[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4686309B2 - Size classification device - Google Patents

Size classification device Download PDF

Info

Publication number
JP4686309B2
JP4686309B2 JP2005257044A JP2005257044A JP4686309B2 JP 4686309 B2 JP4686309 B2 JP 4686309B2 JP 2005257044 A JP2005257044 A JP 2005257044A JP 2005257044 A JP2005257044 A JP 2005257044A JP 4686309 B2 JP4686309 B2 JP 4686309B2
Authority
JP
Japan
Prior art keywords
fine particles
air
fine
sizing
sieve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005257044A
Other languages
Japanese (ja)
Other versions
JP2007069089A (en
Inventor
勇二 相米
博紀 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2005257044A priority Critical patent/JP4686309B2/en
Publication of JP2007069089A publication Critical patent/JP2007069089A/en
Application granted granted Critical
Publication of JP4686309B2 publication Critical patent/JP4686309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Description

本発明は、分粒対象物を粗粒と細粒に分粒するとともに、細粒に付着した微粉を除去する分粒分級装置に関する。   The present invention relates to a sizing / classifying device that divides a sized object into coarse particles and fine particles and removes fine powder adhering to the fine particles.

コンクリート、道路等に用いられる細骨材は、我が国においては河川・海等の自然砂の採取が禁止されているため、外国から輸入した砂を用いるか、人工的に製造された砂を用いて製造されている。ここで、外国から輸入される砂については性状を保証することが困難であり、コンクリートのように粗粒率(FM値)等の要求性能が高い細骨材には不向きであることから、性状が安定している人工砂が用いられることが多い。人工砂のうちコスト及び供給量の点から有利なものは、砕石を破砕して所定の粒度分布となるよう分粒、分級等して得られる砕砂である。ここで、「分粒」とは粒状物を所定の粒径を基準として分別することをいい、「分級」とは粒状物と微粉とを分別することをいうものとする。   Fine aggregates used in concrete, roads, etc. are prohibited from collecting natural sand such as rivers and seas in Japan, so use sand imported from abroad or artificially produced sand. It is manufactured. Here, it is difficult to guarantee the properties of sand imported from abroad, and it is not suitable for fine aggregates with high required performance such as coarse grain ratio (FM value) such as concrete. Often artificial sand is used which is stable. Among the artificial sands, those that are advantageous from the viewpoint of cost and supply amount are crushed sand obtained by crushing crushed stones and sizing and classifying them so as to obtain a predetermined particle size distribution. Here, “classification” means that a granular material is classified based on a predetermined particle diameter, and “classification” means that the granular material and fine powder are classified.

この種の砕砂の製造設備では、一般的には、分粒装置としては振動篩が用いられ、分級装置として乾式ならばエアセパレータ、湿式ならばスパイラル分級機が用いられる。分級装置において、粒径の比較的小さな砂に付着した微粉を簡単容易に除去することのできる湿式の方が優れているが、排水処理の問題から乾式処理が主流となっている。そして、製造工程の短縮及び設備コストの低減を目的として、振動篩と乾式の分級装置を集約した分粒分級装置が提案されている(例えば、特許文献1参照)。   In this type of crushed sand production facility, generally, a vibration sieve is used as a classification device, and an air separator is used as a classification device, and a spiral classifier is used as a classification device. In the classifier, the wet type that can easily and easily remove fine powder adhering to the sand having a relatively small particle size is superior, but the dry type treatment is mainly used due to the problem of waste water treatment. For the purpose of shortening the manufacturing process and reducing the equipment cost, a classifying and classifying apparatus in which a vibrating sieve and a dry classifying apparatus are combined has been proposed (for example, see Patent Document 1).

この分粒分級装置では、振動篩を通過して自由落下中の細粒及び微粉に対し、これと対向するよう空気流を当てることによって、細粒から微粉を分離することにより分級が行われる。このような分粒分級装置では、処理対象物を広く分散させて空気との接触距離を大きくすることにより分級精度が向上する。従って、振動篩を傾斜して形成し、振動篩の傾斜形状に沿って空気を流通させている。
特開2002−254035号公報
In this classifying / classifying apparatus, classification is performed by separating the fine particles from the fine particles by applying an air flow so as to face the fine particles and fine particles passing through the vibrating sieve and freely falling. In such a sizing / classifying apparatus, classification accuracy is improved by widely dispersing the object to be processed and increasing the contact distance with air. Therefore, the vibrating sieve is formed to be inclined, and air is circulated along the inclined shape of the vibrating sieve.
JP 2002-254035 A

しかしながら、前記分粒分級装置では、自由落下する処理対象物に空気を当てるものであるから、細粒に付着した微粉までをも除去することはできない。これにより、抜本的な微粉の除去性能の向上がのぞまれている。
また、分粒対象物の投入量が増大した際に、空気流量を増大させると製品となるべき細粒までも空気流に乗って除去されてしまうし、空気流量を増大させなければ微粉の除去性能が低下する。このように、分粒対象物の投入量によって微粉の除去性能が左右されるという問題点もある。
However, in the above-mentioned classifying and classifying apparatus, air is applied to the processing object that falls freely, and therefore even fine powder adhering to the fine particles cannot be removed. Thereby, drastic improvement of the removal performance of fine powder is desired.
In addition, when the input amount of the sized object increases, if the air flow rate is increased, even fine particles that should become products will be removed by riding on the air flow, and if the air flow rate is not increased, fine powder will be removed. Performance decreases. Thus, there is also a problem that the fine powder removal performance depends on the input amount of the sized object.

本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、分粒対象物の投入量によって細粒からの微粉の除去性能が左右されることなく、且つ、細粒からの微粉の除去効率を向上させることのできる分粒分級装置を提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is that the removal performance of fine powder from fine particles is not affected by the input amount of the sized object, and the fine particles can be removed. An object of the present invention is to provide a sizing device that can improve the removal efficiency of fine powder.

前記目的を達成するため、本発明では、
分粒対象物を粗粒と該粗粒より小さな細粒とに選り分ける篩部材を有し、前記粗粒を回収する粗粒回収口及び前記細粒を回収する細粒回収口が形成された分粒分級装置であって、
前記篩部材の下方に設けられ、前記篩部材を通過した前記細粒を前記篩部材と略平行に形成された上面にて受け止める受止部と、
前記篩部材を加振して、前記篩部材上の前記分粒対象物を前記篩部材上にて前記粗粒回収口方向へ移送するとともに、前記受止部を加振して、前記受止部上の前記細粒を前記受止部上にて前記細粒回収口方向へ移送する加振部と、
前記篩部材と前記受止部の間の空気を前記細粒の移送方向と反対方向に流通させる空気流通部と、を備え
前記篩部材における前記分粒対象物の移送方向と反対側端部に前記分粒対象物を供給するためのフィード部を備え、
前記篩部材は、前記分粒対象物の移送方向について、孔なし部と、網部と、を連続的にこの順で有し、
前記受止部の少なくとも一部が、細粒から該細粒より小さな微粒を分離するための篩となっており、
前記受止部における前記篩部材の前記孔なし部の下方に、孔なし部を形成し、
前記篩部材と前記受止部の間の空気流通経路に、前記篩部材の前記孔なし部により上方が閉塞されるとともに前記受止部の前記孔なし部により下方が閉塞される整流室を画成したことを特徴とする分粒分級装置が提供される。
In order to achieve the above object, in the present invention,
A sieving member that sorts the sized object into coarse particles and fine particles smaller than the coarse particles, and a coarse particle collection port for collecting the coarse particles and a fine particle collection port for collecting the fine particles are formed. A size classification device,
A receiving portion that is provided below the sieve member and receives the fine particles that have passed through the sieve member on an upper surface formed substantially parallel to the sieve member;
The sieve member is vibrated, and the sized object on the sieve member is transferred to the coarse particle recovery port direction on the sieve member, and the receiving part is vibrated to receive the receiving member. A vibration unit for transferring the fine particles on the portion toward the fine particle collection port on the receiving unit;
An air circulation part that circulates air between the sieve member and the receiving part in a direction opposite to the direction in which the fine particles are transferred , and
A feed unit for supplying the sizing object to the end of the sieving member opposite to the transfer direction of the sizing object;
The sieve member has a holeless portion and a mesh portion in this order continuously in the transfer direction of the sizing object,
At least a part of the receiving portion is a sieve for separating fine particles smaller than the fine particles from the fine particles,
Forming a holeless portion below the holeless portion of the sieve member in the receiving portion,
The air flow path between the sieving member and the receiving part defines a rectifying chamber whose upper part is closed by the holeless part of the sieving member and whose lower part is closed by the holeless part of the receiving part. There is provided a sizing / classifying device characterized by having been formed .

本発明の分粒分級装置によれば、篩部材を通過した細粒は、受止部にて受け止められた後、加振部から加えられる振動により受止部上にて繰り返し跳ね上げられる。そして、細粒は、受止部上を跳躍しながら細粒回収口方向へ移送される。
このとき、細粒には跳ね上げ時及び着地時に衝撃が加えられるので、細粒に付着している微粉は細粒から剥離される。また、細粒は、浮遊時に流通空気に曝さられるので、流通空気から受ける空気抵抗によっても微粉が細粒から剥離される。剥離された微粉は、流通空気に乗って細粒の移送方向と別方向へ移動する。尚、細粒に付着せずに篩部材を通過した微粉は、受止部へ落下する前に流通空気に乗って下流側へ移動している。これにより、細粒回収口から微粉が除去された細粒が回収される。
According to the sizing / classifying apparatus of the present invention, the fine particles that have passed through the sieve member are repeatedly received on the receiving part by vibration applied from the exciting part after being received by the receiving part. And a fine grain is transferred to a fine grain collection mouth direction, jumping on a receiving part.
At this time, an impact is applied to the fine particles at the time of splashing and landing, so that the fine powder adhering to the fine particles is peeled off from the fine particles. Further, since the fine particles are exposed to the circulating air when floating, the fine powder is separated from the fine particles by the air resistance received from the circulating air. The peeled fine powder rides on the circulating air and moves in a direction different from the direction in which the fine particles are transferred. In addition, the fine powder that has passed through the sieve member without adhering to the fine particles is moved downstream by riding on the circulating air before dropping to the receiving portion. Thereby, the fine particles from which the fine powder has been removed are collected from the fine particle collection port.

また、この分粒分級装置によれば、空気の流通方向が細粒の移送方向と反対方向であるので、移送される細粒と空気の相対速度を最大限に高めて細粒に加えられる空気抵抗を大きくし、微粉の剥離効率をさらに向上させることができる。また、細粒は浮遊時に空気により僅かながら押し戻されるので、細粒回収口へ移動するまでの受止部上に滞在する時間が長くなる。この結果、細粒に加えられる振動回数が多くなり、これによっても剥離効率が向上する。
また、篩部材及び受止部において、分粒対象物及び細粒の移送方向のストロークを十分に確保する必要があるところ、このストローク方向に空気を流通させることで細粒と空気の接触機会も十分に確保される。従って、装置内のスペースを効率良く利用することができる。
また、フィード部から分粒対象物が供給されると、分粒対象物は、まず、孔なし部上を加振されながら移動する。このとき、分粒対象物は、径の小さな粒状物が相対的に下方へ移動し、径の大きな粒状物が相対的に上方へ移動して、粒状物が層状に整理される。
また、受止部においても細粒と微粒とに篩い分けることができる。受止部の下方からは受止部を通過した微粒が得られ、細粒回収口には受止部を下方へ通過できなかった細粒が回収される。これにより、粗粒と、細粒と、微粒と、微粉と、に分別することができる。
また、各孔なし部により上下が閉塞された整流室が画成されることから、空気の流れを安定させて微粉の回収を的確に行うことができる。
Further, according to this sizing / classifying device, since the air flow direction is opposite to the fine particle transfer direction, the air added to the fine particles by maximizing the relative speed of the fine particles to be transferred and the air is added. The resistance can be increased and the fine powder peeling efficiency can be further improved. Further, since the fine particles are slightly pushed back by the air when floating, it takes a long time to stay on the receiving portion until they move to the fine particle collection port. As a result, the number of vibrations applied to the fine particles increases, and this also improves the separation efficiency.
Moreover, in the sieving member and the receiving part, it is necessary to ensure a sufficient stroke in the transfer direction of the sizing object and the fine particles, and there is an opportunity for contact between the fine particles and the air by circulating air in the stroke direction. Sufficiently secured. Therefore, the space in the apparatus can be used efficiently.
In addition, when the sizing object is supplied from the feed unit, the sizing object first moves while being vibrated on the holeless portion. At this time, in the sized object, the granular material having a small diameter moves relatively downward, the granular material having a large diameter moves relatively upward, and the granular material is arranged in a layered manner.
In addition, fine particles and fine particles can be sieved in the receiving part. Fine particles that have passed through the receiving portion are obtained from below the receiving portion, and fine particles that have not been able to pass through the receiving portion are recovered at the fine particle collection port. Thereby, it can classify into a coarse grain, a fine grain, a fine grain, and a fine powder.
In addition, since the rectifying chamber whose upper and lower portions are blocked by each holeless portion is defined, the air flow can be stabilized and fine powder can be collected accurately.

また、上記分粒分級装置において、
前記受止部の上面は略水平に形成される構成とすることができる。
Moreover, in the above sizing / classifying apparatus,
The upper surface of the receiving part can be formed to be substantially horizontal.

この分粒分級装置によれば、受止部の上面が略水平であることから、細粒を受止部上にて的確に保持させることができる。   According to this sizing / classifying apparatus, since the upper surface of the receiving portion is substantially horizontal, fine particles can be accurately held on the receiving portion.

また、上記分粒分級装置において、
前記篩部材の前記孔なし部の下方へ向かって、空気流通方向の上流側から空気を吐出する空気吐出口を設けた構成とすることができる。
Moreover, in the above sizing / classifying apparatus,
It can be set as the structure which provided the air discharge port which discharges air from the upstream of an air distribution direction toward the downward direction of the said holeless part of the said sieve member.

この分粒分級装置によれば、空気吐出口を設けたことにより、孔なし部の手前側で空気を加速させることができる。このとき、孔なし部にて空気が篩部材より上方へ流出しないことから、篩部材と受止部の間の流通空気が整流作用を得ることができる。   According to this sizing / classifying apparatus, the air can be accelerated on the front side of the holeless portion by providing the air discharge port. At this time, since air does not flow upward from the sieve member at the holeless portion, the air flowing between the sieve member and the receiving portion can obtain a rectifying action.

また、上記分粒分級装置において、
前記網部は、前記分粒対象物の移送方向について、第1網部と、該第1網部よりも目の粗い第2網部と、を連続的にこの順で有する構成とすることができる。
Moreover, in the above sizing / classifying apparatus,
The mesh part is configured to continuously include a first mesh part and a second mesh part having a coarser mesh than the first mesh part in this order in the transfer direction of the sized object. it can.

この分粒分級装置によれば、分粒対象物は、孔なし部にて成層された状態で第1網部へ進入し、径の小さな下層の粒状物から優先的に第1網部を通過する。これにより、径の比較的小さい粒状物は、確実に第1網部にて分粒される。
続いて、径の比較的小さな粒状物が除去された状態で、分粒対象物は第2網部へ進入する。この第2網部においては、篩部材にて設定された粗粒と細粒の分粒径付近の粒状物を中心に選り分けられる。
According to this sizing / classifying device, the sized object enters the first mesh part in a state where it is stratified in the holeless part, and preferentially passes through the first mesh part from the granular material of the lower diameter. To do. Thereby, the granular material with a comparatively small diameter is reliably sized by the 1st net part.
Subsequently, the sized object enters the second net portion in a state where the granular material having a relatively small diameter is removed. In this 2nd net | network part, the granular material of the coarse particle size set by the sieving member and the fine particle size vicinity of a fine particle is selected centering around.

また、上記分粒分級装置において、
前記篩部材の前記第1網部の下方に空気吐出口を配設した構成とすることができる。
Moreover, in the above sizing / classifying apparatus,
It can be set as the structure which has arrange | positioned the air discharge port under the said 1st net part of the said sieve member.

この分粒分級装置によれば、第1網部を通過した径の比較的小さい粒状物は、空気吐出口から吐出される空気に直接的に曝される。第1網部を通過した粒状物には微粉が多く含有されることから、空気の吐出エネルギを無駄なく利用して、微粉の分級を効率よく行うことができる。   According to this sizing / classifying apparatus, the particulate matter having a relatively small diameter that has passed through the first mesh portion is directly exposed to the air discharged from the air discharge port. Since the granular material that has passed through the first mesh portion contains a lot of fine powder, it is possible to efficiently classify the fine powder by using the discharge energy of air without waste.

また、上記分粒分級装置において、
前記受止部の前記孔なし部の上方に配され、空気の流通経路の一部を塞ぎ板面をほぼ流通方向へ向けた流通規制板を設けた構成とすることができる。
Moreover, in the above sizing / classifying apparatus,
A configuration may be adopted in which a flow restriction plate is provided above the holeless portion of the receiving portion and blocks a part of the air flow path so that the plate surface is substantially directed in the flow direction.

この分粒分級装置によれば、流通空気に乗った粒状物が流通規制板に衝突すると、粒状物が受止部の孔なし部へ向かって落下する。これにより、流通規制板をすり抜けた微粉のみがさらに下流側へ移動し、細粒及び微粒は受止部上に叩き落とされる。従って、細粒及び微粒が流通空気に乗ってしまった場合に、細粒及び微粒を受止部上に案内することができる。   According to this sizing / classifying apparatus, when the particulate matter riding on the circulation air collides with the distribution restriction plate, the particulate matter falls toward the holeless portion of the receiving portion. Thereby, only the fine powder that has passed through the flow regulating plate moves further to the downstream side, and the fine particles and fine particles are knocked down onto the receiving portion. Therefore, when the fine particles and the fine particles get on the circulating air, the fine particles and the fine particles can be guided onto the receiving portion.

また、上記分粒分級装置において、
前記流通規制板の少なくとも一部は、下方へ向かって前記空気流通方向の上流側に傾斜する構成とすることができる。
Moreover, in the above sizing / classifying apparatus,
At least a part of the flow restriction plate may be configured to incline downward toward the upstream side in the air flow direction.

この分粒分級装置によれば、流通規制板の少なくとも一部が空気流通方向の上流側に傾斜しているので、流通規制板に衝突して落下する細粒及び微粒を上流側へ案内させることができる。   According to this sizing / classifying device, since at least a part of the flow regulating plate is inclined upstream in the air flow direction, the fine particles and fine particles that collide with the flow regulating plate and fall are guided upstream. Can do.

また、上記分粒分級装置において、
前記流通規制板の下流側に設けられ前記微粉を含む前記空気の吸込口と、
前記吸込口の近傍に配された流量調整板と、を備えた構成とすることができる。
Moreover, in the above sizing / classifying apparatus,
The air inlet provided on the downstream side of the flow regulating plate and containing the fine powder;
And a flow rate adjusting plate disposed in the vicinity of the suction port.

この分粒分級装置によれば、吸込口から流通空気に乗った微粉が回収される。ここで、流量調整板により空気の流量を調整することにより、微粉の除去率を調整して得られる製品の粗粒率(FM値)等を調整することができ、実用に際して極めて有利である。   According to this sizing / classifying device, fine powder riding on the circulating air is collected from the suction port. Here, by adjusting the air flow rate with the flow rate adjusting plate, the coarse particle rate (FM value) of the product obtained by adjusting the fine powder removal rate can be adjusted, which is extremely advantageous in practical use.

このように、本発明によれば、細粒を受止部にて一旦受け止め加振しつつ流通空気に曝すようにしたので、回収口へ向かって自重で落下する細粒に空気を当てる従来のものに比べ、細粒からの微粉の除去効率を格段に向上させることができる。
また、受止部にて細粒を一旦受け止めて加振することから、自由落下中の細粒に空気を当てる従来のもののように微粉の除去性能が投入される分粒対象物の量に依存することはなく、常に安定した微粉の除去性能を発揮させることができる。
Thus, according to the present invention, since the fine particles are once received by the receiving part and exposed to the circulating air while being vibrated, the conventional method of applying air to the fine particles falling by its own weight toward the recovery port Compared with those, the removal efficiency of fine powder from fine particles can be remarkably improved.
In addition, since fine particles are once received and vibrated by the receiving part, the fine powder removal performance depends on the amount of the sized object to be injected, as in the conventional case where air is applied to the fine particles during free fall. It is possible to always exhibit stable fine powder removal performance.

図1及び図2は本発明の一実施形態を示すもので、図1は分粒分級装置の概略構成を示す側断面図、図2は分粒分級装置内の分粒対象物及び空気の流れを示す説明図である。   FIG. 1 and FIG. 2 show an embodiment of the present invention. FIG. 1 is a side sectional view showing a schematic configuration of a size classification device, and FIG. 2 is a flow of a classification object and air in the size classification device. It is explanatory drawing which shows.

図1に示すように、この分粒分級装置100は、分粒対象物が供給される装置本体102と、装置本体102を全体的に加振する加振部104と、を備えている。本実施形態においては、分粒対象物は、粉砕機により破砕された砕砂であり、図2に示すように、粒径が約4.0mmを超える粒状物(粗粒)と、粒径が約1.3mmから約4.0mmの粒状物(細粒)と、粒径が約0.075mmから約1.3の粒状物(微粒)と、粒径が約0.075mm以下の微粉と、に分粒及び分級をする。ここで、「分粒」とは粒状物を所定の粒径を基準として分別することをいい、「分級」とは粒状物と微粉とを分別することをいうものとする。   As shown in FIG. 1, the sizing / classifying apparatus 100 includes an apparatus main body 102 to which a sized object is supplied, and a vibration unit 104 that vibrates the apparatus main body 102 as a whole. In the present embodiment, the sizing object is crushed sand crushed by a pulverizer, and as shown in FIG. 2, a granular material (coarse particles) having a particle size exceeding about 4.0 mm and a particle size of about A granular material (fine particle) of 1.3 mm to about 4.0 mm, a granular material (fine particle) of a particle size of about 0.075 mm to about 1.3, and a fine particle of a particle size of about 0.075 mm or less. Size and classify. Here, “classification” means that a granular material is classified based on a predetermined particle diameter, and “classification” means that the granular material and fine powder are classified.

装置本体102は、例えばスプリングを有するサスペンション(図示せず)を介して装置外部にて接地されている。加振部104は、モータ104aから出力された回転運動をベルト104b等を介して運動変換機構104cへ伝達する。回転運動は運動変換機構104cにより楕円振動に変換され、装置本体102が斜め方向へ加振される。   The apparatus main body 102 is grounded outside the apparatus via a suspension (not shown) having a spring, for example. The vibration unit 104 transmits the rotational motion output from the motor 104a to the motion conversion mechanism 104c via the belt 104b or the like. The rotational motion is converted into elliptical vibration by the motion conversion mechanism 104c, and the apparatus main body 102 is vibrated in an oblique direction.

ここで、装置本体102は、図1に示すように、分粒対象物を供給するためのフィード部としてのフィードボックス106と、この分粒対象物を粗粒と粗粒より小さな細粒とに選り分ける篩部材108と、篩部材108の下方に設けられ篩部材108を通過した細粒を受け止める受止部110と、を有する。本実施形態においては、受止部110の上面は略水平に形成されるとともに、篩部材108は受止部110の上面と略平行に形成されている。また、受止部110の一部は、篩部材108より目の細かな篩であり、細粒からさらに微粒を分粒する。そして、装置本体102には、粗粒を回収する粗粒回収口112と、細粒を回収する細粒回収口114と、微粒を回収する微粒回収口116と、が形成されている。   Here, as shown in FIG. 1, the apparatus main body 102 includes a feed box 106 as a feed unit for supplying a sizing object, and the sizing object into coarse particles and fine particles smaller than the coarse particles. A sieve member 108 to be selected and a receiving portion 110 that is provided below the sieve member 108 and receives fine particles that have passed through the sieve member 108. In the present embodiment, the upper surface of the receiving portion 110 is formed substantially horizontally, and the sieve member 108 is formed substantially parallel to the upper surface of the receiving portion 110. Moreover, a part of the receiving part 110 is a sieve finer than the sieve member 108, and fine particles are further divided from the fine particles. The apparatus main body 102 is formed with a coarse particle collection port 112 for collecting coarse particles, a fine particle collection port 114 for collecting fine particles, and a fine particle collection port 116 for collecting fine particles.

加振部104は、装置本体102に斜め方向(図1中、右上方向及び左下方向)の振動を加えることにより、篩部材108及び受止部110を加振して分粒を行う。すなわち、篩部材108及び受止部110は振動篩として機能する。ここで、加振部104は、受止部110を連続的に加振して、受止部110上の細粒を受止部110上にて細粒回収口114方向へ移送する。また、加振部104は、篩部材108を連続的に加振して、篩部材108上の分粒対象物を篩部材108上にて細粒の移送方向と同方向へ移送する。すなわち、加振部104は篩部材108と、受止部110とで共用となっている。   The vibration unit 104 applies vibration in an oblique direction (upper right direction and lower left direction in FIG. 1) to the apparatus main body 102 to vibrate the sieve member 108 and the receiving unit 110 and perform sizing. That is, the sieve member 108 and the receiving part 110 function as a vibrating sieve. Here, the vibration unit 104 continuously vibrates the receiving unit 110 and transfers fine particles on the receiving unit 110 toward the fine particle collection port 114 on the receiving unit 110. In addition, the vibration unit 104 continuously vibrates the sieve member 108 and transfers the sized object on the sieve member 108 in the same direction as the fine particle transfer direction on the sieve member 108. That is, the vibration unit 104 is shared by the sieve member 108 and the receiving unit 110.

また、分粒分級装置100は、篩部材108と受止部110の間の空気を細粒の移送方向と別方向に流通させる空気流通部118を備えている。これにより、細粒に付着している微粉が除去され、いわゆる空気分級が行われる。空気流通部118は、加振部104による分粒対象物及び細粒の移送方向と反対方向へ空気を流通させる。   In addition, the sizing / classifying device 100 includes an air circulation unit 118 that circulates air between the sieve member 108 and the receiving unit 110 in a direction different from the direction in which the fine particles are transferred. Thereby, the fine powder adhering to the fine particles is removed, and so-called air classification is performed. The air circulation unit 118 circulates air in the direction opposite to the direction in which the object to be sized and the fine particles are transferred by the vibration unit 104.

図1に示すように、フィードボックス106と篩部材108とは水平方向に連続的に配されており、フィードボックス106は篩部材108における分粒対象物の移送方向と反対側端部に分粒対象物を供給する。篩部材108は、分粒対象物の移送方向について、孔なし部108aと、第1網部108bと、第2網部108cと、を連続的にこの順で有する。すなわち、第1網部108bと、第2網部108cとで篩部材108の網部を構成している。   As shown in FIG. 1, the feed box 106 and the sieve member 108 are continuously arranged in the horizontal direction, and the feed box 106 is sized at the end of the sieve member 108 opposite to the transfer direction of the sized object. Supply the object. The sieving member 108 has a holeless portion 108a, a first mesh portion 108b, and a second mesh portion 108c successively in this order in the transfer direction of the sized object. That is, the first mesh portion 108b and the second mesh portion 108c constitute a mesh portion of the sieve member 108.

また、篩部材108と粗粒回収口112も水平方向に連続的に配されており、篩部材108上に残留した粗粒は、加振部104による移送によりそのまま粗粒回収口112へ案内される。粗粒回収口112は、装置本体102の側面に形成されている。本実施形態においては、粗粒回収口112から回収された粗粒は製品対象外であり、装置外部の搬送機構により再び粉砕機へ搬送される。   Further, the sieve member 108 and the coarse particle collection port 112 are also continuously arranged in the horizontal direction, and the coarse particles remaining on the sieve member 108 are guided to the coarse particle collection port 112 as they are by the transfer by the vibration unit 104. The The coarse particle collection port 112 is formed on the side surface of the apparatus main body 102. In the present embodiment, the coarse particles collected from the coarse particle collection port 112 are not products, and are conveyed again to the pulverizer by the conveyance mechanism outside the apparatus.

図1に示すように、篩部材108の孔なし部108aは、孔が全く形成されておらず、粒状物のみならず空気の流通も阻止される。また、第1網部108bは、網目が約2.0mmに形成され、分粒対象物のうち粒径が約2.0mm以下の粒状物が落下するようになっている。上述の微粉、微粒及び細粒の定義に従えば、微粉、微粒及び比較的小さな細粒が篩い分けられることとなる。また、第2網部108cは、網目が約4.0mmに形成され、分粒対象物のうち粒径が約4.0mm以下の粒状物が落下するようになっている。ここでは、微粉、微粒及び全ての細粒が篩い分けられる。   As shown in FIG. 1, the hole-free portion 108a of the sieve member 108 is not formed with any holes, and not only the particulate matter but also the air flow is prevented. The first mesh portion 108b has a mesh of about 2.0 mm, and a granular material having a particle size of about 2.0 mm or less falls among the sized objects. According to the above definition of fine powder, fine grain and fine grain, fine powder, fine grain and relatively small fine grain will be sieved. Further, the second mesh portion 108c has a mesh of about 4.0 mm, and a granular material having a particle size of about 4.0 mm or less falls among the sized objects. Here, fines, fines and all fines are sieved out.

フィードボックス106及び篩部材108の上方は、加振部104の運動変換機構104cとともに防塵フード200により覆われている。この防塵フード200には、微粉を回収するための集塵管202が接続されている。また、防塵フード200に分粒対象物を装置本体102内へ投入するための投入口204が形成される。投入口204は、フィードボックス106のほぼ真上に形成されている。   The upper part of the feed box 106 and the sieve member 108 is covered with a dust-proof hood 200 together with the motion conversion mechanism 104 c of the vibration unit 104. The dust hood 200 is connected to a dust collection pipe 202 for collecting fine powder. In addition, the dustproof hood 200 is formed with a loading port 204 for loading a sized object into the apparatus main body 102. The input port 204 is formed almost directly above the feed box 106.

図1に示すように、受止部110は、篩部材108の真下に配されており、網目が約1.3mmに形成されている。これにより、微粒及び細粒が篩い分けられることとなる。また、受止部110の細粒の移送方向と反対側にも孔なし部110aが形成される。図1に示すように、受止部110の孔なし部110aは、篩部材108の孔なし部108aの下方に形成されている。受止部110の孔なし部110aもまた、孔が全く形成されておらず、粒状物のみならず空気の流通も阻止される。   As shown in FIG. 1, the receiving part 110 is distribute | arranged directly under the sieve member 108, and the mesh is formed in about 1.3 mm. Thereby, a fine particle and a fine particle will be sieved. In addition, a holeless portion 110a is also formed on the side of the receiving portion 110 opposite to the fine particle transfer direction. As shown in FIG. 1, the holeless portion 110 a of the receiving portion 110 is formed below the holeless portion 108 a of the sieve member 108. The hole-free portion 110a of the receiving portion 110 is also not formed with any holes, and not only the particulate matter but also the air flow is prevented.

図1に示すように、受止部110の移送方向端部は開放されており、この開放部分の下側に細粒回収口114が形成されている。また、受止部110の真下には、受止部110を通過した微粒を回収するべく、微粒回収口116が形成されている。微粒回収口116の下方には、回収ホッパー206が配されている。   As shown in FIG. 1, the end of the receiving portion 110 in the transfer direction is open, and a fine particle collection port 114 is formed below the open portion. In addition, a particulate collection port 116 is formed immediately below the receiving portion 110 to collect the fine particles that have passed through the receiving portion 110. A recovery hopper 206 is disposed below the fine particle recovery port 116.

空気流通部118は、装置本体102の側面に形成された導入口120から空気を装置本体102内へ導入して、装置本体102内の空気を流通させる。本実施形態においては、導入口120は、装置本体102の側面における粗粒回収口112の下側に配される。図1に示すように、導入口120は、篩部材108と受止部110の間における空気流通方向の上流側に形成されている。また、篩部材108と受止部110の間における空気流通方向の下流側には吸込口122が形成され、空気とともに微粉が回収される。吸込口122には微粉を回収するための集塵管208が接続される。   The air circulation unit 118 introduces air into the apparatus main body 102 from an introduction port 120 formed on the side surface of the apparatus main body 102 and distributes the air in the apparatus main body 102. In the present embodiment, the introduction port 120 is disposed below the coarse particle collection port 112 on the side surface of the apparatus main body 102. As shown in FIG. 1, the inlet 120 is formed on the upstream side in the air flow direction between the sieve member 108 and the receiving portion 110. Further, a suction port 122 is formed on the downstream side in the air flow direction between the sieve member 108 and the receiving portion 110, and fine powder is collected together with air. A dust collection pipe 208 for collecting fine powder is connected to the suction port 122.

篩部材108の第1網部108bの下方にはエアジェット124が配設される。図1に示すように、空気吐出口としてのエアジェット124は、上下に2つ並設され、篩部材108の孔なし部108aの下方へ向かって、空気流通方向の上流側から空気を吐出する。ここで、第1網部108bの下方のエアジェット124は比較的高速且つ大量の空気を吐出することから、上下を各孔なし部108a、110aとして微粒が空気とともに運搬されないようになっている。
また、第2網部108cの下方にもエアジェット126が配設されている。第2網部108cの下方のエアジェット126における空気吐出状態は、第1網部108bの下方のエアジェット124に比べて低速且つ少量となっている。
An air jet 124 is disposed below the first mesh portion 108b of the sieve member 108. As shown in FIG. 1, two air jets 124 as air discharge ports are juxtaposed in the vertical direction, and discharge air from the upstream side in the air flow direction toward the lower side of the holeless portion 108 a of the sieve member 108. . Here, since the air jet 124 below the first net portion 108b discharges a relatively large amount of air at a relatively high speed, the top and bottom portions 108a, 110a are arranged so that the fine particles are not transported together with the air.
An air jet 126 is also disposed below the second mesh portion 108c. The air discharge state of the air jet 126 below the second mesh portion 108c is lower and smaller than that of the air jet 124 below the first mesh portion 108b.

図1に示すように、第1網部108bの各エアジェット124の下流側で、受止部110の孔なし部110aの上方には、流通規制板128が配される。流通規制板128は、空気の流通経路の一部を塞ぎ、板面をほぼ流通方向へ向けるよう設置されている。すなわち、流通規制板128は、側面断面にて略上下に延びるよう形成される(図1参照)。流通規制板128の下端側は、下方へ向かって空気の流通方向の上流側(図1中右側)に傾斜している。また、流通規制板128は回動自在となっており、流通方向に対する角度調整が可能となっている。   As shown in FIG. 1, a flow restriction plate 128 is disposed on the downstream side of each air jet 124 of the first net portion 108 b and above the holeless portion 110 a of the receiving portion 110. The flow regulating plate 128 is installed so as to block a part of the air flow path and direct the plate surface in the flow direction. That is, the flow restricting plate 128 is formed so as to extend substantially vertically in a side cross section (see FIG. 1). The lower end side of the flow restriction plate 128 is inclined downward toward the upstream side (right side in FIG. 1) in the air flow direction. In addition, the distribution restriction plate 128 is rotatable, and the angle can be adjusted with respect to the distribution direction.

また、吸込口122の近傍には流量調整板130が配される。この流量調整板130もまた、空気の流通経路の一部を塞ぎ、板面をほぼ流通方向に向けるよう設置されている。すなわち、流量規制板130は、側面断面にて略上下に延びるよう設置されている。流量調整板130も回動可能となっており、流通方向に対する角度調整が可能となっている。   A flow rate adjusting plate 130 is disposed in the vicinity of the suction port 122. The flow rate adjusting plate 130 is also installed so as to block a part of the air flow path and direct the plate surface in the flow direction. That is, the flow regulating plate 130 is installed so as to extend substantially vertically in the side surface cross section. The flow rate adjusting plate 130 is also rotatable, and angle adjustment with respect to the flow direction is possible.

以上のように構成された分粒分級装置100における分粒及び分級について、図2を参照して説明する。
振動フィーダ等から分粒対象物が防塵フード200の投入口204から投入されると、フィードボックス106へ分粒対象物が自重により落下する。フィードボックス106の分粒対象物は、加振部104の振動により篩部材108へ移動する。
The sizing and classification in the sizing / classifying apparatus 100 configured as described above will be described with reference to FIG.
When a sized object is input from the input port 204 of the dust-proof hood 200 from a vibration feeder or the like, the sized object is dropped into the feed box 106 by its own weight. The sized object in the feed box 106 moves to the sieve member 108 due to the vibration of the vibrating unit 104.

フィードボックス106から篩部材108に分粒対象物が供給されると、分粒対象物は、まず、孔なし部108a上を加振されながら移動する。このとき、分粒対象物は、図2に示すように、径の小さな粒状物が相対的に下方へ移動し、径の大きな粒状物が相対的に上方へ移動して、粒状物が層状に整理される。   When the sizing object is supplied from the feed box 106 to the sieve member 108, the sizing object first moves while being vibrated on the holeless portion 108a. At this time, as shown in FIG. 2, the sizing object is such that the granular material having a small diameter moves relatively downward, the granular material having a large diameter moves relatively upward, and the granular material is layered. Be organized.

このように、分粒対象物は、孔なし部108aにて成層された状態で第1網部108bへ進入し、径の小さな下層の粒状物から優先的に第1網部108bを通過する。これにより、径の比較的小さい粒状物は、確実に第1網部108bにて分粒される。本実施形態においては、粒径が約2.0mmまでの粒状物が分粒される。   In this way, the sized object enters the first mesh portion 108b in a state where it is stratified by the holeless portion 108a, and preferentially passes through the first mesh portion 108b from the granular material having a smaller diameter. Thereby, the granular material with a comparatively small diameter is reliably sized by the 1st net | network part 108b. In the present embodiment, a granular material having a particle size of up to about 2.0 mm is divided.

続いて、径の比較的小さな粒状物が除去された状態で、分粒対象物は第2網部108cへ進入する。この第2網部108cにおいては、篩部材108にて設定された粗粒と細粒の分粒径付近の粒状物を中心に選り分けられる。本実施形態においては、粒径が約2.0mmから約4.0mmの粒状物が分粒される。この結果、粗粒回収口112には、約4.0mmを超える粗粒が案内される。   Subsequently, the sized object enters the second mesh portion 108c in a state where the particles having a relatively small diameter are removed. In the second mesh portion 108c, the coarse particles set by the sieve member 108 and the granular materials in the vicinity of the fine particle size are selected. In the present embodiment, a granular material having a particle size of about 2.0 mm to about 4.0 mm is divided. As a result, coarse particles exceeding about 4.0 mm are guided to the coarse particle collection port 112.

図2に示すように、篩部材108を通過した細粒は、自重により落下して受止部110により受け止められる。細粒は、加振部104から加えられる振動により受止部110上にて繰り返し跳ね上げられる。ここで、受止部110の上面が略水平であることから、細粒は受止部110上にて的確に保持された状態となっている。そして、細粒は、受止部110上を跳躍しながら細粒回収口114方向へ移送される。
このとき、細粒には跳ね上げ時及び着地時に衝撃が加えられるので、細粒に付着している微粉及び微粒は細粒から剥離される。また、細粒は、浮遊時に流通空気に曝さられるので、流通空気から受ける空気抵抗によっても微粉が細粒から剥離される。剥離された微粉は、流通空気に乗って細粒の移送方向と別方向へ移動する。尚、細粒に付着せずに篩部材108を通過した微粉は、受止部110へ落下する前に流通空気に乗って下流側へ移動している。これにより、細粒回収口114から微粉が除去された細粒が回収される。
As shown in FIG. 2, the fine particles that have passed through the sieve member 108 fall by their own weight and are received by the receiving portion 110. The fine particles are repeatedly bounced up on the receiving unit 110 by vibration applied from the vibration unit 104. Here, since the upper surface of the receiving part 110 is substantially horizontal, the fine particles are properly held on the receiving part 110. Then, the fine particles are transferred toward the fine particle collection port 114 while jumping on the receiving portion 110.
At this time, since the impact is applied to the fine particles at the time of jumping up and landing, the fine powder and fine particles adhering to the fine particles are peeled off from the fine particles. Further, since the fine particles are exposed to the circulating air when floating, the fine powder is separated from the fine particles by the air resistance received from the circulating air. The peeled fine powder rides on the circulating air and moves in a direction different from the direction in which the fine particles are transferred. Note that the fine powder that has passed through the sieve member 108 without adhering to the fine particles moves downstream by riding on the circulating air before dropping to the receiving portion 110. Thereby, the fine particles from which the fine powder has been removed are collected from the fine particle collection port 114.

ここで、第1網部108bを通過した径の比較的小さい粒状物は、各エアジェット124から吐出される空気に直接的に曝される。第1網部108bを通過した粒状物には微粉が多く含有されることから、空気の吐出エネルギを無駄なく利用して、微粉の分級を効率よく行うことができるようになっている。   Here, the particulate matter having a relatively small diameter that has passed through the first mesh portion 108 b is directly exposed to the air discharged from each air jet 124. Since the granular material that has passed through the first mesh portion 108b contains a large amount of fine powder, it is possible to efficiently classify the fine powder by using air discharge energy without waste.

本実施形態においては、前述のように、受止部110は篩であるので、受止部においても細粒と微粒とに篩い分けることができる。受止部110の下方の微粒回収口116からは受止部110を通過した微粒が得られ、細粒回収口114には受止部を下方へ通過できなかった細粒が回収され、吸込口122から流通空気に乗った微粉が回収される。これにより、分粒分級装置100では、粗粒と、細粒と、微粒と、微粉と、に分別することができる。   In the present embodiment, as described above, since the receiving part 110 is a sieve, the receiving part can be sieved into fine particles and fine particles. Fine particles that have passed through the receiving portion 110 are obtained from the fine particle collection port 116 below the receiving portion 110, and fine particles that have not been able to pass through the receiving portion are collected in the fine particle collecting port 114. From 122, the fine powder on the circulating air is collected. Thereby, in the classification apparatus 100, it can classify into a coarse grain, a fine grain, a fine grain, and a fine powder.

また、篩部材108と受止部110の間の空気の流通方向が細粒の移送方向と反対方向であるので、移送される細粒と空気の相対速度を最大限に高めて細粒に加えられる空気抵抗を大きくし、微粉の剥離効率を向上させることができる。また、細粒は浮遊時に空気により僅かながら押し戻されるので、細粒回収口114へ移動するまでの受止部110上に滞在する時間が長くなる。この結果、細粒に加えられる振動回数が多くなり、これによっても剥離効率が向上する。   Further, since the air flow direction between the sieve member 108 and the receiving part 110 is opposite to the fine particle transfer direction, the relative velocity between the fine particles to be transferred and the air is maximized and added to the fine particles. The air resistance to be increased can be increased, and the fine powder peeling efficiency can be improved. Further, since the fine particles are slightly pushed back by the air when floating, the time for staying on the receiving portion 110 until the fine particles move to the fine particle collection port 114 becomes long. As a result, the number of vibrations applied to the fine particles increases, and this also improves the separation efficiency.

さらに、篩部材108及び受止部110において、分粒対象物及び細粒の移送方向のストロークを十分に確保する必要があるところ、このストローク方向に空気を流通させることで細粒と空気の接触機会も十分に確保される。従って、装置内のスペースを効率良く利用することができる。   Furthermore, in the sieving member 108 and the receiving part 110, it is necessary to ensure a sufficient stroke in the direction of transfer of the sized object and the fine particles, and contact of the fine particles with the air by circulating air in this stroke direction. Opportunities are also fully secured. Therefore, the space in the apparatus can be used efficiently.

また、図2に示すように、篩部材108と受止部110の間で、流通空気に乗った粒状物が流通規制板128に衝突すると、粒状物が受止部110の孔なし部110aへ向かって落下する。これにより、流通規制板128をすり抜けた微粉のみがさらに下流側へ移動し、細粒及び微粒は受止部110上に叩き落とされる。従って、細粒及び微粒が流通空気に乗ってしまった場合に、細粒及び微粒を受止部110上に案内することができる。ここで、流通規制板128の下端側が空気流通方向の上流側に傾斜しているので、流通規制板128に衝突して落下する細粒及び微粒を上流側へ案内させることができる。   In addition, as shown in FIG. 2, when the particulate matter riding on the circulating air collides with the circulation regulating plate 128 between the sieve member 108 and the receiving portion 110, the granular matter moves to the holeless portion 110 a of the receiving portion 110. Falling towards. As a result, only the fine powder that has passed through the flow restricting plate 128 moves further to the downstream side, and the fine particles and fine particles are knocked down onto the receiving portion 110. Therefore, when the fine particles and the fine particles get on the circulating air, the fine particles and the fine particles can be guided onto the receiving portion 110. Here, since the lower end side of the flow restriction plate 128 is inclined toward the upstream side in the air flow direction, fine particles and fine particles that collide with the flow restriction plate 128 and fall can be guided to the upstream side.

また、流量調整板130により空気の流量を調整することにより、微粉の除去率を調整して得られる製品の粗粒率(FM値)等を調整することができ、実用に際して極めて有利である。   Further, by adjusting the air flow rate with the flow rate adjusting plate 130, the coarse particle rate (FM value) of the product obtained by adjusting the fine powder removal rate can be adjusted, which is extremely advantageous in practical use.

また、篩部材108の孔なし部108aにて空気が篩部材108より上方へ流出せず、受止部110の孔なし部110aにて空気が受止部110より下方へ流出しないことから、篩部材108と受止部110の間の流通空気の整流作用を得ることができる。そして、エアジェット124を第1網部108bの下方に設けて微粉の剥離を促進するとともに、各孔なし部108a,110aにより微粒等が篩部材108上及び受止部110下から随搬されることを防止することができる。また、第2網部108c下方のエアジェット126により、空気流通を補助することができる。そして、各孔なし部108a,110aにより上下が閉塞されるとともに、流通規制板128及び流量調整板130により空気流通方向について仕切られた整流室としての分級室132(図1参照)が画成されている。この分級室132にて空気の流れが安定することから、微粉の回収を的確に行うことができる。   In addition, air does not flow upward from the sieve member 108 at the holeless portion 108 a of the sieve member 108, and air does not flow downward from the receiving portion 110 at the holeless portion 110 a of the receiving portion 110. A rectifying action of the circulating air between the member 108 and the receiving portion 110 can be obtained. An air jet 124 is provided below the first mesh portion 108b to promote fine powder separation, and fine particles and the like are carried from above the sieve member 108 and below the receiving portion 110 by the holeless portions 108a and 110a. This can be prevented. Further, air circulation can be assisted by the air jet 126 below the second mesh portion 108c. The upper and lower portions are closed by the holeless portions 108a and 110a, and a classification chamber 132 (see FIG. 1) as a rectifying chamber partitioned by the flow regulating plate 128 and the flow rate adjusting plate 130 in the air flow direction is defined. ing. Since the air flow is stabilized in the classification chamber 132, the fine powder can be collected accurately.

このように、本実施形態の分粒分級装置100によれば、細粒を受止部110にて一旦受け止め加振しつつ流通空気に曝すようにしたので、回収口へ向かって自重で落下する細粒に空気を当てる従来のものに比べ、細粒からの微粉の除去効率を格段に向上させることができる。
また、受止部110にて細粒を一旦受け止めて加振することから、自由落下中の細粒に空気を当てる従来のもののように微粉の除去性能が投入される分粒対象物の量に依存することはなく、常に安定した微粉の除去性能を発揮させることができる。
As described above, according to the sizing / classifying apparatus 100 of the present embodiment, the fine granules are once received by the receiving portion 110 and exposed to the circulating air while being vibrated, so that they fall by their own weight toward the collection port. Compared with the conventional method in which air is applied to fine particles, the removal efficiency of fine powder from fine particles can be remarkably improved.
In addition, since the fine particles are once received and vibrated by the receiving part 110, the amount of the sizing object to which fine powder removal performance is input as in the conventional one in which air is applied to the fine particles during free fall. There is no dependence, and stable removal performance of fine powder can always be exhibited.

尚、前記実施形態においては、受止部110が篩であり、3種類の粒径の粒状物が得られるものを示したが、受止部110は単なる板部材等であってもよい。この場合、2種類の粒径の粒状物を得ることができる。   In the above-described embodiment, the receiving part 110 is a sieve, and a granular material having three kinds of particle sizes is obtained. However, the receiving part 110 may be a simple plate member or the like. In this case, a granular material with two types of particle sizes can be obtained.

また、前記実施形態においては、空気の流通方向が受止部110上における細粒の移送方向と反対方向のものを示したが、空気の流通方向は限定されるものでなく、移送方向と別方向であればよい。   In the above embodiment, the air flow direction is the direction opposite to the fine particle transfer direction on the receiving portion 110, but the air flow direction is not limited and is different from the transfer direction. Any direction is acceptable.

また、前記実施形態においては、受止部110の上面が略水平であるものを示したが、自重で滑落しない程度に細粒を保持することができれば、略水平である必要はない。また、篩部材108が略水平の振動篩であるものを示したが、例えば傾斜して構成されていてもよく、篩部材108は粗粒と細粒の分粒機能を有していれば構成は任意である。   Moreover, in the said embodiment, although the upper surface of the receiving part 110 was shown substantially horizontal, if a fine grain can be hold | maintained to such an extent that it does not slide down with dead weight, it does not need to be substantially horizontal. Further, although the sieve member 108 is shown as a substantially horizontal vibrating sieve, it may be configured to be inclined, for example, and the sieve member 108 is configured as long as it has a coarse particle and fine particle sizing function. Is optional.

また、流通規制板128、流量調整板130等の形状、配置状態、設置の有無等も装置の仕様に応じて任意に設定することができるし、その他、具体的な細部構造等についても適宜に変更可能であることは勿論である。   In addition, the shape, arrangement state, presence / absence of installation, etc. of the flow regulating plate 128, the flow rate adjusting plate 130, etc. can be arbitrarily set according to the specifications of the apparatus, and other specific detailed structures etc. Of course, it can be changed.

本発明の一実施形態を示し、分粒分級装置の概略構成を示す側断面図である。1 is a side sectional view showing a schematic configuration of a sizing / classifying apparatus according to an embodiment of the present invention. 分粒分級装置内の分粒対象物及び空気の流れを示す説明図である。It is explanatory drawing which shows the sizing object and the flow of air in a sizing apparatus.

符号の説明Explanation of symbols

100 分粒分級装置
102 装置本体
104 加振部
104a モータ
104b ベルト
104c 運動変換機構
106 フィードボックス
108 篩部材
108a 孔なし部
108b 第1網部
108c 第2網部
110 受止部
110a 孔なし部
112 粗粒回収口
114 細粒回収口
116 微粒回収口
118 空気流通部
120 導入口
122 吸込口
124 エアジェット
126 エアジェット
128 流通規制板
130 流量調整板
132 分級室
200 防塵フード
202 集塵管
204 投入口
206 回収ホッパー
208 集塵管
DESCRIPTION OF SYMBOLS 100 Size classifier 102 Apparatus main body 104 Exciting part 104a Motor 104b Belt 104c Motion conversion mechanism 106 Feed box 108 Sieve member 108a No hole part 108b First net part 108c Second net part 110 Receiving part 110a No hole part 112 Coarse Granule recovery port 114 Fine particle recovery port 116 Fine particle recovery port 118 Air circulation part 120 Inlet port 122 Suction port 124 Air jet 126 Air jet 128 Flow regulating plate 130 Flow rate adjusting plate 132 Classifying chamber 200 Dustproof hood 202 Dust collection tube 204 Input port 206 Recovery hopper 208 Dust collection tube

Claims (8)

分粒対象物を粗粒と該粗粒より小さな細粒とに選り分ける篩部材を有し、前記粗粒を回収する粗粒回収口及び前記細粒を回収する細粒回収口が形成された分粒分級装置であって、
前記篩部材の下方に設けられ、前記篩部材を通過した前記細粒を前記篩部材と略平行に形成された上面にて受け止める受止部と、
前記篩部材を加振して、前記篩部材上の前記分粒対象物を前記篩部材上にて前記粗粒回収口方向へ移送するとともに、前記受止部を加振して、前記受止部上の前記細粒を前記受止部上にて前記細粒回収口方向へ移送する加振部と、
前記篩部材と前記受止部の間の空気を前記細粒の移送方向と反対方向に流通させる空気流通部と、を備え
前記篩部材における前記分粒対象物の移送方向と反対側端部に前記分粒対象物を供給するためのフィード部を備え、
前記篩部材は、前記分粒対象物の移送方向について、孔なし部と、網部と、を連続的にこの順で有し、
前記受止部の少なくとも一部が、細粒から該細粒より小さな微粒を分離するための篩となっており、
前記受止部における前記篩部材の前記孔なし部の下方に、孔なし部を形成し、
前記篩部材と前記受止部の間の空気流通経路に、前記篩部材の前記孔なし部により上方が閉塞されるとともに前記受止部の前記孔なし部により下方が閉塞される整流室を画成したことを特徴とする分粒分級装置。
A sieving member that sorts the sized object into coarse particles and fine particles smaller than the coarse particles, and a coarse particle collection port for collecting the coarse particles and a fine particle collection port for collecting the fine particles are formed. A size classification device,
A receiving portion that is provided below the sieve member and receives the fine particles that have passed through the sieve member on an upper surface formed substantially parallel to the sieve member;
The sieve member is vibrated, and the sized object on the sieve member is transferred to the coarse particle recovery port direction on the sieve member, and the receiving part is vibrated to receive the receiving member. A vibration unit for transferring the fine particles on the portion toward the fine particle collection port on the receiving unit;
An air circulation part that circulates air between the sieve member and the receiving part in a direction opposite to the direction in which the fine particles are transferred , and
A feed unit for supplying the sizing object to the end of the sieving member opposite to the transfer direction of the sizing object;
The sieve member has a holeless portion and a mesh portion in this order continuously in the transfer direction of the sizing object,
At least a part of the receiving portion is a sieve for separating fine particles smaller than the fine particles from the fine particles,
Forming a holeless portion below the holeless portion of the sieve member in the receiving portion,
The air flow path between the sieving member and the receiving part defines a rectifying chamber whose upper part is closed by the holeless part of the sieving member and whose lower part is closed by the holeless part of the receiving part. A sizing / classifying device characterized by having been made .
前記受止部の上面は略水平に形成されることを特徴とする請求項1に記載の分粒分級装置。   The size classification device according to claim 1, wherein an upper surface of the receiving portion is formed substantially horizontally. 前記篩部材の前記孔なし部の下方へ向かって、空気流通方向の上流側から空気を吐出する空気吐出口を設けたことを特徴とする請求項1または2に記載の分粒分級装置。 The sizing / classifying device according to claim 1 or 2 , further comprising an air discharge port for discharging air from an upstream side in an air flow direction toward the lower side of the holeless portion of the sieve member. 前記網部は、前記分粒対象物の移送方向について、第1網部と、該第1網部よりも目の粗い第2網部と、を連続的にこの順で有することを特徴とする請求項1から3のいずれか一項に記載の分粒分級装置。 The mesh portion has a first mesh portion and a second mesh portion having a coarser mesh than the first mesh portion in this order in the transfer direction of the sized object. The size classification apparatus as described in any one of Claim 1 to 3 . 前記篩部材の前記第1網部の下方に空気吐出口を配設したことを特徴とする請求項に記載の分粒分級装置。 The size classification device according to claim 4 , wherein an air discharge port is disposed below the first mesh portion of the sieve member. 前記受止部の前記孔なし部上方に配され、空気の流通経路の一部を塞ぎ板面をほぼ流通方向へ向けた流通規制板を設けたことを特徴とする請求項1から5のいずれか一項に記載の分粒分級装置。 6. The flow regulating plate is provided above the holeless portion of the receiving portion and closes a part of the air flow path so that the plate surface is substantially directed in the flow direction. 6. The sizing / classifying apparatus according to claim 1. 前記流通規制板の少なくとも一部は、下方へ向かって前記空気流通方向の上流側に傾斜することを特徴とする請求項に記載の分粒分級装置。 The size classification device according to claim 6 , wherein at least a part of the flow restriction plate is inclined downward toward the upstream side in the air flow direction. 前記流通規制板の下流側に設けられ前記微粉を含む前記空気の吸込口と、
前記吸込口の近傍に配された流量調整板と、を備えたことを特徴とする請求項6または7に記載の分粒分級装置。
The air inlet provided on the downstream side of the flow regulating plate and containing the fine powder;
A size classification device according to claim 6 or 7 , further comprising a flow rate adjusting plate disposed in the vicinity of the suction port.
JP2005257044A 2005-09-05 2005-09-05 Size classification device Active JP4686309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005257044A JP4686309B2 (en) 2005-09-05 2005-09-05 Size classification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005257044A JP4686309B2 (en) 2005-09-05 2005-09-05 Size classification device

Publications (2)

Publication Number Publication Date
JP2007069089A JP2007069089A (en) 2007-03-22
JP4686309B2 true JP4686309B2 (en) 2011-05-25

Family

ID=37931010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005257044A Active JP4686309B2 (en) 2005-09-05 2005-09-05 Size classification device

Country Status (1)

Country Link
JP (1) JP4686309B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5275852B2 (en) * 2009-03-05 2013-08-28 株式会社冨士製作所 Vibrating sieve device
KR101616633B1 (en) * 2014-09-23 2016-04-28 안두혁 Classifier for aggregate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318368Y2 (en) * 1975-10-27 1978-05-17
JPS6167884U (en) * 1984-10-06 1986-05-09
JPH01501531A (en) * 1986-12-01 1989-06-01 ゲブリューダー・ビューラー・アクチエンゲゼルシヤフト Dry milling preparation method and device for granular food and feed
JPH0557249A (en) * 1991-08-30 1993-03-09 Shinko Electric Co Ltd Vibrating screen device
JPH05115849A (en) * 1991-07-02 1993-05-14 Kurimoto Ltd Sorting device for milled noncombustible material
JPH05192644A (en) * 1991-06-07 1993-08-03 Shinko Electric Co Ltd Refuse separating vibration conveyor
JP2000218237A (en) * 1999-01-29 2000-08-08 Kurimoto Ltd Sorting device for waste
JP2002205017A (en) * 2000-11-13 2002-07-23 Kurimoto Ltd Separator of waste
JP2005058968A (en) * 2003-08-20 2005-03-10 Kurimoto Ltd Specific gravity difference separator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318368Y2 (en) * 1975-10-27 1978-05-17
JPS6167884U (en) * 1984-10-06 1986-05-09
JPH01501531A (en) * 1986-12-01 1989-06-01 ゲブリューダー・ビューラー・アクチエンゲゼルシヤフト Dry milling preparation method and device for granular food and feed
JPH05192644A (en) * 1991-06-07 1993-08-03 Shinko Electric Co Ltd Refuse separating vibration conveyor
JPH05115849A (en) * 1991-07-02 1993-05-14 Kurimoto Ltd Sorting device for milled noncombustible material
JPH0557249A (en) * 1991-08-30 1993-03-09 Shinko Electric Co Ltd Vibrating screen device
JP2000218237A (en) * 1999-01-29 2000-08-08 Kurimoto Ltd Sorting device for waste
JP2002205017A (en) * 2000-11-13 2002-07-23 Kurimoto Ltd Separator of waste
JP2005058968A (en) * 2003-08-20 2005-03-10 Kurimoto Ltd Specific gravity difference separator

Also Published As

Publication number Publication date
JP2007069089A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
CN104470646B (en) The method and apparatus of separating granular
JP6756951B2 (en) Fine aggregate, pumice stone, volcanic glass, mixed cement and perlite
CN209736075U (en) Sorting system for removing mica in machine-made sand
CN105899295A (en) Closed-circuit grinding plant having a pre-classifier and a ball mill
CN104549711B (en) Gravel production system
JP3966426B1 (en) Vibrating sieve device, sieve mesh, and vibrating sieve method
JP3635242B2 (en) Crushed sand production equipment
US4561598A (en) Apparatus for grinding, milling, crushing, scrubbing, sizing and/or classifying material
US20070029417A1 (en) Methods and apparatus for crushing and handling rock
JP2007275712A (en) Classifier
JP4686309B2 (en) Size classification device
CN111774305B (en) Vibration screen lower half concentrated wind power powder selecting machine
JP4012696B2 (en) Sizing / classifying apparatus and sizing / classifying method
JP2002361179A (en) Classifier for glass powder
CN109789447A (en) The device and method of dry-type separation for particle
JP2008080282A (en) Sizing and classification apparatus
KR200335865Y1 (en) A apparatus for manufacturing a sand and stone using a construction waste matter
CN204620177U (en) A kind of sandstone production system
JP2006150312A (en) Wind power sorting device
JP6722478B2 (en) Aggregate for concrete, method of manufacturing aggregate for concrete, and concrete
JP3458479B2 (en) Fluidized bed classifier
JP2004202496A (en) Sand manufacturing unit
EP4037845B1 (en) Device for sorting powder particles
JP4290896B2 (en) Sand making equipment
SU1747169A1 (en) Method of concrete aggregate cleaning of lump clay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4686309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250