[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4690605B2 - Corrugated fin heat exchanger - Google Patents

Corrugated fin heat exchanger Download PDF

Info

Publication number
JP4690605B2
JP4690605B2 JP2001270617A JP2001270617A JP4690605B2 JP 4690605 B2 JP4690605 B2 JP 4690605B2 JP 2001270617 A JP2001270617 A JP 2001270617A JP 2001270617 A JP2001270617 A JP 2001270617A JP 4690605 B2 JP4690605 B2 JP 4690605B2
Authority
JP
Japan
Prior art keywords
louver
group
leeward
heat exchanger
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001270617A
Other languages
Japanese (ja)
Other versions
JP2003083690A (en
Inventor
秀孝 新長
公昭 中野
選 村江
忠道 青山
芳浩 谷
晋 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T.RAD CO., L T D.
Original Assignee
T.RAD CO., L T D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T.RAD CO., L T D. filed Critical T.RAD CO., L T D.
Priority to JP2001270617A priority Critical patent/JP4690605B2/en
Publication of JP2003083690A publication Critical patent/JP2003083690A/en
Application granted granted Critical
Publication of JP4690605B2 publication Critical patent/JP4690605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、定間隔で離間した多数の偏平チューブとそれらの間に配置されるコルゲートフィンとを有する熱交換器において、コルゲートフィンの各位置におけるルーバの切り起こし角度と放熱量との関係に基づき、熱交換性能の向上を図ったものに関する。
【0002】
【従来の技術】
コルゲートフィン型熱交換器のフィンの表面には空気流通方向に僅かづつ離間して多数のルーバが切り起こし形成されている。
図12は従来のコルゲートフィン型熱交換器のフィンの要部縦断面説明図であり、空気流5が図において左方から右方に流通する。このようなコルゲートフィン2の幅方向中央にはリターンルーバ4が配置され、リターンルーバ4を境としてその前後で、ルーバ3の傾斜方向が逆向きに切り起こし形成されている。即ち、風上側ルーバ群3aの夫々のルーバ3は左上がりに傾斜するものであり、風下側ルーバ群3bの夫々のルーバ3は右上がりに傾斜している。そして風上側ルーバ群3a,風下側ルーバ群3bの各切り起こし傾斜角度αは同一に形成されていた。
【0003】
【発明が解決しようとする課題】
図12に示すような従来型のコルゲートフィン型熱交換器は、空気流5が左端から右端に流通すると共に、その流通方向の各位置における空気流5の温度とフィン表面の温度との差は、図13に示すようになることが本発明者の実験により確認された。即ち、コルゲートフィン2の左端とリターンルーバ4との間に位置する風上側ルーバ群3aの各ルーバ3により、空気流5とフィン各部との温度差は急激に減少する。それに比べてリターンルーバ4の風下側では、空気流5とフィン各部との温度差の減少割合は比較的小さなものとなり、コルゲートフィン2の右端部においては殆ど温度差がなくなる。
【0004】
このことは、リターンルーバ4に対して風下側ルーバ群3bの放熱量は風上側ルーバ群3aのそれよりも著しく小さいことが判る。それにも拘わらず、風下側ルーバ群3bにおける空気流の圧力損失は風上側ルーバ群3aのそれと同等である。
本発明者らは上記実験結果の知見に基づき、空気流の圧力損失が小さく且つ全体として放熱性能の高いコルゲートフィン型熱交換器を開発した。
【0005】
【課題を解決するための手段】
請求項1に記載の本発明は、定間隔に配置された多数の偏平チューブ(1) と、隣合う偏平チューブ(1) 間に位置し、その偏平チューブ(1) の横断面の長軸方向が幅方向に一致し且つ、その波の振幅方向の両端である頂部および谷部が偏平チューブ(1) の外面に固定された多数のコルゲートフィン(2) と、を具備し、
空気流(5) が前記偏平チューブ(1) の前記長軸方向に流通するコルゲートフィン型熱交換器において、
前記コルゲートフィン(2) に、前記幅方向に互いに一定間隔に離間して斜めに多数のルーバ(3) が切り起こし形成されると共に、中間部にリターンルーバ(4)が配置され、そのリターンルーバ(4) を介して前記空気流(5) の上流に位置する一つのみの風上側ルーバ群(3a)と下流に位置する一つのみの風下側ルーバ群(3b)とは、夫々そのルーバ(3) の切り起こし方向が逆に形成され、
風下側の全てのルーバ群(3b)の各ルーバ(3) の切り起こし角度βが、風上側の全てのルーバ群(3a)のその切り起こし角度αより小さく形成されたコルゲートフィン型熱交換器である。
【0006】
請求項2に記載の本発明は、請求項1において、
風下側ルーバ群(3b)の各ルーバ(3) のルーバ幅(S2)が、風上側ルーバ群(3a)のそのルーバ幅(S1)より大きく形成されたコルゲートフィン型熱交換器である。
請求項3に記載の本発明は、請求項1において、
風下側ルーバ群(3b)全体の幅である群幅(L2)が、風上側ルーバ群(3a)のその群幅(L1)よりも大に形成されたコルゲートフィン型熱交換器である。
【0007】
請求項4に記載の本発明は、請求項1において、
風下側ルーバ群(3b)全体の幅である群幅(L2)が、風上側ルーバ群(3a)のその群幅(L1)よりも小に形成されたコルゲートフィン型熱交換器である。
請求項5に記載の本発明は、請求項1〜請求項4のいずれかにおいて、
風上側ルーバ群(3a)の各ルーバ(3) の切り起こし角度αが24度〜30度で、風下側ルーバ群(3b)の各ルーバ(3) の切り起こし角度βが11度〜23度に形成され、コルゲートフィン(2) の空気流通方向のフィン幅Bが24mm〜64mmであるコルゲートフィン型熱交換器である。
【0008】
【発明の実施の形態】
次に、図面に基づいて本発明の各実施の形態につき説明する。
図1は本発明のコルゲートフィン型熱交換器のコルゲートフィン2の要部縦断面説明図であって、図5におけるI−I矢視断面略図である。なお、図5は一つのみのコルゲートフィン2を略図的に示しているが、実際には多数の偏平チューブ1およびコルゲートフィン2が定間隔に並列されている。
【0009】
即ち、このコルゲートフィン型熱交換器は、定間隔に且つ複数列に多数の偏平チューブ1が配置され、各偏平チューブ1間にコルゲートフィン2が位置され、その波の振幅方向の両端である頂部および谷部が偏平チューブ1の外面にろう付け等の手段により固定されてコアを構成し、各偏平チューブ1の両端は図示しない一対のタンクに液密に連通固定されている。そして一方のタンクから多数の偏平チューブ1を介して他方のタンクに被冷却流体が流通し、偏平チューブ1の外面およびコルゲートフィン2にはその幅方向に冷却用の空気流5が流通し、熱交換が行なわれるものである。
【0010】
図1においては、空気流5が左端から右端方向に流通する。そしてそのコルゲートフィン2の幅方向中央位置にリターンルーバ4が位置され、リターンルーバ4より左側に一群のみの風上側ルーバ群3aが設けられ、右側に一群のみの風下側ルーバ群3bが設けられている。この風下側ルーバ群3bの各ルーバ3の切り起こし角度βは、風上側ルーバ群3aの各ルーバ3の切り起こし角度αよりも小さく形成され、風下側ルーバ群3bの空気流5に対する空気抵抗が低減するようになっている。
この例では、風上側ルーバ群3aの群幅L1と風下側ルーバ群3bの群幅L2とは同一である。そしてコルゲートフィン2のフィン幅Bは24mm〜64mmであり、風上側ルーバ群3aのルーバ3の切り起こし角度αが24度〜30度であり、風下側ルーバ群3bの各ルーバ3の切り起こし角度βは11度〜23度である。
【0011】
次に、図2は本発明の第2の実施の形態を示し、この実施の形態が図1のそれと異なる点は、風下側ルーバ群3bの各ルーバ3のルーバ幅S2が風上側ルーバ群3aの各ルーバ3のルーバ幅S1より大きく切り起こし形成されているものであり、他は同一である。なお、図1〜図4(図3,図4は後述する)は夫々実際のコルゲートフィンに比べてルーバの数を少なくすると共に、その他も簡略化しているが、一例として図2のコルゲートフィン型熱交換器は、実際には図6,図7に示すように形成されている。
【0012】
この熱交換器は、フィン幅Bが36mmの例で、風上側ルーバ群3aのルーバ3の幅およびルーバピッチが1mmで、そのルーバ3が15枚存在し、風下側ルーバ群3bのルーバ3の幅およびルーバピッチは1.6mmで、そのルーバ3が9枚である。そして、風上側ルーバ群3aの各ルーバの切り起こし角度αは26度で、風下側ルーバ群の各ルーバの切り起こし角度βは14度である。また、フィンの振幅Aは6.5mm、偏平チューブ1の横断面の長軸の長さは16mm、短軸の長さが1.4mmである。
【0013】
そしてフィン幅Bが上記のものより長くなると、それに応じてルーバの数が増大する。それと共に、偏平チューブの横断面の長軸の長さが長くなるかまたは、偏平チューブの数が増える。但し、何れの場合にも、風上側ルーバ群の数および風下側ルーバ群の数は夫々一つづつである。
図1,図3,図4の各例も実際には、上記の図6,図7に準じて各ルーバその他が形成されている。
【0014】
次に、図3は本発明の第3の実施の形態を示し、この実施の形態が図1のそれと異なる点は、リターンルーバ4がコルゲートフィン2の幅方向中心よりも上流側に位置し、風上側ルーバ群3aの群幅L1が、風下側ルーバ群3bの群幅L2よりも短いことである。その他は、図1と同様である。
次に、図4は本発明の第4の実施の形態を示し、この例は図3のそれとは反対に、リターンルーバ4がコルゲートフィン2の幅方向中心よりも下流側に位置し、風上側ルーバ群3aの群幅L1が、風下側ルーバ群3bの群幅L2よりも大に形成ており、その他は図1と同様である。
【0015】
【実施例】
図1の例において、コルゲートフィン2の空気流通方向(フィン幅B)を48mmとし、風上側ルーバ群3aの全てのルーバ3の切り起こし角度αを26度とする。そして、風下側ルーバ群3bのルーバ3は、全て11度のものと,14度,17度,19度,21度,23度の各傾斜角につき、6種類のフィンを有するコルゲートフィン型熱交換器を用意した。また、比較例として、図12に示すコルゲートフィン2であって、風上側ルーバ群3aのルーバ3及び風下側ルーバ群3bのルーバ3の各切り起こし角度αを共に26度とし、他は全て同一の条件のコルゲートフィン型熱交換器を用意した。そしてその比較例の熱交換器と、図1の各切り起こし角度βの熱交換器とを、風洞において風速を4m/secの下で、それらの放熱性能と圧力損失とを測定してみた。
【0016】
その実験結果は、図8に示している。図において、左端に存在するSTDは図12に示す従来型コルゲートフィンを用いた熱交換器であり、風速を4m/secとした場合の圧力損失及び放熱性能であり、その値を夫々基準値100とする。そしてそれに比較し、風下側ルーバ群3bの各ルーバの夫々の切り起こし角度βを有する6種類の熱交換器の圧力損失及び放熱性能を比較したものである。
【0017】
図8の結果から、次のことが明らかとなる。
風下側ルーバ群3bの各ルーバ3の切り起こし角度βが17度〜23度の範囲の各熱交換器は、その放熱性能が従来型(STD)のそれと同一又は近似的に同一であるが、空気流の圧力損失は3%〜8%程度減少している。このことは、これらの各熱交換器を自動車用熱交換器としてそのエンジンルーム内に実際に搭載した場合、比較例の従来型熱交換器に比べ、熱交換器を流通する風速が高められることを意味する。その結果、その風速の増加に伴い熱交換器の放熱性能を向上させることができる。
【0018】
即ち、図8の実験結果によれば、放熱性能が殆ど同じて通風抵抗が3%〜8%程度低下しているため、その分だけ車搭載状態においての熱交換器の通風性が向上し、その分だけ風速が増して放熱性能が向上することが判る。
風下側ルーバ群3bの各ルーバ3の切り起こし角度βが14度の熱交換器においては、放熱性能が従来型のそれに比べて7%程度低下するが、圧力損失はそれ以上の16%程度も低下し、放熱性能の低下以上の圧力損失の低下をみる。これにより、車搭載時における熱交換器は通風性をより向上させ、それに基づき熱交換器を流通する空気流の流速を増大させて、従来型熱交換器以上の熱交換性能を得ることができる。
同様に風下側ルーバ群3bの各ルーバ3の切り起こし角度βが11度の熱交換器においても、従来型の熱交換器比べ放熱性能の低下以上に圧力損失が低下しているため、この熱交換器を車に搭載した場合、全体として熱交換性能が従来以上となることが期待できる。
【0019】
次に、図9は図2のコルゲートフィン2を用いた各熱交換器と従来型熱交換器とを比較したものであり、夫々の熱交換器のフィン幅Bの厚さは比較例のものを含め全て48mmであり、図2のものは風上側ルーバ群3aの各ルーバ3の切り起こし角度αを図1の場合と同様に夫々26度とし、風下側ルーバ群3bの各ルーバ3の切り起こし角度βは11度のものと、14度,17度,19度,21度,23度のものの各熱交換器を夫々制作し、それらと従来型の熱交換器との比較を行ったものである。
【0020】
従来の熱交換器(STD)は、図8のそれ同様に風上側ルーバ群3aの各ルーバ3の切り起こし角度及び風下側ルーバ群3bの各ルーバ3の切り起こし角度は26度である。そして風洞において風速が4m/secとなるようにして行った。その結果は、図8の場合の各熱交換器に比べて放熱性能が数%程度低下するものの、圧力損失は図8の熱交換器のものに比べさらに5%程度低下している。
その結果、圧力損失のより大きな低下に基づき、この熱交換器を実際の車両に搭載した場合においては、流速の大きな増大が起こり、全体として熱交換性能が向上することが判る。
【0021】
次に、図10は図3のコルゲートフィン2を用いた各熱交換器であって、風上側ルーバ群3aの群幅L1と風下側ルーバ群3bの群幅L2の比、群幅L1/群幅L2の比が0.8であるものにおいて、風洞実験において風速を2m/secとし、図8と同様の実験を行った。この熱交換器は、風速が余り速くできない条件の下で使用するものであり、可能な限り圧力損失を低下させたものである。 次に、図11は図4のコルゲートフィン2を用いたものであり、上記の比、群幅L1/群幅L2が1.2である場合において、風速を6m/secとして、図8と同様の実験を行った。この熱交換器は、風速を速くできる条件の下で使用するものであり、可能な限り風上側の放熱性能の向上を図るものである。
【0022】
図10及び図11の結果も、前記図8と同様の作用・効果を得る。
また、上記実験例においてはラジエータの厚さを全て48mmに固定したが、それを24mm,36mmとし、他の条件は図1〜図4で前記同様の実験を行った場合においても、夫々同様の結果が顕れた。
さらに上記実験では、風上側ルーバ角度及び従来型のルーバ角度を夫々26度に固定したが、それを24度,28度,30度としたときにも、前記同様の結果が得られた。
【0023】
【発明の作用・効果】
請求項1に記載のコルゲートフィン型熱交換器によれば、中間部に位置するリターンルーバ4に対して全ての風下側ルーバ群3bのルーバ3の切り起こし角度βが、全ての風上側ルーバ群3aのその切り起こし角度αより小さく形成されたから、放熱量が減少する全ての風下側ルーバ群3bの空気抵抗を低減して、その分だけ全体としての空気流通速度を増大し、結果として放熱量を増大させることができる。
【0024】
請求項2に記載のコルゲートフィン型熱交換器によれば、風下側ルーバ群3bのルーバ3のルーバ幅S2が、風上側ルーバ群3aのそのルーバ幅S1より大きく形成されたものであるから、風下側の切り起こし数を減らして、その風下側ルーバ群3bの空気抵抗をさらに低減し、空気流通速度を増大させて放熱量を増加させることができる。
請求項3に記載のコルゲートフィン型熱交換器によれば、風下側ルーバ群3b全体の幅である群幅L2が、風上側ルーバ群3aのその群幅L1よりも大に形成されたものであるから、空気流の流速を比較的小さくせざるを得ない熱交換器において、風下側の空気抵抗を大きく減らし、その結果放熱量を最大限度引き出すことができる。
【0025】
請求項4に記載のコルゲートフィン型熱交換器によれば、風下側ルーバ群3b全体の幅である群幅L2が、風上側ルーバ群3aの群幅L1より小に形成されたものであるから、熱交換器に流通する空気流の流速を比較的速くとれるものにおいて、風上側のルーバ群のルーバの数を増やし、その部分における放熱量を最大限に増大させ、風下側ルーバ群の流通抵抗を低減し、結果として全体的熱交換量を増大することができる。
請求項5に記載のコルゲートフィン型熱交換器によれば、風上側ルーバ群3aのルーバ3の切り起こし角度α、及び風下側ルーバ群3bの切り起こし角度β、並びに空気流通方向のフィン幅Bを特定の範囲にしたので、さらに放熱性能の良いものを提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示すコルゲートフィン型熱交換器の要部縦断面説明図であって、図5のI−I矢視断面略図。
【図2】本発明の第2の実施の形態を示すコルゲートフィン型熱交換器の要部縦断面説明図であって、図1と同様の面で切断したもの。
【図3】本発明の第3の実施の形態を示すコルゲートフィン型熱交換器の要部縦断面説明図であって、図1と同様の面で切断したもの。
【図4】本発明の第4の実施の形態を示すコルゲートフィン型熱交換器の要部縦断面説明図であって、図1と同様の面で切断したもの。
【図5】本発明のコルゲートフィン型熱交換器の説明的要部斜視図。
【図6】図2の形態におけるコルゲートフィン型熱交換器の詳細を示す要部横断面図。
【図7】同 VII− VII矢視略図。
【図8】図1におけるコルゲートフィンを用いた各風下側ルーバ角度の熱交換器に対する放熱性能及び圧力損失の比較図。
【図9】図2におけるコルゲートフィンを用いた各風下側ルーバ角度の熱交換器に対する放熱性能及び圧力損失の比較図。
【図10】図3におけるコルゲートフィンを用いた各風下側ルーバ角度の熱交換器に対する放熱性能及び圧力損失の比較図。
【図11】図4におけるコルゲートフィンを用いた各風下側ルーバ角度の熱交換器に対する放熱性能及び圧力損失の比較図。
【図12】従来型コルゲートフィン型熱交換器の要部縦断面説明図。
【図13】同コルゲートフィンの空気流通方向における各位置のフィン表面温度と空気流5の温度との差を表す測定図。
【符号の説明】
1 偏平チューブ
2 コルゲートフィン
3 ルーバ
3a 風上側ルーバ群
3b 風下側ルーバ群
4 リターンルーバ
5 空気流
S1,S2 ルーバ幅
L1,L2 群幅
A 振幅
B フィン幅
F フィンピッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger having a number of flat tubes spaced at regular intervals and corrugated fins arranged between them, based on the relationship between the louver raising angle and the amount of heat radiation at each position of the corrugated fins. The invention relates to an improvement in heat exchange performance.
[0002]
[Prior art]
A large number of louvers are cut and raised on the surface of the fins of the corrugated fin heat exchanger slightly spaced apart in the air flow direction.
FIG. 12 is a longitudinal cross-sectional explanatory view of a main part of a fin of a conventional corrugated fin type heat exchanger, and an air flow 5 flows from left to right in the figure. A return louver 4 is arranged in the center of the corrugated fin 2 in the width direction, and the inclination direction of the louver 3 is cut and raised in the opposite direction before and after the return louver 4 as a boundary. That is, each louver 3 in the leeward louver group 3a is inclined to the left upward, and each louver 3 in the leeward louver group 3b is inclined to the right upward. The cut-and-raised inclination angles α of the leeward louver group 3a and the leeward louver group 3b are formed to be the same.
[0003]
[Problems to be solved by the invention]
In the conventional corrugated fin heat exchanger as shown in FIG. 12, the air flow 5 flows from the left end to the right end, and the difference between the temperature of the air flow 5 at each position in the flow direction and the temperature of the fin surface is As shown in FIG. 13, it was confirmed by the inventors' experiment. That is, the temperature difference between the airflow 5 and each part of the fin is rapidly reduced by each louver 3 of the windward louver group 3a located between the left end of the corrugated fin 2 and the return louver 4. On the other hand, on the leeward side of the return louver 4, the decreasing rate of the temperature difference between the air flow 5 and each fin portion is relatively small, and there is almost no temperature difference at the right end portion of the corrugated fin 2.
[0004]
This indicates that the amount of heat released from the leeward louver group 3b with respect to the return louver 4 is significantly smaller than that of the leeward louver group 3a. Nevertheless, the pressure loss of the airflow in the leeward louver group 3b is equivalent to that of the leeward louver group 3a.
Based on the knowledge of the above experimental results, the present inventors have developed a corrugated fin type heat exchanger with a small pressure loss of the air flow and high heat dissipation performance as a whole.
[0005]
[Means for Solving the Problems]
The present invention according to claim 1 is located between a plurality of flat tubes (1) arranged at regular intervals and an adjacent flat tube (1), and the longitudinal direction of the cross section of the flat tubes (1) A plurality of corrugated fins (2) whose tops and troughs, which correspond to the width direction of the wave, are fixed to the outer surface of the flat tube (1).
In the corrugated fin type heat exchanger in which the air flow (5) flows in the long axis direction of the flat tube (1),
In the corrugated fin (2), a large number of louvers (3) are formed obliquely spaced apart from each other in the width direction, and a return louver (4) is disposed in the middle, and the return louver The only leeward louver group (3a) located upstream of the air flow (5) and the only leeward louver group (3b) located downstream of the air flow (5) via The cutting and raising direction of (3) is formed in reverse,
Corrugated fin type heat exchanger in which the cut-and-raised angle β of each louver (3) of all leeward louver groups (3b) is smaller than the cut-and-raised angle α of all louver groups (3a) on the leeward side It is.
[0006]
The present invention according to claim 2 is the method according to claim 1,
This is a corrugated fin heat exchanger in which the louver width (S2) of each louver (3) of the leeward louver group (3b) is formed larger than the louver width (S1) of the leeward louver group (3a).
The present invention according to claim 3 provides the method according to claim 1,
This is a corrugated fin heat exchanger in which the group width (L2), which is the entire width of the leeward louver group (3b), is formed larger than the group width (L1) of the leeward louver group (3a).
[0007]
The present invention according to claim 4 provides the method according to claim 1,
This is a corrugated fin heat exchanger in which the group width (L2), which is the entire width of the leeward louver group (3b), is smaller than the group width (L1) of the leeward louver group (3a).
The present invention according to claim 5 provides the method according to any one of claims 1 to 4,
The cut-and-raised angle α of each louver (3) in the leeward louver group (3a) is 24 to 30 degrees, and the cut-and-raised angle β of each louver (3) in the leeward louver group (3b) is 11 to 23 degrees. The corrugated fin-type heat exchanger has a fin width B in the air flow direction of the corrugated fin (2) of 24 mm to 64 mm.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, each embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal cross-sectional explanatory view of a main part of a corrugated fin 2 of a corrugated fin type heat exchanger according to the present invention, and is a schematic cross-sectional view taken along line II in FIG. FIG. 5 schematically shows only one corrugated fin 2, but actually a large number of flat tubes 1 and corrugated fins 2 are arranged in parallel at regular intervals.
[0009]
That is, in this corrugated fin type heat exchanger, a large number of flat tubes 1 are arranged at regular intervals and in a plurality of rows, and corrugated fins 2 are positioned between the flat tubes 1, and the top portions are both ends of the wave amplitude direction. The troughs are fixed to the outer surface of the flat tube 1 by means such as brazing to constitute a core, and both ends of each flat tube 1 are fixed in fluid-tight communication with a pair of tanks (not shown). Then, a fluid to be cooled flows from one tank to the other tank through a number of flat tubes 1, and an air flow 5 for cooling flows in the width direction on the outer surface of the flat tubes 1 and the corrugated fins 2. Exchange is to be performed.
[0010]
In FIG. 1, the air flow 5 flows from the left end to the right end. The return louver 4 is positioned at the center of the corrugated fin 2 in the width direction, and only one group of the windward louver group 3a is provided on the left side of the return louver 4, and only one group of the leeward louver group 3b is provided on the right side. Yes. The cut-and-raised angle β of each louver 3 of the leeward louver group 3b is formed smaller than the cut-and-raised angle α of each louver 3 of the leeward louver group 3a, and the air resistance of the leeward louver group 3b to the air flow 5 is reduced. It comes to reduce.
In this example, the group width L1 of the leeward louver group 3a and the group width L2 of the leeward louver group 3b are the same. The corrugated fin 2 has a fin width B of 24 mm to 64 mm, a cut-and-raised angle α of the louver 3 of the windward louver group 3a is 24 to 30 degrees, and a cut-and-raised angle of each louver 3 of the leeward louver group 3b. β is 11 degrees to 23 degrees.
[0011]
Next, FIG. 2 shows a second embodiment of the present invention. This embodiment is different from that of FIG. 1 in that the louver width S2 of each louver 3 in the leeward louver group 3b is different from the leeward louver group 3a. Each louver 3 is cut and raised larger than the louver width S1, and the others are the same. 1 to 4 (FIGS. 3 and 4 will be described later) each have a smaller number of louvers than the actual corrugated fins, and others are simplified, but as an example, the corrugated fin type of FIG. The heat exchanger is actually formed as shown in FIGS.
[0012]
This heat exchanger is an example in which the fin width B is 36 mm, the width and the louver pitch of the louver group 3a in the windward louver group 3a are 15 mm, and there are 15 louvers 3 and the width of the louver 3 in the leeward louver group 3b. The louver pitch is 1.6 mm, and the louver 3 is nine. The cut-and-raised angle α of each louver in the windward louver group 3a is 26 degrees, and the cut-and-raised angle β of each louver in the leeward louver group is 14 degrees. Further, the amplitude A of the fin is 6.5 mm, the length of the major axis of the cross section of the flat tube 1 is 16 mm, and the length of the minor axis is 1.4 mm.
[0013]
And if fin width B becomes longer than the above, the number of louvers will increase accordingly. At the same time, the length of the long axis of the cross section of the flat tube is increased or the number of flat tubes is increased. However, in any case, the number of leeward louver groups and the number of leeward louver groups are one by one.
In each of the examples of FIGS. 1, 3 and 4, the louvers and others are formed in accordance with FIGS.
[0014]
Next, FIG. 3 shows a third embodiment of the present invention. The difference between this embodiment and that of FIG. 1 is that the return louver 4 is located upstream of the center of the corrugated fin 2 in the width direction. The group width L1 of the leeward louver group 3a is shorter than the group width L2 of the leeward louver group 3b. Others are the same as FIG.
Next, FIG. 4 shows a fourth embodiment of the present invention. In this example, the return louver 4 is located downstream of the center in the width direction of the corrugated fin 2 and the windward side is opposite to that of FIG. The group width L1 of the louver group 3a is formed larger than the group width L2 of the leeward louver group 3b, and the others are the same as in FIG.
[0015]
【Example】
In the example of FIG. 1, the air flow direction (fin width B) of the corrugated fins 2 is 48 mm, and the cut-and-raised angle α of all the louvers 3 in the windward louver group 3a is 26 degrees. The louvers 3 in the leeward louver group 3b are all 11 degrees and corrugated fin type heat exchanges having six kinds of fins at each inclination angle of 14, 17, 17, 19, 21, and 23 degrees. A vessel was prepared. Further, as a comparative example, the corrugated fin 2 shown in FIG. 12 is configured such that the cut-and-raised angles α of the louver 3 of the leeward louver group 3a and the louver 3 of the leeward louver group 3b are both 26 degrees, and the others are all the same. A corrugated fin-type heat exchanger with the following conditions was prepared. Then, heat dissipation performance and pressure loss of the heat exchanger of the comparative example and the heat exchanger of each cut-and-raised angle β of FIG. 1 were measured in a wind tunnel under a wind speed of 4 m / sec.
[0016]
The experimental results are shown in FIG. In the figure, STD present at the left end is a heat exchanger using the conventional corrugated fin shown in FIG. 12, which is a pressure loss and a heat radiation performance when the wind speed is 4 m / sec. And In comparison with this, the pressure loss and the heat radiation performance of six types of heat exchangers each having the cut-and-raised angle β of each louver in the leeward louver group 3b are compared.
[0017]
The following becomes clear from the results of FIG.
Each heat exchanger in which the cut-and-raised angle β of each louver 3 of the leeward louver group 3b is in the range of 17 degrees to 23 degrees has the same or approximately the same heat dissipation performance as that of the conventional type (STD), The pressure loss of the air flow is reduced by about 3% to 8%. This means that when each of these heat exchangers is actually mounted in the engine room as an automotive heat exchanger, the wind speed that circulates through the heat exchanger is increased compared to the conventional heat exchanger of the comparative example. Means. As a result, the heat dissipation performance of the heat exchanger can be improved as the wind speed increases.
[0018]
That is, according to the experimental result of FIG. 8, since the heat dissipation performance is almost the same and the ventilation resistance is reduced by about 3% to 8%, the ventilation performance of the heat exchanger in the vehicle mounted state is improved accordingly, It can be seen that the wind speed increases accordingly and the heat dissipation performance improves.
In the heat exchanger in which the cut-and-raised angle β of each louver 3 in the leeward louver group 3b is 14 degrees, the heat radiation performance is reduced by about 7% compared to that of the conventional type, but the pressure loss is about 16% more than that. Decrease in pressure loss more than deterioration in heat dissipation performance. Thereby, the heat exchanger at the time of mounting in a vehicle can further improve the ventilation, and based on that, the flow rate of the air flow through the heat exchanger can be increased to obtain a heat exchange performance higher than that of the conventional heat exchanger. .
Similarly, even in a heat exchanger in which the cut-and-raised angle β of each louver 3 in the leeward louver group 3b is 11 degrees, the pressure loss is lower than the heat dissipation performance compared with the conventional heat exchanger. When the exchanger is mounted on a car, the overall heat exchange performance can be expected to be higher than conventional.
[0019]
Next, FIG. 9 is a comparison between each heat exchanger using the corrugated fins 2 of FIG. 2 and a conventional heat exchanger, and the fin width B of each heat exchanger is a comparative example. 2 is set to be 26 degrees as in the case of FIG. 1 and the cut angle of each louver 3 of the leeward louver group 3b is cut. Production of heat exchangers of 11 degrees and 14 degrees, 17 degrees, 19 degrees, 21 degrees, and 23 degrees, respectively, and compared them with conventional heat exchangers It is.
[0020]
In the conventional heat exchanger (STD), the cut-and-raised angle of each louver 3 of the leeward louver group 3a and the cut-and-raised angle of each louver 3 of the leeward louver group 3b are 26 degrees as in FIG. In the wind tunnel, the wind speed was 4 m / sec. As a result, although the heat radiation performance is reduced by about several percent as compared with each heat exchanger in the case of FIG. 8, the pressure loss is further reduced by about 5% as compared with the heat exchanger of FIG.
As a result, it can be seen that, when this heat exchanger is mounted on an actual vehicle, the flow rate is greatly increased and the heat exchange performance is improved as a whole when the heat exchanger is mounted on an actual vehicle.
[0021]
Next, FIG. 10 shows each heat exchanger using the corrugated fins 2 of FIG. 3, which is the ratio of the group width L1 of the leeward louver group 3a to the group width L2 of the leeward louver group 3b, the group width L1 / group. In the case where the ratio of the width L2 is 0.8, the wind speed was set to 2 m / sec in the wind tunnel experiment, and the same experiment as FIG. 8 was performed. This heat exchanger is used under conditions where the wind speed is not so high, and the pressure loss is reduced as much as possible. Next, FIG. 11 uses the corrugated fin 2 of FIG. 4, and when the ratio, group width L1 / group width L2 is 1.2, the wind speed is set to 6 m / sec and the same as FIG. The experiment was conducted. This heat exchanger is used under conditions where the wind speed can be increased, and aims to improve the heat dissipation performance on the windward side as much as possible.
[0022]
The results of FIGS. 10 and 11 also obtain the same actions and effects as in FIG.
Further, in the above experimental example, the thickness of the radiator was fixed to 48 mm, but it was set to 24 mm and 36 mm, and other conditions were the same even when the same experiment was performed in FIGS. The result was obvious.
Furthermore, in the above experiment, the windward louver angle and the conventional louver angle were fixed at 26 degrees, respectively, but the same results were obtained when they were set at 24 degrees, 28 degrees, and 30 degrees.
[0023]
[Operation and effect of the invention]
According to the corrugated fin type heat exchanger according to claim 1, cut-and-raised angle of the louver 3 of all leeward louver group 3b with respect to the return louver 4 located in the middle portion β are all windward louver group 3a is formed to be smaller than the cut-and-raised angle α, the air resistance of all the leeward louver groups 3b in which the heat dissipation amount is reduced is reduced, and the overall air circulation speed is increased by that amount, resulting in the heat dissipation amount. Can be increased.
[0024]
According to the corrugated fin heat exchanger according to claim 2, the louver width S2 of the louver 3 of the leeward louver group 3b is formed larger than the louver width S1 of the leeward louver group 3a. By reducing the number of cuts on the leeward side, the air resistance of the leeward louver group 3b can be further reduced, the air circulation speed can be increased, and the heat radiation amount can be increased.
According to the corrugated fin type heat exchanger according to claim 3, the group width L2 which is the width of the entire leeward louver group 3b is formed larger than the group width L1 of the leeward louver group 3a. Therefore, in a heat exchanger in which the flow rate of the air flow must be relatively small, the air resistance on the leeward side can be greatly reduced, and as a result, the amount of heat radiation can be maximized.
[0025]
According to the corrugated fin heat exchanger according to claim 4, the group width L2, which is the entire width of the leeward louver group 3b, is formed smaller than the group width L1 of the leeward louver group 3a. , In which the flow rate of air flowing through the heat exchanger can be made relatively fast, increase the number of louvers in the leeward louver group and maximize the heat radiation in that part, and the flow resistance of the leeward louver group And as a result, the overall heat exchange amount can be increased.
According to the corrugated fin heat exchanger according to claim 5, the cut-and-raised angle α of the louver 3 of the leeward louver group 3a, the cut-and-raised angle β of the leeward louver group 3b, and the fin width B in the air flow direction. Since it is in a specific range, it is possible to provide a product with better heat dissipation performance.
[Brief description of the drawings]
FIG. 1 is a longitudinal cross-sectional explanatory view of a main part of a corrugated fin heat exchanger showing a first embodiment of the present invention, and is a schematic cross-sectional view taken along line II in FIG.
FIG. 2 is a longitudinal sectional explanatory view of a main part of a corrugated fin type heat exchanger showing a second embodiment of the present invention, cut along the same plane as FIG.
FIG. 3 is a longitudinal cross-sectional explanatory view of a main part of a corrugated fin type heat exchanger showing a third embodiment of the present invention, cut along the same plane as FIG. 1;
FIG. 4 is a longitudinal sectional explanatory view of a main part of a corrugated fin type heat exchanger showing a fourth embodiment of the present invention, cut along the same plane as FIG.
FIG. 5 is a perspective view of an essential part of a corrugated fin heat exchanger according to the present invention.
6 is a cross-sectional view of the main part showing details of the corrugated fin heat exchanger in the embodiment of FIG. 2;
FIG. 7 is a schematic view taken along the line VII-VII.
8 is a comparison diagram of heat radiation performance and pressure loss for a heat exchanger of each leeward louver angle using the corrugated fin in FIG. 1. FIG.
9 is a comparison diagram of heat radiation performance and pressure loss for a heat exchanger of each leeward louver angle using the corrugated fin in FIG. 2. FIG.
10 is a comparison diagram of heat radiation performance and pressure loss for a heat exchanger of each leeward louver angle using the corrugated fin in FIG. 3. FIG.
11 is a comparison diagram of heat radiation performance and pressure loss for a heat exchanger of each leeward louver angle using the corrugated fins in FIG. 4. FIG.
FIG. 12 is a longitudinal sectional explanatory view of a main part of a conventional corrugated fin type heat exchanger.
FIG. 13 is a measurement diagram showing the difference between the fin surface temperature at each position in the air flow direction of the corrugated fin and the temperature of the air flow 5;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flat tube 2 Corrugated fin 3 Louver 3a Upwind louver group 3b Downwind louver group 4 Return louver 5 Air flow S1, S2 Louver width L1, L2 Group width A Amplitude B Fin width F Fin pitch

Claims (5)

定間隔に配置された多数の偏平チューブ(1) と、
隣合う偏平チューブ(1) 間に位置し、その偏平チューブ(1) の横断面の長軸方向が幅方向に一致し且つ、その波の振幅方向の両端である頂部および谷部が偏平チューブ(1) の外面に固定された多数のコルゲートフィン(2) と、を具備し、
空気流(5) が前記偏平チューブ(1) の前記長軸方向に流通するコルゲートフィン型熱交換器において、
前記コルゲートフィン(2) に、前記幅方向に互いに一定間隔に離間して斜めに多数のルーバ(3) が切り起こし形成されると共に、中間部にリターンルーバ(4)が配置され、そのリターンルーバ(4) を介して前記空気流(5) の上流に位置する一つのみの風上側ルーバ群(3a)と下流に位置する一つのみの風下側ルーバ群(3b)とは、夫々そのルーバ(3) の切り起こし方向が逆に形成され、
風下側の全てのルーバ群(3b)の各ルーバ(3) の切り起こし角度βが、風上側の全てのルーバ群(3a)のその切り起こし角度αより小さく形成されたコルゲートフィン型熱交換器。
A number of flat tubes (1) arranged at regular intervals;
Located between the adjacent flat tubes (1), the long axis direction of the cross section of the flat tube (1) coincides with the width direction, and the top and valley portions at both ends of the wave amplitude direction are flat tubes ( A number of corrugated fins (2) fixed to the outer surface of 1),
In the corrugated fin type heat exchanger in which the air flow (5) flows in the long axis direction of the flat tube (1),
In the corrugated fin (2), a large number of louvers (3) are formed obliquely spaced apart from each other in the width direction, and a return louver (4) is disposed in the middle, and the return louver The only leeward louver group (3a) located upstream of the air flow (5) and the only leeward louver group (3b) located downstream of the air flow (5) via The cutting and raising direction of (3) is formed in reverse,
Corrugated fin type heat exchanger in which the cut-and-raised angle β of each louver (3) of all leeward louver groups (3b) is smaller than the cut-and-raised angle α of all louver groups (3a) on the leeward side .
請求項1において、
風下側ルーバ群(3b)の各ルーバ(3) のルーバ幅(S2)が、風上側ルーバ群(3a)のそのルーバ幅(S1)より大きく形成されたコルゲートフィン型熱交換器。
In claim 1,
A corrugated fin heat exchanger in which the louver width (S2) of each louver (3) of the leeward louver group (3b) is formed larger than the louver width (S1) of the leeward louver group (3a).
請求項1において、
風下側ルーバ群(3b)全体の幅である群幅(L2)が、風上側ルーバ群(3a)のその群幅(L1)よりも大に形成されたコルゲートフィン型熱交換器。
In claim 1,
A corrugated fin heat exchanger in which the group width (L2), which is the entire width of the leeward louver group (3b), is formed larger than the group width (L1) of the leeward louver group (3a).
請求項1において、
風下側ルーバ群(3b)全体の幅である群幅(L2)が、風上側ルーバ群(3a)のその群幅(L1)よりも小に形成されたコルゲートフィン型熱交換器。
In claim 1,
A corrugated fin heat exchanger in which the group width (L2), which is the entire width of the leeward louver group (3b), is smaller than the group width (L1) of the leeward louver group (3a).
請求項1〜請求項4のいずれかにおいて、
風上側ルーバ群(3a)の各ルーバ(3) の切り起こし角度αが24度〜30度で、風下側ルーバ群(3b)の各ルーバ(3) の切り起こし角度βが11度〜23度に形成され、コルゲートフィン(2) の空気流通方向のフィン幅Bが24mm〜64mmであるコルゲートフィン型熱交換器。
In any one of Claims 1-4,
The cut-and-raised angle α of each louver (3) in the leeward louver group (3a) is 24 to 30 degrees, and the cut-and-raised angle β of each louver (3) in the leeward louver group (3b) is 11 to 23 degrees. A corrugated fin-type heat exchanger in which the corrugated fin (2) has a fin width B in the air flow direction of 24 mm to 64 mm.
JP2001270617A 2001-09-06 2001-09-06 Corrugated fin heat exchanger Expired - Fee Related JP4690605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270617A JP4690605B2 (en) 2001-09-06 2001-09-06 Corrugated fin heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270617A JP4690605B2 (en) 2001-09-06 2001-09-06 Corrugated fin heat exchanger

Publications (2)

Publication Number Publication Date
JP2003083690A JP2003083690A (en) 2003-03-19
JP4690605B2 true JP4690605B2 (en) 2011-06-01

Family

ID=19096246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270617A Expired - Fee Related JP4690605B2 (en) 2001-09-06 2001-09-06 Corrugated fin heat exchanger

Country Status (1)

Country Link
JP (1) JP4690605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204946A1 (en) 2012-03-22 2013-10-24 Denso Corporation Rib and heat exchanger, which uses the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4037241B2 (en) 2002-10-24 2008-01-23 カルソニックカンセイ株式会社 Corrugated fin
JP2005106328A (en) * 2003-09-29 2005-04-21 Sanden Corp Heat exchanging device
WO2005075917A1 (en) * 2004-02-05 2005-08-18 Calsonic Kansei Uk Limited Heat exchanger
US20070240865A1 (en) * 2006-04-13 2007-10-18 Zhang Chao A High performance louvered fin for heat exchanger
CN114061332B (en) * 2021-11-18 2024-10-11 浙江银轮机械股份有限公司 Heat exchange fin layout method and heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5349149U (en) * 1976-09-30 1978-04-25
JPH0545474U (en) * 1991-10-25 1993-06-18 昭和アルミニウム株式会社 Heat exchanger
JPH05196383A (en) * 1992-01-17 1993-08-06 Nippondenso Co Ltd Corrugated fin type heat-exchanger
JPH08178366A (en) * 1994-12-21 1996-07-12 Sharp Corp Heat exchanger
JPH10231724A (en) * 1997-02-19 1998-09-02 Denso Corp Heat-exchanger
JPH11257887A (en) * 1998-03-13 1999-09-24 Calsonic Corp Corrugation type fin for heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5349149U (en) * 1976-09-30 1978-04-25
JPH0545474U (en) * 1991-10-25 1993-06-18 昭和アルミニウム株式会社 Heat exchanger
JPH05196383A (en) * 1992-01-17 1993-08-06 Nippondenso Co Ltd Corrugated fin type heat-exchanger
JPH08178366A (en) * 1994-12-21 1996-07-12 Sharp Corp Heat exchanger
JPH10231724A (en) * 1997-02-19 1998-09-02 Denso Corp Heat-exchanger
JPH11257887A (en) * 1998-03-13 1999-09-24 Calsonic Corp Corrugation type fin for heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204946A1 (en) 2012-03-22 2013-10-24 Denso Corporation Rib and heat exchanger, which uses the same
US9714794B2 (en) 2012-03-22 2017-07-25 Denso Corporation Heat exchanger tube having fins with varying louver inclination angle

Also Published As

Publication number Publication date
JP2003083690A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
US7882708B2 (en) Flat pipe-shaped heat exchanger
JP3459271B2 (en) Heater core of automotive air conditioner
EP2236972B1 (en) Fin for heat exchanger and heat exchanger using the fin
US6213196B1 (en) Double heat exchanger for vehicle air conditioner
US20080121385A1 (en) Heat dissipation fin for heat exchangers
JP6011481B2 (en) Heat exchanger fins
US6889757B2 (en) Core structure of integral heat-exchanger
JPH06221787A (en) Heat exchanger
JP2006078035A (en) Heat exchange device
US5975200A (en) Plate-fin type heat exchanger
JP4690605B2 (en) Corrugated fin heat exchanger
JP5020886B2 (en) Heat exchanger
JPS6146756B2 (en)
JP2004263881A (en) Heat transfer fin, heat exchanger, evaporator and condenser for car air conditioner
JP2000154989A (en) Air heat exchanger
JPH0545474U (en) Heat exchanger
EP0803695B1 (en) Plate-fin heat exchanger
JPS6346357B2 (en)
JP4184110B2 (en) Finned tube heat exchanger
JPS58214783A (en) Heat exchanger
JP2588114Y2 (en) Automotive heat exchanger
JPS6314092A (en) Heat exchanger
JP3196257B2 (en) Heat exchanger
JPS6215667Y2 (en)
JP3133057B2 (en) Corrugated fin for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110218

R150 Certificate of patent or registration of utility model

Ref document number: 4690605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees