[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4690613B2 - Method for producing composite hollow body - Google Patents

Method for producing composite hollow body Download PDF

Info

Publication number
JP4690613B2
JP4690613B2 JP2001302249A JP2001302249A JP4690613B2 JP 4690613 B2 JP4690613 B2 JP 4690613B2 JP 2001302249 A JP2001302249 A JP 2001302249A JP 2001302249 A JP2001302249 A JP 2001302249A JP 4690613 B2 JP4690613 B2 JP 4690613B2
Authority
JP
Japan
Prior art keywords
core
cured
heating
composite material
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001302249A
Other languages
Japanese (ja)
Other versions
JP2003103643A (en
Inventor
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2001302249A priority Critical patent/JP4690613B2/en
Publication of JP2003103643A publication Critical patent/JP2003103643A/en
Application granted granted Critical
Publication of JP4690613B2 publication Critical patent/JP4690613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複合材製中空体の製造方法に関し、特に、溶出可能な中子を用いた複合材製中空体の製造方法に関する。
【0002】
【従来の技術】
近年、カーボン繊維やガラス繊維などの強化繊維に、母材であるエポキシ樹脂やポリエステル等の熱硬化性樹脂を含浸させた繊維強化樹脂複合材が開発され、実用化されている。この繊維強化樹脂複合材を使用すると、軽量で高強度な構造体を得ることができるため、車両搭載用のエアインテークマニホールド、S字管、U字管、燃料タンクなどの各種の薄肉閉断面形状を有する構造体(以下、「中空体」という)の製造に有効に用いられている。
【0003】
繊維強化樹脂複合材で前記した中空体を製造する際には、以下のような問題があった。すなわち、中空体が、例えば直円筒などの単純形状を呈するものであれば、フィラメントワインディング法などで容易に製造することができるが、中空体が複雑な閉断面形状を呈するものである場合には、本体部と蓋体部とを別々に調製してこれらを接合するなどの煩雑な手順を経る必要があり、製造に手間がかかっていた。
【0004】
前記した問題を解決するために、低融点合金で所要形状の中子を調製し、この中子に熱硬化性樹脂を母材とした繊維強化樹脂複合材を積層し、この繊維強化樹脂複合材を加熱して硬化させた後、前記した中子を加熱して溶融させて除去することにより、複合材製の中空体を製造するという方法が提案されている(特開平6−106632号公報参照)。
【0005】
【発明が解決しようとする課題】
しかし、前記した方法によると、繊維強化樹脂複合材を加熱して硬化させた後に、あらためて中子を加熱して溶融させる工程を設ける必要があるため、製造効率が低下する。また、中子を加熱して溶融させる際に、繊維強化樹脂複合材の母材である熱硬化性樹脂を硬化させる温度よりも高い温度で加熱する必要があるため、繊維強化樹脂複合材が劣化し、製品の品質が低下するおそれがある。
【0006】
本発明の課題は、複合材製中空体の製造方法において、製造効率を格段に向上させるとともに、繊維強化樹脂複合材の劣化を防止して製品の品質を格段に向上させることである。
【0007】
【課題を解決するための手段】
以上の課題を解決するために、請求項1記載の複合材製中空体の製造方法は、例えば図1ないし図8に示したように、低融点合金で所要形状の中子を製作する中子製作工程と、熱硬化性樹脂を母材とした繊維強化樹脂複合材を前記中子に積層する積層工程と、積層された前記繊維強化樹脂複合材を加熱して一次硬化させる準硬化工程と、前記準硬化工程を経た後に昇温加熱して前記中子を溶融させて除去する中子溶出工程と、前記中子溶出工程を経た後に昇温加熱して前記繊維強化樹脂複合材を硬化させる本硬化工程とを備えることを特徴とする。
【0008】
請求項1記載の発明によれば、熱硬化性樹脂を母材とした繊維強化樹脂複合材を加熱して一次硬化させる工程と、この工程を経た後に昇温加熱して低融点合金製の中子を溶融させて除去する工程と、この工程を経た後に昇温加熱して繊維強化樹脂複合材を硬化させる工程とを備えるため、繊維強化樹脂複合材を一次硬化させてから硬化させるまでの間に、低融点合金製の中子を溶融・除去することができる。従って、繊維強化樹脂複合材を加熱して硬化させた後に、あらためて中子を加熱して溶融させる工程を設ける必要がない。この結果、製造効率を格段に向上させることができる。
【0009】
また、請求項1記載の発明によれば、熱硬化性樹脂を母材とした繊維強化樹脂複合材を加熱して一次硬化させる工程と、この工程を経た後に昇温加熱して低融点合金製の中子を溶融させて除去する工程と、この工程を経た後に昇温加熱して繊維強化樹脂複合材を硬化させる工程とを備えるため、繊維強化樹脂複合材を一次硬化させてから硬化させるまでの間に、低融点合金製の中子を溶融・除去することができる。従って、繊維強化樹脂複合材を硬化させる温度よりも高い温度で加熱する必要がない。この結果、繊維強化樹脂複合材の劣化を防止することができ、製品の品質を格段に向上させることができる。
【0010】
【発明の実施の形態】
以下、本発明に係る複合材製中空体の製造方法を、図面に基づいて詳細に説明する。
【0011】
まず、低融点合金で、円筒体10を調製する(円筒体調製工程、図1参照)。この円筒体10は、後述する回転軸取付工程および切削工程を経て、所要形状の中子40とされるものである。この円筒体10から製作される中子40は、後述する積層工程でその外表面に繊維強化樹脂複合材のプリプレグ50を積層させる中子治具としての機能を果たすとともに、後述する中子溶出工程で外部に除去されて、製品内部に中空部を形成するように機能する。
【0012】
円筒体10の材料となる低融点合金の融点は、プリプレグ50を硬化成形する温度よりも低く設定されている。これは、プリプレグ50を準硬化工程において一次硬化させた後であって本硬化工程において硬化成形する前に、この円筒体10から調製される中子40を溶融させて除去することにより、製品に中空部を形成するためである。
【0013】
円筒体10の材料となる低融点合金としては、Sn、Bi、Pb、In、Cd、Ag、Sb、Znなどを適宜選択して混合させた合金を挙げることができる。本実施の形態では、低融点合金として低温系ハンダ143(千住金属社製、融点143℃)を採用している。
【0014】
次いで、円筒体10に鋼製の回転軸20を取り付ける(回転軸取付工程、図2参照)。本実施の形態では、図2に示すように、円筒体10の中心軸の両端に位置する面(端面)11の中心位置から回転軸20のネジ部21を円筒体10内部へと螺挿することによって、回転軸20を円筒体10に固定している。
【0015】
次いで、円筒体10の表面を切歯30で切削する(切削工程、図3参照)。本実施の形態においては、円筒体10の両端部に取り付けた回転軸20を(図示していない)治具で支持し、この回転軸20を中心に円筒体10を回転させながら切歯30でこの円筒体10の表面を切削して、図3に示すように瓢箪形状の中子40を製作した。以上の円筒体調製工程、回転軸取付工程および切削工程によって、所要形状の中子40が製作される(中子製作工程)。
【0016】
次いで、強化繊維に熱硬化性樹脂を含浸させたテープ状のプリプレグ50を、中子40に積層する(積層工程、図4参照)。プリプレグ50は、後述する準硬化工程における加熱により一次硬化し、さらに昇温させた本硬化工程における加熱により硬化成形されるものである。
【0017】
なお、本発明において「一次硬化」とは、プリプレグ50が完全には硬化していない状態ではあるが、後述する中子溶出工程において低融点合金製の中子40を溶融させて除去する際にプリプレグ50の形状が崩れない程度の硬化状態を意味する。また、「硬化」とは、プリプレグ50が完全に硬化した状態を意味する。
【0018】
プリプレグ50を構成する強化繊維としては、カーボン繊維、ガラス繊維、アラミド繊維、アルミナ繊維、ポリエチレン繊維、シリコンカーバイト繊維、ボロン繊維などを挙げることができる。また、プリプレグ50の母材となる熱硬化性樹脂としては、前記したように準硬化工程で一次硬化し、さらに本硬化工程で硬化するものであれば特に限定されるものではなく、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビスマレイド樹脂などを挙げることができる。
【0019】
次いで、中子40にプリプレグ50を積層した積層体70から回転軸20を取り外し、加熱炉またはオートクレーブ80内に搬入して加熱し、プリプレグ50を一次硬化させる(準硬化工程、図5参照)。積層体70をオートクレーブ80内に配置する際には、ステンレス製の容器90の上に金網100を配置し、この上に積層体70を配置する(図5参照)。これら容器90および金網100は、後述する中子溶出工程で使用するものである。本実施の形態においては、一次硬化温度が60℃であるプリプレグ50を一次硬化させるために、オートクレーブ80内の温度を60℃に設定する。
【0020】
この準硬化工程を経た後、オートクレーブ80内の温度を上昇させ、中子40を加熱して溶融させて、回転軸20を取り外したことによって積層体70の下方に設けられた(図示していない)貫通孔から、溶融させた低融点合金41を除去する(中子溶出工程、図6参照)。この際、加熱によって溶融した低融点合金41は、金網100を通過して容器90の中に溜まることとなる(図6参照)。
【0021】
この低融点合金製の中子40の溶出により、積層体70の内部には中空部71が形成されることとなる(図8参照)。本実施の形態においては、低融点合金製の中子40の融点が143℃であるため、オートクレーブ80内の温度を150℃〜160℃程度に設定する。
【0022】
なお、前記した準硬化工程によってプリプレグ50が一次硬化しているため、この中子溶出工程において中子40を溶融・除去する際に、積層体70の形状が崩れることがない。
【0023】
この中子溶出工程を経た後、さらに雰囲気温度を上昇させ、プリプレグ50を加熱して硬化させる(本硬化工程、図7参照)。本実施の形態においては、本実施の形態においては、硬化温度が177℃であるプリプレグ50を硬化させるために、オートクレーブ80内の温度を177℃程度に設定する。この後、オートクレーブ80内から積層体70を取り出して、中空部71を有する積層体70(複合材製中空体)を得る(図8参照)。
【0024】
本実施の形態に係る複合材製中空体の製造方法によれば、プリプレグ50を加熱して一次硬化させた後に、昇温加熱して低融点合金製の中子40を溶融させ、さらに昇温加熱してプリプレグ50を硬化させるため、プリプレグ50を一次硬化させてから硬化させるまでの間に、低融点合金製の中子40を溶融・除去することができる。従って、プリプレグ50を加熱して硬化させた後に、あらためて中子40を加熱して溶融させる工程を設ける必要がない。この結果、製造効率を格段に向上させることができる。
【0025】
また、本実施の形態に係る複合材製中空体の製造方法によれば、プリプレグ50を加熱して一次硬化させた後に、昇温加熱して低融点合金製の中子40を溶融させ、さらに昇温加熱してプリプレグ50を硬化させるため、プリプレグ50を一次硬化させてから硬化させるまでの間に、低融点合金製の中子40を溶融・除去することができる。従って、プリプレグ50を硬化させる温度よりも高い温度で加熱する必要がない。この結果、プリプレグ50の劣化を防止することができ、製品の品質を格段に向上させることができる。
【0026】
なお、本実施の形態では、一次硬化温度が60℃で硬化温度が177℃のプリプレグ50を採用したが、これに限られるものではなく、例えば、一次硬化温度が120℃で硬化温度が180℃のエポキシ樹脂を母材としたプリプレグを採用することもできる。この場合には、プリプレグを120℃で一次硬化させた後に昇温して150℃程度で維持することによって、低温系ハンダ143で調製した中子40を溶融させて排出することができ、この後さらに昇温して180℃で硬化させることができる。
【0027】
また、本実施の形態では、中子40を溶融させる工程を設けているが、この工程を省略することもできる。すなわち、(前記したエポキシ樹脂を母材としたプリプレグの例で示すと)プリプレグを一次硬化させた後、180℃まで昇温してこの温度を維持することによって、中子40の溶融・排出とプリプレグ50の硬化成形とを同時に行うことができる。この場合、本硬化工程において中子40の溶融排出がなされることになる。
【0028】
【発明の効果】
請求項1記載の発明によれば、繊維強化樹脂複合材を加熱して硬化させた後に、あらためて中子を加熱して溶融させる工程を設ける必要がない。この結果、製造効率を格段に向上させることができる。
【0029】
また、請求項1記載の発明によれば、繊維強化樹脂複合材を構成する熱硬化性樹脂を硬化させる温度よりも高い温度で加熱する必要がない。この結果、繊維強化樹脂複合材の劣化を防止することができ、製品の品質を格段に向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る複合材製中空体の製造方法における円筒体調製工程を説明するための斜視図である。
【図2】本発明の実施の形態に係る複合材製中空体の製造方法における回転軸取付工程を説明するための斜視図である。
【図3】本発明の実施の形態に係る複合材製中空体の製造方法における切削工程を説明するための斜視図である。
【図4】本発明の実施の形態に係る複合材製中空体の製造方法における積層工程を説明するための斜視図である。
【図5】本発明の実施の形態に係る複合材製中空体の製造方法における準硬化工程を説明するための正面図である。
【図6】本発明の実施の形態に係る複合材製中空体の製造方法における中子溶出工程を説明するための正面図である。
【図7】本発明の実施の形態に係る複合材製中空体の製造方法における本硬化工程を説明するための正面図である。
【図8】本発明の実施の形態に係る複合材製中空体の製造方法によって製造された複合材製中空体を示す一部切り欠き断面図である。
【符号の説明】
10 円筒体
11 端面
20 回転軸
21 ネジ部
30 切歯
40 中子
41 溶融させた低融点合金
50 プリプレグ
60 ワインディングヘッド
70 積層体
71 中空部
80 オートクレーブ
90 ステンレス製の容器
100 金網
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a composite material hollow body, and more particularly to a method for manufacturing a composite material hollow body using an eluting core.
[0002]
[Prior art]
In recent years, a fiber reinforced resin composite material in which a reinforcing fiber such as carbon fiber or glass fiber is impregnated with a thermosetting resin such as an epoxy resin or polyester as a base material has been developed and put into practical use. By using this fiber reinforced resin composite material, a lightweight and high-strength structure can be obtained, so various thin closed cross-sectional shapes such as air intake manifolds for vehicles, S-shaped tubes, U-shaped tubes, fuel tanks, etc. It is effectively used for the production of a structure having the following (hereinafter referred to as “hollow body”).
[0003]
When manufacturing the above-mentioned hollow body with a fiber reinforced resin composite material, there were the following problems. That is, if the hollow body has a simple shape such as a straight cylinder, it can be easily manufactured by the filament winding method or the like, but if the hollow body has a complicated closed cross-sectional shape, In addition, it is necessary to go through complicated procedures such as separately preparing the main body portion and the lid portion and bonding them, which takes time and effort.
[0004]
In order to solve the above problems, a core having a required shape is prepared from a low melting point alloy, and a fiber reinforced resin composite material using a thermosetting resin as a base material is laminated on the core, and the fiber reinforced resin composite material A method of manufacturing a hollow body made of a composite material by heating and curing the core, and then melting and removing the above-described core has been proposed (see JP-A-6-106632). ).
[0005]
[Problems to be solved by the invention]
However, according to the above-described method, after the fiber reinforced resin composite material is heated and cured, it is necessary to provide a step of heating and melting the core again, so that the manufacturing efficiency is lowered. In addition, when the core is heated and melted, it is necessary to heat at a temperature higher than the temperature at which the thermosetting resin that is the base material of the fiber reinforced resin composite material is cured, so that the fiber reinforced resin composite material deteriorates. However, the quality of the product may be reduced.
[0006]
An object of the present invention is to dramatically improve the production efficiency and prevent the deterioration of the fiber-reinforced resin composite material in the method for producing a hollow body made of a composite material, thereby significantly improving the quality of the product.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, a method for manufacturing a composite hollow body according to claim 1 is a method for manufacturing a core having a required shape using a low melting point alloy as shown in FIGS. A production step, a lamination step of laminating a fiber reinforced resin composite material having a thermosetting resin as a base material on the core, a semi-curing step of heating and primarily curing the laminated fiber reinforced resin composite material, A core elution step in which the core is melted and removed by passing through the semi-curing step and then the core is melted and removed, and a book in which the fiber reinforced resin composite material is cured by raising the temperature after passing through the core elution step. And a curing step.
[0008]
According to the first aspect of the present invention, the step of heating the fiber reinforced resin composite material using the thermosetting resin as a base material to perform primary curing, and the temperature rising and heating after this step are performed. Since the step of melting and removing the child and the step of heating and heating the fiber reinforced resin composite material after passing through this step, the fiber reinforced resin composite material is primarily cured and then cured. In addition, the core made of the low melting point alloy can be melted and removed. Therefore, it is not necessary to provide a step of heating and melting the core again after the fiber reinforced resin composite material is heated and cured. As a result, manufacturing efficiency can be significantly improved.
[0009]
In addition, according to the first aspect of the present invention, the step of heating the fiber reinforced resin composite material using the thermosetting resin as a base material for primary curing, and the temperature rising heating after this step is performed to make the low melting point alloy. A step of melting and removing the core and a step of heating and curing the fiber reinforced resin composite after passing through this step until the fiber reinforced resin composite is first cured and then cured In the meantime, the core made of the low melting point alloy can be melted and removed. Therefore, it is not necessary to heat at a temperature higher than the temperature at which the fiber reinforced resin composite material is cured. As a result, deterioration of the fiber reinforced resin composite material can be prevented, and the quality of the product can be significantly improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the manufacturing method of the composite-made hollow body which concerns on this invention is demonstrated in detail based on drawing.
[0011]
First, a cylindrical body 10 is prepared with a low melting point alloy (cylindrical body preparation step, see FIG. 1). The cylindrical body 10 is formed into a core 40 having a required shape through a rotating shaft attaching step and a cutting step, which will be described later. The core 40 manufactured from the cylindrical body 10 functions as a core jig for laminating the prepreg 50 of the fiber reinforced resin composite material on the outer surface in a laminating process described later and a core elution process described later. It is removed to the outside and functions to form a hollow portion inside the product.
[0012]
The melting point of the low melting point alloy used as the material of the cylindrical body 10 is set to be lower than the temperature at which the prepreg 50 is cured and formed. This is because the core 40 prepared from the cylindrical body 10 is melted and removed after the prepreg 50 is primarily cured in the semi-curing process and before being cured and molded in the main curing process. It is for forming a hollow part.
[0013]
Examples of the low melting point alloy used as the material of the cylindrical body 10 include an alloy in which Sn, Bi, Pb, In, Cd, Ag, Sb, Zn and the like are appropriately selected and mixed. In this embodiment, low-temperature solder 143 (manufactured by Senju Metal Co., Ltd., melting point 143 ° C.) is employed as the low melting point alloy.
[0014]
Next, the rotating shaft 20 made of steel is attached to the cylindrical body 10 (refer to FIG. 2). In the present embodiment, as shown in FIG. 2, the screw portion 21 of the rotary shaft 20 is screwed into the cylindrical body 10 from the center position of the surfaces (end faces) 11 positioned at both ends of the central axis of the cylindrical body 10. Thus, the rotating shaft 20 is fixed to the cylindrical body 10.
[0015]
Next, the surface of the cylindrical body 10 is cut with the cutting teeth 30 (see the cutting step, FIG. 3). In the present embodiment, the rotating shaft 20 attached to both ends of the cylindrical body 10 is supported by a jig (not shown), and the incisors 30 are rotated while the cylindrical body 10 is rotated around the rotating shaft 20. The surface of the cylindrical body 10 was cut to produce a bowl-shaped core 40 as shown in FIG. The core 40 having a required shape is manufactured by the above-described cylindrical body preparation process, rotating shaft mounting process, and cutting process (core manufacturing process).
[0016]
Next, a tape-shaped prepreg 50 in which a reinforcing fiber is impregnated with a thermosetting resin is laminated on the core 40 (lamination process, see FIG. 4). The prepreg 50 is primary-cured by heating in a semi-curing step described later, and is cured and molded by heating in the main curing step where the temperature is further increased.
[0017]
In the present invention, “primary curing” is a state where the prepreg 50 is not completely cured, but when the core 40 made of a low melting point alloy is melted and removed in the core elution step described later. It means a cured state to such an extent that the shape of the prepreg 50 does not collapse. Further, “cured” means a state in which the prepreg 50 is completely cured.
[0018]
Examples of the reinforcing fibers constituting the prepreg 50 include carbon fibers, glass fibers, aramid fibers, alumina fibers, polyethylene fibers, silicon carbide fibers, and boron fibers. The thermosetting resin used as the base material of the prepreg 50 is not particularly limited as long as it is primarily cured in the semi-curing process and further cured in the main curing process as described above. Examples thereof include unsaturated polyester resins, phenol resins, and bismaleide resins.
[0019]
Next, the rotating shaft 20 is removed from the laminated body 70 in which the prepreg 50 is laminated on the core 40, and the rotary shaft 20 is carried into a heating furnace or an autoclave 80 and heated to primarily cure the prepreg 50 (semi-curing step, see FIG. 5). When the laminated body 70 is disposed in the autoclave 80, the wire mesh 100 is disposed on the stainless steel container 90, and the laminated body 70 is disposed thereon (see FIG. 5). The container 90 and the wire mesh 100 are used in a core elution process described later. In the present embodiment, the temperature in the autoclave 80 is set to 60 ° C. in order to primarily cure the prepreg 50 having a primary curing temperature of 60 ° C.
[0020]
After this semi-curing step, the temperature inside the autoclave 80 was raised, the core 40 was heated and melted, and the rotary shaft 20 was removed, so that it was provided below the laminate 70 (not shown) ) The molten low melting point alloy 41 is removed from the through hole (core elution step, see FIG. 6). At this time, the low melting point alloy 41 melted by heating passes through the wire mesh 100 and accumulates in the container 90 (see FIG. 6).
[0021]
Due to the elution of the core 40 made of the low melting point alloy, a hollow portion 71 is formed inside the laminated body 70 (see FIG. 8). In the present embodiment, since the melting point of the core 40 made of the low melting point alloy is 143 ° C., the temperature in the autoclave 80 is set to about 150 ° C. to 160 ° C.
[0022]
In addition, since the prepreg 50 is primarily cured by the semi-curing process described above, the shape of the laminated body 70 is not collapsed when the core 40 is melted and removed in the core elution process.
[0023]
After this core elution step, the ambient temperature is further raised, and the prepreg 50 is heated and cured (main curing step, see FIG. 7). In the present embodiment, in the present embodiment, the temperature in the autoclave 80 is set to about 177 ° C. in order to cure the prepreg 50 having a curing temperature of 177 ° C. Then, the laminated body 70 is taken out from the autoclave 80, and the laminated body 70 (composite material hollow body) which has the hollow part 71 is obtained (refer FIG. 8).
[0024]
According to the method for manufacturing a hollow body made of a composite material according to the present embodiment, after the prepreg 50 is heated and primary-cured, the core 40 made of a low-melting alloy is melted by heating at a higher temperature, and the temperature is further increased. Since the prepreg 50 is cured by heating, the core 40 made of the low-melting-point alloy can be melted and removed between the time when the prepreg 50 is primarily cured and then cured. Therefore, there is no need to provide a step of heating and melting the core 40 again after the prepreg 50 is heated and cured. As a result, manufacturing efficiency can be significantly improved.
[0025]
In addition, according to the method for manufacturing a hollow body made of a composite material according to the present embodiment, after the prepreg 50 is heated and primary-cured, the core 40 made of a low-melting-point alloy is melted by heating and heating, Since the prepreg 50 is cured by heating at a high temperature, the core 40 made of the low melting point alloy can be melted and removed between the time when the prepreg 50 is primarily cured and then cured. Therefore, it is not necessary to heat at a temperature higher than the temperature at which the prepreg 50 is cured. As a result, deterioration of the prepreg 50 can be prevented, and the quality of the product can be significantly improved.
[0026]
In the present embodiment, the prepreg 50 having a primary curing temperature of 60 ° C. and a curing temperature of 177 ° C. is used, but is not limited to this. For example, the primary curing temperature is 120 ° C. and the curing temperature is 180 ° C. It is also possible to adopt a prepreg based on the epoxy resin. In this case, the core 40 prepared with the low-temperature solder 143 can be melted and discharged by first heating the prepreg at 120 ° C. and then maintaining the temperature at about 150 ° C. Further, the temperature can be raised and cured at 180 ° C.
[0027]
Moreover, in this Embodiment, although the process of melting the core 40 is provided, this process can also be abbreviate | omitted. That is, (as shown in the example of the prepreg using the above-described epoxy resin as a base material), after the prepreg is primarily cured, the temperature is raised to 180 ° C. and maintained at this temperature, whereby the core 40 is melted and discharged. The prepreg 50 can be cured and formed at the same time. In this case, the core 40 is melted and discharged in the main curing step.
[0028]
【The invention's effect】
According to the first aspect of the present invention, there is no need to provide a step of heating and melting the core again after the fiber reinforced resin composite is heated and cured. As a result, manufacturing efficiency can be significantly improved.
[0029]
Moreover, according to invention of Claim 1, it is not necessary to heat at the temperature higher than the temperature which hardens the thermosetting resin which comprises a fiber reinforced resin composite material. As a result, deterioration of the fiber reinforced resin composite material can be prevented, and the quality of the product can be significantly improved.
[Brief description of the drawings]
FIG. 1 is a perspective view for explaining a cylindrical body preparation step in a method for producing a composite hollow body according to an embodiment of the present invention.
FIG. 2 is a perspective view for explaining a rotating shaft attaching step in the method for producing a composite hollow body according to the embodiment of the present invention.
FIG. 3 is a perspective view for explaining a cutting step in the method for manufacturing a composite hollow body according to the embodiment of the present invention.
FIG. 4 is a perspective view for explaining a stacking step in the method for manufacturing a composite hollow body according to the embodiment of the present invention.
FIG. 5 is a front view for explaining a semi-curing step in the method for producing a composite hollow body according to the embodiment of the present invention.
FIG. 6 is a front view for explaining a core elution step in the method for manufacturing a composite hollow body according to the embodiment of the present invention.
FIG. 7 is a front view for explaining the main curing step in the method for manufacturing a composite hollow body according to the embodiment of the present invention.
FIG. 8 is a partially cutaway cross-sectional view showing a composite material hollow body manufactured by the method for manufacturing a composite material hollow body according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Cylindrical body 11 End surface 20 Rotating shaft 21 Thread part 30 Cutting tooth 40 Core 41 Molten low melting point alloy 50 Prepreg 60 Winding head 70 Laminate 71 Hollow part 80 Autoclave 90 Stainless steel container 100 Wire mesh

Claims (1)

低融点合金で所要形状の中子を製作する中子製作工程と、
熱硬化性樹脂を母材とした繊維強化樹脂複合材を前記中子に積層する積層工程と、
積層された前記繊維強化樹脂複合材を加熱して一次硬化させる準硬化工程と、
前記準硬化工程を経た後に昇温加熱して前記中子を溶融させて除去する中子溶出工程と、
前記中子溶出工程を経た後に昇温加熱して前記繊維強化樹脂複合材を硬化させる本硬化工程と
を備えることを特徴とする複合材製中空体の製造方法。
A core manufacturing process for manufacturing a core of a required shape with a low melting point alloy;
A laminating step of laminating a fiber reinforced resin composite material based on a thermosetting resin on the core;
A semi-curing step of heating and primary curing the laminated fiber reinforced resin composite material;
A core elution step in which the core is melted and removed by heating and heating after the semi-curing step;
And a main curing step of curing the fiber-reinforced resin composite by heating and heating after the core elution step.
JP2001302249A 2001-09-28 2001-09-28 Method for producing composite hollow body Expired - Fee Related JP4690613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302249A JP4690613B2 (en) 2001-09-28 2001-09-28 Method for producing composite hollow body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302249A JP4690613B2 (en) 2001-09-28 2001-09-28 Method for producing composite hollow body

Publications (2)

Publication Number Publication Date
JP2003103643A JP2003103643A (en) 2003-04-09
JP4690613B2 true JP4690613B2 (en) 2011-06-01

Family

ID=19122518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302249A Expired - Fee Related JP4690613B2 (en) 2001-09-28 2001-09-28 Method for producing composite hollow body

Country Status (1)

Country Link
JP (1) JP4690613B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10322297B4 (en) * 2003-05-17 2007-04-19 Daimlerchrysler Ag Method for producing a component made of fiber composite material
DE102006031334A1 (en) 2006-07-06 2008-01-10 Airbus Deutschland Gmbh Process to manufacture omega-shaped aircraft fuselage stringer using removable form core of parallel flexible tubes
DE102006031336B4 (en) 2006-07-06 2010-08-05 Airbus Deutschland Gmbh Method for producing a fiber composite component in the aerospace industry
DE102006031323B4 (en) * 2006-07-06 2010-07-15 Airbus Deutschland Gmbh Method for producing a fiber composite component for aerospace applications
DE102006031335B4 (en) 2006-07-06 2011-01-27 Airbus Operations Gmbh Method for producing a fiber composite component for aerospace applications
DE102006031325B4 (en) 2006-07-06 2010-07-01 Airbus Deutschland Gmbh Method for producing a fiber composite component for aerospace applications
JP2008132717A (en) * 2006-11-29 2008-06-12 Toyota Industries Corp Manufacturing method of fiber-reinforced plastic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297711A (en) * 1988-10-04 1990-04-10 Toyota Motor Corp Integral molding of ball joint
WO2000018566A1 (en) * 1998-09-30 2000-04-06 Toray Industries, Inc. Hollow structure of fiber-reinforced resin and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297711A (en) * 1988-10-04 1990-04-10 Toyota Motor Corp Integral molding of ball joint
WO2000018566A1 (en) * 1998-09-30 2000-04-06 Toray Industries, Inc. Hollow structure of fiber-reinforced resin and method of manufacturing the same

Also Published As

Publication number Publication date
JP2003103643A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
US5262118A (en) Method for producing a hollow FRP article
US8387504B2 (en) Fiber-reinforced Al-Li compressor airfoil and method of fabricating
JP4690613B2 (en) Method for producing composite hollow body
JPS58118401A (en) Production method of rim made of continuous fiber reinforced plastic
US3549444A (en) Filament wound blade and compressor
JP2011213312A (en) Chassis frame
EP1011321A1 (en) Molded fishing rod
CN208305844U (en) The curing system of D braided composites cored screw spring
JPH05269868A (en) Production of perforated hollow composite material
JPH0640881Y2 (en) Resin impeller
JPH0686841A (en) Golf club head and its manufacture
JPH085139B2 (en) FRP hollow product manufacturing method
JP2005271279A (en) Method for producing tapered hollow tube
JP2000015710A (en) Production of structure made of frp
JP3692691B2 (en) Fiber reinforced plastic tubular body
JPS59109315A (en) Joined body of metal material and fiber reinforced composite material
JPH01110376A (en) Method for manufacturing bat of fiber-reinforced plastics
JP4477316B2 (en) Linerless high pressure gas tank and manufacturing method thereof
JP3384936B2 (en) Golf club shaft manufacturing method
JP2002177424A (en) Shaft for golf club
JPH0231770A (en) Shaft for golf club
JP2002283468A (en) Fiber-reinforced pipe and its production method
JPH06278671A (en) Fiber-reinforced thermosetting resin pipe for bicycle frame and its manufacture
JPH10151690A (en) Tubular member made of fiber reinforced plastic
JPS61242833A (en) Manufacture of fiber-reinforced resin disc wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110218

R150 Certificate of patent or registration of utility model

Ref document number: 4690613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees