JP4686992B2 - Solid polymer fuel cell and power generation method thereof - Google Patents
Solid polymer fuel cell and power generation method thereof Download PDFInfo
- Publication number
- JP4686992B2 JP4686992B2 JP2004074979A JP2004074979A JP4686992B2 JP 4686992 B2 JP4686992 B2 JP 4686992B2 JP 2004074979 A JP2004074979 A JP 2004074979A JP 2004074979 A JP2004074979 A JP 2004074979A JP 4686992 B2 JP4686992 B2 JP 4686992B2
- Authority
- JP
- Japan
- Prior art keywords
- volume
- fuel cell
- diffusion layer
- oxidant
- oxidant gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Description
本発明は低加湿または無加湿での起動に適する固体高分子型燃料電池およびその発電方法に関する。 The present invention relates to a polymer electrolyte fuel cell suitable for starting with low or no humidification, and a power generation method thereof .
高分子電解質型燃料電池は、水素などの燃料を燃料側のガス拡散層に供給すると共に、空気などの酸化剤ガスを酸化剤側のガス拡散層に供給し、白金などの触媒上で電気化学的に反応させるもので、発電反応により電気と熱とを同時に発生させるものである。ここで、発電反応により酸化剤極側には水が生成される。 A polymer electrolyte fuel cell supplies fuel such as hydrogen to a gas diffusion layer on the fuel side, and supplies an oxidant gas such as air to a gas diffusion layer on the oxidant side, and performs electrochemical reaction on a catalyst such as platinum. It reacts automatically and generates electricity and heat simultaneously by a power generation reaction. Here, water is generated on the oxidant electrode side by the power generation reaction.
ところで、高分子電解質型燃料電池に用いられている高分子電解質は、水で湿潤している状態のときに、必要とするイオン伝導度を有する。これに対して、電池としての電極反応は、触媒、高分子電解質、反応ガスの三相界面で生じる水の生成反応である。従って、供給するガス中の水蒸気、電極反応で生じる生成水が酸化剤用のガス拡散層から速やかに排出されないと、電極や酸化剤用ガス拡散層内に水が滞留してしまう。この場合、酸化剤用ガス拡散層内におけるガス流路が生成水で塞がれ(フラッディング現象)、ガス拡散性が悪くなり、燃料電池としての特性が低下してしまう。 By the way, the polymer electrolyte used in the polymer electrolyte fuel cell has the required ionic conductivity when it is wet with water. On the other hand, the electrode reaction as a battery is a water generation reaction that occurs at the three-phase interface of the catalyst, the polymer electrolyte, and the reaction gas. Accordingly, if water vapor in the supplied gas and water produced by the electrode reaction are not quickly discharged from the gas diffusion layer for the oxidant, water will remain in the electrode and the gas diffusion layer for the oxidant. In this case, the gas flow path in the oxidant gas diffusion layer is blocked with generated water (flooding phenomenon), the gas diffusibility is deteriorated, and the characteristics of the fuel cell are deteriorated.
このような観点から、高分子電解質型燃料電池に用いるガス拡散層には、高分子電解質の保湿と水の排出を促進するための対策がとられている。即ち、ガス拡散層は、一般的には、炭素繊維からなるカーボンペーパーなどのカーボン不織布やカーボンクロスなどが用いられている。これらのガス拡散層は、予めポリテトラフルオロエチレン系材料の分散液などを用いて撥水処理を行い、電極反応で生じた生成水の排出が速やかに行われるようにし、また高分子電解質膜や電極中の高分子電解質が適度な湿潤状態になるようにするのが一般的である。 From such a viewpoint, measures are taken in the gas diffusion layer used in the polymer electrolyte fuel cell to promote moisture retention of the polymer electrolyte and discharge of water. That is, the gas diffusion layer is generally made of carbon nonwoven fabric such as carbon paper made of carbon fiber, carbon cloth, or the like. These gas diffusion layers are preliminarily treated with a water repellent treatment using a dispersion of polytetrafluoroethylene material, etc., so that the generated water generated by the electrode reaction can be discharged quickly, and a polymer electrolyte membrane or In general, the polymer electrolyte in the electrode is in an appropriate wet state.
また、これ以外の方法として、電極触媒層中に撥水処理を施した炭素粒子を混合して、電極触媒層中の余分な生成水を排出する対策もとられている。 As another method, a measure is taken to mix water-repellent-treated carbon particles in the electrode catalyst layer to discharge excess generated water in the electrode catalyst layer.
ところで、加湿量を少なくした低加湿の運転条件は、加湿装置を小型化できるので好ましい。しかしながら、酸化剤極側に供給される酸化剤ガスに含まれる水分量が少ないため、電解質膜の初期の湿潤状態が作り出せない。このため起動時における発電性能が得られにくい不具合がある。更に、発電反応で生成水が生成されたとしても、その生成水はガス拡散層のガス下流側に持ら去られ易い。しかもガス上流は圧損が少ないため、ガス流速も速く、電解質膜が乾燥気味となり易い。従って、充分な電池反応が起こせず、燃料電池の発電出力が充分に上がらなかった。 By the way, the low humidification operation condition with a small amount of humidification is preferable because the humidifier can be downsized. However, since the amount of water contained in the oxidant gas supplied to the oxidant electrode side is small, the initial wet state of the electrolyte membrane cannot be created. For this reason, there is a problem that it is difficult to obtain power generation performance at the time of startup. Furthermore, even if generated water is generated by the power generation reaction, the generated water is easily taken away to the gas downstream side of the gas diffusion layer. Moreover, since there is little pressure loss upstream of the gas, the gas flow rate is fast, and the electrolyte membrane tends to be dry. Accordingly, a sufficient cell reaction has not occurred, and the power generation output of the fuel cell has not sufficiently increased.
また、特許文献2(特開平8−124583号公報)あるいは特許文献2(特開平6−262562号公報)には、集電体がカーボンクロスで構成されており、そのクロスの網目をガスの入口から出口に向かう方向に徐々に粗くしてガス拡散性を向上させた例が開示されている。
上記した従来技術によれば、酸化剤極に供給される酸化剤ガス(一般的には空気)の加湿量が低い低加湿運転のときには、起動性が良好ではなかった。酸化剤用ガス拡散層、殊に酸化剤用ガス拡散層のガス上流領域における水の持ち帰りが大きいためと推察される。 According to the above-described conventional technology, the startability is not good during the low humidification operation in which the humidification amount of the oxidant gas (generally air) supplied to the oxidant electrode is low. This is presumably because of the large amount of water brought back in the gas diffusion layer for the oxidant, particularly in the gas upstream region of the gas diffusion layer for the oxidant.
本発明は上記した実情に鑑みてなされたものであり、低加湿運転であっても、あるいは、無加湿運転であっても、起動性が良好な固体高分子型燃料電池を提供することを課題とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a polymer electrolyte fuel cell with good startability even in low humidification operation or non-humidification operation. And
本発明者は、固体高分子型燃料電池について鋭意開発を進めている。そして、酸化剤用ガス拡散層において、特に酸化剤用ガス拡散層のガス上流領域において、生成水などの水分の持ち帰りを抑えれば、低加湿運転であっても、起動性が良好となることを知見し、試験で確認し、本発明を完成させた。 The inventor has been eagerly developing solid polymer fuel cells. And, in the gas diffusion layer for oxidant, particularly in the gas upstream region of the gas diffusion layer for oxidant, if the take-back of water such as generated water is suppressed, the startability is improved even in low humidification operation. This was discovered and confirmed by a test, and the present invention was completed.
即ち、本発明に係る固体高分子型燃料電池は、多数の細孔を有する多孔質であり且つ燃料が供給される燃料用ガス拡散層と、触媒を含有する燃料用触媒層と、イオン伝導性を有する電解質膜と、触媒を含有する酸化剤ガス用触媒層と、多数の細孔を有する多孔質であり且つ酸化剤ガスが供給される酸化剤用ガス拡散層とが順に積層された固体高分子型燃料電池において、固体高分子型燃料電池は、相対湿度が50%以下の低加湿の酸化剤ガスまたは無加湿の酸化剤ガスを酸化剤極に供給され、相対湿度が50%以下の低加湿または無加湿で発電運転されるものであり、
酸化剤用ガス拡散層は、
横軸を細孔径とし、縦軸を細孔容積とした細孔分布において、細孔容積の高頻度ピークが細孔径10〜30μmの範囲内に設定されており、且つ、細孔容積全体を100容積%としたとき、30μmを越える細孔の細孔容積合計が20容積%以下に設定されていることを特徴とする。
That is, the polymer electrolyte fuel cell according to the present invention is a porous gas fuel having a large number of pores and supplied with fuel, a fuel catalyst layer containing a catalyst, an ionic conductivity an electrolyte membrane having a catalyst layer for oxidant gas containing catalyst, solid high that the porous and is and oxidant gas is supplied oxidant gas diffusion layer are sequentially stacked with a large number of pores In the molecular type fuel cell, the solid polymer type fuel cell is supplied with a low humidified oxidant gas having a relative humidity of 50% or less or a non-humidified oxidant gas to the oxidant electrode, and the relative humidity is 50% or less. Power generation operation with or without humidification,
The gas diffusion layer for oxidant is
In the pore distribution with the horizontal axis as the pore diameter and the vertical axis as the pore volume, the high frequency peak of the pore volume is set within the range of the pore diameter of 10 to 30 μm, and the entire pore volume is 100 When the volume% is used, the total pore volume of pores exceeding 30 μm is set to 20 volume% or less.
本発明に係る固体高分子型燃料電池の発電方法は、多数の細孔を有する多孔質であり且つ燃料が供給される燃料用ガス拡散層と、触媒を含有する燃料用触媒層と、イオン伝導性を有する電解質膜と、触媒を含有する酸化剤ガス用触媒層と、多数の細孔を有する多孔質であり且つ酸化剤ガスが供給される酸化剤用ガス拡散層とが順に積層された固体高分子型燃料電池を発電する方法において、A power generation method for a polymer electrolyte fuel cell according to the present invention includes a porous gas diffusion layer having a large number of pores to which fuel is supplied, a fuel catalyst layer containing a catalyst, and ion conduction. A solid layer in which an oxidant gas catalyst layer containing a catalyst, an oxidant gas catalyst layer containing a catalyst, and a porous porous oxidant gas diffusion layer to which an oxidant gas is supplied In a method for generating power from a polymer fuel cell,
固体高分子型燃料電池の前記酸化剤用ガス拡散層は、 The oxidant gas diffusion layer of the polymer electrolyte fuel cell is:
横軸を細孔径とし、縦軸を細孔容積とした細孔分布において、細孔容積の高頻度ピークが細孔径10〜30μmの範囲内に設定されており、且つ、細孔容積全体を100容積%としたとき、30μmを越える細孔の細孔容積合計が20容積%以下に設定されており、 In the pore distribution with the horizontal axis as the pore diameter and the vertical axis as the pore volume, the high frequency peak of the pore volume is set within the range of the pore diameter of 10 to 30 μm, and the entire pore volume is 100 When the volume% is set, the total pore volume of pores exceeding 30 μm is set to 20 volume% or less,
発電運転時に、燃料を固体高分子型燃料電池に燃料極に供給すると共に、相対湿度が50%以下の低加湿の酸化剤ガスまたは無加湿の酸化剤ガスを酸化剤極に供給し、相対湿度が50%以下の低加湿または無加湿で発電運転させることを特徴とする。 During power generation operation, the fuel is supplied to the polymer electrolyte fuel cell to the fuel electrode, and a low-humidity oxidant gas having a relative humidity of 50% or less or a non-humidified oxidant gas is supplied to the oxidant electrode, and the relative humidity The power generation operation is performed with low or no humidification of 50% or less.
本発明によれば、発電運転時において、燃料を固体高分子型燃料電池の燃料極に供給すると共に、相対湿度が50%以下の低加湿の酸化剤ガス、または、無加湿の酸化剤ガスを固体高分子型燃料電池の酸化剤極に供給する。ここで、酸化剤用ガス拡散層において、細孔の多くを10〜30μmとし、30μmを越える細孔を少なくしている。これにより酸化剤用ガス拡散層における水の持ち帰りを少なくし、殊に、酸化剤用ガス拡散層のガス上流領域における水の持ち帰りを少なくできる。これにより低加湿運転、また、無加湿運転であっても、電解質膜の湿潤状態を早く作り出すため、反応活性を高めて電池性能が発揮される。 According to the present invention, during power generation operation, fuel is supplied to the fuel electrode of the polymer electrolyte fuel cell, and a low-humidity oxidant gas having a relative humidity of 50% or less or a non-humidification oxidant gas is supplied. Supplied to the oxidant electrode of the polymer electrolyte fuel cell. Here, in the gas diffusion layer for oxidizing agent, most of the pores are 10 to 30 μm, and the number of pores exceeding 30 μm is reduced. As a result, the carry-back of water in the oxidant gas diffusion layer can be reduced, and in particular, the take-up of water in the gas upstream region of the oxidant gas diffusion layer can be reduced. Thereby, even in the low humidification operation and the non-humidification operation , the wet state of the electrolyte membrane is quickly created, so that the reaction activity is enhanced and the battery performance is exhibited.
また上記したサイズの細孔であれば、酸化剤用ガス拡散層において、殊に酸化剤用ガス拡散層のガス下流領域において、発電反応により生成された生成水をガス下流側に出させるのにも寄与でき、触媒の水没と水によるガスの閉塞(フラッディング現象)を低減させることができ、従って、酸化剤ガスは低加湿であっても、あるいは無加湿であっても、固体高分子型燃料電池の起動性が良い。ここで、低加湿とは、酸化剤ガスの相対湿度が50%以下であることをいう。無加湿とは、大気の自然湿度の状態をいう。 In addition, if the pores have the above-described sizes, in the gas diffusion layer for the oxidant, particularly in the gas downstream region of the gas diffusion layer for the oxidant, the generated water generated by the power generation reaction is discharged to the gas downstream side. Can contribute to the reduction of submergence of the catalyst and gas clogging (flooding phenomenon) due to water. Therefore, the solid polymer fuel can be used regardless of whether the oxidizing gas is low or non-humidified. Battery start-up is good. Here, low humidification means that the relative humidity of the oxidant gas is 50% or less. Non-humidified refers to the state of natural humidity in the atmosphere.
本発明に係る高分子電解質型燃料電池は、発電運転時において、相対湿度が50%以下の低加湿の酸化剤ガス、または、無加湿の酸化剤ガスが酸化剤極に供給されるものである。本発明に係る高分子電解質型燃料電池によれば、酸化剤用ガス拡散層は、細孔容積の高頻度ピークが細孔径10〜30μmの範囲内に設定されており、且つ、細孔容積全体を100容積%としたとき、30μmを越える大きめの細孔の細孔容積合計が20容積%以下に設定されている。 In the polymer electrolyte fuel cell according to the present invention, a low-humidity oxidant gas having a relative humidity of 50% or less or a non-humidification oxidant gas is supplied to the oxidant electrode during power generation operation. . According to the polymer electrolyte fuel cell according to the present invention , the oxidant gas diffusion layer has a high-frequency peak of the pore volume set within the range of the pore diameter of 10 to 30 μm, and the entire pore volume. Is 100% by volume, the total pore volume of the large pores exceeding 30 μm is set to 20% by volume or less.
これによりガス上流領域における水の持ち帰りを抑制することができ、且つ、ガス下流領域における水の排出性を確保することができる。故に、低加湿運転条件または無加湿運転条件であっても、セル内の保水性能と排水性能とのバランスをうまく保つことかできる。 As a result, it is possible to suppress the take-back of water in the gas upstream region and to ensure the water discharge performance in the gas downstream region. Therefore, the balance between the water retention performance and the drainage performance in the cell can be well maintained even under the low humidification operation condition or the non-humidification operation condition.
その結果、燃料電池の起動性及び出力性能を高めることができる。また低加湿運転または無加湿運転を可能にすることで、加湿器や水タンク等の補器類を簡略化または廃止でき、燃料電池発電システムのサイズも小さくて済み、コストが値減される。なお、無加湿運転するのであれば、加湿器を廃止することができる。 As a result, the startability and output performance of the fuel cell can be improved. Further, by enabling low-humidification operation or non-humidification operation, auxiliary devices such as a humidifier and a water tank can be simplified or eliminated, the size of the fuel cell power generation system can be reduced, and the cost can be reduced. If the humidification operation is performed, the humidifier can be eliminated.
本発明に係る高分子電解質型燃料電池は、発電運転時において、相対湿度が50%以下の低加湿の酸化剤ガス、または、無加湿の酸化剤ガスが酸化剤極に供給され、相対湿度が50%以下の低加湿運転または無加湿運転で発電するものである。本発明によれば、酸化剤用ガス拡散層は、横軸を細孔径とし、縦軸を細孔容積とした細孔分布において、細孔容積の高頻度ピークが細孔径10〜30μmの範囲内に設定されており、且つ、細孔容積全体を100容積%としたとき、30μmを越える細孔の細孔容積合計が20容積%以下に設定されている。 In the polymer electrolyte fuel cell according to the present invention, during power generation operation, a low humidified oxidant gas having a relative humidity of 50% or less or a non-humidified oxidant gas is supplied to the oxidant electrode, and the relative humidity is Electricity is generated in a low or low humidity operation of 50% or less. According to the present invention, the oxidant gas diffusion layer has a pore distribution in which the horizontal axis is the pore diameter and the vertical axis is the pore volume, and the high frequency peak of the pore volume is within the range of the pore diameter of 10 to 30 μm. In addition, when the total pore volume is 100% by volume, the total pore volume of pores exceeding 30 μm is set to 20% by volume or less.
ここで、細孔容積の高頻度ピークが細孔径10〜30μmの範囲内、また20〜30μmの範囲内に設定することができる。また、30μmを越える細孔の細孔容積合計が19容積%以下、18容積%以下、15容積%以下に設定することができる。高頻度ピークはシングルピークが好ましい。 Here, the high frequency peak of the pore volume can be set within the range of the pore diameter of 10 to 30 μm and within the range of 20 to 30 μm. Further, the total pore volume of pores exceeding 30 μm can be set to 19% by volume or less, 18% by volume or less, and 15% by volume or less. High frequency peaks have preferred a single peak.
また、30μmを越える細孔の積算細孔容積百分率をK2とし、20〜30μmの細孔の積算細孔容積百分率をK1とすると、K1/K2=1.1〜5.0、1.2〜4.0、または1.4〜3.0、または、1.6〜2.5とすることができる。これにより30μmを越える細孔を減少させつつ、20〜30μmの細孔を増加させることができる。 Further, if the cumulative pore volume percentage of pores exceeding 30 μm is K2, and the cumulative pore volume percentage of pores of 20 to 30 μm is K1, K1 / K2 = 1.1 to 5.0, 1.2 to 4.0, 1.4 to 3.0, or 1.6 to 2.5. As a result, pores exceeding 30 μm can be decreased while pores having a diameter of 20 to 30 μm can be increased.
酸化剤用ガス拡散層としては、ガス透過性及び導電性を有する多孔質基材を用いることができる。そして、多孔質基材にフッ素樹脂等の撥水材を含浸させると共に、導電物質を含む導電インクを塗布して形成することができる。多孔質基材としては、例えば、カーボン繊維の集積体で形成されているカーボンシートを用いることができる。カーボンシートとしては、カーボンペーパー、カーボンクロス等を例示することができる。カーボンシートなどの多孔質基材との厚みとしては、100〜500μm、150〜450μm、300〜400μmを例示することができる。一般的にはカーボンシートの厚みが薄いと、細孔サイズが大きくなりがちである。 As the oxidant gas diffusion layer, a porous substrate having gas permeability and conductivity can be used. Then, the porous substrate can be formed by impregnating a water repellent material such as a fluororesin and applying a conductive ink containing a conductive substance. As the porous substrate, for example, a carbon sheet formed of an aggregate of carbon fibers can be used. Examples of the carbon sheet include carbon paper and carbon cloth. As thickness with porous base materials, such as a carbon sheet, 100-500 micrometers, 150-450 micrometers, and 300-400 micrometers can be illustrated. Generally, when the carbon sheet is thin, the pore size tends to be large.
以下、本発明の実施例について説明する。本実施例に係る高分子電解質型燃料電池は、発電運転時において、相対湿度が50%以下の低加湿の酸化剤ガス、または、無加湿の酸化剤ガスが酸化剤極に供給され、低加湿または無加湿で発電するものである。 Examples of the present invention will be described below. In the polymer electrolyte fuel cell according to this example, during power generation operation, a low humidified oxidant gas having a relative humidity of 50% or less or a non-humidified oxidant gas is supplied to the oxidant electrode, and the low humidification Or it generates electricity without humidification.
まず、80gの水(分散媒)に15gのカーボンブラック(微粒子状の導電物質、キャボット社製:VULCAN XC72R)を混入し、攪拌機を用いて10分間攪拌してから、ディスパージョン原液(商品名:POLYFLON D−1,ダイキン工業株式会社製)を17g添加して更に10分間攪拌してカーボンペースト(分散液)を製造した(分散液製造工程)。上記したディスパージョン原液は、四フッ化エチレン(以下PTFEという)の含有濃度が60重量%である。 First, 15 g of carbon black (particulate conductive material, manufactured by Cabot: VULCAN XC72R) is mixed in 80 g of water (dispersion medium), stirred for 10 minutes using a stirrer, and then a dispersion stock solution (trade name: 17 g of POLYFLON D-1, manufactured by Daikin Industries, Ltd.) was added and stirred for another 10 minutes to produce a carbon paste (dispersion) (dispersion production process). The above dispersion stock solution has a content concentration of tetrafluoroethylene (hereinafter referred to as PTFE) of 60% by weight.
上記したカーボンペーストをカーボンペーパー(多孔質基材, 東レ株式会社製トレカ TGP−H−120、サイズ200ミリメートル×250ミリメートル、厚さ350μm)の双方の表面にスクリーン印刷機にて塗布した(塗布工程)。 The above-mentioned carbon paste was applied to both surfaces of carbon paper (porous substrate, Torayca TGP-H-120 manufactured by Toray Industries, Inc., size 200 mm × 250 mm, thickness 350 μm) with a screen printer (application process) ).
次に、カーボンペーストを塗布したカーボンペーパーを、80℃の温度に保った乾燥炉(大気圧)中に入れて30分間保持して水を蒸発させた(蒸発工程)。 Next, the carbon paper coated with the carbon paste was placed in a drying furnace (atmospheric pressure) maintained at a temperature of 80 ° C. and held for 30 minutes to evaporate water (evaporation step).
その後、カーボンペーパーを焼結温度380℃で60分間保持してPTFEを焼結し、ガス拡散層を製造した(PTFE焼結工程)。 Thereafter, the carbon paper was held at a sintering temperature of 380 ° C. for 60 minutes to sinter PTFE to produce a gas diffusion layer (PTFE sintering step).
またガス拡散層の細孔分布を水銀圧入法で測定した。水銀圧入法の測定条件としては、オートポア装置IV(マイクロメトリックス社製)を用い、約1グラムのガス拡散層を測定セルに入れ、水銀圧入を行った(注入圧力は0.1〜33000psia)
そして、図1に示す固体高分子型燃料電池(単セル)を組み立て、発電式験を行った。この場合には、燃料として純水素ガス(利用率:70%、ゲージ圧:40kPa)を用い、酸化剤ガスとして空気(利用率:35%、ゲージ圧:50kPa)を用いた。燃料電池から排出される冷却水の温度としては70℃であった。酸化剤ガスとして空気の加湿は無加湿とした。燃料の加湿は低加湿とし、相対湿度を30%とした。
The pore distribution in the gas diffusion layer was measured by mercury porosimetry. As a measurement condition of the mercury intrusion method, an auto pore apparatus IV (manufactured by Micrometrics) was used, and about 1 gram of a gas diffusion layer was put into a measurement cell, and mercury intrusion was performed (injection pressure was 0.1 to 33000 psia).
Then, the polymer electrolyte fuel cell (single cell) shown in FIG. 1 was assembled and a power generation test was conducted. In this case, pure hydrogen gas (utilization rate: 70%, gauge pressure: 40 kPa) was used as the fuel, and air (utilization rate: 35%, gauge pressure: 50 kPa) was used as the oxidant gas. The temperature of the cooling water discharged from the fuel cell was 70 ° C. As the oxidant gas, the air was not humidified. The humidification of the fuel was low and the relative humidity was 30%.
図1は固体高分子型燃料電池(単セル)の概念図を示す。図1に示すように、固体高分子型燃料電池(単セル)は、燃料が供給される燃料通路10aを有する燃料用ガス配流板10と、燃料用ガス拡散層11と、プロトン伝導体、触媒、導電物質(カーボンブラック)を有する燃料用触媒層12と、プロトン伝導性を有する高分子材料で形成された電解質膜13と、プロトン伝導体、触媒、導電物質(カーボンブラック)を有する酸化剤用触媒層14と、酸化剤用ガス拡散層15と、酸化剤ガスが供給される酸化剤用ガス通路16aを有する酸化剤用ガス配流板16とを厚み方向に順に積層して形成されている。燃料用ガス配流板10及び酸化剤用ガス配流板16は、ガス透過性及び導電性を有する。なお、燃料用ガス拡散層11は、基本的には酸化剤用ガス拡散層15と同種のもので形成されている。
FIG. 1 is a conceptual diagram of a polymer electrolyte fuel cell (single cell). As shown in FIG. 1, a polymer electrolyte fuel cell (single cell) includes a fuel
(比較例1)
カーボンペーパーがTGP−H−060(厚み180μm)である以外、実施例1と同様な方法で酸化剤ガス用及び燃料用のガス拡散層を製造した。更に、実施例1と同様な方法でガス拡散層の細孔分布と燃料電池の発電特性とを測定した。
(Comparative Example 1)
Except for the carbon paper being TGP-H-060 (thickness 180 μm), gas diffusion layers for oxidant gas and fuel were produced in the same manner as in Example 1. Furthermore, the pore distribution of the gas diffusion layer and the power generation characteristics of the fuel cell were measured in the same manner as in Example 1.
(比較例2)
カーボンペーパーがTGP−H−090(厚み270μm)である以外、実施例1と同様な方法でガス拡散層を製造した。更に、実施例1と同様な方法でガス拡散層の細孔分布と燃料電池の発電特性とを測定した。
(Comparative Example 2)
A gas diffusion layer was produced in the same manner as in Example 1 except that the carbon paper was TGP-H-090 (thickness: 270 μm). Furthermore, the pore distribution of the gas diffusion layer and the power generation characteristics of the fuel cell were measured in the same manner as in Example 1.
(細孔分布)
図2〜図4は実施例の細孔分布を示す。図2から理解できるように、実施例によれば、10〜30μmの細孔径(殊に20〜30μmの細孔径)を有する細孔の頻度が高く、24.2μmの細孔径(23〜26μm程度)を有する細孔の頻度が最も高かった(シングルピーク)。
(Pore distribution)
2 to 4 show the pore distribution of the examples. As can be seen from FIG. 2, according to the example, the frequency of pores having a pore diameter of 10 to 30 μm (especially a pore diameter of 20 to 30 μm) is high, and a pore diameter of 24.2 μm (about 23 to 26 μm). ) Having the highest frequency (single peak).
更に図3,図4から理解できるように、細孔容積全体を100容積%としたとき、30μmを越える細孔の細孔容積合計が約17容積%(20容積%以下)に設定されていた。換言すれば、30μm以下の細孔の細孔容積合計が約83容積%(80容積%以上)に設定されていた。 Further, as can be understood from FIGS. 3 and 4, when the total pore volume is 100% by volume, the total pore volume of pores exceeding 30 μm was set to about 17% by volume (20% by volume or less). . In other words, the total pore volume of pores of 30 μm or less was set to about 83 volume% (80 volume% or more).
更に実施例によれば、図4から理解できるように、細孔径が10μmまでの積算細孔容積百分率が約33%程度であり、細孔径が30μmを越える積算細孔容積百分率が約17%程度であることを考慮すれば、細孔径が10〜30μmの積算細孔容積百分率は、約50%(100%−33%−17%=50%)であった。 Further, according to the example, as can be understood from FIG. 4, the cumulative pore volume percentage up to a pore diameter of 10 μm is about 33%, and the cumulative pore volume percentage where the pore diameter exceeds 30 μm is about 17%. In view of this, the cumulative pore volume percentage with a pore diameter of 10 to 30 μm was about 50% (100% −33% −17% = 50%).
また実施例によれば、図4から理解できるように、細孔径が20μmまでの積算細孔容積百分率が約45%程度であり、細孔径が30μmを越える積算細孔容積百分率が約17%程度であることを考慮すれば、細孔径が20〜30μmの積算細孔容積百分率は、約38%(100%−45%−17%=38%)であった。 In addition, according to the examples, as can be understood from FIG. 4, the cumulative pore volume percentage up to 20 μm is about 45%, and the cumulative pore volume percentage exceeding 30 μm is about 17%. In view of this, the cumulative pore volume percentage with a pore diameter of 20 to 30 μm was about 38% (100% −45% −17% = 38%).
このような細孔サイズ、細孔分布であれば、乾燥しがちのガス上流領域における水の持ち帰りが抑えられるものと推察される。またフラッディングが生じがちのガス下流領域における水の排出性が確保されるものと推察される。故に、図4を考慮すれば、細孔径が20〜30μmの積算細孔容積百分率は、約30〜70%、殊に30〜65%、33〜65%、更に35〜55%とすることができる。 With such a pore size and pore distribution, it is presumed that the take-back of water in the gas upstream region that tends to dry can be suppressed. In addition, it is assumed that water discharge is ensured in the gas downstream region where flooding is likely to occur. Therefore, considering FIG. 4, the cumulative pore volume percentage with a pore size of 20-30 μm is about 30-70%, especially 30-65%, 33-65%, and further 35-55%. it can.
なお実施例によれば、図4を考慮すれば、細孔径が20μmまでの積算細孔容積百分率が約45%程度であり、細孔径が28μmを越える積算細孔容積百分率が約20%程度であることを考慮すれば、細孔径が20〜28μmの積算細孔容積百分率は、約35%(100%−45%−20%=35%)であった。このように、細孔径が20〜28μmの範囲内において、約30〜40容積%程度と集中させることができる。 In addition, according to the example, considering FIG. 4, the cumulative pore volume percentage up to a pore diameter of 20 μm is about 45%, and the cumulative pore volume percentage where the pore diameter exceeds 28 μm is about 20%. In consideration of the fact, the cumulative pore volume percentage with a pore diameter of 20 to 28 μm was about 35% (100% −45% −20% = 35%). Thus, the pore diameter can be concentrated to about 30 to 40% by volume within the range of 20 to 28 μm.
なお、燃料用ガス拡散層は酸化剤用ガス拡散層と同種のものを用いているため、前述同様に、横軸を細孔径とし、縦軸を細孔容積とした細孔分布において、細孔容積の全体を100容積%としたとき、細孔容積の高頻度ピークが細孔径10〜30μmの範囲内(23〜26μm程度)に設定されており、且つ、細孔容積全体を100容積%としたとき、30μmを越える細孔の細孔容積合計が20容積%以下(約18容積%)に設定されている。従って、図4によれば、30μmを越える細孔の積算細孔容積百分率をK2(18体積%)とし、20〜30μmの積算細孔容積百分率をK1(38容積%)とすると、K1/K2=38容積%/18容積%≒2.1である。実施例及び比較例のK1/K2を考慮すると、K1/K2=1.2〜4.0、または1.4〜3.0、または、1.6〜2.5とすることができる。 Since the fuel gas diffusion layer is the same type as the oxidant gas diffusion layer, as described above, in the pore distribution in which the horizontal axis is the pore diameter and the vertical axis is the pore volume, When the entire volume is 100% by volume, the high frequency peak of the pore volume is set within the range of the pore diameter of 10 to 30 μm (about 23 to 26 μm), and the entire pore volume is 100% by volume. In this case, the total pore volume of pores exceeding 30 μm is set to 20% by volume or less (about 18% by volume). Therefore, according to FIG. 4, if the cumulative pore volume percentage of pores exceeding 30 μm is K2 (18 volume%) and the cumulative pore volume percentage of 20-30 μm is K1 (38 volume%), K1 / K2 = 38% by volume / 18% by volume≈2.1. In consideration of K1 / K2 in Examples and Comparative Examples, K1 / K2 = 1.2 to 4.0, or 1.4 to 3.0, or 1.6 to 2.5 can be set.
図5〜図7は比較例1の細孔分布を示す。図5から理解できるように、比較例1によれば、32.9μmの細孔径を有する細孔の頻度が最も高かった(シングルピーク)。更に図6,図7から理解できるように、細孔容積全体を100容積%としたとき、30μmを越える細孔の細孔容積合計が約40容積%に設定されていた。換言すれば、30μm以下の細孔の細孔容積合計が約60容積%に設定されていた。 5 to 7 show the pore distribution of Comparative Example 1. FIG. As can be seen from FIG. 5, according to Comparative Example 1, the frequency of pores having a pore diameter of 32.9 μm was the highest (single peak). Further, as can be understood from FIGS. 6 and 7, when the total pore volume is 100% by volume, the total pore volume of pores exceeding 30 μm was set to about 40% by volume. In other words, the total pore volume of pores of 30 μm or less was set to about 60% by volume.
また比較例1によれば、図7から理解できるように、細孔径が20μmまでの積算細孔容積百分率が40%程度であり、細孔径が30μmを越える積算細孔容積百分率が40%程度であることを考慮すれば、細孔径が20〜30μmの積算細孔容積百分率は、約20%(100%−40%−40%=20%)であった。 Further, according to Comparative Example 1, as can be understood from FIG. 7, the cumulative pore volume percentage up to 20 μm is about 40%, and the cumulative pore volume percentage over 30 μm is about 40%. In consideration of the fact, the cumulative pore volume percentage with a pore diameter of 20 to 30 μm was about 20% (100% −40% −40% = 20%).
また比較例1によれば、図7から理解できるように、細孔径が10μmまでの積算細孔容積百分率が35%程度であり、細孔径が30μmを越える積算細孔容積百分率が40%程度であることを考慮すれば、細孔径が10〜30μmの積算細孔容積百分率は、約25%(100%−40%−35%=25%)であった。なお図7によれば、K1/K2=20容積%/40容積%=0.5である。 Further, according to Comparative Example 1, as can be understood from FIG. 7, the cumulative pore volume percentage up to a pore diameter of 10 μm is about 35%, and the cumulative pore volume percentage where the pore diameter exceeds 30 μm is about 40%. In consideration of the fact, the cumulative pore volume percentage with a pore diameter of 10 to 30 μm was about 25% (100% −40% −35% = 25%). According to FIG. 7, K1 / K2 = 20% by volume / 40% by volume = 0.5.
更に、図8〜図10は比較例2の細孔分布を示す。図8から理解できるように、比較例2によれば、24.2μmの細孔径と33.0μmの細孔径とのダブルピークが得られた。しかも33.0μmの細孔径のピークは、24.2μmの細孔径のピークよりも高かった。更に図9,図10から理解できるように、細孔容積全体を100容積%としたとき、30μmを越える細孔の細孔容積合計が約25容積%に設定されていた。換言すれば、30μm以下の細孔の細孔容積合計が約75容積%に設定されていた。 8 to 10 show the pore distribution of Comparative Example 2. As can be understood from FIG. 8, according to Comparative Example 2, a double peak of a pore diameter of 24.2 μm and a pore diameter of 33.0 μm was obtained. Moreover, the peak of the pore diameter of 33.0 μm was higher than the peak of the pore diameter of 24.2 μm. Further, as can be understood from FIGS. 9 and 10, when the total pore volume is 100% by volume, the total pore volume of pores exceeding 30 μm was set to about 25% by volume. In other words, the total pore volume of pores of 30 μm or less was set to about 75% by volume.
また比較例2によれば、図10から理解できるように、細孔径が20μmまでの積算細孔容積百分率が50%程度であり、細孔径が30μmを越える積算細孔容積百分率が25%程度であることを考慮すれば、細孔径が20〜30μmの積算細孔容積百分率は、約25%(100%−50%−25%=25%)であった。 Further, according to Comparative Example 2, as can be understood from FIG. 10, the cumulative pore volume percentage up to 20 μm is about 50%, and the cumulative pore volume percentage over 30 μm is about 25%. In consideration of the fact, the cumulative pore volume percentage with a pore diameter of 20 to 30 μm was about 25% (100% −50% −25% = 25%).
また比較例2によれば、図10から理解できるように、細孔径が10μmまでの積算細孔容積百分率が約40%程度であり、細孔径が30μmを越える積算細孔容積百分率が約25%程度であることを考慮すれば、細孔径が10〜30μmの積算細孔容積百分率は、約35%(100%−40%−25%=35%)であった。なお図10によれば、K1/K2=25容積%/25容積%=1である。 In addition, according to Comparative Example 2, as can be understood from FIG. 10, the cumulative pore volume percentage up to 10 μm is about 40%, and the cumulative pore volume percentage exceeding 30 μm is about 25%. Taking this into consideration, the cumulative pore volume percentage with a pore diameter of 10 to 30 μm was about 35% (100% −40% −25% = 35%). Note that, according to FIG. 10, K1 / K2 = 25% by volume / 25% by volume = 1.
図11は上記した発電条件(酸化剤ガスとしての空気:無加湿,燃料:相対湿度30%の低加湿)における発電試験の結果を示す。上記したように発電条件が低加湿のときであっても、図11に示すように、実施例に係る燃料電池は、比較例1に係る燃料電池、比較例2に係る燃料電池よりもセル電圧が高かった。一方、比較例1,比較例2は30μmを越える大きな細孔が多いため、酸化剤用ガス拡散層のガス上流領域における水の持ち帰りが多いものと推察される。このため比較例1,2によれば、燃料電池の酸化剤極に供給される酸化剤ガス(空気)の加湿量が小さい低加湿運転のときには、セル電圧が高くなりにくい。 FIG. 11 shows the results of a power generation test under the above power generation conditions (air as oxidant gas: no humidification, fuel: low humidification with a relative humidity of 30%) . As described above, even when the power generation condition is low humidification, as shown in FIG. 11, the fuel cell according to the example has a cell voltage higher than that of the fuel cell according to Comparative Example 1 and the fuel cell according to Comparative Example 2. Was expensive. On the other hand, since Comparative Example 1 and Comparative Example 2 have many large pores exceeding 30 μm, it is presumed that there is a large amount of water brought back in the gas upstream region of the oxidant gas diffusion layer. For this reason, according to Comparative Examples 1 and 2, the cell voltage is unlikely to increase during the low humidification operation in which the humidification amount of the oxidant gas (air) supplied to the oxidant electrode of the fuel cell is small.
これに対して実施例では、酸化剤用ガス拡散層では全体的に細孔径が小さいので、30μmを越える大きな細孔が少なく、このため酸化剤用ガス拡散層における水の持ち帰りが少ない。従って実施例では、燃料電池の酸化剤極に供給される酸化剤ガス(空気)の加湿量が小さい低加湿運転のときであっても、高分子電解質膜の乾燥が少なく、保水と排水のバランスが良好にとれているためと推察される。 On the other hand, in the embodiment, since the pore diameter is generally small in the oxidant gas diffusion layer, there are few large pores exceeding 30 μm, and therefore, the water is not brought back in the oxidant gas diffusion layer. Therefore, in the embodiment, even when the humidification amount of the oxidant gas (air) supplied to the oxidant electrode of the fuel cell is small, the polymer electrolyte membrane is less dried and the balance between water retention and drainage is reduced. This is presumably due to the fact that the
(その他)
上記した実施例ではガス拡散層に付設される導電物質としてカーボンブラック(VULCAN XC72R)を使用しているが、この他のカーボンブラックでも可能である。例えば、アセチレンブラック、ホウ素付与アセチレンブラック(BMAB),ケッチッエンブラックでも良い。更には導電物質としてカーボンナノファイバ、カーボンナノチューブ、気相法炭素繊維、カーボンフィラー、カーボンファイバー、グラファイトファイバーなども利用することができる。また、実施例ではPTFEとカーボンブラックとの混合ペーストが使用されているが、さらにPTFEの焼結温度以下で分解する成分なら造孔剤になりうるもの、例えばポリピニルアルコール、食物繊維等を入れて積極的に造孔させることもできる。
(Other)
In the above embodiment, carbon black (VULCAN XC72R) is used as a conductive material attached to the gas diffusion layer, but other carbon blacks are also possible. For example, acetylene black, boron-added acetylene black (BMAB), or Ketchenen black may be used. Furthermore, carbon nanofibers, carbon nanotubes, vapor grown carbon fibers, carbon fillers, carbon fibers, graphite fibers, and the like can be used as conductive materials. Also, in the examples, a mixed paste of PTFE and carbon black is used, but if it is a component that decomposes below the sintering temperature of PTFE, it can be a pore forming agent, such as polypinyl alcohol, dietary fiber, etc. It is also possible to make holes positively.
また実施例では多孔質基材としてカーボンペーパーを使用したが、例えば、カーボン材、セラミック材、ガラス材、高分子材等のペーパー、クロス、フェルト、メッシュなども利用することができる。 Moreover, although carbon paper was used as the porous substrate in the examples, for example, paper such as carbon material, ceramic material, glass material, polymer material, cloth, felt, mesh, and the like can be used.
上記した実施例では、酸化剤ガスとして空気の加湿を低加湿(酸化剤ガスである空気:無加湿)としているが、これに限らず、無加湿としても良い。その他、本発明は上記し且つ図面に示した実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できるものである。 In the above-described embodiment, the humidification of the air as the oxidant gas is set to low humidification ( air as the oxidant gas: no humidification) . However, the present invention is not limited to this, and may be non-humidified. In addition, the present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications within a range not departing from the gist.
本発明は例えば車両用、定置用、電気機器用、電子機器用の燃料電池発電システムに利用することができる。 The present invention can be used in, for example, fuel cell power generation systems for vehicles, stationary devices, electric devices, and electronic devices.
図中、10は燃料用ガス配流板、11は燃料用ガス拡散層、12は燃料用触媒層、13は電解質膜、14は酸化剤用触媒層、15は酸化剤用ガス拡散層、16は酸化剤用ガス配流板を示す。 In the figure, 10 is a gas distribution plate for fuel, 11 is a gas diffusion layer for fuel, 12 is a catalyst layer for fuel, 13 is an electrolyte membrane, 14 is a catalyst layer for oxidant, 15 is a gas diffusion layer for oxidant, 16 The gas distribution board for oxidants is shown.
Claims (4)
前記固体高分子型燃料電池は、相対湿度が50%以下の低加湿の酸化剤ガスまたは無加湿の酸化剤ガスを酸化剤極に供給され、相対湿度が50%以下の低加湿または無加湿で発電運転されるものであり、
前記酸化剤用ガス拡散層は、
横軸を細孔径とし、縦軸を細孔容積とした細孔分布において、細孔容積の高頻度ピークが細孔径10〜30μmの範囲内に設定されており、且つ、
細孔容積全体を100容積%としたとき、30μmを越える細孔の細孔容積合計が20容積%以下に設定されていることを特徴とする固体高分子型燃料電池。 A fuel gas diffusion layer having a large number of pores and supplied with fuel, a fuel catalyst layer containing a catalyst, an electrolyte membrane having ion conductivity, and an oxidant gas containing a catalyst In the polymer electrolyte fuel cell in which the catalyst layer and the porous gas having a large number of pores and the oxidant gas diffusion layer to which the oxidant gas is supplied are sequentially laminated,
In the polymer electrolyte fuel cell, a low humidified oxidant gas having a relative humidity of 50% or less or a non-humidified oxidant gas is supplied to the oxidizer electrode, and the relative humidity is 50% or less with low or no humidification. Power generation operation,
The gas diffusion layer for oxidizing agent is
In the pore distribution with the horizontal axis as the pore diameter and the vertical axis as the pore volume, the high frequency peak of the pore volume is set within the range of the pore diameter of 10 to 30 μm, and
A solid polymer fuel cell, wherein the total pore volume of pores exceeding 30 μm is set to 20% by volume or less when the total pore volume is 100% by volume.
前記固体高分子型燃料電池の前記酸化剤用ガス拡散層は、 The gas diffusion layer for the oxidant of the polymer electrolyte fuel cell is
横軸を細孔径とし、縦軸を細孔容積とした細孔分布において、細孔容積の高頻度ピークが細孔径10〜30μmの範囲内に設定されており、且つ、細孔容積全体を100容積%としたとき、30μmを越える細孔の細孔容積合計が20容積%以下に設定されており、 In the pore distribution with the horizontal axis as the pore diameter and the vertical axis as the pore volume, the high frequency peak of the pore volume is set within the range of the pore diameter of 10 to 30 μm, and the entire pore volume is 100 When the volume% is set, the total pore volume of pores exceeding 30 μm is set to 20 volume% or less,
発電運転時に、燃料を前記固体高分子型燃料電池の燃料極に供給すると共に、相対湿度が50%以下の低加湿の酸化剤ガスまたは無加湿の酸化剤ガスを酸化剤極に供給し、相対湿度が50%以下の低加湿または無加湿で発電運転させることを特徴とする固体高分子型燃料電池の発電方法。 During power generation operation, fuel is supplied to the fuel electrode of the polymer electrolyte fuel cell, and a low-humidity oxidant gas or a non-humidification oxidant gas having a relative humidity of 50% or less is supplied to the oxidant electrode. A power generation method for a polymer electrolyte fuel cell, wherein power generation is performed with low or no humidity at a humidity of 50% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004074979A JP4686992B2 (en) | 2004-03-16 | 2004-03-16 | Solid polymer fuel cell and power generation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004074979A JP4686992B2 (en) | 2004-03-16 | 2004-03-16 | Solid polymer fuel cell and power generation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005267902A JP2005267902A (en) | 2005-09-29 |
JP4686992B2 true JP4686992B2 (en) | 2011-05-25 |
Family
ID=35092243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004074979A Expired - Fee Related JP4686992B2 (en) | 2004-03-16 | 2004-03-16 | Solid polymer fuel cell and power generation method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4686992B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005294120A (en) * | 2004-04-01 | 2005-10-20 | Toyota Motor Corp | Fuel cell structure |
KR100708732B1 (en) * | 2005-11-26 | 2007-04-17 | 삼성에스디아이 주식회사 | Anode for fuel cell, manufacturing method thereof, and fuel cell employing the same |
JP5118372B2 (en) * | 2007-03-28 | 2013-01-16 | 株式会社東芝 | Direct methanol fuel cell |
JP5217256B2 (en) * | 2007-06-06 | 2013-06-19 | 大日本印刷株式会社 | Conductive porous sheet and method for producing the same |
JP5219571B2 (en) | 2008-03-24 | 2013-06-26 | 三洋電機株式会社 | Membrane electrode assembly and fuel cell |
KR102082546B1 (en) * | 2014-02-24 | 2020-02-27 | 도레이 카부시키가이샤 | Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell equipped with same |
EP3379627B1 (en) | 2015-11-19 | 2023-03-08 | Panasonic Intellectual Property Management Co., Ltd. | Gas diffusion layer for fuel cell, method for manufacturing said layer, membrane-electrode assembly, and fuel cell |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000182626A (en) * | 1998-12-15 | 2000-06-30 | Sanyo Electric Co Ltd | Fuel cell electrode, manufacture thereof and fuel cell |
-
2004
- 2004-03-16 JP JP2004074979A patent/JP4686992B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000182626A (en) * | 1998-12-15 | 2000-06-30 | Sanyo Electric Co Ltd | Fuel cell electrode, manufacture thereof and fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP2005267902A (en) | 2005-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2571753C (en) | Gas diffusion electrode and solid-state high-molecular electrolyte type fuel cell | |
JP5481820B2 (en) | Microporous layer and gas diffusion layer having the same | |
JP4837298B2 (en) | Humidity adjustment film | |
EP1519433A1 (en) | Diffusion electrode for fuel cell | |
JP3778506B2 (en) | Electrode for polymer electrolyte fuel cell | |
WO2002073721A1 (en) | Gas diffusion electrode and fuel cell using this | |
JP5105888B2 (en) | Gas diffusion electrode, fuel cell, and method of manufacturing gas diffusion electrode | |
JP5151217B2 (en) | Fuel cell | |
JP2003178780A (en) | Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell | |
JP5034172B2 (en) | Gas diffusion layer for fuel cell and fuel cell using the same | |
JP2004296176A (en) | Solid polymer fuel cell | |
JP4686992B2 (en) | Solid polymer fuel cell and power generation method thereof | |
JP2006324104A (en) | Gas diffusion layer for fuel cell and fuel cell using this | |
WO2002091503A1 (en) | Electrode for fuel cell and method of manufacturing the electrode | |
JP2005158298A (en) | Operation method of fuel cell power generation system, and fuel cell power generation system | |
JP4880131B2 (en) | Gas diffusion electrode and fuel cell using the same | |
JP2004158387A (en) | Electrode structure for solid polymer fuel cell | |
JP2001057217A (en) | Polymer electrolyte type fuel cell | |
JP2006085984A (en) | Mea for fuel cell and fuel cell using this | |
JP2007323939A (en) | Fuel cell | |
JP2009043688A (en) | Fuel cell | |
JP2021166139A (en) | Gas diffusion layer, membrane electrode assembly, and fuel cell | |
KR100570769B1 (en) | A electrode for fuel cell and a fuel cell comprising the same | |
JP2006019128A (en) | Gas diffusion layer and fuel cell using this | |
JP2003142121A (en) | Solid high polymer type fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091008 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100701 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110131 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4686992 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |