を設定し、参照信号の生成を行う。この参照信号の生成が行われると、この発信器320から、設定された周波数の参照信号が出力され、周波数変換部310,340に入力される。
このステップ540において発信器320に参照信号の生成が行われると、ステップ550において、周波数変換部310,340の処理、すなわち、周波数変調が行われる。
したがって、発信器320から出力される参照周波数信号が入力された周波数変換部310においては、A/Dコンバータ31から出力されてくる位相/及び速度信号を発信器320から出力される参照信号を用いて、任意の周波数の位相/及び速度信号に変換する。
また、発信器320から出力される参照周波数信号が入力された周波数変換部340においては、A/Dコンバータ35から出力されてくる位相/及び速度信号を発信器320から出力される参照信号を用いて、任意の周波数の位相/及び速度信号に変換する。
この結果、周波数変調を行った信号は、任意の一定周波数に変換され位相差計測部130に送られる。
このステップ550において任意の周波数の位相/及び速度信号への変換が行われると、ステップ560において、位相計測を行う。
すなわち、ステップ560においては、発信器320から出力される参照信号の発信周波数に基づいて任意の一定周波数に変換された位相及び速度信号が位相差計測部330に入力される。この位相差計測部330においては、周波数変換部310から出力される任意の一定周波数に変換された位相及び速度信号に基づいて、FFT等を用いて位相計測する。このようにFFT等を用いて位相計測することによって、常に同じ演算周期で高精度な位相差計測が行える。
以下に、信号処理装置400を構成する周波数変換部310,340と、発信器320と、位相差計測部330と、周波数計測器450の4つのブロックについて説明する。
(1)周波数変換部
信号処理装置400の周波数変換部310は、図26に示す如き構成を有している。
図26において、周波数変換部310は、掛け算器311と、ローパスフィルタ(LPF)312(又は、ハイパスフィルタ(HPF))で構成されている。
発信器320からの参照信号cosθと、A/Dコンバータ31からの入力信号SINθを掛け算し、その後、ローパスフィルタ312によってフィルタ処理を行う。
まず、発信器320からの参照信号cosθと、レフトピックオフ(左速度センサ)7によって検出され、ローパスフィルタ30によって取り出された低い周波数の左速度信号(出口側速度信号)がA/Dコンバータ31においてデジタル信号に変換され出力される入力信号sinθを掛け算し、
〔式30〕
Figure 0004694646
と、和と差の周波数信号を合成する。
この和と差の合成信号にローパスフィルタ(又は、ハイパスフィルタ)312を掛けることによって差の信号(又は、和の信号)のみを取り出す。
ここでは、具体的な説明をするため、和の信号を取り出すこととしているが、差の信号でも問題なく、周波数変換方法に応じてフィルタの処理方法は、適宜対応される。
ローパスフィルタ(又は、ハイパスフィルタ)312からの出力は、
〔式31〕
Figure 0004694646
となり、
このときのローパスフィルタ(又は、ハイパスフィルタ)312からの出力信号周波数θは、常に一定になるようにコントロールされる。
このため、使用するフィルタは、入力信号によらず、常に同一のフィルタを用いることができる。
また、このことによって、周波数変換部310の後段の位相差計測部330における位相計測を非常に画一的に、かつ単純化して処理を行うことができる。
(2)周波数計測部
周波数の計測方法としては、本実施の形態においては、PLL(PLL; Phase-locked loop 位相同期回路)の原理を用いる。このPLLは、入力される交流信号と周波数が等しく、かつ位相が同期した信号を、フィードバック制御により別の発振器から出力する電子回路が知られている。
このようにPLLは、もともと位相を同期するための回路で、入力信号に対して位相の同期した信号を作ることができるようになっている。
このPLLは、外部から入力された基準信号と、ループ内の発振器からの出力との位相差が一定になるよう、ループ内発振器にフィードバック制御をかけて発振させる発振回路で、演算器で構成することが比較的簡単で、さらに高速で演算することが可能である。
信号処理装置400の周波数計測器450は、図27に示す如き構成を有している。
図27において、周波数計測器450は、掛け算器451と、ローパスフィルタ(LPF)452と、周波数計測用発信器453とによって構成されている。
この掛け算器451は、A/Dコンバータ31によってデジタル信号に変換された左速度信号(出口側速度信号)sinθと、周波数計測用発信器453から出力される出力信号cosδの位相を比較し、その差信号と和信号としてローパスフィルタ452に出力するものである。
したがって、掛け算器451の出力端には、ローパスフィルタ452が接続されている。このローパスフィルタ452は、掛け算器451から出力される出力信号を周波数フィルタを通して、低い周波数の信号のみ取り出すものである。
したがって、ここでは、掛け算器451から出力される出力信号の中で差の成分のみを取り出している。
また、ローパスフィルタ452には、周波数計測用発信器453が接続されている。この周波数計測用発信器453は、ローパスフィルタ452から出力される低い周波数の信号を基に位相データδを生成するものである。
そして、この周波数計測用発信器453においては、掛け算器451に出力信号cosδを出力し、この掛け算器451において、レフトピックオフ(左速度センサ)7によって検出され、ローパスフィルタ30によって取り出された低い周波数の左速度信号(出口側速度信号)がA/Dコンバータ31においてデジタル信号に変換され出力されてくる入力信号周波数θと、出力信号cosδの位相とが比較され、その差信号と和信号としてローパスフィルタ452へ出力される。
そして、このローパスフィルタ452によって濾波出力される差の成分のみの出力データV(周波数演算関数V)が0になるように帰還ループが形成される。
図27に図示のようにADC31出力sinθは掛け算器451へ入力される。
周波数計測器450内の周波数計測用発信器453より出力される出力信号をcosδとすると、両信号は掛け算器451において掛け算され、
〔式32〕
Figure 0004694646
となる。
この式(32)に示される掛け算器451における掛け算結果をローパスフィルタ452を掛けることによって、高い周波数成分が除去され、
〔式33〕
V=sin(θ−δ) ……………………(33)
となる。
式(33)の(θ−δ)の値が十分小さい値(V≒0)のとき、掛け算器451における掛け算結果を示す周波数演算関数Vは、
〔式34〕
V=θ−δ≒0 ………………(34)
で近似することができる。
ここで、周波数演算関数Vが0になるように周波数計測用発信器453の出力波形をコントロールすることによって、周波数変換部310において周波数変換した前の位相θを求めることができる。
このようにして求めたADC31出力sinθの位相θを、次の式(35)、式(36)を用いて演算することによって周波数fを求めることができる。
〔式35〕
Figure 0004694646
ここで、ΔTは、時間変化を表しており、演算周期(サンプリングレート)と等しくなる。
したがって、位相変化(θ)は、
〔式36〕
θ=2・π・f・Ta ……………………(36)
但)Ta:時間変化(サンプリング周期)(sec)
f:入力周波数(Hz)
θ:位相変化(rad)
となる。
そして、入力周波数fは、
〔式37〕
Figure 0004694646
となる。
このような計算を周波数計測器450において行うことによって、高速な周波数計測を行うことができる。
(3)発信器
図18において可変調な発信器320は、周波数計測器450の計測結果(θ)に基づいて出力周波数が制御される。
すなわち、発信器320は、加振器6によって測定チューブ2,3を振動したときにレフトピックオフ7によって検出され周波数変換部310に入力される測定チューブ2,3の左側に生じる振動速度の検出信号(出口側速度信号)の周波数θを位相差計測部330で処理される所望な周波数に制御する。
この周波数変換部310と周波数変換部340とは、同じ構成となっている。このため、周波数変換部310から出力される周波数同様、周波数変換部340から出力される周波数は、加振器6によって測定チューブ2,3を振動したときにライトピックオフ8によって検出され周波数変換部340に入力される測定チューブ2,3の右側に生じる振動速度の検出信号(入口側速度信号)の周波数(θ+δφ)を所望な周波数に変換する。
(4)位相差計測器
位相計測の方法には、種々な方法があるが、フーリエ変換を用いた位相計測の場合、周波数が固定されているため、非常に演算を高速に行うことが可能となる。
以下に、離散フーリエ変換(Discrete Fourier Transform; DFT)を例にとって説明する。この離散フーリエ変換というのは、離散群上のフーリエ変換であり、信号処理などで離散化されたデジタル信号の周波数解析などによく使われ、偏微分方程式や畳み込み積分を効率的に計算するためにも使われるものである。この離散フーリエ変換は(計算機上で)高速フーリエ変換(FFT)を使って高速に計算することができる。
いま、位相差計測部330において、サンプリングされた入力信号をg(n)とすると、そのDFT G(k)は、
〔式38〕
Figure 0004694646
と定義される。
さらに表現を簡潔にするために、複素指数関数の部分を、
〔式39〕
Figure 0004694646
と置き換えて表現すると、式(38)は、
〔式40〕
Figure 0004694646
となる。
ここで、複素指数関数W nkに注目し、さらにNを、N=2(M:整数)たとえば、N=8として考えると、入力周波数がサンプリング周波数の1/4の時、三角関数の周期性より実数部と虚数部の関数を、
〔式41〕
Figure 0004694646
と、0.1,−1で表現することができる。
このようにして、サンプリング周波数の1/4に周波数変換した入力信号LPO,RPOを非常に簡単にフーリエ変換することができ、さらに通常位相計測においては、単一の周波数(振動周波数)のみフーリエ変換すればよいので、他の周波数帯域について変換は行わないため、加減算のみで演算することが可能である。
実際には、位相差計測部130に入力された入力信号をg(n)とし、入力信号をg(n)がサンプリングレートの1/4の周波数とし、さらにNを、N=2(M:整数)とした場合、そのDFT G(n)の演算は、
〔式42〕
Figure 0004694646
のように演算することができる。
Mの値が大きくなっても基本的な演算は全く変わらないので、Mを大きくするほど非常に精度良く計算することが可能であり、演算負荷もほとんど変わらない。
さらに、2つの入力信号を前述の手順によって離散フーリエ変換(DFT)した結果、RPO信号を、
〔式43〕
Figure 0004694646
とおき、LPO信号を、
〔式44〕
Figure 0004694646
とおくことが可能である。
このときの入力信号の位相角tanδφは、
〔式45〕
Figure 0004694646
となる。
この式(45)において入力信号の位相角tanδφを求めた後、そのtan−1δφを演算して位相差信号δφを求めることができる。
また、被測定流体の質量流量Qは、位相角に比例し駆動周波数Fに反比例することから、
〔式46〕
Q=S(t)・δφ/F …………………(46)
但)S(t):測定流体の温度に関連した補正係数
と表され、この式(46)に計測した位相角δφと駆動周波数Fを代入することによって質量流量Qを計算することができる。
このようにして求めた質量流量Qは、適切なスケーリングや単位換算が行われ、アナログ出力、パルス出力、シリアル通信など後段の処理を追加することによって様々な形態で外部に出力することができる。
《周波数変換を用いた位相計測方法の特長》
本発明に係る位相計測システムの特徴は、振動検出センサ(レフトピックオフ7,ライトピックオフ8)によって検出され、ローパスフィルタ30,34によって取り出された低い周波数の速度信号をA/Dコンバータ31,35によってデジタル信号に変換され出力され、周波数変換部310,340に入力される入力信号の周波数θとは無関係なサンプリング周期で信号をサンプリングできるので、非常に構成が簡単で、フィルタのテーブルを必要とせず、さらに演算誤差が少ない非常に高速な演算が可能となる。
また、本発明に係る位相計測システムによると、振動検出センサ(レフトピックオフ7,ライトピックオフ8)によって検出され、ローパスフィルタ30,34によって取り出された低い周波数の速度信号をA/Dコンバータ31,35によってデジタル信号に変換され出力され、周波数変換部310,340に入力される入力信号に急激な周波数変化が生じても、周波数変換前の周波数を計測し、周波数変換するため、入力周波数が急激に変化しても周波数変換後の周波数変動が最小限に抑えられるため、計測管の駆動周波数が常に変化している状況などでの位相計測に非常に適している。
さらに、本発明に係る位相計測システムによると、周波数変換部310,340に入力される入力信号の入力周波数による位相計測の帯域制限が殆ど無いため、さまざまな駆動周波数のセンサと結合することが可能となり、さらに入力周波数によって演算精度が影響されないため、常に高精度な位相計測が可能となる。
測定用の流管を構成する少なくとも一本、若しくは一対のフローチューブからなる測定チューブ2,3を駆動装置によって加振器6を作動させる。この一本、若しくは一対のフローチューブからなる測定チューブ2,3を交番駆動して、このフローチューブを振動させる。そして、レフトピックオフ(LPO)7とライトピックオフ(RPO)8とによって構成される振動検出センサである一対の速度センサ若しくは加速度センサによって、一本、若しくは一対のフローチューブからなる測定チューブ2,3に作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計が構成されている。
このコリオリ流量計に、速度センサ若しくは加速度センサから検出される一対のフローチューブからなる測定チューブ2,3に作用するコリオリの力に比例した位相差及び/又は振動周波数の2つの入力信号のそれぞれをA/D変換して得る2つの流量信号の内、少なくとも一方のセンサ(例えば、レフトピックオフ7から入力される入力信号(出口側速度信号))の入力信号周波数に基づいて周波数を計測する周波数計測器450と、この周波数計測器において計測した周波数に基づいて所望の周波数信号を発信出力する発信器320を設ける。
さらに、一対の振動検出センサ(レフトピックオフ7,ライトピックオフ8)の一方の速度センサ(例えば、レフトピックオフ7から入力される入力信号(出口側速度信号))を第1のA/Dコンバータ31によってデジタル信号に変換する。そして、この入力信号周波数θを、発信器320から出力される出力周波数θXnを用いて、加算(又は減算)して、それぞれ周波数変換する第1の周波数変換部310を設ける。
また、一対の振動検出センサ(レフトピックオフ7,ライトピックオフ8)の他方の速度センサ(例えば、ライトピックオフ8から入力される入力信号(入口側速度信号))を第2のA/Dコンバータ35によってデジタル信号に変換された入力信号周波数(θ+δφ)を、発信器320から出力される出力周波数θXnを用いて、加算(又は減算)して、それぞれ周波数変換する第2の周波数変換部340を設ける。
さらに、第1の周波数変換部310から一定の周波数信号に変換された第1の周波数変調信号と、第2の周波数変換部340から出力される一定の周波数信号に変換された第2の周波数変調信号との位相差の計測を行う位相差計測部330を設ける。
そして、第1の周波数変換部310から出力される一定の周波数信号に変換された第1の周波数変調信号と、第2の周波数変換部340から出力される一定の周波数信号に変換された第2の周波数変調信号との位相差を得る信号処理装置400を設けてコリオリ流量計を構成する。
1………………………コリオリ流量計
2,3…………………測定チューブ
4………………………検出器
5………………………変換器
6………………………加振器
7………………………左速度センサ
8………………………右速度センサ
9………………………温度センサ
10……………………駆動制御部
11……………………位相計測部
12……………………温度計測部
30,34……………ローパスフィルタ
31,35……………A/Dコンバータ
80……………………振動速度センサ
90……………………振動速度信号演算器
92……………………直交変調器
94……………………発信器
96……………………位相計測器
98……………………周波数変換部
100…………………信号処理装置
110…………………直交変調器
120…………………周波数計測器
121…………………掛け算器
122…………………ローパスフィルタ
123…………………周波数計測用発信器
130…………………直交変調器
140…………………発信器
150…………………位相差計測器
160…………………クロック
300…………………信号処理装置
310…………………周波数変換部
311…………………掛け算器
312…………………ローパスフィルタ
320…………………発信器
330…………………位相差計測部
340…………………周波数変換部
350…………………クロック
450…………………周波数計測器
451…………………掛け算器
452…………………ローパスフィルタ
453…………………周波数計測用発信器

Claims (8)

  1. 測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、前記フローチューブの左右に設けられる一対の振動検出センサである速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
    前記一対の振動検出センサのそれぞれから出力されるアナログ信号をデジタル振動周波数信号に変換する第1のステップと,
    前記フローチューブの振動周波数を前記加振器への制御信号に基づいて計測する第2のステップと,
    前記第2のステップにおいて計測される前記一対の振動検出センサから出力されるデジタル振動周波数信号に基づいて、前記第1のステップにおいて変換されたデジタル信号の周波数が1/Nになるように常に制御する制御信号を生成する第3のステップと,
    前記第1のステップにおいて変換されたデジタル振動周波数信号を、前記第3のステップにおいて生成される制御信号によって直交変換して、該第1のステップにおいて変換されたデジタル振動周波数信号の1/Nの周波数信号を得る第4のステップとを備え,
    前記第4のステップにおいて変換された前記デジタル振動周波数信号の1/Nの周波数信号を用いて前記一対の振動検出センサの検出信号の位相差を検出できるようにしたことを特徴とする信号処理方法。
  2. 測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、振動検出センサである一対の速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
    前記フローチューブの振動周波数を前記加振器への制御信号に基づいて計測し、
    前記計測した周波数に基づいて制御信号を発信し,
    前記速度センサ若しくは加速度センサから検出される前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数の入力信号をA/D変換して得る2つの流量信号の各々について前記発信する制御信号に基づいて合成して周波数が常に一定となるように変換し,
    前記制御された各々の変換合成周波数の信号から位相を計測することにより位相差信号成分を得る
    ことを特徴とする信号処理方法。
  3. 測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、前記フローチューブの左右に設けられる一対の振動検出センサである速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
    前記一対の振動検出センサのそれぞれから出力されるアナログ信号をデジタル信号に変換するためのA/D変換器と,
    前記フローチューブの振動周波数θを前記加振器への制御信号に基づいて計測する周波数計測器と,
    前記周波数計測器から出力されるデジタル周波数信号のθ(1−1/N)の周波数信号を生成する発信器と,
    前記発信器によって生成された信号を用いて、前記A/D変換器から出力される前記一対の振動検出センサに対応する2つのデジタル信号のそれぞれを周波数変換し、1/Nの周波数のデジタル信号を生成する一対の直交周波数変換器とを備え,
    前記直交周波数変換器によって生成された信号を用いて位相差を得るようにしたことを特徴とする信号処理装置。
  4. 測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、振動検出センサである速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
    前記フローチューブの周波数を前記加振器への制御信号に基づいて計測する周波数計測器と,
    前記周波数計測器において計測した周波数に基づいて所望の周波数信号を発信出力する発信器と,
    前記速度センサ若しくは加速度センサから検出される前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数のそれぞれの入力信号と、前記発信器の出力周波数を加算(又は減算)して、それぞれの周波数値が常に一定になるように周波数変換する周波数変換部と,
    前記周波数変換器によって変換される速度センサ若しくは加速度センサから検出されたそれぞれの周波数信号の位相差の計測を行う位相差計測部と,
    によって構成してなることを特徴とする信号処理装置。
  5. 測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、振動検出センサである速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
    前記フローチューブの周波数を前記加振器への制御信号に基づいて計測する周波数計測器と,
    前記周波数計測器において計測した周波数に基づいて所望の周波数信号を発信出力する発信器と,
    前記一対の振動検出センサの一方のセンサを第1のA/Dコンバータによってデジタル信号に変換された該入力信号周波数と、前記発信器から出力される出力周波数とを加算(または減算)して該周波数値が常に一定になるように周波数変換する第1の周波数変換部と,
    前記一対の振動検出センサの他方のセンサを第2のA/Dコンバータによってデジタル信号に変換された該入力信号周波数と、前記発信器から出力される出力周波数とを加算(または減算)して該周波数値が常に一定になるように周波数変換する第2の周波数変換部と,
    前記第1の周波数変換部において変換され出力される第1の周波数信号と前記第2の周波数変換部において変換され出力される第2の周波数信号との位相差の計測を行う位相差計測部と,
    によって構成してなることを特徴とする信号処理装置。
  6. 測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、振動検出センサである一対の速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
    前記フローチューブの周波数を前記加振器への制御信号に基づいて計測する周波数計測器と,
    前記周波数計測器において計測した周波数に基づいて所望の周波数信号を発信出力する発信器と,
    前記一対の振動検出センサの一方の速度センサが第1のA/Dコンバータによってデジタル信号に変換されて出力されてくる入力信号周波数を、前記発信器から出力される出力周波数を用いて、常に一定の周波数信号に周波数シフトして別の周波数帯域に移動する第1の周波数変換部と,
    前記一対の振動検出センサの他方の速度センサが第2のA/Dコンバータによってデジタル信号に変換されて出力されてくる入力信号周波数を、前記発信器から出力される出力周波数を用いて、常に一定の周波数信号に周波数シフトして別の周波数帯域に移動する第2の周波数変換部と,
    前記第1の周波数変換部において変換され出力される一定の周波数信号に変換された第1の周波数信号と、前記第2の周波数変換部において変換され出力される一定の周波数信号に変換された第2の周波数信号との位相差の計測を行う位相差計測部と,
    によって構成してなることを特徴とする信号処理装置。
  7. 測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し該フローチューブを振動させて、振動検出センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
    前記一対の振動検出センサのそれぞれから出力されるアナログ信号をデジタル信号に変換するためのA/D変換器と,
    前記フローチューブの振動周波数θを前記加振器への制御信号に基づいて計測する周波数計測器と,
    前記周波数計測器から出力されるデジタル周波数信号のθ(1−1/N)の周波数信号を生成する発信器と,
    前記発信器によって生成された信号を用いて、前記A/D変換器から出力される前記一対の振動検出センサに対応する2つのデジタル信号のそれぞれを周波数変換し、1/Nの周波数のデジタル信号を生成する一対の直交周波数変換器とを備え,
    前記直交周波数変換器によって生成された信号を用いて位相差を得る信号処理装置を設けたことを特徴とするコリオリ流量計。
  8. 測定用の流管を構成する少なくとも一本、又は一対のフローチューブを駆動装置によって加振器を作動させ前記フローチューブを交番駆動し、該フローチューブを振動させて、振動検出センサである速度センサ若しくは加速度センサによって前記フローチューブに作用するコリオリの力に比例した位相差及び/又は振動周波数を検出することにより、被計測流体の質量流量及び/又は密度を得るコリオリ流量計において,
    前記フローチューブの周波数を前記加振器への制御信号に基づいて計測する周波数計測器と,
    前記周波数計測器において計測した周波数に基づいて所望の周波数信号を発信出力する発信器と,
    前記一対の振動検出センサの一方の速度センサを第1のA/Dコンバータによってデジタル信号に変換されて出力されてくる入力信号周波数を、前記発信器から出力される出力周波数を用いて、常に一定の周波数信号に周波数シフトして別の周波数帯域に移動する第1の周波数変換部と,
    前記一対の振動検出センサの他方の速度センサを第2のA/Dコンバータによってデジタル信号に変換されて出力されてくる入力信号周波数を、前記発信器から出力される出力周波数を用いて、常に一定の周波数信号に周波数シフトして別の周波数帯域に移動する第2の周波数変換部と,
    前記第1の周波数変換部から出力される一定の周波数信号に変換された第1の周波数信号と、前記第2の周波数変換部から出力される一定の周波数信号に変換された第2の周波数信号との位相差の計測を行う位相差計測部とを備え,
    前記第1の周波数変換部から出力される一定の周波数信号に変換された第1の周波数信号と、前記第2の周波数変換部から出力される一定の周波数信号に変換された第2の周波数信号との位相差を得る信号処理装置を設けたことを特徴とするコリオリ流量計。
JP2010035225A 2010-02-19 2010-02-19 信号処理方法、信号処理装置、およびコリオリ流量計 Active JP4694646B1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2010035225A JP4694646B1 (ja) 2010-02-19 2010-02-19 信号処理方法、信号処理装置、およびコリオリ流量計
CA2771500A CA2771500A1 (en) 2010-02-19 2010-11-09 Signal processing method, signal processing device, and coriolis flow meter
KR1020127010899A KR101352306B1 (ko) 2010-02-19 2010-11-09 신호 처리 방법, 신호 처리 장치 및 코리올리 유량계
CN2010800534901A CN102639972A (zh) 2010-02-19 2010-11-09 信号处理方法、信号处理装置以及科里奥利流量计
RU2012129541/28A RU2504737C1 (ru) 2010-02-19 2010-11-09 Способ обработки сигналов, устройство обработки сигналов и расходомер кориолиса
PCT/JP2010/070255 WO2011102032A1 (ja) 2010-02-19 2010-11-09 信号処理方法、信号処理装置、およびコリオリ流量計
SG2012010823A SG178452A1 (en) 2010-02-19 2010-11-09 Signal processing method, signal processing device, and coriolis flow meter.
TW099140562A TWI431254B (zh) 2010-02-19 2010-11-24 Signal processing method, signal processing device, and scientific flow meter
US12/957,727 US8725433B2 (en) 2010-02-19 2010-12-01 Signal processing method, signal processing apparatus, and Coriolis flowmeter
EP10015386A EP2363693A1 (en) 2010-02-19 2010-12-07 Signal processing method, signal processing apparatus, and coriolis flowmeter
EP13000672.9A EP2597434A3 (en) 2010-02-19 2010-12-07 Signal processing method, signal processing apparatus, and Coriolis flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010035225A JP4694646B1 (ja) 2010-02-19 2010-02-19 信号処理方法、信号処理装置、およびコリオリ流量計

Publications (2)

Publication Number Publication Date
JP4694646B1 true JP4694646B1 (ja) 2011-06-08
JP2011169820A JP2011169820A (ja) 2011-09-01

Family

ID=43587453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035225A Active JP4694646B1 (ja) 2010-02-19 2010-02-19 信号処理方法、信号処理装置、およびコリオリ流量計

Country Status (10)

Country Link
US (1) US8725433B2 (ja)
EP (2) EP2597434A3 (ja)
JP (1) JP4694646B1 (ja)
KR (1) KR101352306B1 (ja)
CN (1) CN102639972A (ja)
CA (1) CA2771500A1 (ja)
RU (1) RU2504737C1 (ja)
SG (1) SG178452A1 (ja)
TW (1) TWI431254B (ja)
WO (1) WO2011102032A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103984228B (zh) * 2014-05-31 2017-02-01 福州大学 一种科里奥利质量流量计数字驱动系统设计方法
CN104236651B (zh) * 2014-07-19 2017-06-16 中国人民解放军后勤工程学院 一种科氏流量计振动幅值的仿人智能控制方法
CN106123971B (zh) * 2016-08-11 2019-03-19 中山大学 基于数字锁相技术的差分涡轮流量传感器及其检测方法
MX2019003903A (es) * 2016-10-04 2020-08-17 Pradnesh Mohare Ensambles para generación de sonido.
CN113114174B (zh) * 2021-05-21 2023-09-26 常州大学 一种宽频正交信号发生器及信号发生方法
KR20240058657A (ko) * 2022-10-26 2024-05-03 주식회사 모빅랩 이중 음파 센서를 이용한 이상 신호 감지 장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879911A (en) 1988-07-08 1989-11-14 Micro Motion, Incorporated Coriolis mass flow rate meter having four pulse harmonic rejection
US4934196A (en) 1989-06-02 1990-06-19 Micro Motion, Inc. Coriolis mass flow rate meter having a substantially increased noise immunity
JP3219122B2 (ja) 1994-07-11 2001-10-15 横河電機株式会社 コリオリ質量流量計
US5469748A (en) 1994-07-20 1995-11-28 Micro Motion, Inc. Noise reduction filter system for a coriolis flowmeter
US5555190A (en) * 1995-07-12 1996-09-10 Micro Motion, Inc. Method and apparatus for adaptive line enhancement in Coriolis mass flow meter measurement
US5831178A (en) * 1995-08-29 1998-11-03 Fuji Electric Co., Ltd. Vibration type measuring instrument
US5734112A (en) * 1996-08-14 1998-03-31 Micro Motion, Inc. Method and apparatus for measuring pressure in a coriolis mass flowmeter
US5804741A (en) * 1996-11-08 1998-09-08 Schlumberger Industries, Inc. Digital phase locked loop signal processing for coriolis mass flow meter
DE10161071A1 (de) * 2001-12-12 2003-06-18 Endress & Hauser Gmbh & Co Kg Feldgeräteelektronik mit einer Sensoreinheit für die Prozessmesstechnik
US7313488B2 (en) * 2005-07-11 2007-12-25 Invensys Systems, Inc. Coriolis mode processing techniques
PL1949047T3 (pl) * 2005-10-18 2015-08-31 Micro Motion Inc Układ elektroniczny miernika i sposoby określania różnicy fazy między pierwszym sygnałem czujnika i drugim sygnałem czujnika przepływomierza
JP4436883B1 (ja) * 2009-02-06 2010-03-24 株式会社オーバル 信号処理方法、信号処理装置、およびコリオリ流量計
JP4436882B1 (ja) * 2009-02-06 2010-03-24 株式会社オーバル 信号処理方法、信号処理装置、およびコリオリ流量計
JP4436884B1 (ja) * 2009-02-06 2010-03-24 株式会社オーバル 信号処理方法、信号処理装置、およびコリオリ流量計

Also Published As

Publication number Publication date
US8725433B2 (en) 2014-05-13
WO2011102032A1 (ja) 2011-08-25
TW201137320A (en) 2011-11-01
EP2363693A1 (en) 2011-09-07
SG178452A1 (en) 2012-03-29
EP2597434A3 (en) 2013-09-11
RU2504737C1 (ru) 2014-01-20
CN102639972A (zh) 2012-08-15
CA2771500A1 (en) 2011-08-25
EP2597434A2 (en) 2013-05-29
KR101352306B1 (ko) 2014-01-15
KR20120059639A (ko) 2012-06-08
JP2011169820A (ja) 2011-09-01
TWI431254B (zh) 2014-03-21
US20110203389A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP4436884B1 (ja) 信号処理方法、信号処理装置、およびコリオリ流量計
JP4694645B1 (ja) 信号処理方法、信号処理装置、及び振動型密度計
JP4436882B1 (ja) 信号処理方法、信号処理装置、およびコリオリ流量計
JP4694646B1 (ja) 信号処理方法、信号処理装置、およびコリオリ流量計
JP4436883B1 (ja) 信号処理方法、信号処理装置、およびコリオリ流量計

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250